Sample records for impulsive pressure loading

  1. Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom

    NASA Astrophysics Data System (ADS)

    Hibi, Shigeyuki

    2018-06-01

    Impulsive loads should be excited under nonlinear phenomena with free surface fluctuating severely such as sloshing and slamming. Estimating impulsive loads properly are important to recent numerical simulations. But it is still difficult to rely on the results of simulations perfectly because of the nonlinearity of the phenomena. In order to develop the algorithm of numerical simulations experimental results of nonlinear phenomena are needed. In this study an apparatus which can oscillate a tank by force was introduced in order to investigate impulsive pressure on the wall of the tank. This apparatus can oscillate it simultaneously towards 3 degrees of freedom with each phase differences. The impulsive pressure under the various combinations of oscillation direction was examined and the specific phase differences to appear the largest peak values of pressure were identified. Experimental results were verified through FFT analysis and statistical methods.

  2. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma.

    PubMed

    Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru

    2014-04-16

    Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.

  3. Blast Load Simulator Experiments for Computational Model Validation: Report 2

    DTIC Science & Technology

    2017-02-01

    repeatability. The uncertainty in the experimental pressures and impulses was evaluated by computing 95% confidence intervals on the results. DISCLAIMER: The...Experiment uncertainty The uncertainty in the experimental pressure and impulse was evaluated for the five replicate experiments for which, as closely as...comparisons were made among the replicated experiments to evaluate repeatability. The uncertainty in the experimental pressures and impulses was

  4. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma

    PubMed Central

    2014-01-01

    Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure. PMID:24739360

  5. Effects of unweighting and speed on in-shoe regional loading during running on a lower body positive pressure treadmill.

    PubMed

    Smoliga, James M; Wirfel, Leah Anne; Paul, Danielle; Doarnberger, Mary; Ford, Kevin R

    2015-07-16

    The purpose of this study was to determine how unweighted running on a lower body positive pressure treadmill (LBPPT) modifies in-shoe regional loading. Ten experienced runners were fit with pressure distribution measurement insoles and ran at 100%, 120%, and 140% of self-reported easy training pace on a LBPPT at 20%, 40%, 60%, 80%, and 100% body weight percentage settings (BWSet). Speeds and BWSet were in random order. A linear mixed effect model (p<0.05 significance level) was used to compare differences in whole foot and regional maximum in-shoe plantar force (FMAX), impulse, and relative load distribution across speeds and BWSet. There were significant main effects (p<0.001) for running speed and BWSet for whole foot Fmax and impulse. The model revealed 1.4% and 0.24% increases in whole foot FMAX (times body weight) and impulse, respectively, for every unit increase in body weight percentage. There was a significant main effect for BWSet on Fmax and relative load (p<0.05) for each of the nine foot regions examined, though four regions were not different between 80% and 100% BWSet. There was a significant (p<0.001) main effect for BWSet on forefoot to rear foot relative load. Linear relationships were found between increases in BWSet and increases in-shoe Fmax and impulse, resulting from regional changes in foot pressure which represent a shift towards forefoot loading, most evident <80% BWSet. Estimating in-shoe regional loading parameters may be useful during rehabilitation and training to appropriately prescribe specific speed and body weight levels, without exceeding certain critical peak force levels while running. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    DTIC Science & Technology

    2010-04-01

    time of wind - tunnel operation, so that oscillations caused by initial shock loads could decay and a comparatively long time period with constant flow...Flow Diagnostic in ITAM Impulse Wind Tunnels 7 - 4 RTO-EN-AVT-186 A strain-gauge pressure probe is an elastic element (membrane) in a sealed...Diagnostic in ITAM Impulse Wind Tunnels RTO-EN-AVT-186 7 - 5 probes are individually calibrated. Piezoelectric pressure gauges are based

  7. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    PubMed

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  8. Gaussian step-pressure loading of rigid viscoplastic plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Durling, B. J.

    1978-01-01

    The response of a thin, rigid viscoplastic plate subjected to a spatially axisymmetric Gaussian step pressure impulse loading was studied analytically. A Gaussian pressure distribution in excess of the collapse load was applied to the plate, held constant for a length of time, and then suddenly removed. The plate deforms with monotonically increasing deflections until the dynamic energy is completely dissipated in plastic work. The simply supported plate of uniform thickness obeys the von Mises yield criterion and a generalized constitutive equation for rigid viscoplastic materials. For the small deflection bending response of the plate, the governing system of equations is essentially nonlinear. Transverse shear stress is neglected in the yield condition and rotary inertia in the equations of dynamic equilibrium. A proportional loading technique, known to give excellent approximations of the exact solution for the uniform load case, was used to linearize the problem and to obtain the analytical solutions in the form of eigenvalue expansions. The effects of load concentration, of an order of magnitude change in the viscosity of the plate material, and of load duration were examined while holding the total impulse constant.

  9. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  10. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  11. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  12. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  13. The influence of minimalist footwear and stride length reduction on lower-extremity running mechanics and cumulative loading.

    PubMed

    Firminger, Colin R; Edwards, W Brent

    2016-12-01

    To examine the effects of shoe type and stride length reduction on lower-extremity running mechanics and cumulative loading. Within-subject with four conditions: (1) control shoe at preferred stride length; (2) control shoe at 90% preferred stride length; (3) minimalist shoe at preferred stride length; (4) minimalist shoe at 90% preferred stride length. Fourteen young healthy males ran overground at their preferred speed while motion capture, force platform, and plantar pressure data were collected. Peak moments, impulse, mechanical work, and cumulative impulse were calculated at the metatarsophalangeal, ankle, and knee joint, and compared between conditions using a 2×2 factor repeated measures ANOVA. In general, running in minimalist footwear increased measures of loading at the metatarsophalangeal joint and ankle joint (mean increases of 7.3% and 5.9%, respectively), but decreased measures of loading at the knee (mean decrease of 7.3%). Conversely, running with reduced stride length decreased single-stance measures of loading at the ankle and knee joint (ranging from -0.9% to -20.5%), though cumulative impulse was higher at the ankle and lower at the knee. Running in minimalist shoes increased loads at the metatarsophalangeal and ankle joint, which may explain some of the incidence of overuse injuries observed in minimalist shoe users. Decreased ankle loads at 90% preferred stride length were not necessarily sufficient to reduce cumulative loads when impulse and loading cycles were weighted equally. Knee loads decreased more when running at 90% preferred stride length (16.2% mean reduction) versus running in a minimalist shoe (7.3% mean reduction), but both load reduction mechanisms appeared to have an additive effect (22.2% mean reduction). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. The jump-off velocity of an impulsively loaded spherical shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabaud, Brandon M.; Brock, Jerry S.

    2012-04-13

    We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less

  15. 46th Annual Gun and Missile Systems Conference and Exhibition. Volume 2. Wednesday

    DTIC Science & Technology

    2011-09-01

    military/systems/munitions/images/ Page 7 Designing for Operational Challenges  Gun hardening – Multiple charges • Angular acceleration variation ...The industrial base overestimated readiness at SDD start – Analysis/models were naive • Impulsive loads — pressure variation — SOM under impulse...Manufacture and Producibility Branch, US Army Armament Research, Development and Engineering Center • Alan Sweet and William Goldberg , Packaging Division

  16. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    NASA Astrophysics Data System (ADS)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2018-05-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  17. Three-dimensional water impact at normal incidence to a blunt structure

    PubMed Central

    Cooker, M. J.; Korobkin, A. A.

    2016-01-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial-temporal distribution of a mechanical load resulting from interaction of laser radiation with a barrier (analytic model)

    NASA Astrophysics Data System (ADS)

    Fedyushin, B. T.

    1992-01-01

    The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.

  19. The influence of muscle fatigue on electromyogram and plantar pressure patterns as an explanation for the incidence of metatarsal stress fractures.

    PubMed

    Weist, Roger; Eils, Eric; Rosenbaum, Dieter

    2004-12-01

    Stress fractures are common overuse injuries in runners and appear most frequently in the metatarsals. To investigate fatigue-related changes in surface electromyographic activity patterns and plantar pressure patterns during treadmill running as potential causative factors for metatarsal stress fractures. Prospective cohort study with repeated measurements. Thirty experienced runners volunteered to participate in a maximally exhaustive run above the anaerobic threshold. Surface electromyographic activity was monitored for 14 muscles, and plantar pressures were measured using an in-shoe monitoring system. Fatigue was documented with blood lactate measurements. The results demonstrated an increased maximal force (5%, P < .01), peak pressure (12%, P < .001), and impulse (9%, P < .01) under the second and third metatarsal head and under the medial midfoot (force = 7%, P < .05; pressure = 6%, P < .05; impulse = 17%, P < .01) toward the end of the fatiguing run. Contact area and contact time were only slightly affected. The mean electromyographic activity was significantly reduced in the medial gastrocnemius (-9%, P < .01), lateral gastrocnemius (-12%, P < .01), and soleus (-9%, P < .001) muscles. The demonstrated alteration of the rollover process with an increased forefoot loading may help to explain the incidence of stress fractures of the metatarsals under fatiguing loading conditions.

  20. Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.

    PubMed

    Kipp, Kristof; Harris, Chad

    2017-07-01

    Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than manipulate EMA.

  1. Effect of work intensity on time delay in mediation of ventilation by arterial carbon dioxide during recovery from impulse exercise.

    PubMed

    Afroundeh, R; Arimitsu, T; Yamanaka, R; Lian, C S; Shirakawa, K; Yunoki, T; Yano, T

    2014-01-01

    Time delay in the mediation of ventilation (V(.)E) by arterial CO(2) pressure (PaCO(2)) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V(.)E, end tidal CO(2) pressure (PETCO(2)) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO(2) was estimated from PETCO(2) and tidal volume (V(T)). Results showed that predicted arterial CO(2) pressure (PaCO(2 pre)) increased during recovery in both tests. In both tests, V(.)E increased and peaked at the end of exercise. V(.)E decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO(2 pre) and V(.)E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO(2 pre) drives V(.)E with a time delay and that higher work intensity induces a shorter time delay.

  2. Wave impact on a deck or baffle

    NASA Astrophysics Data System (ADS)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  3. Rayleigh wave effects in an elastic half-space.

    NASA Technical Reports Server (NTRS)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  4. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  5. Intrathoracic pressure impulse predicts pulmonary contusion volume in ballistic blunt thoracic trauma.

    PubMed

    Prat, Nicolas; Rongieras, Frédéric; Voiglio, Eric; Magnan, Pascal; Destombe, Casimir; Debord, Eric; Barbillon, Franck; Fusai, Thierry; Sarron, Jean-Claude

    2010-10-01

    Blunt thoracic trauma including behind armour blunt trauma or impact from a less lethal kinetic weapon (LLKW) projectile may cause injuries, including pulmonary contusions that can result in potentially lethal secondary complications. These lung injuries may be caused by intrathoracic pressure waves. The aim of this study was to observe dynamic changes in intrathoracic hydrostatic pressure during ballistic blunt thoracic trauma and to find correlations between these hydrostatic pressure parameters (especially the impulse parameter) and physical damages. Thirty anesthetized pigs sustained a blunt thoracic trauma. In group 1 (n = 20), pigs were protected by a National Institute of Justice class III or IV bulletproof vest and shot with 7.62 NATO bullets. In group 2 (n = 10), pigs were shot by an LLKW. Intrathoracic pressure was recorded with an intraesophageal pressure sensor and three parameters were determined: intrathoracic maximum pressure, intrathoracic maximum pressure impulse (PI(max)), and the Pd.P/dt(max), derived from Viano's viscous criterion. Relative right lower lung lobe contusion volume was also measured. Different thoracic loading conditions were obtained. PI(max) best correlated with relative pulmonary contusion volume (R² = 0.64 and p < 0.0001). This result was homogenous for all experiments and was not related to the type of chest impact (LLKW-induced trauma or behind armour blunt trauma). The PI(max) is a good predictor of pulmonary contusion volume after ballistic blunt thoracic trauma. It is a useful criterion when the kinetic energy record or thoracic wall displacement data are unavailable, and the recording and calculation of this physical value are quite simple on animals.

  6. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  7. Impact and Blast Resistance of Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

    Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

  8. An investigation of a reticulated foam - perforated steel sheet combination as a blast mitigation structure

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy-Tien N.; Proud, William G.

    2017-01-01

    Explosions are one of the main causes of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming increasingly common. Blast waves produced from such explosions can inflict very complex injuries on human and serious damage to structures. Here, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets is studied using a shock tube. The level of mitigation for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude and impulse. Schlieren photography and other high-speed imaging were used to capture the form of the blast wave. The results show up to 95% mitigation in both pressure and impulse with the structures studied. The behaviors of these mitigating sandwich panels under two loadings, Mach 2.0 and Mach 2.6, are also discussed.

  9. Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Anderson, William E.

    2005-01-01

    The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

  10. Computational design of an experimental laser-powered thruster

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ronald; Keefer, Dennis

    1988-01-01

    An extensive numerical experiment, using the developed computer code, was conducted to design an optimized laser-sustained hydrogen plasma thruster. The plasma was sustained using a 30 kW CO2 laser beam operated at 10.6 micrometers focused inside the thruster. The adopted physical model considers two-dimensional compressible Navier-Stokes equations coupled with the laser power absorption process, geometric ray tracing for the laser beam, and the thermodynamically equilibrium (LTE) assumption for the plasma thermophysical and optical properties. A pressure based Navier-Stokes solver using body-fitted coordinate was used to calculate the laser-supported rocket flow which consists of both recirculating and transonic flow regions. The computer code was used to study the behavior of laser-sustained plasmas within a pipe over a wide range of forced convection and optical arrangements before it was applied to the thruster design, and these theoretical calculations agree well with existing experimental results. Several different throat size thrusters operated at 150 and 300 kPa chamber pressure were evaluated in the numerical experiment. It is found that the thruster performance (vacuum specific impulse) is highly dependent on the operating conditions, and that an adequately designed laser-supported thruster can have a specific impulse around 1500 sec. The heat loading on the wall of the calculated thrusters were also estimated, and it is comparable to heat loading on the conventional chemical rocket. It was also found that the specific impulse of the calculated thrusters can be reduced by 200 secs due to the finite chemical reaction rate.

  11. Rock Directed Breaking Under the Impulse Load

    NASA Astrophysics Data System (ADS)

    Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol

    2016-10-01

    In the work the problem of directed chipping of facing stone material by means of managing of explosion process is considered. The technology of the mining of decorative stone by the use of explosion energy means the very rapid transfer of potential energy of elastic deformations to kinetic energy. As a result, the explosion impulse, in the expanse of the inertia of rock massive, does not cause the increase of existing cracks. In the course of explosion, the shock wave is propagated by ultrasonic velocity and in this case the medium parameters (pressure, density, temperature, velocity) increase in spurts. In spite of this fact the all three conservation laws of mechanics remain valid on basis of three laws the equations are derived by which the parameters of shock wave may be defined by means of the rock physical-mechanical properties. The load on the body volume at breaking under explosion acts over very small period of the time. Therefore, stressed-deformed state of the rock was studied when the impulse load acts on the boundary. It was considered that the mining of the blocks of facing stone is performed from the hard rocks. This means that the breaking proceeds in the zone of elastic deformation. In the conditions of mentioned assumptions, the expression of the stress tensor and displacement of vector components initiated by stressed-deformed state in the rock are written.

  12. Relative Intensity Influences the Degree of Correspondence of Jump Squats and Push Jerks to Countermovement Jumps.

    PubMed

    Cushion, Emily J; Goodwin, Jon E; Cleather, Daniel J

    2016-05-01

    The aim of this study was to determine the mechanical similarity between push jerk (PJ) and jump squat (JS) to countermovement jump (CMJ) and further understand the effect increasing external load may have on this relationship. Eight physically trained men (age 22 ± 3; height 176 ± 7 kg; weight 83 ± 8 kg) performed an unloaded CMJ followed by JS under a range of loads (10, 25, 35, and 50% 1RM back squat) and PJ (30, 50, 65, and 75% 1RM push jerk). A portable force platform and high-speed camera both collecting at 250 Hz were used to establish joint moments and impulse during the propulsive phase of the movements. A standard inverse dynamics model was used to determine joint moment and impulse at the hip, knee, and ankle. Significant correlations (p ≤ 0.05) were shown between CMJ knee joint moment and JS knee joint moment at 25% load and PJ knee joint moment at 30 and 50% load. Significant correlations were also observed between CMJ knee joint impulse and JS knee joint impulse at 10% load and PJ knee joint moment at 30 and 65% load. Significant correlation was also observed between CMJ hip joint impulse and PJ hip joint impulse at 30% load. No significant joint × load interaction was shown as load increased for either PJ or JS. Results from the study suggest partial correspondence between PJ and JS to CMJ, where a greater mechanical similarity was observed between the PJ and CMJ. This interaction is load and joint dependent where lower relative loads showed greatest mechanical similarity. Therefore using lower relative loads when programming may provide a greater transfer of training effect.

  13. The effects of running cadence manipulation on plantar loading in healthy runners.

    PubMed

    Wellenkotter, J; Kernozek, T W; Meardon, S; Suchomel, T

    2014-08-01

    Our purpose was to evaluate effects of cadence manipulation on plantar loading during running. Participants (n=38) ran on a treadmill at their preferred speed in 3 conditions: preferred, 5% increased, and 5% decreased while measured using in-shoe sensors. Data (contact time [CT], peak force [PF], force time integral [FTI], pressure time integral [PTI] and peak pressure [PP]) were recorded for 30 right footfalls. Multivariate analysis was performed to detect differences in loading between cadences in the total foot and 4 plantar regions. Differences in plantar loading occurred between cadence conditions. Total foot CT and PF were lower with a faster cadence, but no total foot PP differences were observed. Faster cadence reduced CT, pressure and force variables in both the heel and metatarsal regions. Increasing cadence did not elevate metatarsal loads; rather, total foot and all regions were reduced when healthy runners increased their cadence. If a 5% increase in cadence from preferred were maintained over each mile run the impulse at the heel would be reduced by an estimated 565 body weights*s (BW*s) and the metatarsals 140-170 BW*s per mile run despite the increased steps taken. Increasing cadence may benefit overuse injuries associated with elevated plantar loading. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    NASA Technical Reports Server (NTRS)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  15. Experimental Investigation of Free Field and Shock-Initiated Implosion of Composite Structures

    DTIC Science & Technology

    2017-02-06

    From- To) 06 - 02 - 2017 Final Report Nov . 2013 - De c . 2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Experimental I nvestigation of Free Fie l d...of experimental studies is perfor med to study the implos i on behavior of a variety of different composite structures under varying loading...Introduction Materials Experimental Procedure DIC Technique Collapse Pressure Predictions Specific and Total Impulse

  16. Effects of Lateral and Medial Wedged Insoles on Knee and Ankle Internal Joint Moments During Walking in Healthy Men.

    PubMed

    Fukuchi, Claudiane A; Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2016-11-01

    Wedged insoles have been used to treat knee pathologies and to prevent injuries. Although they have received much attention for the study of knee injury, the effects of wedges on ankle joint biomechanics are not well understood. This study sought to evaluate the immediate effects of lateral and medial wedges on knee and ankle internal joint loading and center of pressure (CoP) in men during walking. Twenty-one healthy men walked at 1.4 m/sec in five footwear conditions: neutral, 6° (LW6) and 9° (LW9) lateral wedges, and 6° (MW6) and 9° (MW9) medial wedges. Peak internal knee abduction moments and angular impulses, internal ankle inversion moments and angular impulses, and mediolateral CoP were analyzed. Analysis of variance with post hoc analysis and Pearson correlations were performed to detect differences between conditions. No differences in internal knee joint loading were found between neutral and any of the wedge conditions. However, as the wedge angle increased from medial to lateral, the internal ankle inversion moment (LW6: P = .020; LW9: P < .001; MW6: P = .046; MW9: P < .001) and angular impulse (LW9: P = .012) increased, and the CoP shifted laterally (LW9: P < .001) and medially (MW9: P < .001) compared with the neutral condition. Neither lateral nor medial wedges were effective in altering internal knee joint loading during walking. However, the greater internal ankle inversion moment and angular impulse observed with lateral wedges could lead to a higher risk of ankle injury. Thus, caution should be taken when lateral wedges need to be prescribed.

  17. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    PubMed

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Experimental and Numerical Analyses of Dynamic Deformation and Failure in Marine Structures Subjected to Underwater Impulsive Loads

    DTIC Science & Technology

    2012-08-01

    based impulsive loading ......................................... 48 4.4 Computational modeling of USLS ...56 4.5 Underwater Shock Loading Simulator ( USLS ) ...................................................... 59 4.6 Concluding...42 Figure 4.1 Schematic of Underwater Shock Loading Simulator ( USLS ). A high-velocity projectile hits the flyer-plate and creates a stress

  19. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.586 Pressure impulse test. A fuel... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure impulse test. 183.586... pressure test under § 183.580. (b) If the tank is non-metallic, fill it to capacity with a gasoline that...

  20. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.586 Pressure impulse test. A fuel... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pressure impulse test. 183.586... pressure test under § 183.580. (b) If the tank is non-metallic, fill it to capacity with a gasoline that...

  1. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.586 Pressure impulse test. A fuel... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pressure impulse test. 183.586... pressure test under § 183.580. (b) If the tank is non-metallic, fill it to capacity with a gasoline that...

  2. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.586 Pressure impulse test. A fuel... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pressure impulse test. 183.586... pressure test under § 183.580. (b) If the tank is non-metallic, fill it to capacity with a gasoline that...

  3. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.586 Pressure impulse test. A fuel... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pressure impulse test. 183.586... pressure test under § 183.580. (b) If the tank is non-metallic, fill it to capacity with a gasoline that...

  4. Screening method based on walking plantar impulse for detecting musculoskeletal senescence and injury.

    PubMed

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Newman, Tony; Lv, Changsheng; Zhou, Yi

    2013-01-01

    No consensus has been reached on how musculoskeletal system injuries or aging can be explained by a walking plantar impulse. We standardize the plantar impulse by defining a principal axis of plantar impulse. Based upon this standardized plantar impulse, two indexes are presented: plantar pressure record time series and plantar-impulse distribution along the principal axis of plantar impulse. These indexes are applied to analyze the plantar impulse collected by plantar pressure plates from three sources: Achilles tendon ruptures; elderly people (ages 62-71); and young people (ages 19-23). Our findings reveal that plantar impulse distribution curves for Achilles tendon ruptures change irregularly with subjects' walking speed changes. When comparing distribution curves of the young, we see a significant difference in the elderly subjects' phalanges plantar pressure record time series. This verifies our hypothesis that a plantar impulse can function as a means to assess and evaluate musculoskeletal system injuries and aging.

  5. A Review of Research on Impulsive Loading of Marine Composites

    NASA Astrophysics Data System (ADS)

    Porfiri, Maurizio; Gupta, Nikhil

    Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.

  6. Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform – A Study in Chinchillas

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary

    2016-01-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796

  7. Assessment of the Effectiveness of Combat Eyewear Protection Against Blast Overpressure.

    PubMed

    Sundaramurthy, A; Skotak, M; Alay, E; Unnikrishnan, G; Mao, H; Duan, X; Williams, S T; Harding, T H; Chandra, N; Reifman, J

    2018-07-01

    It is unclear whether combat eyewear used by U. S. Service members is protective against blast overpressures (BOPs) caused by explosive devices. Here, we investigated the mechanisms by which BOP bypasses eyewear and increases eye surface pressure. We performed experiments and developed three-dimensional (3D) finite element (FE) models of a head form (HF) equipped with an advanced combat helmet (ACH) and with no eyewear, spectacles, or goggles in a shock tube at three BOPs and five head orientations relative to the blast wave. Overall, we observed good agreement between experimental and computational results, with average discrepancies in impulse and peak-pressure values of less than 15% over 90 comparisons. In the absence of eyewear and depending on the head orientation, we identified three mechanisms that contributed to pressure loading on the eyes. Eyewear was most effective at 0 deg orientation, with pressure attenuation ranging from 50 (spectacles) to 80% (goggles) of the peak pressures observed in the no-eyewear configuration. Spectacles and goggles were considerably less effective when we rotated the HF in the counter-clockwise direction around the superior-inferior axis of the head. Surprisingly, at certain orientations, spectacles yielded higher maximum pressures (80%) and goggles yielded larger impulses (150%) than those observed without eyewear. The findings from this study will aid in the design of eyewear that provides better protection against BOP.

  8. Screening Method Based on Walking Plantar Impulse for Detecting Musculoskeletal Senescence and Injury

    PubMed Central

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Newman, Tony; Lv, Changsheng; Zhou, Yi

    2013-01-01

    No consensus has been reached on how musculoskeletal system injuries or aging can be explained by a walking plantar impulse. We standardize the plantar impulse by defining a principal axis of plantar impulse. Based upon this standardized plantar impulse, two indexes are presented: plantar pressure record time series and plantar-impulse distribution along the principal axis of plantar impulse. These indexes are applied to analyze the plantar impulse collected by plantar pressure plates from three sources: Achilles tendon ruptures; elderly people (ages 62–71); and young people (ages 19–23). Our findings reveal that plantar impulse distribution curves for Achilles tendon ruptures change irregularly with subjects’ walking speed changes. When comparing distribution curves of the young, we see a significant difference in the elderly subjects’ phalanges plantar pressure record time series. This verifies our hypothesis that a plantar impulse can function as a means to assess and evaluate musculoskeletal system injuries and aging. PMID:24386288

  9. Identification of Experimental Unsteady Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.

  10. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  11. Theoretical and experimental study of a thruster discharging a weight

    NASA Astrophysics Data System (ADS)

    Michaels, Dan; Gany, Alon

    2014-06-01

    An innovative concept for a rocket type thruster that can be beneficial for spacecraft trajectory corrections and station keeping was investigated both experimentally and theoretically. It may also be useful for divert and attitude control systems (DACS). The thruster is based on a combustion chamber discharging a weight through an exhaust tube. Calculations with granular double-base propellant and a solid ejected weight reveal that a specific impulse based on the propellant mass of well above 400 s can be obtained. An experimental thruster was built in order to demonstrate the new idea and validate the model. The thruster impulse was measured both directly with a load cell and indirectly by using a pressure transducer and high speed photography of the weight as it exits the tube, with both ways producing very similar total impulse measurement. The good correspondence between the computations and the measured data validates the model as a useful tool for studying and designing such a thruster.

  12. Effects of geometry on blast-induced loadings

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Dyer

    Simulations of blasts in an urban environment were performed using Loci/BLAST, a full-featured fluid dynamics simulation code, and analyzed. A two-structure urban environment blast case was used to perform a mesh refinement study. Results show that mesh spacing on and around the structure must be 12.5 cm or less to resolve fluid dynamic features sufficiently to yield accurate results. The effects of confinement were illustrated by analyzing a blast initiated from the same location with and without the presence of a neighboring structure. Analysis of extreme pressures and impulses on structures showed that confinement can increase blast loading by more than 200 percent.

  13. Interaction of a turbulent vortex with a lifting surface

    NASA Technical Reports Server (NTRS)

    Lee, D. J.; Roberts, L.

    1985-01-01

    The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.

  14. Norepinephrine and impulsivity: Effects of acute yohimbine

    PubMed Central

    Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Cox, Blake; Steinberg, Joel L.; Moeller, F. Gerard

    2013-01-01

    Rationale Rapid-response impulsivity, characterized by inability to withhold response to a stimulus until it is adequately appraised, is associated with risky behavior and may be increased in a state-dependent manner by norepinephrine. Objective We assessed effects of yohimbine, which increases norepinephrine release by blocking alpha-2 noradrenergic receptors, on plasma catecholamine metabolites, blood pressure, subjective symptoms, and laboratory-measured rapid-response impulsivity. Methods Subjects were twenty-three healthy controls recruited from the community, with normal physical examination and ECG, and negative history for hypertension, cardiovascular illness, and Axis I or II disorder. Blood pressure, pulse, and behavioral measures were obtained before and periodically after 0.4 mg/kg oral yohimbine or placebo in a randomized, counterbalanced design. Metabolites of norepinephrine (3-methoxy-4-hydroxyphenylglycol, MHPG; vanillylmandelic acid, VMA) and dopamine (homovanillic acid, HVA) were measured by high pressure liquid chromatography with electrochemical detection. Rapid-response impulsivity was measured by commission errors and reaction times on the Immediate Memory Task (IMT), a continuous performance test designed to measure impulsivity and attention. Results Yohimbine increased plasma MHPG and VMA but not HVA. Yohimbine increased systolic and diastolic blood pressure and pulse rate. On the IMT, yohimbine increased impulsive errors and impulsive response bias and accelerated reaction times. Yohimbine-associated increase in plasma MHPG correlated with increased impulsive response rates. Time courses varied; effects on blood pressure generally preceded those on metabolites and test performance. Conclusions These effects are consistent with increased rapid-response impulsivity after pharmacological noradrenergic stimulation in healthy controls. Labile noradrenergic responses, or increased sensitivity to norepinephrine, may increase risk for impulsive behavior. PMID:23559222

  15. Dynamic monitoring of compliant bodies impacting the water surface through local strain measurements

    NASA Astrophysics Data System (ADS)

    Panciroli, Riccardo; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2016-04-01

    The understanding and the experimental characterization of the evolution of impulsive loading is crucial in several fields in structural, mechanical and ocean engineering, naval architecture and aerospace. In this regards, we developed an experimental methodology to reconstruct the deformed shape of compliant bodies subjected to impulsive loadings, as those encountered in water entry events, starting from a finite number of local strain measurements performed through Fiber Bragg Gratings. The paper discusses the potential applications of the proposed methodology for: i) real-time damage detection and structural health monitoring, ii) fatigue assessment and iii) impulsive load estimation.

  16. Single cell manipulation utilizing femtosecond laser-induced shock and stress waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2017-02-01

    When an intense femtosecond laser pulse is focused into a culture medium through an objective lens, an impulsive force is loaded on the cells with generations of the shock and stress waves at the laser focal point. The shock and stress waves were acted to single cells in the vicinity of the laser focal point as an impulsive force. We have applied the impulsive force to manipulate single cells. As the transient intensity of the impulsive force is over 1000 times stronger than the force due to optical tweezers, drastic single manipulation which is difficult by the optical tweezers can be realized. The generation process of the impulsive force and behavior of animal cell after loading the impulsive force were reviewed, and then our original quantification method of the impulsive force utilizing atomic force microscope (AFM) was introduced with its applications for evaluating adhesions between animal cells and between sub-organelles in plant cell.

  17. Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.

    2011-01-01

    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.

  18. The effects of working memory load and attention refocusing on delay discounting rates in alcohol use disorder with comorbid antisocial personality disorder.

    PubMed

    Gunn, Rachel L; Gerst, Kyle R; Lake, Allison J; Finn, Peter R

    2018-02-01

    Executive working memory capacity (eWMC) is central to adaptive decision-making. Research has revealed reduced eWMC and higher rates of impulsive decision making in individuals with alcohol use disorders (AUDs: DSM-IV Alcohol Dependence of Alcohol Abuse) and antisocial psychopathology (AP). Recent work has shown that placing a load on working memory (WM) further increases impulsive decision making on the delay discounting (DD) task in those with AUDs and AP. The current study examined the effects of an attention refocusing manipulation to offset the effects of this WM-load on DD rates in control subjects, those with AUDs without AP, and AUDs with AP (AUD-AP). Results revealed that 1) the AUD-AP group had higher DD rates (i.e., more impulsive decision-making) than the AUD group, followed by controls, and 2) attention refocusing after a load is placed on WM was associated with lower DD rates compared to the load without refocusing in both AUD groups, but not controls. Results suggest that refocusing attention after a cognitive load may be an effective cognitive strategy for reducing the impulsivity-enhancing effects of cognitive load on decision making in individuals with AUDs and AP. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sonic-boom-induced building structure responses including damage.

    NASA Technical Reports Server (NTRS)

    Clarkson, B. L.; Mayes, W. H.

    1972-01-01

    Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.

  20. On the performance of piezoelectric harvesters loaded by finite width impulses

    NASA Astrophysics Data System (ADS)

    Doria, A.; Medè, C.; Desideri, D.; Maschio, A.; Codecasa, L.; Moro, F.

    2018-02-01

    The response of cantilevered piezoelectric harvesters loaded by finite width impulses of base acceleration is studied analytically in the frequency domain in order to identify the parameters that influence the generated voltage. Experimental tests are then performed on harvesters loaded by hammer impacts. The latter are used to confirm analytical results and to validate a linear finite element (FE) model of a unimorph harvester. The FE model is, in turn, used to extend analytical results to more general harvesters (tapered, inverse tapered, triangular) and to more general impulses (heel strike in human gait). From analytical and numerical results design criteria for improving harvester performance are obtained.

  1. Performance Evaluation of Pressure Transducers for Water Impacts

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  2. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.

    PubMed

    Gan, Rong Z; Nakmali, Don; Ji, Xiao D; Leckness, Kegan; Yokell, Zachary

    2016-10-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.

    2015-04-02

    A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loadsmore » is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.« less

  4. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    PubMed

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P < 0.001). Variance, high-frequency oscillations of HR variability (HRV), and baroreflex sensitivity resembled a bell-shaped curve with a minimum at the highest TRIMP(i), whereas low-frequency oscillations of HR and systolic arterial pressure variability and the low frequency (LF)-to-high frequency ratio resembled an U-shaped curve with a maximum at the highest TRIMP(i). The LF component of HRV assessed at the last recording session was significantly and inversely correlated to the time needed to complete the nearing marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.

  5. Sit-to-stand ground reaction force characteristics in blind and sighted female children.

    PubMed

    Faraji Aylar, Mozhgan; Jafarnezhadgero, Amir Ali; Salari Esker, Fatemeh

    2018-03-05

    The association between visual sensory and sit-to-stand ground reaction force characteristics is not clear. Impulse is the amount of force applied over a period of time. Also, free moment represents the vertical moment applied in the center of pressure (COP). How the ground reaction force components, vertical loading rate, impulses and free moment respond to long and short term restricted visual information? Fifteen female children with congenital blindness and 45 healthy girls with no visual impairments participated in this study. The girls with congenital blindness were placed in one group and the 45 girls with no visual impairments were randomly divided into three groups of 15; eyes open, permanently eyes closed, and temporary eyes closed. The participants in the permanently eyes closed group closed their eyes for 20 min before the test, whereas temporary eyes closed group did tests with their eyes closed throughout, and those in the eyes open group kept their eyes open. Congenital blindness was associated with increased vertical loading rate, range of motion of knee and hip in the medio-lateral plane. Also, medio-lateral and vertical ground reaction force impulses. Similar peak negative and positive free moments were observed in three groups. In conclusion, the results reveal that sit-to-stand ground reaction force components in blind children may have clinical importance for improvement of balance control of these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Simulations of defense strategies for Bennu: Material characterization and impulse delivery

    DOE PAGES

    Herbold, E. B.; Owen, J. M.; Swift, D. C.; ...

    2015-05-19

    Assessments of asteroid deflection strategies depend on material characterization to reduce the uncertainty in predictions of the deflection velocity resulting from impulsive loading. In addition to strength, equation of state, the initial state of the material including its competency (i.e. fractured or monolithic) and the amount of micro- or macroscopic porosity are important considerations to predict the thermomechanical response. There is recent interest in observing near-Earth asteroid (101955) Bennu due to its classification of being potentially hazardous with close approaches occurring every 6 years. Bennu is relatively large with a nominal diameter of 492 m, density estimates ranging from 0.9-1.26more » g/cm³ and is composed mainly of carbonaceous chondrite. There is a lack of data for highly porous carbonaceous chondrite at very large pressures and temperatures. In the absence of the specific material composition and state (e.g. layering, porosity as a function of depth) on Bennu we introduce a continuum constitutive model based on the response of granular materials and provide impact and standoff explosion simulations to investigate the response of highly porous materials to these types of impulsive loading scenarios. Simulations with impact speeds of 5 km/s show that the shock wave emanating from the impact site is highly dispersive and that a 10% porous material has a larger compacted volume compared with a 40% porous material with the same bulk density due to differences in compaction response.« less

  7. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  8. Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness.

    PubMed

    Addison, Brian J; Lieberman, Daniel E

    2015-05-01

    Humans experience repetitive impact forces beneath the heel during walking and heel strike running that cause impact peaks characterized by high rates and magnitudes of loading. Impact peaks are caused by the exchange of momentum between the ground and a portion of the body that comes to a full stop (the effective mass) during the period of the impact peak. A number of factors can influence this exchange of momentum, including footwear stiffness. This study presents and tests an impulse-momentum model of impact mechanics which predicts that effective mass and vertical impulse is greater in walkers and heel strike runners wearing less stiff footwear. The model also predicts a tradeoff between impact loading rate and effective mass, and between impact loading rate and vertical impulse among individuals wearing footwear of varying stiffness. We tested this model using 19 human subjects walking and running in minimal footwear and in two experimental footpads. Subjects walked and ran on an instrumented treadmill and 3D kinematic data were collected. As predicted, both vertical impulse (walking: F(2,54)=52.0, p=2.6E-13; running: F(2,54)=25.2, p=1.8E-8) and effective mass (walking: F(2,54)=12.1, p=4.6E-5; running: F(2,54)=15.5, p=4.7E-6) increase in less stiff footwear. In addition, there is a significant inverse relationship between impact loading rate and vertical impulse (walking: r=-0.88, p<0.0001; running: r=-0.78, p<0.0001) and between impact loading rate and effective mass (walking: r=-0.88, p<0.0001; running: r=-0.82, p<0.0001). The tradeoff relationships documented here raise questions about how and in what ways the stiffness of footwear heels influence injury risk during human walking and running. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Training impulsive choices for healthy and sustainable food.

    PubMed

    Veling, Harm; Chen, Zhang; Tombrock, Merel C; Verpaalen, Iris A M; Schmitz, Laura I; Dijksterhuis, Ap; Holland, Rob W

    2017-06-01

    Many people find it hard to change their dietary choices. Food choice often occurs impulsively, without deliberation, and it has been unclear whether impulsive food choice can be experimentally created. Across 3 exploratory and 2 confirmatory preregistered experiments we examined whether impulsive food choice can be trained. Participants were cued to make motor responses upon the presentation of, among others, healthy and sustainable food items. They subsequently selected these food items more often for actual consumption when they needed to make their choices impulsively as a result of time pressure. This effect disappeared when participants were asked to think about their choices, merely received more time to make their choices, or when choosing required attention to alternatives. Participants preferred high to low valued food items under time pressure and without time pressure, suggesting that the impulsive choices reflect valid preferences. These findings demonstrate that it is possible to train impulsive choices for food items while leaving deliberative choices for these items unaffected, and connect research on attention training to dual-process theories of decision making. The present research suggests that attention training may lead to behavioral change only when people behave impulsively. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Oscillation in O2 uptake in impulse exercise.

    PubMed

    Yano, T; Afroundeh, R; Yamanaka, R; Arimitsu, T; Lian, C S; Shirakawa, K; Yunoki, T

    2014-06-01

    The purpose of the present study was to examine 1) whether O(2) uptake (VO(2)) oscillates during light exercise and 2) whether the oscillation is enhanced after impulse exercise. After resting for 1 min on a bicycle seat, subjects performed 5-min pre-exercise with 25 watts work load, 10-s impulse exercise with 200 watts work load and 15-min post exercise with 25 watts work load at 80 rpm. VO(2) during pre-exercise significantly increased during impulse exercise and suddenly decreased and re-increased until 23 s after impulse exercise. In the cross correlation between heart rate (HR) and VO(2) after impulse exercise, VO(2) strongly correlated to HR with a time delay of -4 s. Peak of power spectral density (PSD) in HR appeared at 0.0039 Hz and peak of PSD in VO(2) appeared at 0.019 Hz. The peak of the cross power spectrum between VO(2) and HR appeared at 0.0078 Hz. The results suggested that there is an oscillation in O(2) uptake during light exercise that is associated with the oscillation in O(2) consumption in active muscle. The oscillation is enhanced not only by change in O(2) consumption but also by O(2) content transported from active muscle to the lungs.

  11. Optimization of valve opening process for the suppression of impulse exhaust noise

    NASA Astrophysics Data System (ADS)

    Li, Jingxiang; Zhao, Shengdun

    2017-02-01

    Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.

  12. Direct Shear Failure in Reinforced Concrete Beams under Impulsive Loading

    DTIC Science & Technology

    1983-09-01

    115 References ............... ............................. 119 Tables . ............................. 124 Figures ............ 1..............30...8217. : = differentiable functions of time 1 = elastic modulus enhancement function 4) 41’ = constants for a given mode W’, = frequency w tfirst thickness-shear...are defined by linear partial differential equations. The analytic results are compared to data gathered on one-way slabs loaded with impulsive blast

  13. Impulse Pump

    DTIC Science & Technology

    2016-06-17

    APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention relates to an impulse pump for generating...impulse pump 15. The sleeve bearings 98 are affixed to the head block 90 to ease axial motion while the plunger 72 is under torsional loads. [0041

  14. Remote tire pressure sensing technique

    NASA Technical Reports Server (NTRS)

    Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)

    1993-01-01

    A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.

  15. A Study Of High Speed Friction Behavior Under Elastic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Crawford, P. J.; Hammerberg, J. E.

    2005-03-01

    The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.

  16. Dynamic Pressure Impulse for Near-Ideal and Non-Ideal Blast Waves -- Height of Burst Charts

    DTIC Science & Technology

    1981-05-15

    identI by block numiber) FIELD JGROUP ISUIS4NOUP Nucler Weapons Effects Dynamic Pressure Impulse IB 1 3 1Airblast (Nuclear) Height of Burst 1 1 4...impulse versus displacement and vice versa. The power func- tions were used to separately fit the data for the WWII and the M38A1 1/4 ton trucks

  17. Does Working Memory Load Lead to Greater Impulsivity? Commentary on Hinson, Jameson, and Whitney (2003)

    ERIC Educational Resources Information Center

    Franco-Watkins, Ana M.; Pashler, Harold; Rickard, Timothy C.

    2006-01-01

    Previous research by J. M. Hinson, T. L. Jameson, and P. Whitney (2003) demonstrated that a secondary task in a delayed discounting paradigm increased subjects' preference for the immediate reward. J. M. Hinson et al. interpreted their findings as evidence that working memory load results in greater impulsivity. The present authors conducted a…

  18. TNT equivalency of M10 propellant

    NASA Technical Reports Server (NTRS)

    Mcintyre, F. L.; Price, P.

    1978-01-01

    Peak, side-on blast overpressure and scaled, positive impulse have been measured for M10 single-perforated propellant, web size 0.018 inches, using configurations that simulate the handling of bulk material during processing and shipment. Quantities of 11.34, 22.7, 45.4, and 65.8 kg were tested in orthorhombic shipping containers and fiberboard boxes. High explosive equivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characteristics for hemispherical TNT surface bursts. The equivalencies were found to depend significantly on scaled distance, with higher values of 150-100 percent (pressure) and 350-125 percent (positive impulse) for the extremes within the range from 1.19 to 3.57 m/cube root of kg. Equivalencies as low as 60-140 percent (pressure) and 30-75 percent (positive impulse) were obtained in the range of 7.14 to 15.8 m/cube root of kg. Within experimental error, both peak pressure and positive impulse scaled as a function of charge weight for all quantities tested in the orthorhombic configuration.

  19. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  20. Fundamental considerations in ski binding analysis.

    PubMed

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."

  1. Liquid oxygen turbopump technology

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1981-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated and tested. The pump is a single-stage centrifugal type with power to the pump supplied by a single-stage partial-admission axial-impulse turbine. Design conditions included an operating speed of 7330 rad/s (70,000 rpm), pump discharge pressure of 2977 N/sqcm (4318 psia), and a pump flowrate of 16.4 Kg/s (36.21 lb/s). The turbopump contains a self-compensating axial thrust balance piston to eliminate axial thrust loads on the bearings during steady-state operation. Testing of the turbopump was achieved usng a gaseous hydrogen high-pressure flow to drive the turbine, which generally is propelled by LOX/LH2 combustion products, at 1041K (1874 R) inlet temperature and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented which include head-flow-efficiency performance, suction performance, balance piston performance and LOX seal performance. Mechanical performance of the turbopump is also discussed.

  2. A methodology for assessment of wind turbine noise generation

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.; Hemphill, R. R.; McKenna, H. E.

    1982-05-01

    An investigation of the sources of impulsive noise generated by the operation of the Mod 1 2 MW wind turbine was performed to establish criteria for assessing the noise-producing potential of other large wind turbines. Unsteady loading of the rotors was determined to be the cause of the sound pressure, which was generally below 100 Hz. Complaints originated from people in dwellings with a room with a window facing the machine. Indoor monitoring revealed pressure traces in the 31.5 Hz band with energy densities exceeding background by about 30 dB. It was concluded that the sound pressure was conveyed by the walls acting as a diaphragm. The induced vibration coupled with human body fundamental modes to produce a feeling of whole-body vibration. Spectral analyses were made of the vibration fields of the Mod 2, a 17 m Darrieus, and a Mod OA to allow comparison with the nuisance points of the Mod 1. Sound pressure levels were found at certain frequencies which would eliminate the occurrence of acoustic pollution.

  3. The Shock and Vibration Bulletin. Part 4. Impact, Packaging and Shipping, Blast and Impulsive Loading

    DTIC Science & Technology

    1975-06-01

    Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening

  4. Results of a space shuttle pulme impingement investigation at stage separation in the NASA-MSFC impulse base flow facility

    NASA Technical Reports Server (NTRS)

    Mccanna, R. W.; Sims, W. H.

    1972-01-01

    Results are presented for an experimental space shuttle stage separation plume impingement program conducted in the NASA-Marshall Space Flight Center's impulse base flow facility (IBFF). Major objectives of the investigation were to: (1)determine the degree of dual engine exhaust plume simulation obtained using the equivalent engine; (2) determine the applicability of the analytical techniques; and (3) obtain data applicable for use in full-scale studies. The IBFF tests determined the orbiter rocket motor plume impingement loads, both pressure and heating, on a 3 percent General Dynamics B-15B booster configuration in a quiescent environment simulating a nominal staging altitude of 73.2 km (240,00 ft). The data included plume surveys of two 3 percent scale orbiter nozzles, and a 4.242 percent scaled equivalent nozzle - equivalent in the sense that it was designed to have the same nozzle-throat-to-area ratio as the two 3 percent nozzles and, within the tolerances assigned for machining the hardware, this was accomplished.

  5. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  6. Analysis of Impulse Load on VEGA SRM Nozzle During Ignition Transient and Effects on TVC Actuators

    NASA Astrophysics Data System (ADS)

    Fotino, Domenico; Leofanti, Jose Luis; Serraglia, Ferruccio

    2012-07-01

    During the VEGA development phase and in particular during the Zefiro 23 (second stage motor) on-ground firing tests, values of impulse load on the actuators very close to the requirement were experienced. As a consequence, an activity for the extrapolation of these loads in the flight configuration (longer nozzle and vacuum conditions) was carried out and a mathematical model has been developed with this aim. After providing an overview on the differences between the ground and flight case from the fluid dynamic point of view, the paper describes the results of the mathematical model both in terms of correlation with respect to ground tests and of extrapolation of the loads to the flight configuration. The main effects of this load on the actuators is also addressed.

  7. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scalemore » tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.« less

  8. Power and impulse applied during push press exercise.

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul

    2014-09-01

    The aim of this study was to quantify the load, which maximized peak and mean power, and impulse applied to these loads, during the push press and to compare them to equivalent jump squat data. Resistance-trained men performed 2 push press (n = 17; age: 25.4 ± 7.4 years; height: 183.4 ± 5 cm; body mass: 87 ± 15.6 kg) and jump squat (n = 8 of original 17; age: 28.7 ± 8.1 years; height: 184.3 ± 5.5 cm; mass: 98 ± 5.3 kg) singles with 10-90% of their push press and back squat 1 repetition maximum (1RM), respectively, in 10% 1RM increments while standing on a force platform. Push press peak and mean power was maximized with 75.3 ± 16.4 and 64.7 ± 20% 1RM, respectively, and impulses applied to these loads were 243 ± 29 N·s and 231 ± 36 N·s. Increasing and decreasing load, from the load that maximized peak and mean power, by 10 and 20% 1RM reduced peak and mean power by 6-15% (p ≤ 0.05). Push press and jump squat maximum peak power (7%, p = 0.08) and the impulse that was applied to the load that maximized peak (8%, p = 0.17) and mean (13%, p = 0.91) power were not significantly different, but push press maximum mean power was significantly greater than the jump squat equivalent (∼9.5%, p = 0.03). The mechanical demand of the push press is comparable with the jump squat and could provide a time-efficient combination of lower-body power and upper-body and trunk strength training.

  9. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied.

  10. Effect of geometrical parameters on pressure distributions of impulse manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Brune, Ryan Carl

    Impulse manufacturing techniques constitute a growing field of methods that utilize high-intensity pressure events to conduct useful mechanical operations. As interest in applying this technology continues to grow, greater understanding must be achieved with respect to output pressure events in both magnitude and distribution. In order to address this need, a novel pressure measurement has been developed called the Profile Indentation Pressure Evaluation (PIPE) method that systematically analyzes indentation patterns created with impulse events. Correlation with quasi-static test data and use of software-assisted analysis techniques allows for colorized pressure maps to be generated for both electromagnetic and vaporizing foil actuator (VFA) impulse forming events. Development of this technique aided introduction of a design method for electromagnetic path actuator systems, where key geometrical variables are considered using a newly developed analysis method, which is called the Path Actuator Proximal Array (PAPA) pressure model. This model considers key current distribution and proximity effects and interprets generated pressure by considering the adjacent conductor surfaces as proximal arrays of individual conductors. According to PIPE output pressure analysis, the PAPA model provides a reliable prediction of generated pressure for path actuator systems as local geometry is changed. Associated mechanical calculations allow for pressure requirements to be calculated for shearing, flanging, and hemming operations, providing a design process for such cases. Additionally, geometry effect is investigated through a formability enhancement study using VFA metalworking techniques. A conical die assembly is utilized with both VFA high velocity and traditional quasi-static test methods on varied Hasek-type sample geometries to elicit strain states consistent with different locations on a forming limit diagram. Digital image correlation techniques are utilized to measure major and minor strains for each sample type to compare limit strain results. Overall testing indicated decreased formability at high velocity for 304 DDQ stainless steel and increased formability at high velocity for 3003-H14 aluminum. Microstructural and fractographic analysis helped dissect and analyze the observed differences in these cases. Overall, these studies comprehensively explore the effects of geometrical parameters on magnitude and distribution of impulse manufacturing generated pressure, establishing key guidelines and models for continued development and implementation in commercial applications.

  11. The Effects of High Intensity Impulse Loading on Reinforced Concrete Beams.

    DTIC Science & Technology

    1976-06-01

    bunker were buried in a shallow trench leading to an ^ J^^ uipment for the about 200 feet away This bunker ho!i!"daJ^ /^eler an3 pJe ?ure transducer...transducer was utilized in an effort to obtain more reliable pressure-time data. The test cJnf gSralion was further modified by burying the ^st fixture...Concluded) 5.i, ms PAQS IS QUALITY FRACtXCABLB mOgOOiPYfUKHlSUiiSrOODC ___ •■•I VCVINM ^ M < >• •*•••«• •» • Its’" ■ > ,1 I I • * ^ ; *.8 • • 81

  12. Annoyance due to simulated blade-slap noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1978-01-01

    The effects of several characteristics of blade slap noise on annoyance response were studied. These characteristics or parameters were the sound pressure level of the continuous noise used to simulate helicopter broadband noise, the ratio of impulse peak to broadband noise or crest factor, the number of pressure excursions comprising an impulse event, the rise and fall time of the individual impulses, and the repetition frequency of the impulses. Analyses were conducted to determine the correlation between subjective response and various physical measures for the range of parameters studied. A small but significant improvement in the predictive ability of PNL was provided by an A-weighted crest factor correlation. No significant improvement in predictive ability was provided by a rate correction.

  13. Kinetic analysis of downward step posture according to the foothold heights and visual information blockage in cargo truck

    PubMed Central

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2018-01-01

    The study was undertaken to compare and analyze kinetic variables during downward foot-on according to the foothold heights under interrupted-visual information on 25-t cargo truck. Skilled adult male drivers (n=10) engaged in cargo truck driving over 1 year participated in the experiment. The results obtained from cinematographic and ground reaction force data during downward foot-on as follows; First, leg stiffness, peak vertical force (PVF) and loading rate showed significant difference as an increase of foothold heights, that is, interrupted-visual information showed greater impulse force than as was not. Second, variables of center of pressure (COP) with interrupted-visual information did not showed difference, but anterior-posterior COP and COP area showed an increasing tendency as an increase of foothold heights. Third, dynamic posture stability index (overall, medial-lateral, anterior-posterior, and vertical) showed significant difference as an increase of foothold height, that is, interrupted-visual information showed lower index than as was not. Therefore it will be possible to control successfully the leg stiffness, loading rate, and PVF when preparing an estimate for air phase time and impulse force through habitual cognition and confirmation at landing during downward foot-on from cargo truck. Identifying these potential differences may enable clinicians to assess type of injury and design exercise rehabilitation protocols specific. PMID:29740569

  14. Mechanical stimulation in the engineering of heart muscle.

    PubMed

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  15. Propellant production from the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.; Tauber, M. E.; Anagnost, A. J.; Whittaker, T.

    1992-01-01

    Results are presented from a calculation of the specific impulses that can be generated through the combustion of cryogenic CO and O2 over a range of fuel/oxidizer ratios, chamber pressures, nozzle expansion ratios, freestream pressures representative of Mars, and the limiting conditions of equilibrium and frozen nozzle flow. For an expansion ratio of 80 and 100-atm. chamber pressure, a specific impulse of 298 sec was obtained; this is comparable to the best solid rocket propellants.

  16. Exposure to impulse noise at an explosives company: a case study.

    PubMed

    Kulik, Aleksandra; Malinowska-Borowska, Jolanta

    2018-02-15

    Impulse noise encountered in workplaces is a threat to hearing. The aim of this study was to assess the occupational exposure to impulse noise produced by detonation of dynamite on the premises of an explosives company. Test points were located on the blast test area (inside and outside the bunker) and in work buildings across the site. Noise propagation measurement was performed during 130 blast tests at nine measurement points. At every point, at least 10 separate measurements of A-weighted equivalent sound pressure level (L A eq ), maximum A-weighted sound pressure level (L A max ) and C-weighted peak sound pressure level (L C peak ) were made. Noise recorded in the blast test area exceeded occupational exposure limits (OELs). Noise levels measured in buildings did not exceed OELs. Results of the survey showed that for 62% of respondents, impulse noise causes difficulties in performing work. The most commonly reported symptoms include headaches, nervousness and irritability.

  17. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees

    PubMed Central

    Kobayashi, Toshiki; Orendurff, Michael S.; Arabian, Adam K.; Rosenbaum-Chou, Teri G.; Boone, David A.

    2014-01-01

    The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. PMID:24612718

  18. Reduced step length reduces knee joint contact forces during running following anterior cruciate ligament reconstruction but does not alter inter-limb asymmetry.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-03-01

    Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of total hip and hip resurfacing arthroplasty on vertical ground reaction force and impulse symmetry during a sit-to-stand task.

    PubMed

    Caplan, N; Stewart, S; Kashyap, S; Banaszkiewicz, P; St Clair Gibson, A; Kader, D; Ewen, A

    2014-12-01

    The aim of this study was to determine the influence of total hip arthroplasty and hip resurfacing arthroplasty on limb loading symmetry before, and after, hip reconstruction surgery during a sit-to-stand task. Fourteen patients were recruited that were about to receive either a total hip prosthesis (n=7) or a hip resurfacing prosthesis (n=7), as well as matched controls. Patients performed a sit-to-stand movement before, 3 months after, and 12 months after surgery. Peak vertical ground reaction force and impulse were measured for each leg, from which ground reaction force and impulse symmetry ratios were calculated. Before surgery, hip resurfacing patients showed a small asymmetry which was not different to normal for ground reaction force (0.88(0.28) vs. 1.00(0.11); p=0.311) or impulse (0.87(0.29) vs. 0.99(0.09); p=0.324) symmetry ratios. Total hip patients offloaded their affected hip by 30% in terms of impulse symmetry ratio (0.71(0.36) vs. 0.99(0.23); p=0.018). At 3 months following surgery asymmetries were seen that were different to normal in both hip resurfacing patients for ground reaction force (0.77(0.16); p=0.007), and total hip patients for ground reaction force (0.70(0.15); p=0.018) and impulse (0.72(0.16); p=0.011) symmetry ratios. By 12 months after surgery total hip patients regained a symmetrical loading pattern for both ground reaction force (0.95(0.06); p=0.676) and impulse (1.00(0.06); p=0.702) symmetry ratios. Hip resurfacing patients, however, performed the task by overloading their operated hip, with impulse symmetry ratio being larger than normal (1.16(0.16); p=0.035). Physiotherapists should appreciate the need for early recovery of limb loading symmetry as well as subsequent differences in the responses observed with different prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A gasdynamic gun driven by gaseous detonation

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  1. Effect of combustion-chamber pressure and nozzle expansion ratio on theoretical performance of several rocket propellant systems

    NASA Technical Reports Server (NTRS)

    Morrell, Virginia E

    1956-01-01

    Theoretical calculations of specific impulse to determine the separate effects of increasing the combustion-chamber pressure and the nozzle expansion ratio on the performance of the propellants, hydrogen-fluorine, hydrogen-oxygen, ammonia-fluorine and AN-F-58 fuel - white fuming nitric acid (95 percent). The results indicate that an increase in specific impulse obtainable with an increase in combustion-chamber pressure is almost entirely caused by the increased expansion ratio through the nozzle.

  2. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding partially filled detonation tubes was compiled and analyzed with models investigating concepts of energy conservation and unsteady gas dynamics. A model to predict the specific impulse was developed for partially filled tubes. The role of finite chemical kinetics in detonation products was examined through numerical simulations of the flow in nonsteady expansion waves.

  3. The contribution of volume, technique, and load to single-repetition and total-repetition kinematics and kinetics in response to three loading schemes.

    PubMed

    Crewther, Blair T; Cronin, John; Keogh, Justin W L

    2008-11-01

    This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.

  4. CFD Applications in Support of the Space Shuttle Risk Assessment

    NASA Technical Reports Server (NTRS)

    Baum, Joseph D.; Mestreau, Eric; Luo, Hong; Sharov, Dmitri; Fragola, Joseph; Loehner, Rainald; Cook, Steve (Technical Monitor)

    2000-01-01

    The paper describes a numerical study of a potential accident scenario of the space shuttle, operating at the same flight conditions as flight 51L, the Challenger accident. The interest in performing this simulation is derived by evidence that indicates that the event itself did not exert large enough blast loading on the shuttle to break it apart. Rather, the quasi-steady aerodynamic loading on the damaged, unbalance vehicle caused the break-up. Despite the enormous explosive potential of the shuttle total fuel load (both liquid and solid), the post accident explosives working group estimated the maximum energy involvement to be equivalent to about five hundreds of pounds of TNT. This understanding motivated the simulation described here. To err on the conservative side, we modeled the event as an explosion, and used the maximum energy estimate. We modeled the transient detonation of a 500 lbs spherical charge of TNT, placed at the main engine, and the resulting blast wave propagation about the complete stack. Tracking of peak pressures and impulses at hundreds of locations on the vehicle surface indicate that the blast load was insufficient to break the vehicle, hence demonstrating likely crew survivability through such an event.

  5. Army-UNL Center for Trauma Mechanics

    DTIC Science & Technology

    2011-03-07

    Jung Yul Lim, Dr. Joseph A. Turner, Dr. Florin Bobaru, Dr. Mehrdad Negahban University of Nebraska Research Grants & Contracts 303 Administration...none) 1. Matthew Nienaber,* Jeong Soon Lee,* Ruqiang Feng, Jung Yul Lim. Impulsive pressurization of neuronal cells for traumatic brain injury study...Toronto, Canada, October 16-18, 2010. 11. Jeong Soon Lee, Matthew Nienaber, Ruqiang Feng, Jung Yul Lim. Impulsive pressurization of neuronal cells for

  6. Testing of polyimide second-stage rod seals for single-state applications in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.

    1977-01-01

    Machined polyimide second-stage rod seals were evaluated to determine their suitability for single-stage applications where full system pressure acts on the upstream side of the seal. The 6.35-cm (2.5-in.) K-section seal was tested in impulse screening tests where peak pressure was increased in 3.448-MPa (500-psi) increments each 20,000 cycles. Seal failure occurred at 37.92 MPa (5,500 psi), indicating a potential for acceptability in a 27.58-MPa (4,000-psi) system. Static pressurization for 600 sec at pressures in excess of 10.34 MPa (1,500 psi) revealed structural inadequacy of the seal cross section to resist fracture and extrusion. Endurance testing showed the seals capable of at least 65,000 1.27-cm (0.5-in.) cycles at 450 K (350 F) without leakage. It was concluded that the second-stage seals were proven to be exceptional in the 1.379-MPa (200-psi) applications for which they were designed, but polyimide material properties are not adequate for use in this design at pressure loading equivalent to that present in single-stage applications.

  7. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Arabian, Adam K; Rosenbaum-Chou, Teri G; Boone, David A

    2014-04-11

    The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment-time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Response of end tidal CO2 pressure to impulse exercise.

    PubMed

    Yano, T; Afroundeh, R; Yamanak, R; Arimitsu, T; Lian, C-S; Shirkawa, K; Yunoki, T

    2014-03-01

    The purpose of the present study was to examine how end tidal CO(2) pressure (PETCO(2)) is controlled in impulse exercise. After pre-exercise at 25 watts for 5 min, impulse exercise for 10 sec with 200 watts followed by post exercise at 25 watts was performed. Ventilation (VE) significantly increased until the end of impulse exercise and significantly re-increased after a sudden decrease. Heart rate (HR) significantly increased until the end of impulse exercise and then decreased to the pre-exercise level. PETCO(2) remained constant during impulse exercise. PETCO(2) significantly increased momentarily after impulse exercise and then significantly decreased to the pre-exercise level. PETCO(2) showed oscillation. The average peak frequency of power spectral density in PETCO(2) appeared at 0.0078 Hz. Cross correlations were obtained after impulse exercise. The peak cross correlations between VE and PETCO(2), HR and PETCO(2), and VE and HR were 0.834 with a time delay of -7 sec, 0.813 with a time delay of 7 sec and 0.701 with a time delay of -15 sec, respectively. We demonstrated that PETCO(2) homeodynamics was interactively maintained by PETCO(2) itself, CO(2) transportation (product of cardiac output and mixed venous CO(2) content) into the lungs by heart pumping and CO(2) elimination by ventilation, and it oscillates as a result of their interactions.

  9. Comprehensive Structural Dynamic Analysis of the SSME/AT Fuel Pump First-Stage Turbine Blade

    NASA Technical Reports Server (NTRS)

    Brown, A. M.

    1998-01-01

    A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage Blade Outer Gas Seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

  10. Risk factors correlated with plantar pressure in Chinese patients with type 2 diabetes.

    PubMed

    Qiu, Xuan; Tian, De-Hu; Han, Chang-Ling; Chen, Wei; Wang, Zhan-Jian; Mu, Zhen-Yun; Li, Xu; Liu, Kuan-Zhi

    2013-12-01

    Plantar pressure is a key factor for predicting ulceration in the foot of a diabetes patient. We recruited a group of 100 Chinese patients with type 2 diabetes and an age-, sex-, weight-, and height-matched group of 100 Chinese subjects without diabetes. We obtained plantar pressure data using a Footscan(®) gait system (RsScan International, Olen, Belgium) when the subjects with and without diabetes walked barefoot across a sensor platform. We recorded the maximum force, maximum pressure, impulse, pressure-time integral, and loading rate from 10 regions of the foot. We collected the data of 11 history-based variables, 10 anthropometric variables, and three metabolic variables regarding the clinical characteristics of the diabetes patients. Weight was identified as a determining factor for high plantar pressure. Height, the Neuropathy Symptom Score (NSS), and ankle-brachial index (ABI) were correlated positively with plantar pressure measurements, respectively. The sex, history of ulcer and callus, intima-media membrane of the lower limb blood vessels, and fasting blood glucose (FBG) could also explain a portion of the variability of the plantar pressure measurements. However, the correlations were low or weak. High plantar pressure in diabetes patients could be predicted, in part, based on weight, height, NSS, ABI, sex, history of ulcer and callus, intima-media membrane of the lower limb blood vessels, and FBG. Therefore, interventions should be taken specifically before high plantar pressure emerges.

  11. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations

    PubMed Central

    Alay, Eren; Zheng, James Q.; Chandra, Namas

    2018-01-01

    We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521

  12. Impulsive response of an automatic transmission system with multiple clearances: Formulation, simulation and experiment

    NASA Astrophysics Data System (ADS)

    Crowther, Ashley R.; Singh, Rajendra; Zhang, Nong; Chapman, Chris

    2007-10-01

    Impulsive responses in geared systems with multiple clearances are studied when the mean torque excitation and system load change abruptly, with application to a vehicle driveline with an automatic transmission. First, torsional lumped-mass models of the planetary and differential gear sets are formulated using matrix elements. The model is then reduced to address tractable nonlinear problems while successfully retaining the main modes of interest. Second, numerical simulations for the nonlinear model are performed for transient conditions and a typical driving situation that induces an impulsive behaviour simulated. However, initial conditions and excitation and load profiles have to be carefully defined before the model can be numerically solved. It is shown that the impacts within the planetary or differential gears may occur under combinations of engine, braking and vehicle load transients. Our analysis shows that the shaping of the engine transient by the torque converter before reaching the clearance locations is more critical. Third, a free vibration experiment is developed for an analogous driveline with multiple clearances and three experiments that excite different response regimes have been carried out. Good correlations validate the proposed methodology.

  13. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  14. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  15. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial experimental results demonstrate that fragmentation of Westerly Granite samples occurs at lower stresses and strain rates than those expected from traditional SHPB experiments.

  16. Does footprint depth correlate with foot motion and pressure?

    PubMed Central

    Bates, K. T.; Savage, R.; Pataky, T. C.; Morse, S. A.; Webster, E.; Falkingham, P. L.; Ren, L.; Qian, Z.; Collins, D.; Bennett, M. R.; McClymont, J.; Crompton, R. H.

    2013-01-01

    Footprints are the most direct source of evidence about locomotor biomechanics in extinct vertebrates. One of the principal suppositions underpinning biomechanical inferences is that footprint geometry correlates with dynamic foot pressure, which, in turn, is linked with overall limb motion of the trackmaker. In this study, we perform the first quantitative test of this long-standing assumption, using topological statistical analysis of plantar pressures and experimental and computer-simulated footprints. In computer-simulated footprints, the relative distribution of depth differed from the distribution of both peak and pressure impulse in all simulations. Analysis of footprint samples with common loading inputs and similar depths reveals that only shallow footprints lack significant topological differences between depth and pressure distributions. Topological comparison of plantar pressures and experimental beach footprints demonstrates that geometry is highly dependent on overall print depth; deeper footprints are characterized by greater relative forefoot, and particularly toe, depth than shallow footprints. The highlighted difference between ‘shallow’ and ‘deep’ footprints clearly emphasizes the need to understand variation in foot mechanics across different degrees of substrate compliance. Overall, our results indicate that extreme caution is required when applying the ‘depth equals pressure’ paradigm to hominin footprints, and by extension, those of other extant and extinct tetrapods. PMID:23516064

  17. Applied-field MPD thruster geometry effects

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.

  18. Determination of Elastic Moduli of Fiber-Resin Composites Using an Impulse Excitation Technique

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.; Johnson, Jeffrey J.

    1996-01-01

    The elastic moduli of graphite/epoxy and graphite/cyanate ester composite specimens with various laminate lay-ups was determined using an impulse excitation/acoustic resonance technique and compared to those determined using traditional strain gauge and extensometer techniques. The stiffness results were also compared to those predicted from laminate theory using uniaxial properties. The specimen stiffnesses interrogated ranged from 12 to 30 Msi. The impulse excitation technique was found to be a relatively quick and accurate method for determining elastic moduli with minimal specimen preparation and no requirement for mechanical loading frames. The results of this investigation showed good correlation between the elastic modulus determined using the impulse excitation technique, strain gauge and extensometer techniques, and modulus predicted from laminate theory. The flexural stiffness determined using the impulse excitation was in good agreement with that predicted from laminate theory. The impulse excitation/acoustic resonance interrogation technique has potential as a quality control test.

  19. The hierarchical structure of self-reported impulsivity

    PubMed Central

    Kirby, Kris N.; Finch, Julia C.

    2010-01-01

    The hierarchical structure of 95 self-reported impulsivity items, along with delay-discount rates for money, was examined. A large sample of college students participated in the study (N = 407). Items represented every previously proposed dimension of self-reported impulsivity. Exploratory PCA yielded at least 7 interpretable components: Prepared/Careful, Impetuous, Divertible, Thrill and Risk Seeking, Happy-Go-Lucky, Impatiently Pleasure Seeking, and Reserved. Discount rates loaded on Impatiently Pleasure Seeking, and correlated with the impulsiveness and venturesomeness scales from the I7 (Eysenck, Pearson, Easting, & Allsopp, 1985). The hierarchical emergence of the components was explored, and we show how this hierarchical structure may help organize conflicting dimensions found in previous analyses. Finally, we argue that the discounting model (Ainslie, 1975) provides a qualitative framework for understanding the dimensions of impulsivity. PMID:20224803

  20. Investigation of helicopter rotor blade/wake interactive impulsive noise

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Hall, G. F.; Vonlavante, E.

    1987-01-01

    An analysis of the Tip Aerodynamic/Aeroacoustic Test (TAAT) data was performed to identify possible aerodynamic sources of blade/vortex interaction (BVI) impulsive noise. The identification is based on correlation of measured blade pressure time histories with predicted blade/vortex intersections for the flight condition(s) where impulsive noise was detected. Due to the location of the recording microphones, only noise signatures associated with the advancing blade were available, and the analysis was accordingly restricted to the first and second azimuthal quadrants. The results show that the blade tip region is operating transonically in the azimuthal range where previous BVI experiments indicated the impulsive noise to be. No individual blade/vortex encounter is identifiable in the pressure data; however, there is indication of multiple intersections in the roll-up region which could be the origin of the noise. Discrete blade/vortex encounters are indicated in the second quadrant; however, if impulsive noise were produced here, the directivity pattern would be such that it was not recorded by the microphones. It is demonstrated that the TAAT data base is a valuable resource in the investigation of rotor aerodynamic/aeroacoustic behavior.

  1. Structural health monitoring of cylindrical bodies under impulsive hydrodynamic loading by distributed FBG strain measurements

    NASA Astrophysics Data System (ADS)

    Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2017-02-01

    Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.

  2. Application of polyimide actuator rod seals

    NASA Technical Reports Server (NTRS)

    Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.

    1972-01-01

    Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.

  3. Effects of active feedback gait retraining to produce a medial weight transfer at the foot in subjects with symptomatic medial knee osteoarthritis.

    PubMed

    Erhart-Hledik, Jennifer C; Asay, Jessica L; Clancy, Caitlin; Chu, Constance R; Andriacchi, Thomas P

    2017-10-01

    This study aimed to determine if active feedback gait retraining to produce a medial weight transfer at the foot significantly reduces the knee adduction moment in subjects with medial compartment knee osteoarthritis. Secondarily, changes in peak knee flexion moment, frontal plane knee and ankle kinematics, and center of pressure were investigated. Ten individuals with medial compartment knee osteoarthritis (9 males; age: 65.3 ± 9.8 years; BMI: 27.8 ± 3.0 kg/m 2 ) were tested at self-selected normal and fast speeds in two conditions: Intervention, with an active feedback device attached to the shoe of their more affected leg, and control, with the device de-activated. Kinematics and kinetics were assessed using a motion capture system and force plate. The first peak, second peak, and impulse of the knee adduction moment were significantly reduced by 6.0%, 13.9%, and 9.2%, respectively, at normal speed, with reductions of 10.7% and 8.6% in first peak and impulse at fast speed, respectively, with the active feedback system, with no significant effect on the peak knee flexion moment. Significant reductions in peak varus knee angle and medialized center of pressure in the first half of stance were observed, with reductions in peak varus knee angle associated with reductions in the knee adduction moment. This study demonstrated that active feedback to produce a medial weight-bearing shift at the foot reduces the peaks and impulse of the knee adduction moment in patients with medial compartment knee osteoarthritis. Future research should determine the long-term effect of the active feedback intervention on joint loading, pain, and function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2251-2259, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Piezoelectric-based self-powered electronic adjustable impulse switches

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir; Kwok, Philip

    2018-03-01

    Novel piezoelectric-based self-powered impulse detecting switches are presented. The switches are designed to detect shock loading events resulting in acceleration or deceleration above prescribed levels and durations. The prescribed acceleration level and duration thresholds are adjustable. They are provided with false trigger protection logic. The impulse switches are provided with electronic and logic circuitry to detect prescribed impulse events and reject events such as high amplitude but short duration shocks, and transportation vibration and similar low amplitude and relatively long duration events. They can be mounted directly onto electronics circuit boards, thereby significantly simplifying the electrical and electronic circuitry, simplifying the assembly process and total cost, significantly reducing the occupied volume, and in some applications eliminating the need for physical wiring to and from the impulse switches. The design of prototypes and testing under realistic conditions are presented.

  5. Effects of pressure characteristics on transfection efficiency in laser-induced stress wave-mediated gene delivery

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Ashida, Hiroshi; Obara, Minoru

    2013-07-01

    Laser-induced stress waves (LISWs) generated by irradiating a light-absorbing medium with a pulsed laser can transiently increase the permeability of cell membranes for gene delivery. In this study, we investigated the effects of pressure characteristics of LISWs upon gene transfection efficiency using lasers with different pulse durations: a 6-ns pulsed Nd:YAG laser and 20-ns and 200-µs pulsed ruby lasers. LISWs were generated by irradiating a black rubber disk, on which a transparent plastic sheet was adhered for confinement of the laser-produced plasma. Rat dorsal skin was injected with plasmid DNA coding for luciferase, to which LISWs were applied. With nanosecond laser pulses, transfection efficiency increased linearly with increasing positive peak pressure in the range of 35 to 145 MPa, the corresponding impulse ranging from 10 to 40 Paṡs. With 200-µs laser pulses, on the other hand, efficient gene expression was observed by the application of LISWs even with a 10-fold-lower peak pressure (˜5 MPa), the corresponding impulse being as large as 430 Paṡs. These results indicate that even at low peak pressures, efficient transfection can be achieved by extending the pressure duration and hence by increasing the impulse of LISWs, while the averaged expression efficiencies were relatively low.

  6. Load redistribution in walking and trotting Beagles with induced forelimb lameness.

    PubMed

    Abdelhadi, Jalal; Wefstaedt, Patrick; Galindo-Zamora, Vladimir; Anders, Alexandra; Nolte, Ingo; Schilling, Nadja

    2013-01-01

    To evaluate the load redistribution mechanisms in walking and trotting dogs with induced forelimb lameness. 7 healthy adult Beagles. Dogs walked and trotted on an instrumented treadmill to determine control values for peak and mean vertical force as well as vertical impulse for all 4 limbs. A small sphere was attached to the ventral pad of the right forelimb paw to induce a reversible lameness, and recordings were repeated for both gaits. Additionally, footfall patterns were assessed to test for changes in temporal gait variables. During walking and trotting, peak and mean vertical force as well as vertical impulse were decreased in the ipsilateral forelimb, increased in the contralateral hind limb, and remained unchanged in the ipsilateral hind limb after lameness was induced. All 3 variables were increased in the contralateral forelimb during trotting, whereas only mean vertical force and vertical impulse were increased during walking. Stance phase duration increased in the contralateral forelimb and hind limb during walking but not during trotting. Analysis of the results suggested that compensatory load redistribution mechanisms in dogs depend on the gait. All 4 limbs should be evaluated in basic research and clinical studies to determine the effects of lameness on the entire body. Further studies are necessary to elucidate specific mechanisms for unloading of the affected limb and to determine the long-term effects of load changes in animals with chronic lameness.

  7. Classification of Forefoot Plantar Pressure Distribution in Persons with Diabetes: A Novel Perspective for the Mechanical Management of Diabetic Foot?

    PubMed Central

    Deschamps, Kevin; Matricali, Giovanni Arnoldo; Roosen, Philip; Desloovere, Kaat; Bruyninckx, Herman; Spaepen, Pieter; Nobels, Frank; Tits, Jos; Flour, Mieke; Staes, Filip

    2013-01-01

    Background The aim of this study was to identify groups of subjects with similar patterns of forefoot loading and verify if specific groups of patients with diabetes could be isolated from non-diabetics. Methodology/Principal Findings Ninety-seven patients with diabetes and 33 control participants between 45 and 70 years were prospectively recruited in two Belgian Diabetic Foot Clinics. Barefoot plantar pressure measurements were recorded and subsequently analysed using a semi-automatic total mapping technique. Kmeans cluster analysis was applied on relative regional impulses of six forefoot segments in order to pursue a classification for the control group separately, the diabetic group separately and both groups together. Cluster analysis led to identification of three distinct groups when considering only the control group. For the diabetic group, and the computation considering both groups together, four distinct groups were isolated. Compared to the cluster analysis of the control group an additional forefoot loading pattern was identified. This group comprised diabetic feet only. The relevance of the reported clusters was supported by ANOVA statistics indicating significant differences between different regions of interest and different clusters. Conclusion/s Significance There seems to emerge a new era in diabetic foot medicine which embraces the classification of diabetic patients according to their biomechanical profile. Classification of the plantar pressure distribution has the potential to provide a means to determine mechanical interventions for the prevention and/or treatment of the diabetic foot. PMID:24278219

  8. Hearing Protection Evaluation for the Combat Arms Earplug at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Lovejoy

    2007-03-01

    The Idaho National Laboratory (INL) is managed by Battelle Energy Alliance, LLC (BEA) for the Department of Energy. The INL Protective Security Forces (Pro Force) are involved in training exercises that generate impulse noise by small arms fire. Force-on-force (FOF) training exercises that simulate real world scenarios require the Pro Force to engage the opposition force (OPFOR) while maintaining situational awareness through verbal communications. The Combat Arms earplug was studied to determine if it provides adequate hearing protection in accordance with the requirements of MIL-STD-1474C/D. The Combat Arms earplug uses a design that allows continuous noise through a critical orificemore » while effectively attenuating high-energy impulse noise. The earplug attenuates noise on a non linear scale, as the sound increases the attenuation increases. The INL studied the effectiveness of the Combat Arms earplug with a Bruel & Kjaer (B&K) head and torso simulator used with a selection of small arms to create impulse sound pressures. The Combat Arms earplugs were inserted into the B&K head and torso ears, and small arms were then discharged to generate the impulse noise. The INL analysis of the data indicates that the Combat Arms earplug does provide adequate protection, in accordance with MIL-STD-1474C/D, when used to protect against impulse noise generated by small arms fire using blank ammunition. Impulse noise generated by small arms fire ranged from 135–160 dB range unfiltered un-weighted. The Combat Arms earplug attenuated the sound pressure 10–25 dB depending on the impulse noise pressure. This assessment is consistent with the results of previously published studies on the Combat Arms earplug (see Section 5, “References”). Based upon these result, the INL intends to use the Combat Arms earplug for FOF training exercises.« less

  9. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  10. Zero boil-off system testing

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  11. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  12. Empirical prediction of peak pressure levels in anthropogenic impulsive noise. Part I: Airgun arrays signals.

    PubMed

    Galindo-Romero, Marta; Lippert, Tristan; Gavrilov, Alexander

    2015-12-01

    This paper presents an empirical linear equation to predict peak pressure level of anthropogenic impulsive signals based on its correlation with the sound exposure level. The regression coefficients are shown to be weakly dependent on the environmental characteristics but governed by the source type and parameters. The equation can be applied to values of the sound exposure level predicted with a numerical model, which provides a significant improvement in the prediction of the peak pressure level. Part I presents the analysis for airgun arrays signals, and Part II considers the application of the empirical equation to offshore impact piling noise.

  13. Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; McBride, Bonnie J.

    1959-01-01

    Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.

  14. An Impulse Based Substructuring approach for impact analysis and load case simulations

    NASA Astrophysics Data System (ADS)

    Rixen, Daniel J.; van der Valk, Paul L. C.

    2013-12-01

    In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.

  15. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  16. Project NEO Specific Impulse Testing Solutions

    NASA Technical Reports Server (NTRS)

    Baffa, Bill

    2018-01-01

    The Neo test stand is currently configured to fire a horizontally mounted rocket motor with up to 6500 lbf thrust. Currently, the Neo test stand can measure flow of liquid propellant and oxidizer, pressures residing in the closed system up to the combustion chamber. The current configuration does not have the ability to provide all data needed to compute specific impulse. This presents three methods to outfit the NEO test fixture with instrumentation allowing for calculation of specific impulse.

  17. Effects of humoral factors on ventilation kinetics during recovery after impulse-like exercise.

    PubMed

    Afroundeh, R; Arimitsu, T; Yamanaka, R; Lian, C; Yunoki, T; Yano, Tokuo

    2012-06-01

    To clarify the ventilatory kinetics during recovery after impulse-like exercise, subjects performed one impulse-like exercise test (one-impulse) and a five-times repeated impulse-like exercises test (five-impulse). Duration and intensity of the impulse-like exercise were 20 sec and 400 watts (80 rpm), respectively. Although blood pH during recovery (until 10 min) was significantly lower in the five-impulse test than in the one-impulse test, ventilation (.VE) in the two tests was similar except during the first 30 sec of recovery, in which it was higher in the five-impulse test. In one-impulse, blood CO2 pressure (PCO2) was significantly increased at 1 min during recovery and then returned to the pre-exercise level at 5 min during recovery. In the five-impulse test, PCO2 at 1 min during recovery was similar to the pre-exercise level, and then it decreased to a level lower than the pre-exercise level at 5 min during recovery. Accordingly, PCO2 during recovery (until 30 min) was significantly lower in the five-impulse than in one-impulse test..VE and pH during recovery showed a curvilinear relationship, and at the same pH, ventilation was higher in the one-impulse test. These results suggest that ventilatory kinetics during recovery after impulse-like exercise is attributed partly to pH, but the stimulatory effect of lower pH is diminished by the inhibitory effect of lower PCO2.

  18. Analysis of the Explosive Internal Impact on the Barriers of Building Structures

    NASA Astrophysics Data System (ADS)

    Siwiński, Jarosław; Stolarski, Adam

    2017-10-01

    Work issues concern the safety of construction in relation to the hazards arising from explosion of the explosive charge located inside the building. The algorithms proposed in the paper for determining the parameters of the overpressure wave resulting from the detonation of clustered explosive charges, determine the basis for numerical simulation analyzes. Determination of the maximum value of peak pressure on the wave forehead of an internal explosion is presented on the basis of reflected wave analysis. Changeability in time of the internal explosion action describes the overpressure phase only. The analysis of the load caused by the internal explosive charge detonation was carried out under conditions of the undisturbed standard atmosphere. A load determination algorithm has been developed, taking into account the geometrical characteristics of the building barriers and the rooms as well as the parameters of environment in which the detonation occurs. The way of taking into account the influence of venting surfaces, i.e. windows, doors, ventilation ducts, on the overpressure wave parameters, was presented. Discloses a method to take into account the effect of the surface relief, i.e. windows, doors, air ducts, pressure wave parameters. Modification of the method for explosive overpressure determination presented by Cormie, Smith, Mays (2009), was proposed in the paper. This modification was developed on the basis of substitute impulse analysis for multiple overpressure pulses. In order to take into account the pressure distribution of explosive gases on the barrier surface, the method of modification the relationship for determination the changeability over time and space of the pressure of explosive gases, was presented. For this purpose, the changeability of the pressure wave angles of incidence to the barrier and the distance of the explosive charge to any point on the surface of the barrier, was taken into account. Based on the developed procedure, the overpressure changeability over time was determined for selected measurement points of the reference room. A comparative analysis of the determined loadings with experimental results and theoretical results of other authors, taken from the original work of Weerhiejm et al. (2012), was carried out.

  19. Impulsive noise of printers: measurement metrics and their subjective correlation

    NASA Astrophysics Data System (ADS)

    Baird, Terrence; Otto, Norman; Bray, Wade; Stephan, Mike

    2005-09-01

    In the office and home computing environments, printer impulsive noise has become a significant contributor to user perceived quality or lack thereof, and can affect the user's comfort level and ability to concentrate. Understanding and quantifying meaningful metrics for printer impulsivity is becoming an increasingly important goal for printer manufacturers. Several methods exist in international standards for measuring the impulsivity of noise. For information technology equipment (ITE), the method for detection of impulsive noise is provided in ECMA-74 and ISO 7779. However, there is a general acknowledgement that the current standard method of determining impulsivity by simply measuring A-weighted sound pressure level (SPL) with the impulsive time weighting, I, applied is inadequate to characterize impulsive noise and ultimately to predict user satisfaction and acceptance. In recent years, there has been a variety of new measurement methods evaluated for impulsive noise for both environmental and machinery noise. This paper reviews several of the available metrics, applies the metrics to several printer impulsive noise sources, and makes an initial assessment of their correlation to the subjective impressions of users. It is a review and continuation of the work presented at InterNoise 2005 (Baird, Bray, and Otto).

  20. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  1. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk.

    PubMed

    Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C

    2001-10-01

    The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p < or = 0.01), which represented the primary orientation of the collagen fibers. Strain rate dependency was evident for loading along the anteroposterior axis but not along the mediolateral axis. No significant differences in any property were noted between pristine and impulsively loaded disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.

  2. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  3. Non-contact quantification of laser micro-impulse in water by atomic force microscopy and its application for biomechanics

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2011-12-01

    We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.

  4. Independent effects of step length and foot strike pattern on tibiofemoral joint forces during running.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-10-01

    The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (-10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.

  5. Effect of the signal measured from the glottis on determination of the vocal tract shape.

    PubMed

    Gülmezoğlu, M B; Barkana, A

    1998-01-01

    All-pole and pole-zero models for the vocal tract are developed. First an impulse train, then the pressure signal measured from the glottis, is used as the input in the models. The models for eight Turkish vowels produced by one male subject are studied to determine the effects of the presumed impulse train and the pressure signal measured from the glottis on the estimation of the vocal tract shape. The motion of the tongue is also examined for a whole word.

  6. Dynamic Pressure Impulse for Near-Ideal and Non-Ideal Blast Waves -- Height of Burst Charts. Supplement

    DTIC Science & Technology

    1983-12-31

    Law 79-565), 22 April 1967. Other requests shall be referred to Director, Defense Nuclear Agency, Washington, DC 20305- 10101. THIS WORK WAS SPONSORED...JPUMNTNYNOTATIO This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS Code 8344082466 Y99QAXSGO0039 H25900. I?. cosASI comR I& SUISCI TM...displacement which a vehicle exposed to a blast wave sufers can be used as a measure of the dynamic pressure impulse it receives. ,hat is, the vehicle

  7. Aerodynamic loads on a Darrieus rotor blade

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; McKie, W. R.; Lissaman, P. B. S.; James, M.

    1983-03-01

    A method is presented for the free vortex analysis of a Darrieus rotor blade in nonsteady motion, which employs the circle theorem to map the moving rotor airfoil into the circle plane and models the wake generated in terms of point vortices. Nascent vortex strength and position are taken from the Kutta condition, so that the nascent vortex has the same strength as a vortex sheet of uniform strength. Pressure integration over the plate and wake vortex impulse methods yields the same numerical results. The numerical results presented for a one-bladed Darrieus rotor at a tip/speed ratio of three, and two different chord sizes, indicate that the moment on the blade can be adequately approximated by quasi-steady relationships, although the accurate determination of local velocity and circulation are still required.

  8. Hypersonic ignition and thrust production in a scramjet

    NASA Technical Reports Server (NTRS)

    Paull, A.

    1993-01-01

    Experimental results are given for the specific impulse produced by a two-dimensional scramjet at flight speeds ranging between 2.5 and 5.5 km/s with a combustion chamber Mach number of 4.5. Both hydrogen and ethane fuels were used. Results show that provided sufficiently high pressures and sufficiently long combustion chambers are used specific impulses in excess of 1500 s can be obtained with hydrogen. Ethane produced specific impulses less than 600 s with the same conditions and model configuration.

  9. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  10. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  11. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  12. THE RELATIONSHIP BETWEEN MEASURES OF IMPULSIVITY AND ALCOHOL MISUSE: AN INTEGRATIVE STRUCTURAL EQUATION MODELING APPROACH

    PubMed Central

    Courtney, Kelly E.; Arellano, Ryan; Barkley-Levenson, Emily; Gálvan, Adriana; Poldrack, Russell A.; MacKillop, James; Jentsch, J. David; Ray, Lara A.

    2011-01-01

    Background Higher levels of impulsivity have been implicated in the development of alcohol use disorders. Recent findings suggest that impulsivity is not a unitary construct, highlighted by the diverse ways in which the various measures of impulsivity relate to alcohol use outcomes. This study simultaneously tested the following dimensions of impulsivity as determinants of alcohol use and alcohol problems: risky decision-making, self-reported risk attitudes, response inhibition, and impulsive decision-making. Method Participants were a community sample of non-treatment seeking problem drinkers (N = 158). Structural Equation Modeling (SEM) analyses employed behavioral measures of impulsive decision-making (Delay Discounting Task, DDT), response inhibition (Stop Signal Task, SST), and risky decision-making (Balloon Analogue Risk Task, BART), and a self-report measure of risk attitudes (Domain-specific Risk-attitude Scale, DOSPERT), as predictors of alcohol use and of alcohol-related problems in this sample. Results The model fit well, accounting for 38% of the variance in alcohol problems, and identified two impulsivity dimensions that significantly loaded onto alcohol outcomes: (1) impulsive decision-making, indexed by the DDT; and (2) risky decision-making, measured by the BART. Conclusions The impulsive decision-making dimension of impulsivity, indexed by the DDT, was the strongest predictor of alcohol use and alcohol pathology in this sample of problem drinkers. Unexpectedly, a negative relationship was found between risky decision-making and alcohol problems. The results highlight the importance of considering the distinct facets of impulsivity in order to elucidate their individual and combined effects on alcohol use initiation, escalation, and dependence. PMID:22091877

  13. Apathy and impulsivity in frontotemporal lobar degeneration syndromes

    PubMed Central

    Coyle-Gilchrist, Ian T. S.; Jones, P. Simon; Vázquez Rodríguez, Patricia; Wilcox, Alicia; Wehmann, Eileen; Dick, Katrina M.; Robbins, Trevor W.; Rowe, James B.

    2017-01-01

    Abstract Apathy and impulsivity are common and disabling consequences of frontotemporal lobar degeneration. They cause substantial carer distress, but their aetiology remains elusive. There are critical limitations to previous studies in this area including (i) the assessment of either apathy or impulsivity alone, despite their frequent co-existence; (ii) the assessment of behavioural changes within single diagnostic groups; and (iii) the use of limited sets of tasks or questions that relate to just one aspect of these multifactorial constructs. We proposed an alternative, dimensional approach that spans behavioural and language variants of frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome. This accommodates the commonalities of apathy and impulsivity across disorders and reveals their cognitive and anatomical bases. The ability to measure the components of apathy and impulsivity and their associated neural correlates across diagnostic groups would provide better novel targets for pharmacological manipulations, and facilitate new treatment strategies and strengthen translational models. We therefore sought to determine the neurocognitive components of apathy and impulsivity in frontotemporal lobar degeneration syndromes. The frequency and characteristics of apathy and impulsivity were determined by neuropsychological and behavioural assessments in 149 patients and 50 controls from the PIck’s disease and Progressive supranuclear palsy Prevalence and INcidence study (PiPPIN). We derived dimensions of apathy and impulsivity using principal component analysis and employed these in volumetric analyses of grey and white matter in a subset of 70 patients (progressive supranuclear palsy, n = 22; corticobasal syndrome, n = 13; behavioural variant, n = 14; primary progressive aphasias, n = 21) and 27 control subjects. Apathy and impulsivity were present across diagnostic groups, despite being criteria for behavioural variant frontotemporal dementia alone. Measures of apathy and impulsivity frequently loaded onto the same components reflecting their overlapping relationship. However, measures from objective tasks, patient-rated questionnaires and carer-rated questionnaires loaded onto separate components and revealed distinct neurobiology. Corticospinal tracts correlated with patients’ self-ratings. In contrast, carer ratings correlated with atrophy in established networks for goal-directed behaviour, social cognition, motor control and vegetative functions, including frontostriatal circuits, orbital and temporal polar cortex, and the brainstem. Components reflecting response inhibition deficits correlated with focal frontal cortical atrophy. The dimensional approach to complex behavioural changes arising from frontotemporal lobar degeneration provides new insights into apathy and impulsivity, and the need for a joint therapeutic strategy against them. The separation of objective tests from subjective questionnaires, and patient from carer ratings, has important implications for clinical trial design. PMID:28486594

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leskovar, Matjaz; Koncar, Bostjan

    An ex-vessel steam explosion may occur when during a severe reactor accident the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles at later times, during the expansion of the highly pressurized water vapor, that may endanger surrounding structures. In contrast to specialized steammore » explosion CFD codes, where the steam explosion is modeled on micro-scale using fundamental averaged multiphase flow conservation equations, in the presented approach the steam explosion is modeled in a simplified manner as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapor. Applying the developed steam explosion model, a comprehensive analysis of the ex-vessel steam explosion in a typical PWR reactor cavity was done using the CFD code CFX-10. At four selected locations, which are of importance for the assessment of the vulnerability of cavity structures, the pressure histories were recorded and the corresponding pressure impulses calculated. The pressure impulses determine the destructive potential of the steam explosion and represent the input for the structural mechanical analysis of the cavity structures. The simulation results show that the pressure impulses depend mainly on the steam explosion energy conversion ratio, whereas the influence of the pre-mixture vapor volume fraction, which is a parameter in our model and determines the maximum steam explosion pressure, is not significant. (authors)« less

  15. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mardechay

    1992-01-01

    The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.

  16. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Michael; Erickson, Paul; Lawrence, Richard

    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less

  17. Anger, impulsivity, and anger control in combat-related posttraumatic stress disorder.

    PubMed

    Chemtob, C M; Hamada, R S; Roitblat, H L; Muraoka, M Y

    1994-08-01

    Empirical evidence of a relationship between combat-related PTSD and increased anger is lacking. In this study, 24 veterans of the Vietnam War with posttraumatic stress disorder (PTSD) scored significantly higher on an Anger factor comprising multiple measures of anger than did comparison groups of 23 well-adjusted Vietnam combat veterans and 12 noncombat Vietnam-era veterans with psychiatric diagnoses. In contrast, the 3 groups did not differ significantly on orthogonal factors, one of which comprised cognitive impulsivity measures and the other of which reflected motor impulsivity. Changes in heart rate in response to provocation loaded positively on the Anger factor and negatively on the 2 Impulsivity factors. Concurrent depression and trait anxiety did not have an effect on level of anger in individuals with PTSD. These empirical findings support and extend the clinical evidence regarding PTSD and anger.

  18. Risk assessment of the onset of Osgood-Schlatter disease using kinetic analysis of various motions in sports.

    PubMed

    Itoh, Gento; Ishii, Hideyuki; Kato, Haruyasu; Nagano, Yasuharu; Hayashi, Hiroteru; Funasaki, Hiroki

    2018-01-01

    Some studies have listed motions that may cause Osgood-Schlatter disease, but none have quantitatively assessed the load on the tibial tubercle by such motions. To quantitatively identify the load on the tibial tubercle through a biomechanical approach using various motions that may cause Osgood-Schlatter disease, and to compare the load between different motions. Eight healthy male subjects were included. They conducted 4 types of kicks with a soccer ball, 2 types of runs, 2 types of squats, 2 types of jump landings, 2 types of stops, 1 type of turn, and 1 type of cutting motion. The angular impulse was calculated for knee extension moments ≥1.0 Nm/kg, ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg. After analysis of variance, the post-hoc test was used to perform pairwise comparisons between all groups. The motion with the highest mean angular impulse of knee extension moment ≥1.0 Nm/kg was the single-leg landing after a jump, and that with the second highest mean was the cutting motion. At ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg, the cutting motion was the highest, followed by the jump with a single-leg landing. They have a large load, and are associated with a higher risk of developing Osgood-Schlatter disease. The mean angular impulse of the 2 types of runs was small at all the indicators. Motions with a high risk of developing Osgood-Schlatter disease and low-risk motions can be assessed in further detail if future studies can quantify the load and number of repetitions that may cause Osgood-Schlatter disease while considering age and the development stage. Scheduled training regimens that balance load on the tibial tubercle with low-load motions after a training day of many load-intensive motions may prevent athletes from developing Osgood-Schlatter disease and increase their participation in sports.

  19. Risk assessment of the onset of Osgood–Schlatter disease using kinetic analysis of various motions in sports

    PubMed Central

    Ishii, Hideyuki; Kato, Haruyasu; Nagano, Yasuharu; Hayashi, Hiroteru; Funasaki, Hiroki

    2018-01-01

    Background Some studies have listed motions that may cause Osgood-Schlatter disease, but none have quantitatively assessed the load on the tibial tubercle by such motions. Purposes To quantitatively identify the load on the tibial tubercle through a biomechanical approach using various motions that may cause Osgood-Schlatter disease, and to compare the load between different motions. Methods Eight healthy male subjects were included. They conducted 4 types of kicks with a soccer ball, 2 types of runs, 2 types of squats, 2 types of jump landings, 2 types of stops, 1 type of turn, and 1 type of cutting motion. The angular impulse was calculated for knee extension moments ≥1.0 Nm/kg, ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg. After analysis of variance, the post-hoc test was used to perform pairwise comparisons between all groups. Results/Conclusions The motion with the highest mean angular impulse of knee extension moment ≥1.0 Nm/kg was the single-leg landing after a jump, and that with the second highest mean was the cutting motion. At ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg, the cutting motion was the highest, followed by the jump with a single-leg landing. They have a large load, and are associated with a higher risk of developing Osgood-Schlatter disease. The mean angular impulse of the 2 types of runs was small at all the indicators. Clinical relevance Motions with a high risk of developing Osgood-Schlatter disease and low-risk motions can be assessed in further detail if future studies can quantify the load and number of repetitions that may cause Osgood-Schlatter disease while considering age and the development stage. Scheduled training regimens that balance load on the tibial tubercle with low-load motions after a training day of many load-intensive motions may prevent athletes from developing Osgood-Schlatter disease and increase their participation in sports. PMID:29309422

  20. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iverson, Adam; Carlson, Carl; Young, Jason

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less

  1. Psychometric analysis of the new ADHD DSM-V derived symptoms.

    PubMed

    Ghanizadeh, Ahmad

    2012-03-20

    Following the agreements on the reformulating and revising of ADHD diagnostic criteria, recently, the proposed revision for ADHD added 4 new symptoms to the hyperactivity and Impulsivity aspect in DSM-V. This study investigates the psychometric properties of the proposed ADHD diagnostic criteria. ADHD diagnosis was made according to DSM-IV. The parents completed the screening test of ADHD checklist of Child Symptom Inventory-4 and the 4 items describing the new proposed symptoms in DSM-V. The confirmatory factor analysis of the ADHD DSM-V derived items supports the loading of two factors including inattentiveness and hyperactivity/impulsivity. There is a sufficient reliability for the items. However, confirmatory factor analysis showed that the three-factor model is better fitted than the two-factor one. Moreover, the results of the exploratory analysis raised some concerns about the factor loading of the four new items. The current results support the two-factor model of the DSM-V ADHD diagnostic criteria including inattentiveness and hyperactivity/impulsivity. However, the four new items can be considered as a third factor.

  2. Response of a piezoelectric pressure transducer to IR laser beam impingement

    NASA Technical Reports Server (NTRS)

    Smith, William C.; Leiweke, Robert J.; Beeson, Harold

    1992-01-01

    The non-pressure response of a PCB Model 113A transducer to a far infrared radiation impulse from a carbon dioxide laser was investigated. Incident radiation was applied both to the bare transducer diaphragm and to coated diaphragms. Coatings included two common ablative materials and a reflective gold coating. High-flux radiation impulses induced an immediate brief negative output followed by a longer-duration positive output. Both timing and amplitude of the responses will be discussed, and the effects of coatings will be compared. Bursts of blackbody radiation from a 1500 K source produced qualitatively similar responses.

  3. Influence of snow shovel shaft configuration on lumbosacral biomechanics during a load-lifting task.

    PubMed

    Lewinson, Ryan T; Rouhi, Gholamreza; Robertson, D Gordon E

    2014-03-01

    Lower-back injury from snow shovelling may be related to excessive joint loading. Bent-shaft snow shovels are commonly available for purchase; however, their influence on lower back-joint loading is currently not known. Therefore, the purpose of this study was to compare L5/S1 extension angular impulses between a bent-shaft and a standard straight-shaft snow shovel. Eight healthy subjects participated in this study. Each completed a simulated snow-lifting task in a biomechanics laboratory with each shovel design. A standard motion analysis procedure was used to determine L5/S1 angular impulses during each trial, as well as peak L5/S1 extension moments and peak upper body flexion angle. Paired-samples t-tests (α = 0.05) were used to compare variables between shovel designs. Correlation was used to determine the relationship between peak flexion and peak moments. Results of this study show that the bent-shaft snow shovel reduced L5/S1 extension angular impulses by 16.5% (p = 0.022), decreased peak moments by 11.8% (p = 0.044), and peak flexion by 13.0% (p = 0.002) compared to the straight-shaft shovel. Peak L5/S1 extension moment magnitude was correlated with peak upper body flexion angle (r = 0.70). Based on these results, it is concluded that the bent-shaft snow shovel can likely reduce lower-back joint loading during snow shovelling, and thus may have a role in snow shovelling injury prevention. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  5. Subjective assessment of simulated helicopter blade-slap noise

    NASA Technical Reports Server (NTRS)

    Lawton, B. W.

    1976-01-01

    The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.

  6. A Multiscale Approach to Blast Neurotrauma Modeling: Part I – Development of Novel Test Devices for in vivo and in vitro Blast Injury Models

    PubMed Central

    Panzer, Matthew B.; Matthews, Kyle A.; Yu, Allen W.; Morrison, Barclay; Meaney, David F.; Bass, Cameron R.

    2012-01-01

    The loading conditions used in some current in vivo and in vitro blast-induced neurotrauma models may not be representative of real-world blast conditions. To address these limitations, we developed a compressed-gas driven shock tube with different driven lengths that can generate Friedlander-type blasts. The shock tube can generate overpressures up to 650 kPa with durations between 0.3 and 1.1 ms using compressed helium driver gas, and peak overpressures up to 450 kPa with durations between 0.6 and 3 ms using compressed nitrogen. This device is used for short-duration blast overpressure loading for small animal in vivo injury models, and contrasts the more frequently used long duration/high impulse blast overpressures in the literature. We also developed a new apparatus that is used with the shock tube to recreate the in vivo intracranial overpressure response for loading in vitro culture preparations. The receiver device surrounds the culture with materials of similar impedance to facilitate the propagation of a single overpressure pulse through the tissue. This method prevents pressure waves reflecting off the tissue that can cause unrealistic deformation and injury. The receiver performance was characterized using the longest helium-driven shock tube, and produced in-fluid overpressures up to 1500 kPa at the location where a culture would be placed. This response was well correlated with the overpressure conditions from the shock tube (R2 = 0.97). Finite element models of the shock tube and receiver were developed and validated to better elucidate the mechanics of this methodology. A demonstration exposing a culture to the loading conditions created by this system suggest tissue strains less than 5% for all pressure levels simulated, which was well below functional deficit thresholds for strain rates less than 50 s−1. This novel system is not limited to a specific type of culture model and can be modified to reproduce more complex pressure pulses. PMID:22470367

  7. Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun.

    PubMed

    Finneran, James J; Schlundt, Carolyn E; Dear, Randall; Carder, Donald A; Ridgway, Sam H

    2002-06-01

    A behavioral response paradigm was used to measure masked underwater hearing thresholds in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas) before and after exposure to single underwater impulsive sounds produced from a seismic watergun. Pre- and postexposure thresholds were compared to determine if a temporary shift in masked hearing thresholds (MTTS), defined as a 6-dB or larger increase in postexposure thresholds, occurred. Hearing thresholds were measured at 0.4, 4, and 30 kHz. MTTSs of 7 and 6 dB were observed in the white whale at 0.4 and 30 kHz, respectively, approximately 2 min following exposure to single impulses with peak pressures of 160 kPa, peak-to-peak pressures of 226 dB re 1 microPa, and total energy fluxes of 186 dB re 1 microPa2 x s. Thresholds returned to within 2 dB of the preexposure value approximately 4 min after exposure. No MTTS was observed in the dolphin at the highest exposure conditions: 207 kPa peak pressure, 228 dB re 1 microPa peak-to-peak pressure, and 188 dB re 1 microPa2 x s total energy flux.

  8. Evidence against high pressure, arterial baroreceptors in the abdominal viscera of cats.

    PubMed

    Martin, S E; Longhurst, J C

    1986-12-01

    The abdominal viscera of cats have been postulated to contain a site of cardiovascular regulation. In particular, a baroreceptive function has been ascribed to splanchnic afferent nerves. We wished to determine whether afferents with a cardiac-rhythmic discharge functioned as arterial baroreceptors. Nineteen afferents with a cardiac rhythmic discharge were studied. All afferents were A fibers, whose endings were located in either the pancreas, mesentery, or porta hepatis region. We examined their characteristics of discharge with regard to changes in mean pressure, pulse pressure, and dP/dt of the arterial pulse. Hemodynamic alterations were achieved by intravenous administration of isoproterenol, norepinephrine, or phenylephrine and by occlusion of the descending thoracic aorta. After isoproterenol, increases in nerve activity occurred when pulse pressure and dP/dt were increased but while mean pressure was decreasing, indicating that mean pressure was not the stimulus for discharge of these afferents. Additionally, under similar hemodynamic conditions, afferents did not demonstrate reproducible patterns of activity. The afferents generally discharged with one impulse per cardiac cycle, rarely with two to three impulses per cycle. None demonstrated a bursting pattern even when arterial blood pressure was quite elevated. The spontaneous pattern of discharge changed frequently, often after the viscera were repositioned, and sometimes remained even after complete occlusion of the aorta. The data indicate that these visceral afferents do not respond as high pressure, arterial baroreceptors. All afferents adapted extremely rapidly and exhibited a low gain (0.02 +/- 0.00 impulses X s-1 X mmHg-1), indicating that these fibers would be ineffective in signaling physiologically significant changes in hemodynamic variables. The data from this study do not support the existence of baroreceptors in the abdominal viscera of cats.

  9. Impact kinetics associated with four common bilateral plyometric exercises.

    PubMed

    Stewart, Ethan; Kernozek, Thomas; Peng, Hsien-Te; Wallace, Brian

    2018-04-20

    This study quantified the peak vertical ground reaction force (VGRF), impulse, and average and instantaneous loading rates developed during bilateral plyometric exercises. Fourteen collegiate male athletes performed four different bilateral plyometric exercises within a single testing session. Depth jumps from thirty, sixty and ninety centimeter heights (DJ30, DJ60, and DJ90, respectively), and a two consecutive jump exercise (2CJ), were randomly performed. The subjects landed on and propelled themselves off two force platforms embedded into the floor. The stance phase of each plyometric movement was analyzed for vertical force characteristics. The dependent variables were normalized to body weight. One-way repeated-measures ANOVA revealed significant differences between exercises (p ≤ 0.05). For VGRF, only the DJ60 and 2CJ exercises were not different from each other. The impulses between DJ60 and DJ90, and DJ30 and 2CJ, were not different. All exercises were different from each other in regards to average and instantaneous loading rate except for DJ30 vs. DJ60, and DJ90 vs. 2CJ. The DJ90 condition reported the highest peak VGRF by approaching five times body weight. The 2CJ condition had similar impulse and loading rates as the DJ90 condition. A proper progression and detailed program planning should be utilized when implementing plyometric exercises due to their different impact kinetics and how they might influence the body upon ground contact.

  10. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.

  11. The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging.

    PubMed

    Morgenroth, David C; Medverd, Jonathan R; Seyedali, Mahyo; Czerniecki, Joseph M

    2014-06-01

    While animal study and cadaveric study have demonstrated an association between knee joint loading rate and joint degeneration, the relationship between knee joint loading rate during walking and osteoarthritis has not yet been sufficiently studied in humans. Twenty-eight participants (14 transfemoral amputees and 14 age and body mass matched controls) underwent knee MRI with subsequent assessment using the semiquantitative Whole-Organ Magnetic Resonance Image Score. Each subject also underwent gait analysis in order to determine knee adduction moment loading rate, peak, and impulse and an exploratory measure, knee adduction moment rate∗magnitude. Significant correlations were found between medial tibiofemoral joint degeneration and knee adduction moment peak (slope=0.42 [SE 0.20]; P=.037), loading rate (slope=12.3 [SE 3.2]; P=.0004), and rate∗magnitude (slope=437 [SE 100]; P<.0001). These relationships continued to be significant after adjusting for body mass or subject type. The relationship between medial knee semiquantitative MRI score and knee adduction moment loading rate and rate∗magnitude continued to be significant even after adjusting for peak moment (P<.0001), however, the relationship between medial knee semiquantitative MRI score and peak moment was no longer significant after adjusting for either loading rate or rate∗magnitude (P>.2 in both cases). This study suggests an independent relationship between knee adduction moment loading rate and medial tibiofemoral joint degeneration. Our results support the hypothesis that rate of loading, represented by the knee adduction moment loading rate, is strongly associated with medial tibiofemoral joint degeneration independent of knee adduction moment peak and impulse. Published by Elsevier Ltd.

  12. Impulse measurement using an Arduíno

    NASA Astrophysics Data System (ADS)

    Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B.

    2018-05-01

    In this paper, we propose a simple experimental apparatus that can measure the force variation over time to study the impulse-momentum theorem. In this proposal, a body attached to a rubber string falls freely from rest until it stretches and changes the linear momentum. During that process the force due to the tension on the rubber string is measured with a load cell by using an Arduíno board. We check the instrumental results with the basic concept of impulse, finding the area under the force versus time curve and comparing this with the linear momentum variation estimated from software analysis. The apparatus is presented as a simple and low cost alternative to mechanical physics laboratories.

  13. Force-Velocity, Impulse-Momentum Relationships: Implications for Efficacy of Purposefully Slow Resistance Training

    PubMed Central

    Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.

    2008-01-01

    The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464

  14. Relationships between trait impulsivity and cognitive control: the effect of attention switching on response inhibition and conflict resolution.

    PubMed

    Leshem, Rotem

    2016-02-01

    This study examined the relationship between trait impulsivity and cognitive control, as measured by the Barratt Impulsiveness Scale (BIS) and a focused attention dichotic listening to words task, respectively. In the task, attention was manipulated in two attention conditions differing in their cognitive control demands: one in which attention was directed to one ear at a time for a whole block of trials (blocked condition) and another in which attention was switched pseudo-randomly between the two ears from trial to trial (mixed condition). Results showed that high impulsivity participants exhibited more false alarm and intrusion errors as well as a lesser ability to distinguish between stimuli in the mixed condition, as compared to low impulsivity participants. In the blocked condition, the performance levels of the two groups were comparable with respect to these measures. In addition, total BIS scores were correlated with intrusions and laterality index in the mixed but not the blocked condition. The findings suggest that high impulsivity individuals may be less prone to attentional difficulties when cognitive load is relatively low. In contrast, when attention switching is involved, high impulsivity is associated with greater difficulty in inhibiting responses and resolving cognitive conflict than is low impulsivity, as reflected in error-prone information processing. The conclusion is that trait impulsivity in a non-clinical population is manifested more strongly when attention switching is required than during maintained attention. This may have important implications for the conceptualization and treatment of impulsivity in both non-clinical and clinical populations.

  15. Intrinsic Network Connectivity Patterns Underlying Specific Dimensions of Impulsiveness in Healthy Young Adults.

    PubMed

    Kubera, Katharina M; Hirjak, Dusan; Wolf, Nadine D; Sambataro, Fabio; Thomann, Philipp A; Wolf, R Christian

    2018-05-01

    Impulsiveness is a central human personality trait and of high relevance for the development of several mental disorders. Impulsiveness is a multidimensional construct, yet little is known about dimension-specific neural correlates. Here, we address the question whether motor, attentional and non-planning components, as measured by the Barratt Impulsiveness Scale (BIS-11), are associated with distinct or overlapping neural network activity. In this study, we investigated brain activity at rest and its relationship to distinct dimensions of impulsiveness in 30 healthy young adults (m/f = 13/17; age mean/SD = 26.4/2.6 years) using resting-state functional magnetic resonance imaging at 3T. A spatial independent component analysis and a multivariate model selection strategy were used to identify systems loading on distinct impulsivity domains. We first identified eight networks for which we had a-priori hypotheses. These networks included basal ganglia, cortical motor, cingulate and lateral prefrontal systems. From the eight networks, three were associated with impulsiveness measures (p < 0.05, FDR corrected). There were significant relationships between right frontoparietal network function and all three BIS domains. Striatal and midcingulate network activity was associated with motor impulsiveness only. Within the networks regionally confined effects of age and gender were found. These data suggest distinct and overlapping patterns of neural activity underlying specific dimensions of impulsiveness. Motor impulsiveness appears to be specifically related to striatal and midcingulate network activity, in contrast to a domain-unspecific right frontoparietal system. Effects of age and gender have to be considered in young healthy samples.

  16. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    NASA Astrophysics Data System (ADS)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2017-01-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  17. Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015

    NASA Astrophysics Data System (ADS)

    Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.

    2018-04-01

    The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.

  18. ELECTRICAL LOAD ANTICIPATOR AND RECORDER

    DOEpatents

    Werme, J.E.

    1961-09-01

    A system is described in which an indication of the prevailing energy consumption in an electrical power metering system and a projected power demand for one demand in terval is provided at selected increments of time within the demand interval. Each watt-hour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. In each demand interval, for example, one half-hour, of the metering system, the total impulses received from all of the meters are continuously totaled for each 5-minute interval and multiplied by a number from 6 to 1 depending upon which 5- minute interval the impulses were received. This value is added to the total pulses received in the intervals preceding the current 5-minute interval within the half-hour demand interval tc thereby provide an indication of the projected power demand every 5 minutes in the demand interval.

  19. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  20. High-pressure dielectric-strength tests on PPP (PPLP) insulation. Final report. [Paper-polypropylene film-paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, R.; Hirose, M.; Nagai, T.

    1983-06-01

    The objectives of this project were to establish the effects of fluid pressure on the impulse and ac breakdown strengths of PPP (PPLP) (paper-polypropylene film-paper) insulation. Two thicknesses of PPP (PPLP), which was developed jointly by Sumitomo Electric Industries, Ltd. and Tomoegawa Paper Co., Ltd. and produced by the latter company, were tested with dodecylebenzene (DDB) of the alkylbenzene family as dielectric fluid. Appropriate flat/model cells as employed for previous breakdown tests on paper-oil insulation were used, suitable for test pressures up to 20 kg/cm/sup 2/ abs. (2.0 MN/m/sup 2/ or 284 psi). Impulse and ac breakdown tests were performedmore » at a series of applied pressures, at room temperature and 90/sup 0/C. The results were analyzed and are presented in comparison with previously published data on paper-oil cable insulation.« less

  1. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.

    PubMed

    Kiapour, Ata M; Demetropoulos, Constantine K; Kiapour, Ali; Quatman, Carmen E; Wordeman, Samuel C; Goel, Vijay K; Hewett, Timothy E

    2016-08-01

    Despite basic characterization of the loading factors that strain the anterior cruciate ligament (ACL), the interrelationship(s) and additive nature of these loads that occur during noncontact ACL injuries remain incompletely characterized. In the presence of an impulsive axial compression, simulating vertical ground-reaction force during landing (1) both knee abduction and internal tibial rotation moments would result in increased peak ACL strain, and (2) a combined multiplanar loading condition, including both knee abduction and internal tibial rotation moments, would increase the peak ACL strain to levels greater than those under uniplanar loading modes alone. Controlled laboratory study. A cadaveric model of landing was used to simulate dynamic landings during a jump in 17 cadaveric lower extremities (age, 45 ± 7 years; 9 female and 8 male). Peak ACL strain was measured in situ and characterized under impulsive axial compression and simulated muscle forces (baseline) followed by addition of anterior tibial shear, knee abduction, and internal tibial rotation loads in both uni- and multiplanar modes, simulating a broad range of landing conditions. The associations between knee rotational kinematics and peak ACL strain levels were further investigated to determine the potential noncontact injury mechanism. Externally applied loads, under both uni- and multiplanar conditions, resulted in consistent increases in peak ACL strain compared with the baseline during simulated landings (by up to 3.5-fold; P ≤ .032). Combined multiplanar loading resulted in the greatest increases in peak ACL strain (P < .001). Degrees of knee abduction rotation (R(2) = 0.45; β = 0.42) and internal tibial rotation (R(2) = 0.32; β = 0.23) were both significantly correlated with peak ACL strain (P < .001). However, changes in knee abduction rotation had a significantly greater effect size on peak ACL strain levels than did internal tibial rotation (by ~2-fold; P < .001). In the presence of impulsive axial compression, the combination of anterior tibial shear force, knee abduction, and internal tibial rotation moments significantly increases ACL strain, which could result in ACL failure. These findings support multiplanar knee valgus collapse as one the primary mechanisms of noncontact ACL injuries during landing. Intervention programs that address multiple planes of loading may decrease the risk of ACL injury and the devastating consequences of posttraumatic knee osteoarthritis. © 2016 The Author(s).

  2. Accuracy of assessing the level of impulse sound from distant sources.

    PubMed

    Wszołek, Tadeusz; Kłaczyński, Maciej

    2007-01-01

    Impulse sound events are characterised by ultra high pressures and low frequencies. Lower frequency sounds are generally less attenuated over a given distance in the atmosphere than higher frequencies. Thus, impulse sounds can be heard over greater distances and will be more affected by the environment. To calculate a long-term average immission level it is necessary to apply weighting factors like the probability of the occurrence of each weather condition during the relevant time period. This means that when measuring impulse noise at a long distance it is necessary to follow environmental parameters in many points along the way sound travels and also to have a database of sound transfer functions in the long term. The paper analyses the uncertainty of immission measurement results of impulse sound from cladding and destroying explosive materials. The influence of environmental conditions on the way sound travels is the focus of this paper.

  3. Impulse oscillometry in the evaluation of diseases of the airways in children

    PubMed Central

    Komarow, Hirsh D.; Myles, Ian A.; Uzzaman, Ashraf; Metcalfe, Dean D.

    2012-01-01

    Objective To provide an overview of impulse oscillometry and its application to the evaluation of children with diseases of the airways. Data Sources Medline and PubMed search, limited to English language and human disease, with keywords forced oscillation, impulse oscillometry, and asthma. Study Selections The opinions of the authors were used to select studies for inclusion in this review. Results Impulse oscillometry is a noninvasive and rapid technique requiring only passive cooperation by the patient. Pressure oscillations are applied at the mouth to measure pulmonary resistance and reactance. It is employed by health care professionals to help diagnose pediatric pulmonary diseases such asthma and cystic fibrosis; assess therapeutic responses; and measure airway resistance during provocation testing. Conclusions Impulse oscillometry provides a rapid, noninvasive measure of airway impedance. It may be easily employed in the diagnosis and management of diseases of the airways in children. PMID:21354020

  4. Experimental Study of Propulsion Performance by Single-Pulse Rotating Detonation with Gaseous Fuels-Oxygen Mixtures

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Hara, Kosei; Mikajiri, Shuuto; Takiguchi, Naoki

    2016-12-01

    A rotating detonation engine (RDE) is one of candidates of aerospace engines for supersonic cruse, which is better for propulsion system than a pulse detonation engine (PDE) from the view of continuous thrust and simple structure. The propulsion performance of a proto-type RDE and a PDE by single pulse explosion with methane-oxygen is investigated. Furthermore, the performance of the RDE with acetylene-oxygen gas mixtures is investigated. Its impulse is estimated through ballistic pendulum method with maximum displacement and damping ratio. The comparison of specific impulses of the mixture gases at atmospheric pressure is shown. The specific impulses of the RDE and the PDE are almost same with methane-oxygen gas. Furthermore, the fuel-base specific impulse of the RDE with acetylene-oxygen gas is about over twice as large as one of methane-oxygen, and its maximum specific impulse is 1100 seconds.

  5. Blast from pressurized carbon dioxide released into a vented atmospheric chamber

    NASA Astrophysics Data System (ADS)

    Hansen, P. M.; Gaathaug, A. V.; Bjerketvedt, D.; Vaagsaether, K.

    2018-03-01

    This study describes the blast from pressurized carbon dioxide (CO2) released from a high-pressure reservoir into an openly vented atmospheric chamber. Small-scale experiments with pure vapor and liquid/vapor mixtures were conducted and compared with simulations. A motivation was to investigate the effects of vent size and liquid content on the peak overpressure and impulse response in the atmospheric chamber. The comparison of vapor-phase CO2 test results with simulations showed good agreement. This numerical code described single-phase gas dynamics inside a closed chamber, but did not model any phase transitions. Hence, the simulations described a vapor-only test into an unvented chamber. Nevertheless, the simulations reproduced the incident shock wave, the shock reflections, and the jet release inside the atmospheric chamber. The rapid phase transition did not contribute to the initial shock strength in the current test geometry. The evaporation rate was too low to contribute to the measured peak overpressure that was in the range of 15-20 kPa. The simulation results produced a calculated peak overpressure of 12 kPa. The liquid tests showed a significantly higher impulse compared to tests with pure vapor. Reducing the vent opening from 0.1 to 0.01 m2 resulted in a slightly higher impulse calculated at 100 ms. The influence of the vent area on the calculated impulse was significant in the vapor-phase tests, but not so clear in the liquid/vapor mixture tests.

  6. Identification of Computational and Experimental Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.

  7. Comparison of Electrostatic Fins with Piezoelectric Impact Hammer Techniques to Extend Impulse Calibration Range of a Torsional Thrust Stand (Preprint)

    DTIC Science & Technology

    2011-03-23

    prac- tical max impulse to 1mNs. The newly developed Piezo - electric Impact Hammer (PIH) calibration system over- comes geometric limits of ESC...the fins to behave as part of an LRC circuit which results in voltage oscillations. By adding a resistor in series between the pulse generator and...series resistor as well as the effects of no loading on the pulse generator. III. PIEZOELECTRIC IMPACT HAMMER SYSTEM The second calibration method tested

  8. Dynamics of column stability with partial end restraints

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.

    1990-01-01

    The dynamic behavior of columns with partial end restraints and loads consisting of a dead load and a pulsating load are investigated. The differential equation is solved using a lumped impulse recurrence formula relative to time coupled with a finite difference discretization along the member length. A computer program is written from which the first critical frequencies are found as a function of end stiffness. The case of a pinned ended column compares very well with the exact solution. Also, the natural frequency and buckling load formulas are derived for equal and unequal end restraints.

  9. Afferent fibres from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat

    PubMed Central

    Nishi, K.; Sakanashi, M.; Takenaka, F.

    1974-01-01

    1. Afferent discharges were recorded from the left cardiac sympathetic nerve or the third sympathetic ramus communicans of anaesthetized cats. Twenty-one single units with baroreceptor activity were obtained. 2. The receptors of each unit were localized to the extrapulmonary part of the pulmonary artery, determined by direct mechanical probing of the wall of the pulmonary artery after death of the animals. Conduction velocity of the fibres ranged from 2·5 to 15·7 m/sec. 3. Afferent discharges occurred irregularly under artificial ventilation. The impulse activity was increased when pulmonary arterial pressure was raised by an intravenous infusion of Locke solution, or by occlusion of lung roots, and decreased by bleeding the animal from the femoral artery. 4. Above a threshold pressure, discharges occurred synchronously with the systolic pressure pulse in the pulmonary artery. A progressive further rise in pressure did not produce an increase in the number of impulses per heart beat. Occlusion of lung roots initially elicited a burst of discharges but the number of impulses for each cardiac cycle gradually decreased. 5. The receptors responded to repetitive mechanical stimuli up to a frequency of 10/sec, but failed to respond to stimuli delivered at 20/sec. 6. The results provide further evidence for the presence of afferent fibres in the cardiac sympathetic nerve. These afferent fibres are likely to provide the spinal cord with specific information only on transient changes in pulmonary arterial pressure. PMID:4850456

  10. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads.

    PubMed

    Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A

    2014-03-01

    Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck strength and impact anticipation are 2 potentially modifiable risk factors for concussion. Interventions aimed at increasing athletes' neck strength and reducing unanticipated impacts may decrease the risk of concussion associated with sport participation.

  11. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  12. Theoretical performance of some rocket propellants containing hydrogen, nitrogen, and oxygen

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ordin, Paul M

    1948-01-01

    Theoretical performance data including nozzle-exit temperature, specific impulse, volume specific impulse and composition, temperature, and mean molecular weight of reaction products based on frozen equilibrium and isentropic expansion are presented for 13 propellant combinations at reaction pressure of 300 pounds per square inch absolute and expansion ratio of 20.4. On basis of maximum specific impulse alone, five fuels had the following order for any given oxidant: liquid hydrogen, hydrazine, liquid ammonia, and either hydrazine hydrate or hydroxylamine. Three oxidants with a given fuel had the following order: liquid ozone, liquid oxygen, and 100-percent hydrogen peroxide.

  13. Electro-impulse de-icing electrodynamic solution by discrete elements

    NASA Technical Reports Server (NTRS)

    Bernhart, W. D.; Schrag, R. L.

    1988-01-01

    This paper describes a technique for analyzing the electrodynamic phenomena associated with electro-impulse deicing. The analysis is done in the time domain and utilizes a discrete element formulation concept expressed in state variable form. Calculated results include coil current, eddy currents in the target (aircraft leading edge skin), pressure distribution on the target, and total force and impulse on the target. Typical results are presented and described. Some comparisons are made between calculated and experimental results, and also between calculated values from other theoretical approaches. Application to the problem of a nonrigid target is treated briefly.

  14. Chronic hypoventilation syndromes and sleep-related hypoventilation

    PubMed Central

    Böing, Sebastian

    2015-01-01

    Chronic hypoventilation affects patients with disorders on any level of the respiratory system. The generation of respiratory impulses can be impaired in congenital disorders, such as central congenital alveolar hypoventilation, in alterations of the brain stem or complex diseases like obesity hypoventilation. The translation of the impulses via spinal cord and nerves to the respiratory muscles can be impaired in neurological diseases. Thoraco-skeletal or muscular diseases may inhibit the execution of the impulses. All hypoventilation disorders are characterized by a reduction of the minute ventilation with an increase of daytime hypercapnia. As sleep reduces minute ventilation substantially in healthy persons and much more pronounced in patients with underlying thoraco-pulmonary diseases, hypoventilation manifests firstly during sleep. Therefore, sleep related hypoventilation may be an early stage of chronic hypoventilation disorders. After treatment of any prevailing underlying disease, symptomatic therapy with non-invasive ventilation (NIV) is required. The adaptation of the treatment should be performed under close medical supervision. Pressure support algorithms have become most frequently used. The most recent devices automatically apply pressure support and vary inspiratory and expiratory pressures and breathing frequency in order to stabilize upper airways, normalize ventilation, achieve best synchronicity between patient and device and aim at optimizing patients’ adherence. PMID:26380756

  15. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.

    PubMed

    Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

    2012-01-01

    It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures.

  16. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Wang, Chun-Hui

    2012-02-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.

  17. The Effect of Prosthetic Foot Push-off on Mechanical Loading Associated with Knee Osteoarthritis in Lower Extremity Amputees

    PubMed Central

    Morgenroth, David C.; Segal, Ava D.; Zelik, Karl E.; Czerniecki, Joseph M.; Klute, Glenn K.; Adamczyk, Peter G.; Orendurff, Michael S.; Hahn, Michael E.; Collins, Steven H.; Kuo, Art D.

    2011-01-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope = −0.72 +/− 0.22; p=0.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope = −0.34 +/− 0.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. PMID:21803584

  18. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.

    PubMed

    Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D

    2011-10-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.

  19. The Neuromuscular Qualities of Higher- and Lower-Level Mixed-Martial-Arts Competitors.

    PubMed

    James, Lachlan P; Beckman, Emma M; Kelly, Vincent G; Haff, G Gregory

    2017-05-01

    To determine whether the maximal strength, impulse, and power characteristics of competitive mixed-martial-arts (MMA) athletes differ according to competition level. Twenty-nine male semiprofessional and amateur MMA competitors were stratified into either higher-level (HL) or lower-level (LL) performers on the basis of competition grade and success. The 1-repetition-maximum (1RM) squat was used to assess lower-body dynamic strength, and a spectrum of impulse, power, force, and velocity variables were evaluated during an incremental-load jump squat. In addition, participants performed an isometric midthigh pull (IMTP) and 1RM bench press to determine whole-body isometric force and upper-body dynamic strength capabilities, respectively. All force and power variables were expressed relative to body mass (BM). The HL competitors produced significantly superior values across a multitude of measures. These included 1RM squat strength (1.84 ± 0.23 vs 1.56 ± 0.24 kg BM; P = .003), in addition to performance in the incremental-load jump squat that revealed greater peak power (P = .005-.002), force (P = .002-.004), and velocity (P = .002-.03) at each load. Higher measures of impulse (P = .01-.04) were noted in a number of conditions. Average power (P = .002-.02) and velocity (P = .01-.04) at all loads in addition to a series of rate-dependent measures were also superior in the HL group (P = .005-.02). The HL competitors' 1RM bench-press values approached significantly greater levels (P = .056) than the LL group's, but IMTP performance did not differ between groups. Maximal lower-body neuromuscular capabilities are key attributes distinguishing HL from LL MMA competitors. This information can be used to inform evidenced-based training and performance-monitoring practices.

  20. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, A., E-mail: alexander.aman@ovgu.de; Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg; Majcherek, S.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression andmore » restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.« less

  1. Development and evaluation of the impulse transfer function technique

    NASA Technical Reports Server (NTRS)

    Mantus, M.

    1972-01-01

    The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.

  2. Cumulative loads increase at the knee joint with slow-speed running compared to faster running: a biomechanical study.

    PubMed

    Petersen, Jesper; Sørensen, Henrik; Nielsen, Rasmus Østergaard

    2015-04-01

    Biomechanical cross-sectional study. To investigate the hypothesis that the cumulative load at the knee during running increases as running speed decreases. The knee joint load per stride decreases as running speed decreases. However, by decreasing running speed, the number of strides per given distance is increased. Running a given distance at a slower speed may increase the cumulative load at the knee joint compared with running the same distance at a higher speed, hence increasing the risk of running-related injuries in the knee. Kinematic and ground reaction force data were collected from 16 recreational runners, during steady-state running with a rearfoot strike pattern at 3 different speeds (mean ± SD): 8.02 ± 0.17 km/h, 11.79 ± 0.21 km/h, and 15.78 ± 0.22 km/h. The cumulative load (cumulative impulse) over a 1000-m distance was calculated at the knee joint on the basis of a standard 3-D inverse-dynamics approach. Based on a 1000-m running distance, the cumulative load at the knee was significantly higher at a slow running speed than at a high running speed (relative difference, 80%). The mean load per stride at the knee increased significantly across all biomechanical parameters, except impulse, following an increase in running speed. Slow-speed running decreases knee joint loads per stride and increases the cumulative load at the knee joint for a given running distance compared to faster running. The primary reason for the increase in cumulative load at slower speeds is an increase in number of strides needed to cover the same distance.

  3. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τ w ) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τ w from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q tri ). The base of the unknown Q tri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τ w s obtained using Q tri were compared with those obtained from the measure aortic flow wave (Q m ). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τ w s. The following significant relation was observed (P < 0.0001): τ w triQ  = -1.5709 + 1.0604 × τ w mQ (r 2  = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τ w by using a single pressure recording together with the assumed Q tri .

  4. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.

    2007-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  5. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.

    2006-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  6. The effects of dorso-lumbar motion restriction on the ground reaction force components during running.

    PubMed

    Morley, Joseph J; Traum, Edward

    2016-04-01

    The effects of restricting dorso-lumbar spine mobility on ground reaction forces in runners was measured and assessed. A semi-rigid cast was used to restrict spinal motion during running. Subjects ran across a force platform at 3.6 m/s, planting the right foot on the platform. Data was collected from ten running trials with the cast and ten without the cast and analysed. Casted running showed that the initial vertical heel strike maximum was increased (p < .02) and that the anterior-posterior deceleration impulse was increased (p < .01). The maximum vertical ground reaction force was decreased in casted running (p < .01), as was the anterior-posterior acceleration impulse (p < .02). There was a trend for increased medial-lateral impulse in the uncasted state, but this was not statistically significant. Spinal mobility and fascia contribute to load transfer between joints and body segments. Experimentally restricting spinal motion during running results in measurable and repeatable alterations in ground reaction force components. Alterations in load transfer due to decreased spinal motion may be a factor contributing to selected injuries in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 78 FR 23335 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Basic Impulse Level 4. Dual/Multiple-Voltage Primary Windings 5. Dual/Multiple-Voltage Secondary Windings 6. Loading B. Technological Feasibility 1. General 2. Maximum Technologically Feasible Levels C...

  8. HART-II Acoustic Predictions using a Coupled CFD/CSD Method

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2009-01-01

    This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.

  9. Shaper-Based Filters for the compensation of the load cell response in dynamic mass measurement

    NASA Astrophysics Data System (ADS)

    Richiedei, Dario; Trevisani, Alberto

    2018-01-01

    This paper proposes a novel model-based signal filtering technique for dynamic mass measurement through load cells. Load cells are sensors with an underdamped oscillatory response which usually imposes a long settling time. Real-time filtering is therefore necessary to compensate for such a dynamics and to quickly retrieve the mass of the measurand (which is the steady state value of the load cell response) before the measured signal actually settles. This problem has a big impact on the throughput of industrial weighing machines. In this paper a novel solution to this problem is developed: a model-based filtering technique is proposed to ensure accurate, robust and rapid estimation of the mass of the measurand. The digital filters proposed are referred to as Shaper-Based Filters (SBFs) and are based on the convolution of the load cell output signal with a sequence of few impulses (typically, between 2 and 5). The amplitudes and the instants of application of such impulses are computed through the analytical development of the load cell step response, by imposing the admissible residual oscillation in the steady-state filtered signal and by requiring the desired sensitivity of the filter. The inclusion of robustness specifications tackles effectively the unavoidable uncertainty and variability in the load cell frequency and damping. The effectiveness of the proposed filters is proved experimentally through an industrial set up: the load-cell-instrumented weigh bucket of a multihead weighing machine for packaging. A performance comparison with other benchmark filters is provided and discussed too.

  10. A theoretical and experimental investigation of the linear and nonlinear impulse responses from a magnetoplasma column

    NASA Technical Reports Server (NTRS)

    Grody, N. C.

    1973-01-01

    Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.

  11. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads.

    PubMed

    McBride, Jeffrey M; Kirby, Tyler J; Haines, Tracie L; Skinner, Jared

    2010-12-01

    The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads. Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed. Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P < .0001, power = 1.000) and CMJJS (r = .6007, P < .0001, power = 1.000). Across all squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = -0.1010, P = .2095, power = 0.2401) and CMJJS (r = -0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P < .0001, power = 1.000) and the CMJJS (r = .6631, P < .0001, power = 1.000). PP was statistically significantly higher at BM in comparison with 20% of 1RM and 40% of 1RM in the SJS and CMJJS across all squat depths. Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.

  12. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos III Laser: Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt PHAROS III neodymium-glass pulsed laser. Six different experimental setups were tested using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The first campaign investigated impulse generation with the beam oriented almost normal to the target surface, with energies ranging from 23 to 376 J, and pulses of 5 to 30 ns FWHM. Air breakdown/ plasma dynamics were diagnosed with GOI camerasmore » and color photography. Laser generated impulse was quantified with both vertical pendulums and piezoelectric pressure transducers using the standard performance metric, C{sub M}--the momentum coupling coefficient. Part 1 of this 2-part paper covers Campaign no. 1 results including laser plasma diagnostics, pressure gage and vertical pendulum data.« less

  13. Excitation of vertical coronal loop oscillations by impulsively driven flows

    NASA Astrophysics Data System (ADS)

    Kohutova, P.; Verwichte, E.

    2018-05-01

    Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.

  14. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  15. Hydraulic impulse generator and frequency sweep mechanism for borehole applications

    DOEpatents

    Kolle, Jack J.; Marvin, Mark H.; Theimer, Kenneth J.

    2006-11-21

    This invention discloses a valve that generates a hydraulic negative pressure pulse and a frequency modulator for the creation of a powerful, broadband swept impulse seismic signal at the drill bit during drilling operations. The signal can be received at monitoring points on the surface or underground locations using geophones. The time required for the seismic signal to travel from the source to the receiver directly and via reflections is used to calculate seismic velocity and other formation properties near the source and between the source and receiver. This information can be used for vertical seismic profiling of formations drilled, to check the location of the bit, or to detect the presence of abnormal pore pressure ahead of the bit. The hydraulic negative pressure pulse can also be used to enhance drilling and production of wells.

  16. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    DTIC Science & Technology

    2015-10-01

    these well-defined exposure conditions, anesthetized rats are used to simultaneously record intracranial pressure (ICP), intravascular pressure , and...blast flow conditions (e.g. peak static and total pressure , positive phase duration, and impulse) and acceleration and displacement of a wide range of...resultant pressure responses in varied compartments in concert with the neuropathological, neurochemical, and neurobehavioral consequences of exposures

  17. Structural Crashworthiness and Failure

    DTIC Science & Technology

    1993-04-16

    body motion occurs. This rigid -plastic idealization for dynamically loaded structures is based upon the fact that the plastic deformation of a...in general, for any tensor variable x, i represents the convective derivative. It should be noted that the rigid body rotation is included in the...clamped, impulsively loaded, rigid - plastic beam.’ (a) First phase of motion with stationary transverse plastic hinges at A and E and stationary plastic

  18. 1st Order Modeling of a SAW Delay Line using MathCAD(Registered)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    To aid in the development of SAW sensors for Integrated Vehicle Health Monitoring applications, a first order model of a SAW Delay line has been created using MathCadA. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. This paper presents the model and the results from the model for a SAW delay line design. Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles [1]. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. Passive wireless sensors have been developed using SAW technology. For these reasons new SAW sensors are being investigated for aerospace applications.

  19. EDS V25 containment vessel explosive qualification test report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests thatmore » were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.« less

  20. Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer.

    PubMed

    Finneran, James J; Dear, Randall; Carder, Donald A; Ridgway, Sam H

    2003-09-01

    A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a "pulsed power device" (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 microPa, and total energy fluxes of 161 and 163 dB re: 1 microPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.

  1. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  2. Grain Propellant Optimization Using Real Code Genetic Algorithm (RCGA)

    NASA Astrophysics Data System (ADS)

    Farizi, Muhammad Farraz Al; Oktovianus Bura, Romie; Fajar Junjunan, Soleh; Jihad, Bagus H.

    2018-04-01

    Grain propellant design is important in rocket motor design. The total impulse and ISP of the rocket motor is influenced by the grain propellant design. One way to get a grain propellant shape that generates the maximum total impulse value is to use the Real Code Genetic Algorithm (RCGA) method. In this paper RCGA is applied to star grain Rx-450. To find burn area of propellant used analytical method. While the combustion chamber pressures are sought with zero-dimensional equations. The optimization result can reach the desired target and increase the total impulse value by 3.3% from the initial design of Rx-450.

  3. A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.

    1959-01-01

    A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.

  4. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise studies. By this it is meant that approximate or inappropriate formulations have been used. By considering various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of high gradients such as shock surfaces. It is shown by order of magnitude studies that such regions are capable of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that there is a need for development of new theoretical results based on the acoustic analogy in this area. Because of the impulsive character of the blade surface pressure, a time scale of integration different from that used in loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction noise.

  5. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 3: Engine data summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engine operating characteristics were examined. Inlet pressure effects, tank pressurization effects, steady-state specific impulse, and the steady-state cycle were studied. The propellant flow schematic and operating sequence are presented. Engine hardware drawings are included.

  6. Application of a methodology for categorizing and differentiating urban soundscapes using acoustical descriptors and semantic-differential attributes.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, A F

    2013-07-01

    A subjective and physical categorization of an ambient sound is the first step to evaluate the soundscape and provides a basis for designing or adapting this ambient sound to match people's expectations. For this reason, the main goal of this work is to develop a categorization and differentiation analysis of soundscapes on the basis of acoustical and perceptual variables. A hierarchical cluster analysis, using 15 semantic-differential attributes and acoustical descriptors to include an equivalent sound-pressure level, maximum-minimum sound-pressure level, impulsiveness of the sound-pressure level, sound-pressure level time course, and spectral composition, was conducted to classify soundscapes into different typologies. This analysis identified 15 different soundscape typologies. Furthermore, based on a discriminant analysis the acoustical descriptors, the crest factor (impulsiveness of the sound-pressure level), and the sound level at 125 Hz were found to be the acoustical variables with the highest impact in the differentiation of the recognized types of soundscapes. Finally, to determine how the different soundscape typologies differed from each other, both subjectively and acoustically, a study was performed.

  7. Experimental Investigations on Two Potential Sound Diffuseness Measures in Enclosures

    NASA Astrophysics Data System (ADS)

    Bai, Xin

    This study investigates two different approaches to measure sound field diffuseness in enclosures from monophonic room impulse responses. One approach quantifies sound field diffuseness in enclosures by calculating the kurtosis of the pressure samples of room impulse responses. Kurtosis is a statistical measure that is known to describe the peakedness or tailedness of the distribution of a set of data. High kurtosis indicates low diffuseness of the sound field of interest. The other one relies on multifractal detrended fluctuation analysis which is a way to evaluate the statistical self-affinity of a signal to measure diffuseness. To test these two approaches, room impulse responses are obtained under varied room-acoustic diffuseness configurations, achieved by using varied degrees of diffusely reflecting interior surfaces. This paper will analyze experimentally measured monophonic room impulse responses, and discuss results from these two approaches.

  8. Estimates of auditory risk from outdoor impulse noise. II: Civilian firearms.

    PubMed

    Flamme, Gregory A; Wong, Adam; Liebe, Kevin; Lynd, James

    2009-01-01

    Firearm impulses are common noise exposures in the United States. This study records, describes and analyzes impulses produced outdoors by civilian firearms with respect to the amount of auditory risk they pose to the unprotected listener under various listening conditions. Risk estimates were obtained using three contemporary damage risk criteria (DRC) including a waveform parameter-based approach (peak SPL and B-duration), an energy-based criterion (A-weighted SEL and equivalent continuous level) and a physiological model (AHAAH). Results from these DRC were converted into a number of maximum permissible unprotected exposures to facilitate interpretation. Acoustic characteristics of firearm impulses differed substantially across guns, ammunition, and microphone location. The type of gun, ammunition and the microphone location all significantly affected estimates of auditory risk from firearms. Vast differences in maximum permissible exposures were observed; the rank order of the differences varied with the source of the impulse. Unprotected exposure to firearm noise is not recommended, but people electing to fire a gun without hearing protection should be advised to minimize auditory risk through careful selection of ammunition and shooting environment. Small-caliber guns with long barrels and guns loaded with the least powerful ammunition tend to be associated with the least auditory risk.

  9. [Evaluation of the risk on hearing loss at soldiers].

    PubMed

    Konopka, Wiesław; Olszewski, Jurek; Straszyński, Piotr

    2006-01-01

    Noise produced by weapons may be harmful to soldiers during military service. Exposure to impulse noise during compulsory military service depends on the number of shots, explosion impulses, distance of injured ear from causal firearm as well as on the use of hearing protectors. Weapons produce impulse noises, which are characterized by peak pressure level and frequency. The purpose of this work was to calculate and estimate risk on hearing at soldiers during one year of the military service. The study comparised three groups of soldiers with different kind of exposure to noise divided according total noise exposure. In order to evaluate the amount of the exposure to impulse noise the total level of noise and the spectrum analysis were performed for all types of weapons, which were used during military service. The equivalent continuous A-weighted sound pressure level, L A eq, Te [dB], maximum A-weighted sound pressure level, L A max [dB] and C weighted peak sound pressure level, L C peak [dB] were measured. The highest total exposure to noise concerned group I (2222,9 kPa(2)/s for right ear and 22212,8 kPa(2)/s for left one) with total exposure time 248,3 minutes. In the II group estimated total exposure to noise was 611,8 kPa(2)/s for right ear and 743,6 kPa(2)/s for left one. In the III group least exposed to noise, estimated total exposure to noise was 103 kPa(2)/s for right ear and 109 kPa(2)/s for left one with total time exposure 17,8 minutes. Difference between groups is dependent on kind of military service. Estimated exposure to weapons noise may prevent soldiers before hearing loss. We did not notice differences between sites of ears.

  10. Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis

    DTIC Science & Technology

    1984-06-01

    multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts

  11. Effect of Impaction Sequence on Osteochondral Graft Damage: The Role of Repeated and Varying Loads

    PubMed Central

    Kang, Richard W.; Friel, Nicole A.; Williams, James M.; Cole, Brian J.; Wimmer, Markus A.

    2013-01-01

    Background Osteochondral autografts and allografts require mechanical force for proper graft placement into the defect site; however, impaction compromises the tissue. This study aimed to determine the effect of impaction force and number of hits to seat the graft on cartilage integrity. Hypothesis Under constant impulse conditions, higher impaction load magnitudes are more detrimental to cell viability, matrix integrity and collagen network organization and will result in proteoglycan loss and nitric oxide release. Study Design Controlled laboratory study Methods Osteochondral explants, harvested from fresh bovine trochleas, were exposed to a series of consistent impact loads delivered by a pneumatically driven device. Each plug received the same overall impulse of 7 Ns, reflecting the mean of 23 clinically inserted plugs. Impaction loads of 37.5N, 75N, 150N, and 300N were matched with 74, 37, 21, and 11 hits respectively. Following impaction, the plugs were harvested and cartilage was analyzed for cell viability, histology by safranin-o and picosirius red, and release of sulfated glycosaminoglycans and nitric oxide. Data were compared with non-impacted control. Results Impacted plugs had significantly lower cell viability than non-impacted plugs. A dose response relationship in loss of cell viability with respect to load magnitude was seen immediately and after 4 days but lost after 8 days. Histologic analysis revealed intact cartilage surface in all samples (loaded or control), with loaded samples showing alterations in birefringence. While the sulfated GAG release was similar across varying impaction loads, release of nitric oxide increased with increasing impaction magnitudes and time. Conclusions Impaction loading parameters have a direct effect on the time course of the viability of the cartilage in the graft tissue. Clinical Relevance Optimal loading parameters for surgical impaction of osteochondral grafts are those with lower load magnitudes and a greater number of hits to ensure proper fit. PMID:19915099

  12. Current evaluation of the tripropellant concept

    NASA Technical Reports Server (NTRS)

    Zurawski, R. L.

    1986-01-01

    An analytical study was conducted to determine the specific-impulse advantages of adding metals to conventional liquid-bipropellant systems. These tripropellant systems theoretically offer higher specific impulse and increased propellant density compared with bipropellant systems. Metals considered were Be, Li, and Al. Bipropellant systems were H2/O2, N2H4/N2O4, RP-1/O2, and H2/F2. Thermochemical calculations were performed for sea-level expansion from 6.895-MN/sq. m. (1000-psia) chamber pressure over a wide range of mixture ratios and propellant compositions. Three-dimensional plots characterize the specific impulse of each tripropellant system. Technology issues pertinent to metallized propellant systems are discussed.

  13. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  14. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  15. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  16. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction,more » the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.« less

  17. [Spanish validation of Game Addiction Scale for Adolescents (GASA)].

    PubMed

    Lloret Irles, Daniel; Morell Gomis, Ramon; Marzo Campos, Juan Carlos; Tirado González, Sonia

    The aim of this study is to adapt and validate the Game Addiction Scale for Adolescents (GASA) to the Spanish youth population. Cultural adaptation and validation study. Secondary Education centres. Two independent studies were conducted on a group of 466 young people with a mean age of 15.27 years (13-18, SD: 1.83) and 48.7% ♀ and on another group of 566, with a mean age of 21.24 years (19-26; SD: 1.86) 44.1% ♀. Addiction to video games (GASA); Game behavior (Game habits usage questionnaire), Impulsiveness (Plutchik Impulsiveness Scale) and Group Pressure (Ad hoc questionnaire). The Spanish version of GASA has shown good reliability and true to the original scale factor structure. As regards criterion validity, GASA scores are significantly different according to four criteria related to problem gambling: Game intensity and frequency, impulsiveness, and peer pressure. The results show that the adapted version GASA is adequate and a valid tool for assessing problematic gaming behaviour. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  18. Performance Assessment of Active Hearing Protection Devices

    DTIC Science & Technology

    2015-05-08

    8 Figure 6. Placement of ATFs and free -field pressure transducer ....................................... 8 Figure 7. Pressure-time history...devices selected for this study were all equipped with a hear-thru setting designed to amplify soft sounds and conversational speech while allowing loud...duration of an impulse noise A ¼” microphone or slender probe (tapered pencil gauge) was used to measure the free - field pressure wave according to the

  19. Quantifying the Influence of Lightning Strike Pressure Loading on Composite Specimen Damage

    NASA Astrophysics Data System (ADS)

    Foster, P.; Abdelal, G.; Murphy, A.

    2018-04-01

    Experimental work has shown that a component of lightning strike damage is caused by a mechanical loading. As the profile of the pressure loading is unknown a number of authors propose different pressure loads, varying in form, application area and magnitude. The objective of this paper is to investigate the potential contribution of pressure loading to composite specimen damage. This is achieved through a simulation study using an established modelling approach for composite damage prediction. The study examines the proposed shockwave loads from the literature. The simulation results are compared with measured test specimen damage examining the form and scale of damage. The results for the first time quantify the significance of pressure loading, demonstrating that although a pressure load can cause damage consistent with that measured experimentally, it has a negligible contribution to the overall scale of damage. Moreover the requirements for a pressure to create the damage behaviours typically witnessed in testing requires that the pressure load be within a very precise window of magnitude and loading area.

  20. Impulsivity and suicidality: the mediating role of painful and provocative experiences.

    PubMed

    Bender, Theodore W; Gordon, Kathryn H; Bresin, Konrad; Joiner, Thomas E

    2011-03-01

    Multiple studies have reported a link between high levels of impulsivity and suicidal behavior. Joiner's (2005) explanation for this link is that impulsive individuals have a greater tendency to experience painful and provocative events that habituate them to fear and pain, which leads to an acquired capability for engaging in suicidal behavior. Study 1 tested Joiner's (2005) hypothesis in a sample of 182 undergraduate students who completed self-report questionnaires on impulsivity, frequency of painful and provocative events, and acquired capability for suicide. In addition to self-report, pain tolerance (an aspect of acquired capability for suicide) was measured with a pressure algometer. Study 2 sought to replicate our findings from Study 1 in a sample of 516 clinical outpatients using a multi-faceted measure of impulsivity. Consistent with prediction, product of coefficients tests for mediation (MacKinnon et al., 2002) revealed that impulsivity has an indirect relationship with acquired capability for suicidal behavior, and that this relationship is mediated by painful and provocative events. Data from our studies are cross-sectional in nature, which does not allow for conclusions about the temporal ordering of our variables. In addition, self-report was used to measure most variables. Future research may benefit from a longitudinal design and the inclusion of other modes of assessment (e.g., behavioral measures of impulsivity). Our findings suggest that the link between impulsivity and suicidal behavior occurs because impulsive people tend to have a greater capability for suicidal behavior, which they have acquired through experiencing painful and provocative events. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Auxetic Metamaterials under Direct Impact Loads in a Structural Health Monitoring Framework

    DTIC Science & Technology

    2013-01-01

    of two types of sandwich composites composed of E-Glass Vinyl-Ester (EVE) face sheets and Corecell™ A-series foam with a polyurea interlayer (5...Using a shock tube apparatus to subject samples to high-intensity impulse loading, results show that the addition of polyurea interlayer improves the...051307-7. 5. Gardner, N.; Wang, E.; Kumar, P.; Shulka, A. Blast Mitigation in a Sandwich Composite Using Graded Core and Polyurea . Experimental

  2. Dimensional Analysis of Impulse Loading Resulting from Detonation of Shallow-Buried Charges

    DTIC Science & Technology

    2013-01-01

    lines running along the floor, floor-bolted seats , ammunition storage racks, power-train lines, etc.). MMMS 9,3 368 Traditionally, the floor-rupture...The power of dimensional analysis is that the functional relations offered are generalized, i.e. the effect of geometrical, kinematic , ambient, loading... ejected vdet Explosive detonation velocity L/T A new quantity added which controls the time of sand-overburden bubble burst Charge/plate positioning

  3. Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis.

    PubMed

    Yoganandan, Narayan; Moore, Jason; Arun, Mike W J; Pintar, Frank A

    2014-11-01

    During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine. Scatter plots showing injury and non-injury data as a function of peak normalized forces, pulse characteristics, impulse and power, loading rate and sacrum and spine accelerations were evaluated as potential metrics related to pathological outcomes with the focus of examining the role of the pulse characteristics from inferior-to-superior loading of the pelvis-sacrum-lumbar spine complex. Interrelationships were explored between non-fracture and fracture outcomes, and fracture patterns with a focus on migration of injuries from the hip-only to hip and spine to spine-only regions. Observations indicate that injury to the pelvis and or spine from inferior-to-superior loading is associated with pulse and not just peak velocity. The role of the effect of mass recruitment and injury migration parallel knee-thigh-hip complex studies, suggest a wider application of the recruitment concept and the role of the pulse characteristics.

  4. Impulsivity is associated with blood pressure and waist circumference among adolescents with bipolar disorder.

    PubMed

    Naiberg, Melanie R; Newton, Dwight F; Collins, Jordan E; Bowie, Christopher R; Goldstein, Benjamin I

    2016-12-01

    Cardiovascular risk factors (CVRFs) and impulsivity are common in bipolar disorder (BD), and CVRFs are also linked with impulsivity through a number of mechanisms, both behavioral and biological. This study examines the association between CVRFs and impulsivity in adolescents with BD. Subjects were 34 adolescents with BD and 35 healthy control (HC) adolescents. CVRFs were based on International Diabetes Federation metabolic syndrome criteria (triglycerides, high-density lipoprotein cholesterol, waist circumference, blood pressure (BP) and glucose). Impulsivity was measured using the computerized Cambridge Gambling Task (CGT). Analyses controlled for age, IQ, lifetime attention deficit hyperactivity disorder, and current antipsychotic use. Adolescents with BD had higher diastolic BP (73.36 ± 9.57 mmHg vs. 67.91 ± 8.74 mmHg, U = 401.0, p = 0.03), higher triglycerides (1.13 ± 0.60 mmol/L vs. 0.78 ± 0.38 mmol/L, U = 373.5, p = 0.008), and were more likely to meet high-risk criteria for waist circumference (17.6% vs. 2.9%, p = 0.04) vs. HC. Within the BD group, CGT sub-scores were correlated with CVRFs. For example, overall proportion bet was positively correlated with systolic (r = 0.387, p = 0.026) and diastolic (ρ = 0.404, p = 0.020) BP. Quality of decision-making was negatively correlated with systolic BP (ρ = -0.401, p = 0.021) and waist circumference (ρ = -0.534, p = 0.003). Significant interactions were observed, such that BD diagnosis moderates the relationship between both waist circumference and BP with CGT sub-scores. BP and waist circumference are associated with impulsivity in BD adolescents, but not in HC adolescents. Future studies are warranted to determine temporality and to evaluate whether optimizing CVRFs improves impulsivity among BD adolescents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model

    NASA Astrophysics Data System (ADS)

    Rule, John Allen

    1997-08-01

    The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.

  6. Measurement of impulse peak insertion loss for four hearing protection devices in field conditions

    PubMed Central

    Murphy, William J.; Flamme, Gregory A.; Meinke, Deanna K.; Sondergaard, Jacob; Finan, Donald S.; Lankford, James E.; Khan, Amir; Vernon, Julia; Stewart, Michael

    2015-01-01

    Objective In 2009, the U.S. Environmental Protection Agency (EPA) proposed an impulse noise reduction rating (NRR) for hearing protection devices based upon the impulse peak insertion loss (IPIL) methods in the ANSI S12.42-2010 standard. This study tests the ANSI S12.42 methods with a range of hearing protection devices measured in field conditions. Design The method utilizes an acoustic test fixture and three ranges for impulse levels: 130–134, 148–152, and 166–170 dB peak SPL. For this study, four different models of hearing protectors were tested: Bilsom 707 Impact II electronic earmuff, E·A·R Pod Express, E·A·R Combat Arms version 4, and the Etymotic Research, Inc. Electronic BlastPLG™ EB1. Study sample Five samples of each protector were fitted on the fixture or inserted in the fixture's ear canal five times for each impulse level. Impulses were generated by a 0.223 caliber rifle. Results The average IPILs increased with peak pressure and ranged between 20 and 38 dB. For some protectors, significant differences were observed across protector examples of the same model, and across insertions. Conclusions The EPA's proposed methods provide consistent and reproducible results. The proposed impulse NRR rating should utilize the minimum and maximum protection percentiles as determined by the ANSI S12.42-2010 methods. PMID:22176308

  7. The effect of foot strike pattern on achilles tendon load during running.

    PubMed

    Almonroeder, Thomas; Willson, John D; Kernozek, Thomas W

    2013-08-01

    In this study we compared Achilles tendon loading parameters during barefoot running among females with different foot strike patterns using open-source computer muscle modeling software to provide dynamic simulations of running. Muscle forces of the gastrocnemius and soleus were estimated from experimental data collected in a motion capture laboratory during barefoot running for 11 runners utilizing a rearfoot strike (RFS) and 8 runners utilizing a non-RFS (NRFS) pattern. Our results show that peak Achilles tendon force occurred earlier in stance phase (p = 0.007), which contributed to a 15% increase in average Achilles tendon loading rate among participants adopting a NRFS pattern (p = 0.06). Stance time, step length, and the estimated number of steps per mile were similar between groups. However, runners with a NRFS pattern experienced 11% greater Achilles tendon impulse each step (p = 0.05) and nearly significantly greater Achilles tendon impulse per mile run (p = 0.06). This difference equates to an additional 47.7 body weights for each mile run with a NRFS pattern. Runners considering a NRFS pattern may want to account for these novel stressors and adapt training programs accordingly.

  8. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  9. Time-Varying Loads of Co-Axial Rotor Blade Crossings

    NASA Technical Reports Server (NTRS)

    Schatzman, Natasha L.; Komerath, Narayanan; Romander, Ethan A.

    2017-01-01

    The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history.

  10. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  11. Clonidine

    MedlinePlus

    ... of a treatment program to control symptoms of attention deficit hyperactivity disorder (ADHD; more difficulty focusing, controlling ... affecting the part of the brain that controls attention and impulsivity.High blood pressure is a common ...

  12. Guanfacine

    MedlinePlus

    ... of a treatment program to control symptoms of attention deficit hyperactivity disorder (ADHD; more difficulty focusing, controlling ... affecting the part of the brain that controls attention and impulsivity.High blood pressure is a common ...

  13. Spiral inlets for steam turbines

    NASA Astrophysics Data System (ADS)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  14. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  15. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  16. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  17. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  18. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  19. The relations among upper-extremity loading characteristics and bone mineral density changes in young women.

    PubMed

    Wang, Man-Ying; Salem, George J

    2004-06-01

    The relations among the reaction forces engendered during an upper-extremity dynamic impact-loading exercise (DILE) program and bone mineral density adaptations (DeltaBMD) in the radius were investigated in 24 healthy premenopausal women (mean age = 29 +/- 6 years). Subjects performed DILE 36 cycles/day, 3 days/week for 24 weeks. The exercised arm was allocated randomly to either the dominant or the nondominant limb. In addition, subjects were assigned randomly into either damped or nondamped treatment arms to examine the effects of both higher- and lower-magnitude loading prescriptions. Measurements including anthropometrics, self-reported physical activity levels, hand-grip strength, radial BMD (DEXA, Hologic QDR1500, MA) at the ultradistal radius (UD), distal 1/3 radius (DR), and total distal radius (TOTAL), and exercise-related loading characteristics (impact load, loading rate, and impulse) were recorded at baseline and at 6 months. Simple linear regression models were used to fit the regional BMD changes to the reaction force, changes in hand-grip strength (DeltaGRIP), and changes in body weight (DeltaBW). Findings demonstrated that the damping condition utilized during DILE influenced the relations between loading events and BMD changes. Specifically, none of the reaction-force characteristics significantly predicted changes in BMD in participants performing DILE using the damped condition, whereas, in the nondamped condition, impact load accounted for 58% of the variance in BMD change at DR and 66% of the variance in BMD change at TOTAL. Thresholds of 345 and 285 N of impact force to promote BMD increases at DR and TOTAL, respectively, were obtained from the regression models in the nondamped group. Impulse was also an independent predictor of BMD changes at TOTAL, accounting for 56% of the variance. Neither DeltaGRIP nor DeltaBW significantly predicted DeltaBMD at any radial site. These findings, in young adult women, parallel previous reports identifying significant, regionally specific relations among external loading events and BMD changes in both animal and human models.

  20. Effect of rocker-soled shoes on parameters of knee joint load in knee osteoarthritis.

    PubMed

    Madden, Elizabeth G; Kean, Crystal O; Wrigley, Tim V; Bennell, Kim L; Hinman, Rana S

    2015-01-01

    This study evaluated the immediate effects of rocker-soled shoes on parameters of the knee adduction moment (KAM) and pain in individuals with knee osteoarthritis (OA). Three-dimensional gait analysis was performed on 30 individuals (mean (SD): age, 61 (7) yr; 15 (50%) male) with radiographic and symptomatic knee OA under three walking conditions in a randomized order: i) wearing rocker-soled shoes (Skechers Shape-ups), ii) wearing non-rocker-soled shoes (ASICS walking shoes), and iii) barefoot. Peak KAM and KAM angular impulse were measured as primary indicators of knee load distribution. Secondary measures included the knee flexion moment (KFM) and knee pain during walking. Peak KAM was significantly lower when wearing the rocker-soled shoes compared with that when wearing the non-rocker-soled shoes (mean difference (95% confidence interval), -0.27 (-0.42 to -0.12) N·m/BW × Ht%; P < 0.001). Post hoc tests revealed no significant difference in KAM impulse between rocker-soled and non-rocker-soled shoe conditions (P = 0.13). Both peak KAM and KAM impulse were significantly higher during both shoe conditions compared with those during the barefoot condition (P < 0.001). There were no significant differences in KFM (P = 0.36) or knee pain (P = 0.89) between conditions. Rocker-soled shoes significantly reduced peak KAM when compared with non-rocker-soled shoes, without a concomitant change in KFM, and thus may potentially reduce medial knee joint loading. However, KAM parameters in the rocker-soled shoes remained significantly higher than those during barefoot walking. Wearing rocker-soled shoes did not have a significant immediate effect on walking pain. Further research is required to evaluate whether rocker-soled shoes can influence symptoms and progression of knee OA with prolonged wear.

  1. Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia.

    PubMed

    Quenneville, Cheryl E; McLachlin, Stewart D; Greeley, Gillian S; Dunning, Cynthia E

    2011-01-01

    Impulse loading of the lower leg during events such as ejection seat landings or in-vehicle land mine blasts may result in devastating injuries. These impacts achieve higher forces over shorter durations than car crashes, from which experimental results have formed the current basis for protective measures of an axial force limit of 5.4 kN, as registered by an anthropomorphic test device (ATD). The hypotheses of this study were that the injury tolerance of the isolated tibia to short-duration axial loading is higher than that previously reported and that secondary parameters such as momentum or kinetic energy are significant for fracture tolerance, in addition to force. Seven pairs of cadaveric tibias were impacted using a pneumatic testing apparatus, replicating short-duration axial impulse events. One specimen from each pair was impacted with a light mass and the contralateral impacted with a heavy mass, to investigate the effects of momentum and kinetic energy, as well as force, on injury. Impacts were applied incrementally until failure. Force, kinetic energy, age, and height were shown to be significant factors in the probability of fracture. A 10% risk of injury corresponded to an impact force of 7.9 kN, with an average kinetic energy of 240 J. In comparison, this same impact level applied to an ATD would register a force of 16.2 kN because of the higher stiffness of the ATD. These results suggest that the current injury standard may be too conservative for the tibia during high-speed impacts such as in-vehicle land mine blasts and that factors in addition to force should be taken into consideration.

  2. A mini-cavity probe reactor.

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.

    1971-01-01

    The mini-cavity reactor is a rocket engine concept which combines the high specific impulse from a central gaseous fueled cavity (0.6 m diam) and NERVA type fuel elements in a driver region that is external to a moderator-reflector zone to produce a compact light weight reactor. The overall dimension including a pressure vessel that is located outside of the spherical reactor is approximately 1.21 m in diameter. Specific impulses up to 2000 sec are obtainable for 220 to 890 N of thrust with pressures less than 1000 atm. Powerplant weights including a radiator for disposing of the power in the driver region are between 4600 and 32,000 kg - less than payloads of the shuttle. This reactor could also be used as a test reactor for gas-core, MHD, breeding and materials research.

  3. Heart sounds as a result of acoustic dipole radiation of heart valves

    NASA Astrophysics Data System (ADS)

    Kasoev, S. G.

    2005-11-01

    Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.

  4. On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.

    2000-12-01

    The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.

  5. A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

    DTIC Science & Technology

    2016-04-12

    01-0307 4UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited SAE INTERNATIONAL Based on the concepts of...Apply double Fourier Transform on the wave equations: 2� 2 + 2 � = 0 ; 2� 2 + 2 � = 0 Where ...into 2x2 matrices, and the source vector 0 ≠ 0 if loads apply on top surface. • Construct a 4Nx4N global scattering matrix for entire

  6. The Effects of Nuclear Weapons

    DTIC Science & Technology

    1977-01-01

    stage the chamber expanded to form ity and it will have crushed or fractured a spherical cavity 62 feet in radius, much of the rock in the region it...negligible if the flied. A recommended simplification -s to loading is sufficient to fracture the glass. treat the loading a. an impulse, the For asbestos...MULTISTORY, STEEL-FRAME and fracture of beams, failure of col- BU!LDINGS umns, crushing of exterior wall paneis, 5.25 There was apparently only one and

  7. A torsion balance for impulse and thrust measurements of micro-Newton thrusters

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Xia; Tu, Liang-Cheng; Yang, Shan-Qing; Luo, Jun

    2012-01-01

    This paper reports the performance of a torsion-type thrust stand suitable for studies of micro-Newton thrusters, which is developed for ground testing the micro-Newton thruster in Chinese Test of the Equivalence Principle with Optical readout space mission. By virtue of specially suspending design and precise assembly of torsion balance configuration, the thrust stand with load capacity up to several kilograms is able to measure the impulse bit up to 1350 μNs with a resolution of 0.47 μNs, and the average thrust up to 264 μN with a resolution of 0.09 μN in both open and close loop operation. A pulsed plasma thruster, the preliminary prototype developed for Chinese TEPO space mission, is tested by the thrust stand, and the results reveal that the average impulse bit per pulse is measured to be 58.4 μNs with a repeatability of about 5%.

  8. Response of lumbar paraspinal muscles spindles is greater to spinal manipulative loading compared with slower loading under length control.

    PubMed

    Pickar, Joel G; Sung, Paul S; Kang, Yu-Ming; Ge, Weiqing

    2007-01-01

    Spinal manipulation (SM) is a form of manual therapy used clinically to treat patients with low back and neck pain. The most common form of this maneuver is characterized as a high-velocity (duration <150 ms), low-amplitude (segmental translation <2 mm, rotation <4 degrees , and applied force 220-889 N) impulse thrust (high-velocity, low-amplitude spinal manipulation [HVLA-SM]). Clinical skill in applying an HVLA-SM lies in the practitioner's ability to control the duration and magnitude of the load (ie, the rate of loading), the direction in which the load is applied, and the contact point at which the load is applied. Control over its mechanical delivery is presumably related to its clinical effects. Biomechanical changes evoked by an HVLA-SM are thought to have physiological consequences caused, at least in part, by changes in sensory signaling from paraspinal tissues. If activation of afferent pathways does contribute to the effects of an HVLA-SM, it seems reasonable to anticipate that neural discharge might increase or decrease in a nonlinear fashion as the thrust duration approaches a threshold value. We hypothesized that the relationship between the duration of an impulsive thrust to a vertebra and paraspinal muscle spindle discharge would be nonlinear with an inflection near the duration of an HVLA-SM delivered clinically (<150 ms). In addition, we anticipated that muscle spindle discharge would be more sensitive to larger amplitude thrusts. A neurophysiological study of spinal manipulation using the lumbar spine of a feline model. Impulse thrusts (duration: 12.5, 25, 50, 100, 200, and 400 ms; amplitude 1 or 2 mm posterior to anterior) were applied to the spinous process of the L6 vertebra of deeply anesthetized cats while recording single unit activity from dorsal root filaments of muscle spindle afferents innervating the lumbar paraspinal muscles. A feedback motor was used in displacement control mode to deliver the impulse thrusts. The motor's drive arm was securely attached to the L6 spinous process via a forceps. As thrust duration became shorter, the discharge of the lumbar paraspinal muscle spindles increased in a curvilinear fashion. A concave-up inflection occurred near the 100-ms duration eliciting both a higher frequency discharge compared with the longer durations and a substantially faster rate of change as thrust duration was shortened. This pattern was evident in paraspinal afferents with receptive fields both close and far from the midline. Paradoxically, spindle afferents were almost twice as sensitive to the 1-mm compared with the 2-mm amplitude thrust (6.2 vs. 3.3 spikes/s/mm/s). This latter finding may be related to the small versus large signal range properties of muscle spindles. The results indicate that the duration and amplitude of a spinal manipulation elicit a pattern of discharge from paraspinal muscle spindles different from slower mechanical inputs. Clinically, these parameters may be important determinants of an HVLA-SM's therapeutic benefit.

  9. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed

    Kellawan, J Mikhail; Bentley, Robert F; Bravo, Michael F; Moynes, Jackie S; Tschakovsky, Michael E

    2014-11-01

    Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Does oxygen delivery explain interindividual variation in forearm critical impulse?

    PubMed Central

    Kellawan, J. Mikhail; Bentley, Robert F.; Bravo, Michael F.; Moynes, Jackie S.; Tschakovsky, Michael E.

    2014-01-01

    Abstract Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction‐2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP−1) were calculated. There was a wide range in O2 delivery (59.98–121.15 O2 mL·min−1) and critical impulse (381.5–584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r2 = 0.85, P < 0.01). Both vasodilation (r2 = 0.64, P < 0.001) and the exercise pressor response (r2 = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. PMID:25413323

  11. Auto Indexer Auto-Indexer for Percussive Hammers: Vane Motor Dynamometer Testing

    DOE Data Explorer

    Su, Jiann

    2012-01-01

    Objectives Options associated with geothermal drilling operations are generally limited by factors such as formation temperature and rock strength. The objective of the research is to expand the "tool box" available to the geothermal driller by furthering the development of a high-temperature drilling motor that can be used in directional drilling applications for drilling high temperature geothermal formations. The motor is specifically designed to operate in conjunction with a pneumatic down-the-hole-hammer. It provides a more compact design compared to traditional drilling motors such as PDMs (positive displacement motors). The packaging can help to enhance directional drilling capabilities. It uses no elastomeric components, which enables it to operate in higher temperatures ( >250 °F). Current work on the motor has shown that is a capable of operating under pneumatic power with a down-the-hole-hammer. Further development work will include continued testing and refining motor components and evaluating motor capabilities. Targets/Milestones Complete testing current motor - 12/31/2010 Make final material and design decisions - 01/31/2011 Build and test final prototype - 04/31/2011 Final demonstration - 07/31/2011 Impacts The development of the motor will help to achieve program technical objectives by improving well construction capabilities. This includes enabling high-temperature drilling as well as enhancing directional drilling. A key component in the auto indexer is the drive motor. It is an air-driven vane motor that converts the energy stored in the compressed air to mechanical energy. The motor is attached to hammer-like components which impart an impulsive load onto the drive shaft. The impulsive force on the drive shaft in turn creates an indexing action. A controlled test was performed to characterize the performance of the the vane motor for a given pressure. The Sandia dynamometer test station was used to determine the performance of the motor for a given input pressure.

  12. Blade-mounted trailing edge flap control for BVI noise reduction

    NASA Technical Reports Server (NTRS)

    Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.

    1992-01-01

    Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.

  13. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  14. Modeling and validation of a detailed FE viscoelastic lumbar spine model for vehicle occupant dummies.

    PubMed

    Amiri, Sorosh; Naserkhaki, Sadegh; Parnianpour, Mohamad

    2018-06-19

    The dummies currently used for predicting vehicle occupant response during frontal crashes or whole-body vibration provide insufficient information about spinal loads. Although they aptly approximate upper-body rotations in different loading scenarios, they overlook spinal loads, which are crucial to injury assessment. This paper aims to develop a modified dummy finite element (FE) model with a detailed viscoelastic lumbar spine. This model has been developed and validated against in-vitro and in-silico data under different loading conditions, and its predicted ranges of motion (RoM) and intradiscal pressure (IDP) maintain close correspondence with the in-vitro data. The dominant frequency of the model was f = 8.92 Hz, which was close to previous results. In the relaxation test, a force reduction of up to 21% was obtained, showing high agreement in force relaxation during the in-vitro test. The FE lumbar spine model was placed in the HYBRID III test dummy and aligned in a seated position based on available MRI data. Under two impulsive acceleration loadings in flexion and lateral directions with a peak acceleration of 60 m/s 2 , flexion responses of the modified and original dummies were close (RoMs of 29.1° and 29.6°, respectively), though not in lateral bending (RoMs of 34.1° and 15.6°, respectively), where the modified dummy was more flexible than the original. By reconstructing a real frontal crash, it was found that the modified dummy provided a 10% reduction in the Head Injury Criterion (HIC). Other than the more realistic behavior of this modified dummy, its capability of approximating lumbar loads and risk of lumbar spine injuries in vehicle crashes or whole-body vibration is of great importance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Intracochlear pressure measurements during acoustic shock wave exposure.

    PubMed

    Greene, Nathaniel T; Alhussaini, Mohamed A; Easter, James R; Argo, Theodore F; Walilko, Tim; Tollin, Daniel J

    2018-05-19

    Injuries to the peripheral auditory system are among the most common results of high intensity impulsive acoustic exposure. Prior studies of high intensity sound transmission by the ossicular chain have relied upon measurements in animal models, measurements at more moderate sound levels (i.e. < 130 dB SPL), and/or measured responses to steady-state noise. Here, we directly measure intracochlear pressure in human cadaveric temporal bones, with fiber optic pressure sensors placed in scala vestibuli (SV) and tympani (ST), during exposure to shock waves with peak positive pressures between ∼7 and 83 kPa. Eight full-cephalic human cadaver heads were exposed, face-on, to acoustic shock waves in a 45 cm diameter shock tube. Specimens were exposed to impulses with nominal peak overpressures of 7, 28, 55, & 83 kPa (171, 183, 189, & 192 dB pSPL), measured in the free field adjacent to the forehead. Specimens were prepared bilaterally by mastoidectomy and extended facial recess to expose the ossicular chain. Ear canal (EAC), middle ear, and intracochlear sound pressure levels were measured with fiber-optic pressure sensors. Surface-mounted sensors measured SPL and skull strain near the opening of each EAC and at the forehead. Measurements on the forehead showed incident peak pressures approximately twice that measured by adjacent free-field and EAC entrance sensors, as expected based on the sensor orientation (normal vs tangential to the shock wave propagation). At 7 kPa, EAC pressure showed gain, calculated from the frequency spectra, consistent with the ear canal resonance, and gain in the intracochlear pressures (normalized to the EAC pressure) were consistent with (though somewhat lower than) previously reported middle ear transfer functions. Responses to higher intensity impulses tended to show lower intracochlear gain relative to EAC, suggesting sound transmission efficiency along the ossicular chain is reduced at high intensities. Tympanic membrane (TM) rupture was observed following nearly every exposure 55 kPa or higher. Intracochlear pressures reveal lower middle-ear transfer function magnitudes (i.e. reduced gain relative to the ear canal) for high sound pressure levels, thus revealing lower than expected cochlear exposure based on extrapolation from cochlear pressures measured at more moderate sound levels. These results are consistent with lowered transmissivity of the ossicular chain at high intensities, and are consistent with our prior report measuring middle ear transfer functions in human cadaveric temporal bones with high intensity tone pips. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 14 CFR 23.365 - Pressurized cabin loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... landing. (d) The airplane structure must be strong enough to withstand the pressure differential loads... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23... structure must be strong enough to withstand the flight loads combined with pressure differential loads from...

  17. Space shuttle solid rocket booster recovery system definition. Volume 3: SRB water impact loads computer program, user's manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.

  18. V27 Test Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stofleth, Jerome H.; Tribble, Megan Kimberly; Crocker, Robert W.

    2017-05-01

    The V27 containment vessel was procured by the US Army Recovered Chemical Material Directorate ( RCMD ) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the third EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel, based on the Code Case, is nine (9) pounds TNT - equivalent for up to 637 detonations . This report documents the results of explosive tests that were done on the vessel at Sandiamore » National Laboratories in Albuquerque New Mexico to qualify the vessel for explosive use . The primary qualification test consisted of si x 1.5 pound charges of Composition C - 4 (equivalent to 11.25 pounds TNT) distributed around the vessel in accordance with the User Design Specification. Four subsequent tests using less explosive evaluated the effects of slight variations in orientation of the charges . All vessel acceptance criteria were met.« less

  19. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  20. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  1. Personality traits and circadian blood pressure patterns: A seven year prospective study

    PubMed Central

    Terracciano, Antonio; Strait, James; Scuteri, Angelo; Meirelles, Osorio; Sutin, Angelina R.; Tarasov, Kirill; Ding, Jun; Marongiu, Michele; Orru, Marco; Pilia, Maria Grazia; Cucca, Francesco; Lakatta, Edward; Schlessinger, David

    2014-01-01

    Objective A nighttime dip in blood pressure is associated with decreased risk of cardiovascular morbidity and mortality. We examined whether personality traits predict nighttime dipping blood pressure. Methods A community-based sample of 2,848 adults from Sardinia (Italy) completed the Revised NEO Personality Inventory and 7.34-years later (SD=0.87) were examined with 24-hour ambulatory blood pressure monitoring. The primary analyses examined the associations of personality traits with continuous and categorical measures of mean arterial, systolic and diastolic blood pressure nighttime dipping. Results Agreeableness and conscientiousness were associated with more nocturnal blood pressure dipping (β = .05, p=.025 and β = .07, p<.001, respectively) and lower systolic blood pressure at night (β = -.045, p=.018 and β = -.032; p=.072, respectively). Non-dippers were particularly more impulsive (p=.009), less trusting (p=.004), and less self-disciplined (p=.001), but there was no significant association between nocturnal dipping blood pressure and trait anxiety (p=.78) or depression (p=.59). The associations were stronger when comparing extreme dippers (nighttime drop ≥ 20%) to reverse dippers (nighttime increase in blood pressure). Indeed, scoring 1 SD higher on conscientiousness was associated with about 40% reduced risk of reverse dipping (OR = 1.43, CI = 1.08-1.91). Conclusions We found evidence that reduced nighttime blood pressure dipping is associated with antagonism and impulsivity related traits but not with measures of emotional vulnerability. The strongest associations were found with conscientiousness, a trait that may have broad impact on cardiovascular health. PMID:24608035

  2. Experimental transient and permanent deformation studies of steel-sphere-impacted or explosively-impulsed aluminum panels

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Merlis, F.; Rodal, J. J. A.; Stagliano, T. R.

    1977-01-01

    The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large deflection 3-d transient and/or permanent strain data on simple well defined structural specimens and materials: initially-flat 6061-T651 aluminum panels with all four sides ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides "forcing function information" of small uncertainty. These data will be useful for evaluating pertinent 3-d structural response prediction methods.

  3. The relationship between pain and dynamic knee joint loading in knee osteoarthritis varies with radiographic disease severity. A cross sectional study.

    PubMed

    Henriksen, Marius; Aaboe, Jens; Bliddal, Henning

    2012-08-01

    In a cross sectional study, we investigated the relationships between knee pain and mechanical loading across the knee, as indicated by the external knee adduction moment (KAM) during walking in patients with symptomatic knee OA who were distinguished by different radiographic disease severities. Data from 137 symptomatic medial knee OA patients were used. Based on Kellgren/Lawrence (K/L) grading, the patients were divided into radiographically less severe (K/L ≤ 2, n=68) or severe (K/L>2, n=69) medial knee OA. Overall knee pain was rated on a 10 cm visual analog scale, and peak KAM and KAM impulses were obtained from gait analyses. Mixed linear regression analyses were performed with KAM variables as the outcome, and pain and disease severity as independent variables, adjusting for age, gender, and walking speed. In adjusted analyses, less severe patients demonstrated negative relationships between pain intensities and dynamic loading. The severe patient group showed no relationship between pain intensity and peak KAM, and a positive relationship between pain intensity and KAM impulse. In radiographically less severe knee OA, the negative relationships between pain intensity and dynamic knee joint loading indicate a natural reaction to pain, which will limit the stress on the joint. In contrast, either absent or positive relationships between pain and dynamic loading in severe OA may lead to overuse and accelerated disease progression. These findings may have a large potential interest for strategies of treatment in knee OA. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  5. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  6. The hearing threshold of a harbor porpoise (Phocoena phocoena) for impulsive sounds (L).

    PubMed

    Kastelein, Ronald A; Gransier, Robin; Hoek, Lean; de Jong, Christ A F

    2012-08-01

    The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5 ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30 dB (re 1 s(-1)) higher than the sound exposure level, and a short duration (34 ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60 dB re 1 μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.

  7. Sex differences in impulsive and compulsive behaviors: a focus on drug addiction.

    PubMed

    Fattore, Liana; Melis, Miriam

    2016-09-01

    Sex differences in inhibition and self-regulation at a behavioral level have been widely described. From an evolutionary point of view, the different selection pressures placed on male and female hominids led them to differ in their behavioral strategies that allowed our species to survive during natural selection processes. These differences reflect changes in neural and structural plasticity that might be the core of sex differences, and of the susceptibility towards one psychiatric condition rather than another. The goal of the present review is to summarize current evidence for such a dichotomy in impulsive and compulsive behavior with a focus on drug addiction. Sex-dependent differences in drug abuse and dependence will be examined in the context of pathophysiological regulation of impulse and motivation by neuromodulators (i.e. gonadal hormones) and neurotransmitters (i.e. dopamine). Advances in the understanding of the sex differences in the capability to control impulses and motivational states is key for the determination of efficacious biologically based intervention and prevention strategies for several neuropsychiatric disorders where loss of impulse control and compulsivity are the core symptoms. © 2016 Society for the Study of Addiction.

  8. A method for calculating transient thrust and flow-rate levels for Mariner type attitude control nitrogen gas jets

    NASA Technical Reports Server (NTRS)

    Ferrera, J. D.

    1972-01-01

    The purpose of this report is to define and program the transient pneumatic flow equations necessary to determine, for a given set of conditions (geometry, pressures, temperatures, valve on time, etc.), the total nitrogen impulse and mass flow per pulse for the single pulsing of a Mariner type reaction control assembly valve. The rates of opening and closing of the valves are modeled, and electrical pulse durations from 20 to 100 ms are investigated. In developing the transient flow analysis, maximum use was made of the steady-state analysis. The impulse results are also compared to an equivalent square-wave impulse for both the Mariner Mars 1971 (MM'71) and Mariner Mars 1964 (MM'64) systems. It is demonstrated that, whereas in the MM'64 system, the actual impulse was as much as 56 percent higher than an assumed impulse (which is the product of the steady-state thrust and value on time i.e., the square wave), in the MM'71 system, these two values were in error in the same direction by only approximately 4 percent because of the larger nozzle areas and shorter valve stroke used.

  9. [Measurement of periapical pressure created by occlusal loading].

    PubMed

    Dobó, Nagy Csaba; Fejérdy, Pál; Angyal, János; Harasztosi, Lajos; Daróczi, Lajos; Beke, Dezsó; Wesselink, Paul R

    2004-04-01

    The aim of this study was to develop an in vitro model in which the pressure in the periapical tissues can be measured during loading. Extracted human maxillary central incisors were embedded into resin blocks that had physical characteristics similar to bone and periodontal ligament. Each tooth was loaded with 20, 40, 50, 60, 75, 85, 100, 200, 300 and 450 N vertical forces from the incisal edge of the crown; this procedure was carried out three consecutive times. A minute resistor embedded in the periapical space was used to detect apical pressure changes during occlusal loading. The ratio of apical pressure changes (delta P) to the loading force changes (delta F) was calculated. The periapical pressure detected was in direct proportion to the loading force. The mean value of delta P/delta F was 5.994 kPa/N (SD = 2.04). Direct proportionality was found between the coronal loading and the apical hydrostatic pressure. The (delta P)/(delta F) ratio determined in this study makes it easier to estimate the apical hydrostatic pressure values during occlusal loading of single rooted teeth. In this study the apical pressure generated under occlusal loading was of the same magnitude as that estimated with the finite element method.

  10. Measurement of periapical pressure created by occlusal loading.

    PubMed

    Dobó-Nagy, C; Fejérdy, P; Angyal, J; Harasztosi, L; Daróczi, L; Beke, D; Wesselink, P R

    2003-10-01

    To develop an in vitro model in which the pressure in the periapical tissues can be measured during loading. Extracted human maxillary central incisors were embedded in resin blocks that had physical characteristics similar to those of bone and periodontal ligament. Each tooth was loaded with 20, 40, 50, 60, 75, 85, 100, 200, 300 and 450 N vertical forces from the incisal edge of the crown on three consecutive occasions. A minute resistor embedded in the periapical space was used to detect apical pressure changes during occlusal loading. The ratio of apical pressure changes (DeltaP) to the loading force changes (DeltaF) was calculated. The periapical pressure detected was in direct proportion to the loading force. The mean value of DeltaP/DeltaF was 5.994 kPa N-1 (SD = 2.04). Direct proportionality was found between the coronal loading and the apical hydrostatic pressure. The DeltaP/DeltaF ratio determined in this study makes it easier to estimate the apical hydrostatic pressure values during occlusal loading of single-rooted teeth. In this study, the apical pressure generated under occlusal loading was the same magnitude as that estimated with the finite element method.

  11. Analysis of an open cycle gas core nuclear propulsion system using MHD driven vortices for fuel containment

    NASA Astrophysics Data System (ADS)

    Sedwick, Raymond John

    1998-12-01

    A novel method for containing gaseous uranium vapor in an open cycle nuclear space propulsion system is developed. In an attempt to increase the operating temperature of the nuclear reactor beyond the melting point of solid fuel rods (thus increasing specific impulse), the fuel is instead suspended as a vapor in the propellant using the pressure forces developed in a confined vortex flow. The introduction of the fuel as uranium hexafluoride is found to be effective in maintaining its vapor phase in the feed passages from the tank, but not in the main vortex. A mechanism by which the resulting condensation of the uranium may be tolerated is identified, and the electro- optical properties of the resulting mixture are investigated. Containment is modeled using a 1D- axisymmetric geometry, and radiative heat transfer is found to restrict the maximum specific impulse of the system to 1500 seconds using pumping pressures of 500 atm. The specific impulse is related to this pressure as pm1/4, allowing only marginal increases in Isp at increased pressure levels. Additional 2D- axisymmetric issues, such as non-uniform current distribution and bypass flows through the boundary layers, are investigated, with possible methods of solution cited. A two-group, two-region reactor analysis is performed, estimating the mass of the reactor to be about 10 metric tonnes, and establishing the thrust to weight ratio achievable by the system at about 50. To reduce the mass of the power system, a scheme for using cross-flow heat exchange with the propellant flow to minimize (and possibly eliminate) the need for radiators to reject waste heat is presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  12. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  13. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/ C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  14. Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Vidal-Luengo, S.; Moldwin, M.

    2017-12-01

    During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.

  15. A Pulsed Plasma Thruster Using Dimethyl Ether as Propellant

    NASA Astrophysics Data System (ADS)

    Masui, Souichi; Okada, Terumasa; Kitatomi, Makoto; Kakami, Akira; Tachibana, Takeshi

    The pulsed plasma thruster (PPT), has attracted attention again as a micro-thruster because of its compactness, light weight, and comparatively low power consumption. On the other hand, the propellant utilization efficiency of a conventinal Teflon PPT is relatively low among electric propulsion devices because a propellant that originates from late-time ablation produces negligible thrust. The liquid propellant PPT (LP-PPT), in which water or ethanol is fed with an injector, was proposed to overcome these difficulties. Thrust measurements show that a LP-PPT provides higher specific impulses than a conventional PPT. However, water requires temperature management for propellant storage due to its relatively high freezing point. Moreover, even if ethanol, which has a sufficiently low freezing point, is used as propellant, a pressurant is necessary, as well as water, because the vapor pressures are insufficient for self-pressurization. In this study, we propose to use dimethyl ether (DME) as the propellant. DME, which has a freezing point of 131 K at 1 atm and a vapor pressure of 6 atm at 298 K, can be stored in tanks as a liquid, and requires no feeding pressurant. We designed a DME pulsed plasma thruster to evaluate performance. Thrust measurement yielded a specific impulse of 430 s for a coaxial type at a capacitor-stored energy of 13 J.

  16. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  17. Critical Examination of the Article Impulse Noise Injury Prediction Based on the Cochlear Energy by Zagadou, Chan, Ho, and Shelly

    DTIC Science & Technology

    2017-04-01

    unexpected effects, given that skin on the scalp and hair are not normally part of an ATF. Also, at the very high pressures used in these studies (up to...where N represents the number of shots . One of the strong observations for a CL is that the rate at which loss accumulates goes from linear in log...ARL-TR-7958 ● APR 2017 US Army Research Laboratory Critical Examination of the Article Impulse Noise Injury Prediction Based on

  18. Methodology and evaluation of intracranial pressure response in rats exposed to complex shock waves.

    PubMed

    Dal Cengio Leonardi, Alessandra; Keane, Nickolas J; Hay, Kathryn; Ryan, Anne G; Bir, Cynthia A; VandeVord, Pamela J

    2013-12-01

    Studies on blast neurotrauma have focused on investigating the effects of exposure to free-field blast representing the simplest form of blast threat scenario without considering any reflecting surfaces. However, in reality personnel are often located within enclosures or nearby reflecting walls causing a complex blast environment, that is, involving shock reflections and/or compound waves from different directions. The purpose of this study was to design a complex wave testing system and perform a preliminary investigation of the intracranial pressure (ICP) response of rats exposed to a complex blast wave environment (CBWE). The effects of head orientation in the same environment were also explored. Furthermore, since it is hypothesized that exposure to a CBWE would be more injurious as compared to a free-field blast wave environment (FFBWE), a histological comparison of hippocampal injury (cleaved caspase-3 and glial fibrillary acidic protein (GFAP)) was conducted in both environments. Results demonstrated that, regardless of orientation, peak ICP values were significantly elevated over the peak static air overpressure. Qualitative differences could be noticed compared to the ICP response in rats exposed to simulated FFBWE. In the CBWE scenario, after the initial loading the skull/brain system was not allowed to return to rest and was loaded again reaching high ICP values. Furthermore, results indicated consistent and distinct ICP-time profiles according to orientation, as well as distinctive values of impulse associated with each orientation. Histologically, cleaved caspase-3 positive cells were significantly increased in the CBWE as compared to the FFBWE. Overall, these findings suggest that the geometry of the skull and the way sutures are distributed in the rats are responsible for the difference in the stresses observed. Moreover, this increase stress contributes to correlation of increased injury in the CBWE.

  19. Comparison of pre-contact joint kinematics and vertical impulse between vertical jump landings and step-off landings from equal heights.

    PubMed

    Harry, John R; Freedman Silvernail, Julia; Mercer, John A; Dufek, Janet S

    2017-12-01

    Although impact phase differences between vertical jump landings (VJL) and step-off landings (STL) may be related to task-specific pre-contact strategies, pre-contact mechanics are rarely examined. Thus, pre-contact kinematics and vertical ground reaction force (vGRF) impulse were examined between VJL and STL. Ten health adults (20.9 ± 1.6 yrs; 167.8 ± 4.2 cm; 68.5 ± 7.15 kg) performed 15 VJL and 15 STL from equal heights. Limb (lead; trail) by task (VJL; STL) ANOVAs (α = 0.05) compared hip, knee, and ankle joint angles 150 ms pre-contact, 100 ms pre-contact, 50 ms pre-contact, and at ground contact. Joint angular displacement was also evaluated between 150 ms pre-contact and ground contact. vGRF impulse was compared during the loading (ground contact to peak vGRF) and attenuation (peak vGRF to end of impact) phases. Greater hip flexion angles occurred during STL versus VJL at each event except 150 ms pre-contact (p ≤ .004). Trail limb knee flexion angles were greater at each event when compared to the lead limb during STL (p ≤ .019). Greater trail limb knee flexion angles occurred during STL versus VJL at all four events (p ≤ .018), while greater plantarflexion angles occurred at all four events during VJL versus STL (p ≤ .034). During STL, greater trail limb plantarflexion angles were detected at each event versus the lead limb (p < .001). Lesser hip, lead and trail limb knee displacement occurred during STL versus VJL (p < .05). Greater vGRF impulse was detected during the loading phase of VJL (<.001), while greater vGRF impulse occurred during the attenuation phase of STL (p = .025). These tasks are characterized by distinct pre-contact kinematic strategies and post-contact kinetics. The task utilized in practice should reflect the requirements of the population of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Performance of a low-power subsonic-arc-attachment arcjet thruster

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Berns, Darren H.

    1993-01-01

    A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.

  1. Modelling and stability analysis of switching impulsive power systems with multiple equilibria

    NASA Astrophysics Data System (ADS)

    Zhu, Liying; Qiu, Jianbin; Chadli, Mohammed

    2017-12-01

    This paper tries to model power systems accompanied with a series of faults in the form of switched impulsive Hamiltonian systems (SIHSs) with multiple equilibria (ME) and unstable subsystems (US), and then analyze long-term stability issues of the power systems from the viewpoint of mathematics. According to the complex phenomena of switching actions of stages and generators, impulses of state, and existence of multiple equilibria, this paper first introduces an SIHS with ME and US to formulate a switching impulsive power system composed of an active generator, a standby generator, and an infinite load. Then, based on special system structures, a unique compact region containing all ME is determined, and novel stability concepts of region stability (RS), asymptotic region stability (ARS), and exponential region stability (ERS) are defined for such SIHS with respect to the region. Third, based on the introduced stability concepts, this paper proposes a necessary and sufficient condition of RS and ARS and a sufficient condition of ERS for the power system with respect to the region via the maximum energy function method. Finally, numerical simulations are carried out for a power system to show the effectiveness and practicality of the obained novel results.

  2. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  3. Does drinking refusal self-efficacy mediate the impulsivity-problematic alcohol use relation?

    PubMed

    Stevens, Angela K; Littlefield, Andrew K; Blanchard, Brittany E; Talley, Amelia E; Brown, Jennifer L

    2016-02-01

    There is consistent evidence that impulsivity-like traits relate to problematic alcohol involvement; however, identifying mechanisms that account for this relation remains an important area of research. Drinking refusal self-efficacy (or a person's ability to resist alcohol; DRSE) has been shown to predict alcohol use among college students and may be a relevant mediator of the impulsivity-alcohol relation. The current study examined the indirect effect of various constructs related to impulsivity (i.e., urgency, sensation seeking, and deficits in conscientiousness) via several facets of DRSE (i.e., social pressure, opportunistic, and emotional relief) on alcohol-related problems among a large sample of college students (N=891). Overall, results indicated that certain DRSE facets were significant mediators of the relation between impulsivity-related constructs and alcohol problems. More specifically, emotional-relief DRSE was a mediator for the respective relations between urgency and deficits in conscientiousness and alcohol problems, whereas social-DRSE was a significant mediator of the respective relations between urgency and sensation seeking with alcohol problems. Results from this study suggest particular types of DRSE are important mediators of the relations between specific impulsivity constructs and alcohol-related problems. These findings support prevention and intervention efforts that seek to enhance drinking refusal self-efficacy skills of college students, particularly those high in certain personality features, in order to reduce alcohol-related problems among this population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    NASA Astrophysics Data System (ADS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  5. Liquid Nitrogen Zero Boiloff Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David; Feller, Jeffrey; Johnson, Wesley; Robinson, Craig

    2017-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASAs future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryo-shroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryo-cooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  6. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  7. Pneumatic load compensating or controlling system

    NASA Technical Reports Server (NTRS)

    Rogers, J. R. (Inventor)

    1975-01-01

    A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

  8. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.

  9. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  10. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  11. ADHD performance reflects inefficient but not impulsive information processing: a diffusion model analysis.

    PubMed

    Metin, Baris; Roeyers, Herbert; Wiersema, Jan R; van der Meere, Jaap J; Thompson, Margaret; Sonuga-Barke, Edmund

    2013-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with performance deficits across a broad range of tasks. Although individual tasks are designed to tap specific cognitive functions (e.g., memory, inhibition, planning, etc.), these deficits could also reflect general effects related to either inefficient or impulsive information processing or both. These two components cannot be isolated from each other on the basis of classical analysis in which mean reaction time (RT) and mean accuracy are handled separately. Seventy children with a diagnosis of combined type ADHD and 50 healthy controls (between 6 and 17 years) performed two tasks: a simple two-choice RT (2-CRT) task and a conflict control task (CCT) that required higher levels of executive control. RT and errors were analyzed using the Ratcliff diffusion model, which divides decisional time into separate estimates of information processing efficiency (called "drift rate") and speed-accuracy tradeoff (SATO, called "boundary"). The model also provides an estimate of general nondecisional time. Results were the same for both tasks independent of executive load. ADHD was associated with lower drift rate and less nondecisional time. The groups did not differ in terms of boundary parameter estimates. RT and accuracy performance in ADHD appears to reflect inefficient rather than impulsive information processing, an effect independent of executive function load. The results are consistent with models in which basic information processing deficits make an important contribution to the ADHD cognitive phenotype. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. A physical interpretation of softening of pressure-sensitive and anisotropic materials

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wang, Z. R.

    2010-07-01

    Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.

  13. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  14. Sexting Rates and Predictors From an Urban Midwest High School.

    PubMed

    Gregg, David; Somers, Cheryl L; Pernice, Francesca Maria; Hillman, Stephen B; Kernsmith, Poco

    2018-06-01

    Risks associated with teen sexting draw increasing concern from teachers and communities as developments in communication software and devices make sharing private content faster and simpler each year. We examined rates, recipients, and predictors of teen sexting to better plan education and preventative policies and strategies. A comprehensive literature review was conducted to determine the most likely predictors of teen sexting using prior survey studies and theoretical conceptions. We surveyed 314 high school students in an urban area of a large Midwestern city. Males were found to more frequently report sexting. Impulsivity, frequency of electronic communication, peer pressure, peer sexting, and social learning significantly predicted sexting beyond age, race, and sex. Self-esteem did not moderate the effect of peer pressure to sext. Structural predictive models attained good fit to the data, and neither were moderated by sex. Sexting was highly associated with reported peer pressure, perceived norms, and impulsive decision making. Adolescents in relationships may be at particular risk of sexting. These findings will help parents, teens, and educators take appropriate measures to inform about and encourage the safe use of technology. © 2018, American School Health Association.

  15. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Cerebrospinal fluid pressures resulting from experimental traumatic spinal cord injuries in a pig model.

    PubMed

    Jones, Claire F; Lee, Jae H T; Burstyn, Uri; Okon, Elena B; Kwon, Brian K; Cripton, Peter A

    2013-10-01

    Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7-1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8-83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its similarities to human scale, including the existence of a human-like CSF fluid layer.

  17. A Clot Model Examination: with Impulsion of Nanoparticles under Influence of Variable Viscosity and Slip Effects

    NASA Astrophysics Data System (ADS)

    Ijaz, S.; Shahzadi, Iqra; Nadeem, S.; Saleem, Anber

    2017-11-01

    In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to perceive this phenomena clot model is considered. To discuss this analysis mathematical model is formed in the presence of the effective thermal conductivity and variable viscosity of base fluid. Appropriate slip conditions are employed to obtain the close form solutions of temperature and velocity profile. The graphical illustrations have been presented for the assessment of pressure rise, pressure gradient and velocity profile. The effects of several parameters on the flow quantities for theoretical observation are investigated. At the end, the results confirmed that the impulsion of copper and silver nanoparticles as drug agent enlarges the amplitude of the velocity and hence nanoparticles play an important role in engineering and biomedical applications such as drug delivery system.

  18. Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.

    2016-10-01

    As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.

  19. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less

  20. Crystal Thermoelasticity at Extreme Loading Rates and Pressures: Analysis of Higher-Order Energy Potentials

    DTIC Science & Technology

    2015-07-01

    ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...2015 4. TITLE AND SUBTITLE Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of Higher-Order Energy Potentials 5a. CONTRACT

  1. Effects of static fingertip loading on carpal tunnel pressure

    NASA Technical Reports Server (NTRS)

    Rempel, D.; Keir, P. J.; Smutz, W. P.; Hargens, A.

    1997-01-01

    The purpose of this study was to explore the relationship between carpal tunnel pressure and fingertip force during a simple pressing task. Carpal tunnel pressure was measured in 15 healthy volunteers by means of a saline-filled catheter inserted percutaneously into the carpal tunnel of the nondominant hand. The subjects pressed on a load cell with the tip of the index finger and with 0, 6, 9, and 12 N of force. The task was repeated in 10 wrist postures: neutral; 10 and 20 degrees of ulnar deviation; 10 degrees of radial deviation; and 15, 30, and 45 degrees of both flexion and extension. Fingertip loading significantly increased carpal tunnel pressure for all wrist angles (p = 0.0001). Post hoc analyses identified significant increase (p < 0.05) in carpal tunnel pressure between unloaded (0 N) and all loaded conditions, as well as between the 6 and 12 N load conditions. This study demonstrates that the process whereby fingertip loading elevates carpal tunnel pressure is independent of wrist posture and that relatively small fingertip loads have a large effect on carpal tunnel pressure. It also reveals the response characteristics of carpal tunnel pressure to fingertip loading, which is one step in understanding the relationship between sustained grip and pinch activities and the aggravation or development of median neuropathy at the wrist.

  2. FIR signature verification system characterizing dynamics of handwriting features

    NASA Astrophysics Data System (ADS)

    Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu

    2013-12-01

    This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.

  3. Simplified modeling of blast waves from metalized heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Zarei, Z.; Frost, D. L.

    2011-09-01

    The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.

  4. Modeling and Analysis Tools for Linear and Nonlinear Mechanical Systems Subjected to Extreme Impulsive Loading

    DTIC Science & Technology

    2015-03-23

    SAMPE, Long Beach, CA, 2008. [28] N Hu and H Fukunaga. A new approach for health monitoring of composite structures through identification of impact...Bernard H Minster . Hysteresis and two- dimensional nonlinear wave propagation in berea sandstone. Journal of Geo- physical Research: Solid Earth (1978–2012

  5. Impulse commutating circuit with transformer to limit reapplied voltage

    NASA Technical Reports Server (NTRS)

    Mcconville, J. H.

    1973-01-01

    Silicon controlled rectifier opens circuit with currents flowing up to values of 30 amperes. Switching concept halves both current and voltage in middle of commutating cycle thereby lowering size and weight requirements. Commutating circuit can be turned on or off by command and will remain on in absence of load due to continuous gate.

  6. I-SAVE: AN INTERACTIVE REAL-TIME MONITOR AND CONTROLLER TO INFLUENCE ENERGY CONSERVATION BEHAVIOR BY IMPULSE SAVING

    EPA Science Inventory

    Simulation-based model to explore the benefits of monitoring and control to energy saving opportunities in residential homes; an adaptive algorithm to predict the type of electrical loads; a prototype user friendly interface monitoring and control device to save energy; a p...

  7. Ground reaction forces and plantar pressure distribution during occasional loaded gait.

    PubMed

    Castro, Marcelo; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo

    2013-05-01

    This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  9. Mechanisms of CFR composites destruction studying with pulse acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.

    2016-05-01

    Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.

  10. Correlations between the disintegration of melt and the measured impulses in steam explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froehlich, G.; Linca, A.; Schindler, M.

    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constantmore » does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.« less

  11. 14 CFR 25.365 - Pressurized compartment loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...

  12. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  13. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  14. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  15. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  16. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  17. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  18. The influence of gait speed on the stability of walking among the elderly.

    PubMed

    Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo

    2016-06-01

    Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Blast protection of infrastructure using advanced composites

    NASA Astrophysics Data System (ADS)

    Brodsky, Evan

    This research was a systematic investigation detailing the energy absorption mechanisms of an E-glass web core composite sandwich panel subjected to an impulse loading applied orthogonal to the facesheet. Key roles of the fiberglass and polyisocyanurate foam material were identified, characterized, and analyzed. A quasi-static test fixture was used to compressively load a unit cell web core specimen machined from the sandwich panel. The web and foam both exhibited non-linear stress-strain responses during axial compressive loading. Through several analyses, the composite web situated in the web core had failed in axial compression. Optimization studies were performed on the sandwich panel unit cell in order to maximize the energy absorption capabilities of the web core. Ultimately, a sandwich panel was designed to optimize the energy dissipation subjected to through-the-thickness compressive loading.

  20. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  1. Alternate Methods in Refining the SLS Nozzle Plug Loads

    NASA Technical Reports Server (NTRS)

    Burbank, Scott; Allen, Andrew

    2013-01-01

    Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.

  2. A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.

  3. Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.

    High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilizemore » a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)« less

  4. Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Zhang, Jiaqi; Qin, Juan; Li, Dong; Wu, Wenliang

    2018-03-01

    Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M- xNi yCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M-10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M-NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.

  5. Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.

    PubMed

    Cantagallo, Anna; Di Russo, Francesco; Favilla, Marco; Zoccolotti, Pierluigi

    2015-04-15

    The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. Both TBI patients and controls were able to produce force impulses whose mean peak amplitudes varied proportionally to the target load with no detectable group difference. Patients with TBI, however, were slower than controls in initiating their responses (reaction times [RTs] were longer by 125 msec) and were also slower during the execution of their motor responses, reaching the peak forces requested 23 msec later than controls (time to peak force: 35% delay). Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.

  6. Substance P contributes to rapidly adapting receptor responses to pulmonary venous congestion in rabbits.

    PubMed

    Bonham, A C; Kott, K S; Ravi, K; Kappagoda, C T; Joad, J P

    1996-05-15

    1. This study tested the hypothesis that substance P stimulates rapidly adapting receptors (RARs), contributes to the increase in RAR activity produced by mild pulmonary congestion, and evokes an augmented response from RARs when combined with near-threshold levels of pulmonary congestion. 2. RAR activity, peak tracheal pressure, arterial blood pressure and left atrial pressure were measured in paralysed, anaesthetized and ventilated rabbits. Substance P was given i.v. in one-half log incremental doses to a maximum of 3 micrograms kg-1. Mild pulmonary congestion was produced by inflating a balloon in the left atrium to increase left atrial pressure by 5 mmHg. Near-threshold levels of pulmonary congestion were produced by increasing left atrial pressure by 2 mmHg. 3. Substance P produced dose-dependent increases in RAR activity. The highest dose given increased the activity from 1.3 +/- 0.5 to 11.0 +/- 3.1 impulses bin-1. Increases in left atrial pressure of 5 mmHg increased RAR activity from 3.8 +/- 1.4 to 14.7 +/- 3.9 impulses bin-1. Blockade of NK1 receptors with CP 96345 significantly attenuated RAR responses to substance P and to mild pulmonary congestion. 4. Doses of substance P, which alone had no effect, stimulated the RARs when delivered during near-threshold levels of pulmonary congestion. 5. The findings suggest that substance P augments the stimulatory effect of mild pulmonary congestion on RAR activity, most probably by enhancing hydraulically induced microvascular leak.

  7. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review.

    PubMed

    Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S

    2017-08-01

    Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  8. Clinical effects of buprenorphine on open field behaviour and gait symmetry in healthy and lame weaned piglets.

    PubMed

    Meijer, Ellen; van Nes, Arie; Back, Willem; van der Staay, Franz Josef

    2015-12-01

    Lameness in pigs decreases animal welfare and economic profit for the farmer. An important reason for impaired welfare in lame animals is pain due to lameness. No direct measurement of pain is possible in animals, and methods to indirectly detect and quantify the amount of pain an animal is experiencing are urgently needed. In this study, two methods to assess pain associated with lameness in pigs were evaluated to determine if they were sensitive enough to detect a lameness reduction as an effect of an experimental analgesic medication. Asymmetry associated with lameness was objectively quantified using pressure mat kinetic parameters: peak vertical force (PVF), load rate (LR), vertical impulse (VI) and peak vertical pressure (PVP). Locomotor activity was assessed in an open field test. A dose of 0.04 mg/kg buprenorphine, a strong analgesic, was used to treat 10 lame pigs, while eight other lame pigs, treated with physiological saline solution, served as controls. Buprenorphine decreased lameness-associated asymmetry for pressure mat LR (P = 0.002), VI (P = 0.003) and PVP (P = 0.001) and increased activity of the lame pigs in the open field (P = 0.023), while saline-treated animals did not show any changes in asymmetry and became less active in the open field (P <0.001). It was concluded that measurement of gait asymmetry by pressure mat analysis and locomotor activity in an open field test are both sensitive enough to detect the analgesic effects of buprenorphine when used to treat moderate to severe clinical pain in a relatively small group of affected pigs. The methods used in this study may also provide promising additional tools for future research into early pain recognition and lameness treatment in pigs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Assessment of Energy Storage Technologies for Army Facilities.

    DTIC Science & Technology

    1986-05-01

    units, and the other on tandem units with separate multistage pump and Pelton impulse turbine . The third scheme was a double-drop type based on the...used to drive the turbine /generator. Exhaust gas from the low-pressure turbine may be used to preheat inlet air to the high-pressure turbine . Storage...for firing CAES plant turbines . A Battelle publication summarizes reservoir stability criteria and research directed toward minimizing or eliminating

  10. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    NASA Astrophysics Data System (ADS)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  11. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  12. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  13. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrappedmore » around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.« less

  14. Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system.

    PubMed

    Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi

    2007-05-01

    Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.

  15. Changes in knee joint load indices from before to 12 months after arthroscopic partial meniscectomy: a prospective cohort study.

    PubMed

    Thorlund, J B; Holsgaard-Larsen, A; Creaby, M W; Jørgensen, G M; Nissen, N; Englund, M; Lohmander, L S

    2016-07-01

    Patients undergoing arthroscopic partial meniscectomy (APM) are at increased risk of knee osteoarthritis (OA). Meniscal damage and/or surgery may alter knee joint loading to increase OA risk. We investigated changes in knee joint loading following medial APM surgery, compared with the contra-lateral leg. We estimated indices of knee joint loading (external peak knee adduction moment (KAM), KAM impulse and peak knee flexion moment (KFM)) normalized to body size (i.e., body mass (BM) and height (HT)) using 3D gait analysis in 23 patients (17 men, mean (SD) 46.2 (6.4) years, BMI 25.8 (3.4) kg/m(2)) without radiographic knee OA before and 12 months after medial APM. Static alignment was assessed by radiography and self-reported outcomes by Knee injury and Osteoarthritis Outcome Score (KOOS). Peak KAM and KAM impulse increased in the APM leg compared to the contra-lateral leg from before to 12 months after surgery (change difference: 0.38 Nm/BM*HT% 95% CI 0.01 to 0.76 (P = 0.049) and 0.20 Nm*s/BM*HT% 95% CI 0.10 to 0.30 (P < 0.001)). Patients self-reported improvements on all KOOS subscales (KOOS pain improvement: 22.8 95% CI 14.5 to 31.0 (P < 0.01)). A relative increase in indices of medial compartment loading was observed in the leg undergoing APM compared with the contra-lateral leg from before to 12 months after surgery. This increase may contribute to the elevated risk of knee OA in these patients. Randomized trials including a non-surgical control group are needed to determine if changes in joint loading following APM are caused by surgery or by changes in symptoms. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Response of the solar atmosphere to a simple flare burst: UV emission from the flare transition layer.

    NASA Astrophysics Data System (ADS)

    Shmeleva, O. P.

    The flare transition layer exists as a relatively steady formation even during impulsive heating. It is maintained by a heat flow from the high-temperature plasma, where the major part of the electron beam energy is absorbed. The lifetime of this plasma is much greater than the impulsive heating time. Intensities of resonance UV lines are calculated using both the model of impulsive nonthermal heating by energetic electrons and the model of continuous thermal heating. The calculated line intensity is almost constant during a long time. The line Doppler shifts predicted by the former model match observations. This suggests that the model represents sufficiently well the actual dynamics of the flare plasma. The flare transition layer is a thin formation, its thickness being Δξ = 1021m-2. It is therefore described adequately within the p = const approximation though the picture of hydrodynamic response of the solar atmosphere to the impulsive heating by energy flows is rather complicated and nonsteady, of course. The intensities of the C IV λλ154.8, 155.1 nm and O VI λλ103.2, 103.8 nm lines are calculated within the scope of the model of continuous thermal heating, in which the conductive heating of the flare transition layer is balanced by radiative cooling. The line intensities are proportional to the pressure in the layer, which permits the pressure to be found from the observed line intensities. The analysis reveals that both heating models adequately represent the actual structure and dynamics of plasma in a flare. In the flare transition layer, the classical heat conduction always does work.

  17. Program For Optimization Of Nuclear Rocket Engines

    NASA Technical Reports Server (NTRS)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.

    1994-01-01

    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  18. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  19. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  20. Effect of elastic boundaries in hydrostatic problems

    NASA Astrophysics Data System (ADS)

    Volobuev, A. N.; Tolstonogov, A. P.

    2010-03-01

    The possibility and conditions of use of the Bernoulli equation for description of an elastic pipeline were considered. It is shown that this equation is identical in form to the Bernoulli equation used for description of a rigid pipeline. It has been established that the static pressure entering into the Bernoulli equation is not identical to the pressure entering into the impulse-momentum equation. The hydrostatic problem on the pressure distribution over the height of a beaker with a rigid bottom and elastic walls, filled with a liquid, was solved.

  1. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2006-08-29

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  2. Passive tire pressure sensor and method

    DOEpatents

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2007-09-04

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  3. Gender differences in a cohort of major depressive patients: further evidence for the male depression syndrome hypothesis.

    PubMed

    Azorin, Jean-Michel; Belzeaux, Raoul; Fakra, Eric; Kaladjian, Arthur; Hantouche, Elie; Lancrenon, Sylvie; Adida, Marc

    2014-01-01

    Previous studies have shown that major depressive patients may differ in several features according to gender, but the existence of a specific male depressive syndrome remains controversial. As part of the EPIDEP National Multisite French Study of 493 consecutive DSM-IV major depressive patients evaluated in at least two semi-structured interviews 1 month apart, 125 (27.7%) were of male gender, whereas 317 (72.3%) were female, after exclusion of bipolar I patients. Compared to women, men were more often married, had more associated mixed features, with more bipolar disorder NOS, more hyperthymic temperaments, and less depressive temperaments. Women had an earlier age at onset of depression, more depressive episodes and suicide attempts. A higher family loading was shown in men for bipolar disorder, alcohol use disorder, impulse control disorders and suicide, whereas their family loading for major depressive disorder was lower. Men displayed more comorbidities with alcohol use, impulse control, and cardiovascular disorders, with lower comorbidities with eating, anxiety and endocrine/metabolic disorders. The following independent variables were associated with male gender: hyperthymic temperament (+), alcohol use disorder (+), impulse control disorders (+), and depressive temperament (-). The retrospective design and the lack of specific tools to assess the male depressive syndrome. Study findings may lend support to the male depression syndrome concept and draw attention to the role of hyperthymic temperament, soft bipolarity as well as comorbidities as determinants of this syndrome. The latter could help recognize an entity which is probably underdiagnosed, but conveys a high risk of suicide and cardiovascular morbidity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Load and inflation pressure effects on soil compaction of forwarder tires

    Treesearch

    Tim McDonald; Tom Way; Bjorn Lofgren; Fernando Seixas; Mats Landstrom

    1996-01-01

    A standard forwarder tire (600/55-26.5) was tested to determine its range of soil compaction with various inflation pressures and dynamic loads. Past research has shown that compaction of heavier equipment can be somewhat mitigated by operating with lower inflation pressures. Results indicated a significant effect of both load and inflation pressure on bulk density,...

  5. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.

  6. Effects of Cognitive Load on Trusting Behavior – An Experiment Using the Trust Game

    PubMed Central

    2015-01-01

    Last decades have witnessed a progressing decline of social trust, which has been predominantly linked to worsening economic conditions and increasing social inequality. In the present research we propose a different type of explanation for the observed decline – cognitive load related to technological development and the accelerating pace of modern life. In an experimental study participants played the trust game while performing one of two different secondary tasks – listening to a disturbing noise or memorizing a sequence of characters – or with no additional task in the control condition. Results show that in both cognitive load conditions participants expressed significantly less trust in the trust game than in case of no cognitive load. Additionally, when cognitive resources were limited, participants’ behavior was more impulsive than when their resources were fully available. PMID:26010489

  7. Barefoot vs common footwear: A systematic review of the kinematic, kinetic and muscle activity differences during walking.

    PubMed

    Franklin, Simon; Grey, Michael J; Heneghan, Nicola; Bowen, Laura; Li, François-Xavier

    2015-09-01

    Habitual footwear use has been reported to influence foot structure with an acute exposure being shown to alter foot position and mechanics. The foot is highly specialised thus these changes in structure/position could influence functionality. This review aims to investigate the effect of footwear on gait, specifically focussing on studies that have assessed kinematics, kinetics and muscle activity between walking barefoot and in common footwear. In line with PRISMA and published guidelines, a literature search was completed across six databases comprising Medline, EMBASE, Scopus, AMED, Cochrane Library and Web of Science. Fifteen of 466 articles met the predetermined inclusion criteria and were included in the review. All articles were assessed for methodological quality using a modified assessment tool based on the STROBE statement for reporting observational studies and the CASP appraisal tool. Walking barefoot enables increased forefoot spreading under load and habitual barefoot walkers have anatomically wider feet. Spatial-temporal differences including, reduced step/stride length and increased cadence, are observed when barefoot. Flatter foot placement, increased knee flexion and a reduced peak vertical ground reaction force at initial contact are also reported. Habitual barefoot walkers exhibit lower peak plantar pressures and pressure impulses, whereas peak plantar pressures are increased in the habitually shod wearer walking barefoot. Footwear particularly affects the kinematics and kinetics of gait acutely and chronically. Little research has been completed in older age populations (50+ years) and thus further research is required to better understand the effect of footwear on walking across the lifespan. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. An experimental study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, R. E., Jr.; Nagamatsu, H. T.

    1984-06-01

    A firing test was conducted to examine the recoil efficiency and blast characteristics of perforated muzzle brakes fitted to a 20 mm cannon. Recoil impulse blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash structure were obtained. Three different nuzzle devices were used with one device equipped with pressure transducers to measure the static pressure in the brake. Experimental results are compared with the earlier predictions of Dillon and Nagamatsu.

  9. A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.

    2013-03-01

    We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.

  10. Impulse Plasma In Surface Engineering - a review

    NASA Astrophysics Data System (ADS)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  11. Effects of acute buspirone administration on inhibitory control and sexual discounting in cocaine users.

    PubMed

    Strickland, Justin C; Bolin, B Levi; Romanelli, Michael R; Rush, Craig R; Stoops, William W

    2017-01-01

    Cocaine users display deficits in inhibitory control and make impulsive choices that may increase risky behavior. Buspirone is an anxiolytic that activates dopaminergic and serotonergic systems and improves impulsive choice (i.e., reduces sexual risk-taking intent) in cocaine users when administered chronically. We evaluated the effects of acutely administered buspirone on inhibitory control and impulsive choice. Eleven subjects with a recent history of cocaine use completed this within-subject, placebo-controlled study. Subjects performed two cued go/no-go and a sexual risk delay-discounting task following oral administration of buspirone (10 and 30 mg), triazolam (0.375 mg; positive control), and placebo (negative control). Physiological and psychomotor performance and subject-rated data were also collected. Buspirone failed to change inhibitory control or impulsive choice; however, slower reaction times were observed at the highest dose tested. Buspirone did not produce subject-rated drug effects but dose-dependently decreased diastolic blood pressure. Triazolam impaired psychomotor performance and increased ratings of positive subject-rated effects (e.g., Like Drug). These findings indicate that acutely administered buspirone has little impact on behavioral measures of inhibitory control and impulsive sexual decision-making. Considering previous findings with chronic dosing, these findings highlight that the behavioral effects of buspirone differ as a function of dosing conditions. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Gas loading apparatus for the Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocian, A.; Kamenev, K. V.; Bull, C. L.

    2010-09-15

    We describe the design and operation of an apparatus for loading gases into the sample volume of the Paris-Edinburgh press at room temperature and high pressure. The system can be used for studies of samples loaded as pure or mixed gases as well as for loading gases as pressure-transmitting media in neutron-scattering experiments. The apparatus consists of a high-pressure vessel and an anvil holder with a clamp mechanism. The vessel, designed to operate at gas pressures of up to 150 MPa, is used for applying the load onto the anvils located inside the clamp. This initial load is sufficient formore » sealing the pressurized gas inside the sample containing gasket. The clamp containing the anvils and the sample is then transferred into the Paris-Edinburgh press by which further load can be applied to the sample. The clamp has apertures for scattered neutron beams and remains in the press for the duration of the experiment. The performance of the gas loading system is illustrated with the results of neutron-diffraction experiments on compressed nitrogen.« less

  13. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    NASA Astrophysics Data System (ADS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed and calculated. Main criteria for estimating the maximum leakage rate for the lid metallic seal system are no loss of the pre-stress of the lid bolts, no appearance of the plastic region between the metal seal flanges, and no large relative deformation of the lid seals. Finally, in both cases, the low leakage rate for the metal cask lid closure system under the impulsive loads due to aircraft engine crash will be proved thoroughly.

  14. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  15. An experimental analysis of acquired impulse control among adult humans intolerant to alcohol

    PubMed Central

    Wang, Jianxin; Rao, Yulei; Houser, Daniel E.

    2017-01-01

    The ability to control tempting impulses impacts health, education, and general socioeconomic outcomes among people at all ages. Consequently, whether and how impulse control develops in adult populations is a topic of enduring interest. Although past research has shed important light on this question using controlled intervention studies, here we take advantage of a natural experiment in China, where males but not females encounter substantial social pressure to consume alcohol. One-third of our sample, all of whom are Han Chinese, is intolerant to alcohol, whereas the remaining control sample is observationally identical but alcohol tolerant. Consistent with previous literature, we find that intolerant males are significantly more likely to exercise willpower to limit their alcohol consumption than alcohol-tolerant males. In view of the strength model of self-control, we hypothesize that this enables improved impulse control in other contexts as well. To investigate this hypothesis, we compare decisions in laboratory games of self-control between the tolerant and intolerant groups. We find that males intolerant to alcohol and who regularly encounter drinking environments control their selfish impulses significantly better than their tolerant counterparts. On the other hand, we find that female Han Chinese intolerant to alcohol do not use self-control to limit alcohol consumption more than tolerant females, nor do the tolerant and intolerant females exhibit differences in self-control behaviors. Our research indicates that impulse control can be developed in adult populations as a result of self-control behaviors in natural environments, and shows that this skill has generalizable benefits across behavioral domains. PMID:28119501

  16. An experimental analysis of acquired impulse control among adult humans intolerant to alcohol.

    PubMed

    Wang, Jianxin; Rao, Yulei; Houser, Daniel E

    2017-02-07

    The ability to control tempting impulses impacts health, education, and general socioeconomic outcomes among people at all ages. Consequently, whether and how impulse control develops in adult populations is a topic of enduring interest. Although past research has shed important light on this question using controlled intervention studies, here we take advantage of a natural experiment in China, where males but not females encounter substantial social pressure to consume alcohol. One-third of our sample, all of whom are Han Chinese, is intolerant to alcohol, whereas the remaining control sample is observationally identical but alcohol tolerant. Consistent with previous literature, we find that intolerant males are significantly more likely to exercise willpower to limit their alcohol consumption than alcohol-tolerant males. In view of the strength model of self-control, we hypothesize that this enables improved impulse control in other contexts as well. To investigate this hypothesis, we compare decisions in laboratory games of self-control between the tolerant and intolerant groups. We find that males intolerant to alcohol and who regularly encounter drinking environments control their selfish impulses significantly better than their tolerant counterparts. On the other hand, we find that female Han Chinese intolerant to alcohol do not use self-control to limit alcohol consumption more than tolerant females, nor do the tolerant and intolerant females exhibit differences in self-control behaviors. Our research indicates that impulse control can be developed in adult populations as a result of self-control behaviors in natural environments, and shows that this skill has generalizable benefits across behavioral domains.

  17. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  18. A revolute joint with linear load-displacement response for a deployable lidar telescope

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.

  19. A generalized modal shock spectra method for spacecraft loads analysis

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike the traditional shock spectra approach, the generalization presented in this paper permits elastic interaction between the spacecraft and launch vehicle in order to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis - with or without a dummy spacecraft - is exploited in order to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces.

  20. Evaluation of observed blast loading effects on NIF x-ray diagnostic collimators.

    PubMed

    Masters, N D; Fisher, A; Kalantar, D; Prasad, R; Stölken, J S; Wlodarczyk, C

    2014-11-01

    We present the "debris wind" models used to estimate the impulsive load to which x-ray diagnostics and other structures are subject during National Ignition Facility experiments. These models are used as part of the engineering design process. Isotropic models, based on simulations or simplified "expanding shell" models, are augmented by debris wind multipliers to account for directional anisotropy. We present improvements to these multipliers based on measurements of the permanent deflections of diagnostic components: 4× for the polar direction and 2× within the equatorial plane-the latter relaxing the previous heuristic debris wind multiplier.

  1. Physics of singularities in pressure-impulse theory

    NASA Astrophysics Data System (ADS)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  2. F-16B Pacer Aircraft Trailing Cone Length Extension Tube Investigative Study (HAVE CLETIS)

    DTIC Science & Technology

    2007-06-01

    the axial load experienced during high incompressible dynamic pressures and prevent the coupling from locking up as was observed for the 35-foot... axial loads due to incompressible dynamic pressure. (R4) “Guitar stringing” was used to describe the high frequency vibration of the pressure tube...Modify the design of the pressure tube and drag cone coupling to allow independent pressure tube and drag cone rotation under axial loads due to

  3. Nightside High Latitude Magnetic Impulse Events

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Connors, M. G.; Braun, D.; Posch, J. L.; Kaur, M.; Guillon, S.; Hartinger, M.; Kim, H.; Behlke, R.; Reiter, K.; Jackel, B. J.; Russell, C. T.

    2017-12-01

    High latitude Magnetic Impulse Events (MIEs), isolated pulses with periods 5-10 min, were first noted in ground-based magnetometer data near local noon, and are now understood to be signatures of transient pressure increases in the solar wind (sudden impulses - SIs) and/or in the ion foreshock (traveling convection vortex events - TCVs). However, solitary pulses with considerably larger amplitude (ΔB up to 1500 nT) have often been observed in the night sector at these same latitudes. These events are not directly associated with transient external pressure increases, and are often large enough to produce significant ground induced currents. Although many night sector MIEs occur in association with substorm signatures, others appear to be very isolated. We present here a survey of intense MIE events identified in magnetometer data from the AUTUMNX and MACCS arrays in eastern Arctic Canada at all local times between July 1, 2014 and June 30, 2017. We also show maps of horizontal and vertical perturbations and maximum dB/dt values, as well as sample magnetograms, for several example events using data from these and other arrays in Arctic Canada, as well as in West Greenland and Antarctica, the latter to show the conjugate nature of these events. A basic relation to GIC data in the Hydro-Québec electrical transmission network in eastern Canada has been determined and will be discussed.

  4. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  5. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  6. Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions.

    PubMed

    Finneran, J J; Schlundt, C E; Carder, D A; Clark, J A; Young, J A; Gaspin, J B; Ridgway, S H

    2000-07-01

    A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.

  7. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  8. Effect of cervicolabyrinthine impulsation on the spinal reflex apparatus

    NASA Technical Reports Server (NTRS)

    Yarotskiy, A. I.

    1980-01-01

    In view of the fact that the convergence effect of vestibular impulsation may both stimulate and inhibit intra and intersystemic coordination of physiological processes, an attempt was made to define the physiological effect on the spinal reflex apparatus of the convergence of cervicolabyrinthine impulsation on a model of the unconditioned motor reflex as a mechanism of the common final pathway conditioning the formation and realization of a focused beneficial result of human motor activities. More than 100 persons subjected to rolling effect and angular acceleration during complexly coordinated muscular loading were divided according to typical variants of the functional structure of the patella reflex in an experiment requiring 30 rapid counterclockwise head revolutions at 2/sec with synchronous recording of a 20 item series of patella reflex acts. A knee jerk coefficient was used in calculations. In 85 percent of the cases 2 patellar reflexograms show typical braking and release of knee reflex and 1 shows an extreme local variant. The diagnostic and prognostic value of these tests is suggested for determining adaptive possibilities of functional systems in respect to acceleration and proprioceptive stimuli.

  9. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  10. Impulse responses of visible phototubes used in National Ignition Facility neutron time of flight diagnostics.

    PubMed

    Datte, P S; Eckart, M; Moore, A S; Thompson, W; Vergel de Dios, G

    2016-11-01

    Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 10 15 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ∼2% rms for the square root of the second central moment with ∼500 ps value. Detailed results are presented for three different diode configurations.

  11. Substance P contributes to rapidly adapting receptor responses to pulmonary venous congestion in rabbits.

    PubMed Central

    Bonham, A C; Kott, K S; Ravi, K; Kappagoda, C T; Joad, J P

    1996-01-01

    1. This study tested the hypothesis that substance P stimulates rapidly adapting receptors (RARs), contributes to the increase in RAR activity produced by mild pulmonary congestion, and evokes an augmented response from RARs when combined with near-threshold levels of pulmonary congestion. 2. RAR activity, peak tracheal pressure, arterial blood pressure and left atrial pressure were measured in paralysed, anaesthetized and ventilated rabbits. Substance P was given i.v. in one-half log incremental doses to a maximum of 3 micrograms kg-1. Mild pulmonary congestion was produced by inflating a balloon in the left atrium to increase left atrial pressure by 5 mmHg. Near-threshold levels of pulmonary congestion were produced by increasing left atrial pressure by 2 mmHg. 3. Substance P produced dose-dependent increases in RAR activity. The highest dose given increased the activity from 1.3 +/- 0.5 to 11.0 +/- 3.1 impulses bin-1. Increases in left atrial pressure of 5 mmHg increased RAR activity from 3.8 +/- 1.4 to 14.7 +/- 3.9 impulses bin-1. Blockade of NK1 receptors with CP 96345 significantly attenuated RAR responses to substance P and to mild pulmonary congestion. 4. Doses of substance P, which alone had no effect, stimulated the RARs when delivered during near-threshold levels of pulmonary congestion. 5. The findings suggest that substance P augments the stimulatory effect of mild pulmonary congestion on RAR activity, most probably by enhancing hydraulically induced microvascular leak. Images Figure 6 PMID:8735708

  12. Sensate Scaffolds Can Reliably Detect Joint Loading

    PubMed Central

    Bliss, C. L.; Szivek, J. A.; Tellis, B. C.; Margolis, D. S.; Schnepp, A. B.; Ruth, J. T.

    2008-01-01

    Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage. PMID:16941586

  13. Liquid Oxygen/Liquid Methane Test Summary of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Melcher, John C., IV; Allred, Jennifer K.

    2009-01-01

    Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.

  14. Survey Of CO{sub 2} Laser Ablation Propulsion With Polyoxymethylene Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinko, John E.; Sasoh, Akihiro

    Polyoxymethylene (POM) has been widely studied as a laser propulsion propellant paired to CO{sub 2} laser radiation. POM is a good test case for studying ablation properties of polymer materials, and within limits, for study of general trends in laser ablation-induced impulse. Despite many studies, there is no general understanding of POM ablation that takes into account the ambient pressure, spot area, fluence, and effects from confinement and combustion. This paper reviews and synthesizes CO{sub 2} laser ablation propulsion research using POM targets. Necessary directions for future study are indicated to address incomplete regions of the various parameter spaces. Literaturemore » data is compared in terms of propulsion parameters such as momentum coupling coefficient and specific impulse, within a range of fluences from about 1-500 J/cm{sup 2}, ambient pressures from about 10{sup -2}-10{sup 5} Pa, and laser spot areas from about 0.01-10 cm{sup 2}.« less

  15. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  16. Mitigation Systems for Confined Blast Loading - Crew Protection in Armored Vehicles

    DTIC Science & Technology

    2009-04-01

    Effects of Tungsten Alloy Property Variations on Penetrator Performance for Spaced Armors.” Advances in Powder Metallurgy and Particulate Materials...Table 8.1. Cylinder properties for confined field test. ............................................... 93 Table 8.2. FEM snapshot of the confined...persons or property . Blast mitigation should reduce the overpressure, impulse, fragments, projectile, thermal and toxic hazards that occur during an

  17. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    NASA Astrophysics Data System (ADS)

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.

  18. Evaluative pressure overcomes perceptual load effects.

    PubMed

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.

  19. Estimation of joint stiffness with a compliant load.

    PubMed

    Ludvig, Daniel; Kearney, Robert E

    2009-01-01

    Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.

  20. Implementation and extension of the impulse transfer function method for future application to the space shuttle project. Volume 2: Program description and user's guide

    NASA Technical Reports Server (NTRS)

    Patterson, G.

    1973-01-01

    The data processing procedures and the computer programs were developed to predict structural responses using the Impulse Transfer Function (ITF) method. There are three major steps in the process: (1) analog-to-digital (A-D) conversion of the test data to produce Phase I digital tapes (2) processing of the Phase I digital tapes to extract ITF's and storing them in a permanent data bank, and (3) predicting structural responses to a set of applied loads. The analog to digital conversion is performed by a standard package which will be described later in terms of the contents of the resulting Phase I digital tape. Two separate computer programs have been developed to perform the digital processing.

  1. Application of a Channel Design Method to High-Solidity Cascades and Tests of an Impulse Cascade with 90 Degrees of Turning

    NASA Technical Reports Server (NTRS)

    Stanitz, John D; Sheldrake, Leonard J

    1953-01-01

    A technique is developed for the application of a channel design method to the design of high-solidity cascades with prescribed velocity distributions as a function of arc length along the blade-element profile. The technique is applied to both incompressible and subsonic compressible, nonviscous, irrotational fluid motion. For compressible flow, the ratio of specific heats is assumed equal to -1.0. An impulse cascade with 90 degree turning was designed for incompressible flow and was tested at the design angle of attack over a range of downstream Mach number from 0.2 to coke flow. To achieve good efficiency, the cascade was designed for prescribed velocities and maximum blade loading according to limitations imposed by considerations of boundary-layer separation.

  2. Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Aijaz, Asim; Constantina Parau, Anca; Kiss, Adrian Emil; Sobetkii, Arcadie; Kubart, Tomas

    2018-04-01

    Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.

  3. Walking velocity and step length adjustments affect knee joint contact forces in healthy weight and obese adults.

    PubMed

    Milner, Clare E; Meardon, Stacey A; Hawkins, Jillian L; Willson, John D

    2018-04-28

    Knee osteoarthritis is a major public health problem and adults with obesity are particularly at risk. One approach to alleviating this problem is to reduce the mechanical load at the joint during daily activity. Adjusting temporospatial parameters of walking could mitigate cumulative knee joint mechanical loads. The purpose of this study was to determine how adjustments to velocity and step length affects knee joint loading in healthy weight adults and adults with obesity. We collected three-dimensional gait analysis data on 10 adults with a normal body mass index and 10 adults with obesity during over ground walking in nine different conditions. In addition to preferred velocity and step length, we also conducted combinations of 15% increased and decreased velocity and step length. Peak tibiofemoral joint impulse and knee adduction angular impulse were reduced in the decreased step length conditions in both healthy weight adults (main effect) and those with obesity (interaction effect). Peak knee joint adduction moment was also reduced with decreased step length, and with decreased velocity in both groups. We conclude from these results that adopting shorter step lengths during daily activity and when walking for exercise can reduce mechanical stimuli associated with articular cartilage degenerative processes in adults with and without obesity. Thus, walking with reduced step length may benefit adults at risk for disability due to knee osteoarthritis. Adopting a shorter step length during daily walking activity may reduce knee joint loading and thus benefit those at risk for knee cartilage degeneration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. EFFECT OF AXIAL TIBIAL TORQUE DIRECTION ON ACL RELATIVE STRAIN AND STRAIN RATE IN AN IN VITRO SIMULATED PIVOT LANDING

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2011-01-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment and internal or external tibial torque) was applied to the distal tibia while recording the 3-D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3mm DVRT. In this repeated measures experiment, the Wilcoxon Signed-Rank test was used to test the null hypotheses with p<0.05 considered significant. The mean (± SD) peak AM-ACL relative strains were 5.4±3.7 % and 3.1±2.8 % under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4±160.1 %/sec and 179.4±109.9 %/sec, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70% and 42% greater under internal than external tibial torque, respectively (p=0.023, p=0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. PMID:22025178

  5. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  6. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  7. Investigation of Shallow Undex in Littoral Ocean Domain

    DTIC Science & Technology

    2014-06-01

    pPos Units=Pa #Units: psi, ksi, Pa, MPa, bar or scaling factor # Var=pNeg Units=Pa #Units: psi, ksi, Pa, MPa...net) # i = Impulse intensity (time in sec) # ppos = Element pressure on "positive" side (normal points toward "eye") of coupling interface

  8. National Launch System cycle 1 loads and models data book

    NASA Technical Reports Server (NTRS)

    Bugg, F.; Brunty, J.; Ernsberger, G.; Mcghee, D.; Gagliano, L.; Harrington, F.; Meyer, D.; Blades, E.

    1992-01-01

    This document contains preliminary cycle 1 loads for the National Launch System (NLS) 1 and 2 vehicles. The loads provided and recommended as design loads represent the maximum load expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.

  9. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models (98 to 161 mm in diameter), probably due to the more efficient delivery of laser-induced blast wave energy across the 2D model's larger impulse surface area. Next, the hypersonic campaign was carried out, subjecting the 2D model to nominal Mach numbers ranging from 6 to 10. Again, time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. These visualizations of inlet and absorption chamber flowfields, enabled the qualitative analysis of important phenomena impacting laser-propelled hypersonic airbreathing flight. The laser-induced breakdown took an elongated vertically-oriented geometry, occurring off-surface and across the inlet's mid-channel---quite different from the static case in which the energy was deposited very near the shroud under-surface. The shroud under-surface pressure data indicated laser-induced increases of 0.7-0.9 bar with laser pulse energies of ˜170 J, off-shroud induced breakdown condition, and Mach number of 7. The results of this research corroborate the feasibility of laser powered, airbreathing flight with infinite specific impulse (Isp=infinity): i.e., without the need for propellant injection at the laser focus. Additionally, it is shown that further reductions in inlet air working fluid velocity---with attendant increases in static pressure and density---is necessary to generate higher absorption chamber pressure and engine impulse. Finally, building on lessons learned from the present work, the future research plan is laid out for: a) the present 2D model with full inlet forebody, exploring higher laser pulse energies and multi-pulse phenomena; b) a smaller, redesigned 2D model; c) a 254 mm diameter axisymmetric Lightcraft model; and, d) a laser-electromagnetic accelerator model, designed around a 2-Tesla pulsed electromagnet contracted under the present program.

  10. Computer program for preliminary design analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1972-01-01

    The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.

  11. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical and Internal Pressure Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.

    2003-01-01

    Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.

  12. The hindlimb in walking horses: 1. Kinematics and ground reaction forces.

    PubMed

    Hodson, E; Clayton, H M; Lanovaz, J L

    2001-01-01

    The objective was to study associations between kinematics and ground reaction forces in the hindlimb of walking horses. Video (60 Hz) and force (2000 Hz) data were gathered for 8 strides from each of 5 sound horses during the walk. Sagittal plane kinematics were measured concurrently with the vertical and longitudinal ground reaction forces. The hindlimb showed rapid loading and braking in the initial 10% stride. The stifle, tarsal and coffin joints flexed and the fetlock joint extended during this period of rapid loading. The vertical ground reaction force showed 2 peaks separated by a dip; this pattern was similar to the fetlock joint angle-time graph. Peaks in the longitudinal ground reaction force did not appear to correspond with kinematic events. Total braking impulse was equal to total propulsive impulse over the entire stride. Flexion and extension of the hip were responsible for protraction and retraction of the entire limb. Maximal protraction occurred shortly before the end of swing and maximal retraction occurred during breakover. During the middle part of stance the tarsal joint extended slowly, while the stifle began to flex when the limb was retracted beyond the midstance position at 28% stride. Flexion cycles of the stifle and tarsal joints were well coordinated during the swing phase to raise the distal limb as it was protracted. The results demonstrate a relationship between limb kinematics and vertical limb loading in the hindlimbs of sound horses. Future studies will elucidate the alterations in response to lameness.

  13. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)

    NASA Astrophysics Data System (ADS)

    Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.

    2016-10-01

    This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.

  14. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  15. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  16. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  17. Pressure measurements using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Danehy, Paul M

    2015-09-01

    We investigate the feasibility of gas-phase pressure measurements using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is probed by a high-energy 5-ps pulse introduced at a time delay from the Raman preparation. These ultrafast laser pulses are shorter than collisional-dephasing time scales, enabling a new hybrid time- and frequency-domain detection scheme for pressure. Single-laser-shot rotational CARS spectra were recorded from N2 contained in a room-temperature gas cell for pressures from 0.4 to 3 atm and probe delays ranging from 16 to 298 ps. Sensitivity of the accuracy and precision of the pressure data to probe delay was investigated. The technique exhibits superior precision and comparable accuracy to previous laser-diagnostic pressure measurements.

  18. Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.

    PubMed

    Seaglar, J; Rousseau, C-E

    2015-04-01

    The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Preconditioning of mesenchymal stromal cells toward nucleus pulposus-like cells by microcryogels-based 3D cell culture and syringe-based pressure loading system.

    PubMed

    Zeng, Yang; Feng, Siyu; Liu, Wei; Fu, Qinyouen; Li, Yaqian; Li, Xiaokang; Chen, Chun; Huang, Chenyu; Ge, Zigang; Du, Yanan

    2017-04-01

    To precondition mesenchymal stromal/stem cells (MSCs) with mechanical stimulation may enhance cell survival and functions following implantation in load bearing environment such as nucleus pulposus (NP) in intervertebral disc (IVD). In this study, preconditioning of MSCs toward NP-like cells was achieved in previously developed poly (ethylene glycol) diacrylate (PEGDA) microcryogels (PMs) within a syringe-based three-dimensional (3D) culture system which provided a facile and cost-effective pressure loading approach. PMs loaded with alginate and MSCs could be incubated in a sealable syringe which could be air-compressed to apply pressure loading through a programmable syringe pump. Expression levels of chondrogenic marker genes SOX9, COL II, and ACAN were significantly upregulated in MSCs when pressure loading of 0.2 MPa or 0.8 MPa was implemented. Expression levels of COL I and COL X were downregulated when pressure loading was applied. In a nude mouse model, MSCs loaded in PMs mechanically stimulated for three days were subcutaneously injected using the same culture syringe. Three weeks postinjection, more proteoglycans (PGs) were deposited and more SOX9 and COL II but less COL I and COL X were stained in 0.2 MPa group. Furthermore, injectable MSCs-loaded PMs were utilized in an ex vivo rabbit IVD organ culture model that demonstrated the leak-proof function and enhanced cell retention of PMs assisted cell delivery to a load bearing environment for potential NP regeneration. This microcryogels-based 3D cell culture and syringe-based pressure loading system represents a novel method for 3D cell culture with mechanical stimulation for better function. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 507-520, 2017. © 2015 Wiley Periodicals, Inc.

  20. Numerical Simulations of Near-Field Blast Effects using Kinetic Plates

    NASA Astrophysics Data System (ADS)

    Neuscamman, Stephanie; Manner, Virginia; Brown, Geoffrey; Glascoe, Lee

    2013-06-01

    Numerical simulations using two hydrocodes were compared to near-field measurements of blast impulse associated with ideal and non-ideal explosives to gain insight into testing results and predict untested configurations. The recently developed kinetic plate test was designed to measure blast impulse in the near-field by firing spherical charges in close range from steel plates and probing plate acceleration using laser velocimetry. Plate velocities for ideal, non-ideal and aluminized explosives tests were modeled using a three dimensional hydrocode. The effects of inert additives in the explosive formulation were modeled using a 1-D hydrocode with multiphase flow capability using Lagrangian particles. The relative effect of particle impact on the plate compared to the blast wave impulse is determined and modeling is compared to free field pressure results. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is abstract LLNL-ABS-622152.

  1. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    NASA Astrophysics Data System (ADS)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is used to offset cooling loads in an adjacent facility. The coupled TES systems operating in conjunction with an SMR comprise the foundation of a tightly coupled NHES.

  2. Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

    DOE PAGES

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley; ...

    2017-01-30

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infermore » that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.« less

  3. Marrow fat may distribute the energy of impact loading throughout subchondral bone

    PubMed Central

    Simkin, Peter A

    2018-01-01

    Abstract Most students of articular mechanics consider impact loads to be compressive forces that are borne by an intraosseous, trabecular scaffold. The possible role of marrow fat, which comprises about 75% of the structure, is generally ignored, and the potential contribution of type 1 collagen, the prototypic tensile protein, is not considered. Here, I question the evidence underlying these omissions and reject the conclusion of exclusive trabecular compression. Instead, I suggest that impact loading pressurizes the fat in subchondral compartments, and those pressures stretch the elastic trabecular walls, which are thereby subjected to tensile loading. The load-driven pressure pulses then diminish as they pass from each compartment to its adjoining neighbours. The resulting pressure gradient distributes the burden throughout the subchondrium, stores energy for ensuing recovery and subjects individual trabeculae only to the net pressure differences between adjacent compartments. PMID:28977578

  4. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).

  5. Interaction of a Vortex with Axial Flow and a Cylindrical Surface

    NASA Astrophysics Data System (ADS)

    Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.

    1998-11-01

    The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.

  6. High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehiasarian, A. P.; New, R.; Hecimovic, A.

    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in E-vectorxB-vector direction at velocities of {approx}10 km s{sup -1} and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasmamore » conductivity speeds it up.« less

  7. Low-thrust Isp sensitivity study

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1982-01-01

    A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.

  8. Quantifying the effects of external shear loads on arterial and venous blood flow: implications for pressure ulcer development.

    PubMed

    Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid

    2013-06-01

    Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure.

    PubMed

    Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard

    2016-05-03

    Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. An Analytical Evaluation of Spall Suppression of Impulsively Loaded Aluminum Panels Based on a One Dimensional Stress Wave Propagation Model.

    DTIC Science & Technology

    1984-03-01

    continued support in this research work. The author also wishes to thank Mr. Ronald E. Musante , Mr. Anthony P. Lee and the staff of FMC Corporation’s...West Point, New York 10996 8. Mr. R. E. Musante Manager, Armor Design Group Ordnance Division FMC Corporation California 90041 1105 Coleman Ave., Box

  11. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  12. Effects of independently altering body weight and body mass on the metabolic cost of running.

    PubMed

    Teunissen, Lennart P J; Grabowski, Alena; Kram, Rodger

    2007-12-01

    The metabolic cost of running is substantial, despite the savings from elastic energy storage and return. Previous studies suggest that generating vertical force to support body weight and horizontal forces to brake and propel body mass are the major determinants of the metabolic cost of running. In the present study, we investigated how independently altering body weight and body mass affects the metabolic cost of running. Based on previous studies, we hypothesized that reducing body weight would decrease metabolic rate proportionally, and adding mass and weight would increase metabolic rate proportionally. Further, because previous studies show that adding mass alone does not affect the forces generated on the ground, we hypothesized that adding mass alone would have no substantial effect on metabolic rate. We manipulated the body weight and body mass of 10 recreational human runners and measured their metabolic rates while they ran at 3 m s(-1). We reduced weight using a harness system, increased mass and weight using lead worn about the waist, and increased mass alone using a combination of weight support and added load. We found that net metabolic rate decreased in less than direct proportion to reduced body weight, increased in slightly more than direct proportion to added load (added mass and weight), and was not substantially different from normal running with added mass alone. Adding mass alone was not an effective method for determining the metabolic cost attributable to braking/propelling body mass. Runners loaded with mass alone did not generate greater vertical or horizontal impulses and their metabolic costs did not substantially differ from those of normal running. Our results show that generating force to support body weight is the primary determinant of the metabolic cost of running. Extrapolating our reduced weight data to zero weight suggests that supporting body weight comprises at most 74% of the net cost of running. However, 74% is probably an overestimate of the metabolic demand of body weight to support itself because in reduced gravity conditions decrements in horizontal impulse accompanied decrements in vertical impulse.

  13. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  14. Effect of an alternate winglet on the pressure and spanwise load distributions of a first generation jet transport wing

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Flechner, S. G.; Jacobs, P. F.

    1978-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at subsonic speeds are presented. The wind tunnel data were measured for the wing with and without an alternate winglet. The results show that the winglet affected outboard wing pressure distributions and increased the spanwise loads near the tip.

  15. Effect of boundary conditions and panel geometry on the response of laminated panels subjected to transverse pressure loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1993-01-01

    The behavior of thin laminated flat and curved panels subjected to transverse pressure and inplane loads is considered. The effects of panel geometry, boundary conditions and laminate stacking sequence on the response of panels subjected to transverse pressure loads up to 12.4 N/sq cm is presented. The response of thin laminated panels is evaluated analytically and selected results are compared with test data. A parametric study of the deformation and strain responses of panels with radius of curvature ranging from 20 to 305 cm is presented. The combination of inplane tensile and pressure loads is also considered.

  16. The Role of Working Memory for Cognitive Control in Anorexia Nervosa versus Substance Use Disorder

    PubMed Central

    Brooks, Samantha J.; Funk, Sabina G.; Young, Susanne Y.; Schiöth, Helgi B.

    2017-01-01

    Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive–emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model – where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes – to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity. PMID:29018381

  17. A psychometric evaluation of the DSM-IV borderline personality disorder criteria: age and sex moderation of criterion functioning

    PubMed Central

    Aggen, S. H.; Neale, M. C.; Røysamb, E.; Reichborn-Kjennerud, T.; Kendler, K. S.

    2009-01-01

    Background Despite its importance as a paradigmatic personality disorder, little is known about the measurement invariance of the DSM-IV borderline personality disorder (BPD) criteria ; that is, whether the criteria assess the disorder equivalently across different groups. Method BPD criteria were evaluated at interview in 2794 young adult Norwegian twins. Analyses, based on item-response modeling, were conducted to test for differential age and sex moderation of the individual BPD criteria characteristics given factor-level covariate effects. Results Confirmatory factor analytic results supported a unidimensional structure for the nine BPD criteria. Compared to males, females had a higher BPD factor mean, larger factor variance and there was a significant age by sex interaction on the factor mean. Strong differential sex and age by sex interaction effects were found for the ‘ impulsivity ’ criterion factor loading and threshold. Impulsivity related to the BPD factor poorly in young females but improved significantly in older females. Males reported more impulsivity compared to females and this difference increased with age. The ‘ affective instability ’ threshold was also moderated, with males reporting less than expected. Conclusions The results suggest the DSM-IV BPD ‘ impulsivity ’ and ‘ affective instability ’ criteria function differentially with respect to age and sex, with impulsivity being especially problematic. If verified, these findings have important implications for the interpretation of prior research with these criteria. These non-invariant age and sex effects may be identifying criteria-level expression features relevant to BPD nosology and etiology. Criterion functioning assessed using modern psychometric methods should be considered in the development of DSM-V. PMID:19400977

  18. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    PubMed Central

    Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  19. Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.

  20. Extension of suboptimal control theory for flow around a square cylinder

    NASA Astrophysics Data System (ADS)

    Fujita, Yosuke; Fukagata, Koji

    2017-11-01

    We extend the suboptimal control theory to control of flow around a square cylinder, which has no point symmetry on the impulse response from the wall in contrast to circular cylinders and spheres previously studied. The cost functions examined are the pressure drag (J1), the friction drag (J2), the squared difference between target pressure and wall pressure (J3) and the time-averaged dissipation (J4). The control input is assumed to be continuous blowing and suction on the cylinder wall and the feedback sensors are assumued on the entire wall surface. The control law is derived so as to minimize the cost function under the constraint of linearized Navier-Stokes equation, and the impulse response field to be convolved with the instantaneous flow quanties are numerically obtained. The amplitide of control input is fixed so that the maximum blowing/suction velocity is 40% of the freestream velocity. When J2 is used as the cost function, the friction drag is reduced as expected but the mean drag is found to increase. In constast, when J1, J3, and J4 were used, the mean drag was found to decrease by 21%, 12%, and 22%, respectively; in addition, vortex shedding is suppressed, which leads to reduction of lift fluctuations.

  1. Rapid Transient Pressure Field Computations in the Nearfield of Circular Transducers using Frequency Domain Time-Space Decomposition

    PubMed Central

    Alles, E. J.; Zhu, Y.; van Dongen, K. W. A.; McGough, R. J.

    2013-01-01

    The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared to those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method. PMID:23160476

  2. Impulse noise generated by starter pistols

    PubMed Central

    Meinke, Deanna K.; Finan, Donald S.; Soendergaard, Jacob; Flamme, Gregory A.; Murphy, William J.; Lankford, James E.; Stewart, Michael

    2015-01-01

    Objective This study describes signals generated by .22 and .32 caliber starter pistols in the context of noise-induced hearing loss risk for sports officials and athletes. Design Acoustic comparison of impulses generated from typical .22 and .32 caliber starter pistols firing blanks were made to impulses generated from comparable firearms firing both blanks and live rounds. Acoustic characteristics are described in terms of directionality and distance from the shooter in a simulated outdoor running track. Metrics include peak sound pressure levels (SPL), A-weighted equivalent 8-hour level (LeqA8), and maximum permissible number of individual shots, or maximum permissible exposures (MPE) for the unprotected ear. Results Starter pistols produce peak SPLs above 140 dB. The numbers of MPEs are as few as five for the .22-caliber starter pistol, and somewhat higher (≤25) for the .32-caliber pistol. Conclusion The impulsive sounds produced by starter pistols correspond to MPE numbers that are unacceptably small for unprotected officials and others in the immediate vicinity of the shooter. At the distances included in this study, the risk to athletes appears to be low (when referencing exposure criteria for adults), but the sound associated with the starter pistol will contribute to the athlete’s overall noise exposure. PMID:23373743

  3. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  4. Effects of Different Relative Loads on Power Performance During the Ballistic Push-up.

    PubMed

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-12-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Effects of different relative loads on power performance during the ballistic push-up. J Strength Cond Res 31(12): 3411-3416, 2017-The purpose of this investigation was to examine the effect of load on force and power performance during a ballistic push-up. Sixty (24.5 ± 4.3 years, 1.75 ± 0.07 m, and 80.8 ± 13.5 kg) recreationally active men who participated in this investigation completed all testing and were included in the data analysis. All participants were required to perform a 1 repetition maximum bench press, and ballistic push-ups without external load (T1), with 10% (T2) and 20% (T3) of their body mass. Ballistic push-ups during T2 and T3 were performed using a weight loaded vest. Peak and mean force, power, as well as net impulse and flight time were determined for each ballistic push-up. Peak and mean force were both significantly greater (p < 0.01) during T3 (1,062 ± 202 and 901 ± 154 N, respectively), than both T2 (1,017 ± 202 and 842 ± 151 N, respectively) and T1 (960 ± 188 and 792 ± 140 N, respectively). Peak and mean power were significantly greater (p < 0.01) during T1 (950 ± 257 and 521 ± 148 W, respectively), than both T2 (872 ± 246 and 485 ± 143 W, respectively) and T3 (814 ± 275 and 485 ± 162 W, respectively). Peak and mean power were greatest during T1, regardless of participants' strength levels. Significant (p < 0.01) greater net impulse and smaller peak velocity and flight time were also noted from T1 to T3. Results of this investigation indicated that maximal power outputs were achieved without the use of an external load when performing the ballistic push-up, regardless of the participants' level of strength.

  5. Nontidal Loading Applied in VLBI Geodetic Analysis

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2015-12-01

    We investigate the application of nontidal atmosphere pressure, hydrology, and ocean loading series in the analysis of VLBI data. The annual amplitude of VLBI scale variation is reduced to less than 0.1 ppb, a result of the annual components of the vertical loading series. VLBI site vertical scatter and baseline length scatter is reduced when these loading models are applied. We operate nontidal loading services for hydrology loading (GLDAS model), atmospheric pressure loading (NCEP), and nontidal ocean loading (JPL ECCO model). As an alternative validation, we compare these loading series with corresponding series generated by other analysis centers.

  6. Apparatus for material tests using an internal loading system in high-pressure gas at room temperature.

    PubMed

    Imade, M; Fukuyama, S; Yokogawa, K

    2008-07-01

    A new type of apparatus for material tests using an internal loading system in high-pressure gas up to 100 MPa at room temperature without conventional material testing equipment was developed. The apparatus consists of a high-pressure control system and a pressure vessel, in which a piston is installed in the cylinder of the pressure vessel. The load caused by the pressure difference between spaces separated by the piston in the vessel cylinder is applied on the specimen connected to the piston in the vessel cylinder. The actual load on the specimen is directly measured by an external load cell and the displacement of the specimen is also measured by an external extensometer. As an example of the application of the apparatus, a tensile test on SUS316 stainless steel the Japanese Industrial Standard (JIS) G4303, which is comparable to the type 316 stainless steel ASTM A276, was conducted in 90 MPa hydrogen and argon. Hydrogen showed a marked effect on the tensile property of the material. The hydrogen gas embrittlement of the material was briefly discussed.

  7. Apparatus for material tests using an internal loading system in high-pressure gas at room temperature

    NASA Astrophysics Data System (ADS)

    Imade, M.; Fukuyama, S.; Yokogawa, K.

    2008-07-01

    A new type of apparatus for material tests using an internal loading system in high-pressure gas up to 100MPa at room temperature without conventional material testing equipment was developed. The apparatus consists of a high-pressure control system and a pressure vessel, in which a piston is installed in the cylinder of the pressure vessel. The load caused by the pressure difference between spaces separated by the piston in the vessel cylinder is applied on the specimen connected to the piston in the vessel cylinder. The actual load on the specimen is directly measured by an external load cell and the displacement of the specimen is also measured by an external extensometer. As an example of the application of the apparatus, a tensile test on SUS316 stainless steel the Japanese Industrial Standard (JIS) G4303, which is comparable to the type 316 stainless steel ASTM A276, was conducted in 90MPa hydrogen and argon. Hydrogen showed a marked effect on the tensile property of the material. The hydrogen gas embrittlement of the material was briefly discussed.

  8. Tolerance of Artemia to static and shock pressure loading

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  9. The Structure of Adult ADHD

    PubMed Central

    Adler, Lenard A.; Faraone, Stephen V.; Spencer, Thomas J.; Berglund, Patricia; Alperin, Samuel; Kessler, Ronald C.

    2017-01-01

    Although DSM-5 stipulates that symptoms of attention-deficit/hyperactivity disorder (ADHD) are the same for adults as children, clinical observations suggest that adults have more diverse deficits than children in higher-level executive functioning and emotional control. Previous psychometric analyses to evaluate these observations have been limited in ways addressed in the current study, which analyzes the structure of an expanded set of adult ADHD symptoms in 3 pooled U.S. samples: a national household sample, a sample of health plan members, and a sample of adults referred for evaluation at an adult ADHD clinic. Exploratory factor analysis found 4 factors representing executive dysfunction/inattention (including, but not limited to, all the DSM-5 inattentive symptoms, with non-DSM symptoms having factor loadings comparable to those of DSM symptoms), hyperactivity, impulsivity, and emotional dyscontrol. Empirically-derived multivariate symptom profiles were broadly consistent with the DSM-5 inattentive-only, hyperactive/impulsive-only, and combined presentations, but with inattention including executive dysfunction/inattention and hyperactivity-only limited to hyperactivity without high symptoms of impulsivity. These results show that executive dysfunction is as central as DSM-5 symptoms to adult ADHD, while emotional dyscontrol is more distinct but prominent resent in the combined presentation of adult ADHD. PMID:28211596

  10. How to perform measurements in a hovering animal's wake: physical modelling of the vortex wake of the hawkmoth, Manduca sexta.

    PubMed Central

    Tytell, Eric D; Ellington, Charles P

    2003-01-01

    The vortex wake structure of the hawkmoth, Manduca sexta, was investigated using a vortex ring generator. Based on existing kinematic and morphological data, a piston and tube apparatus was constructed to produce circular vortex rings with the same size and disc loading as a hovering hawkmoth. Results show that the artificial rings were initially laminar, but developed turbulence owing to azimuthal wave instability. The initial impulse and circulation were accurately estimated for laminar rings using particle image velocimetry; after the transition to turbulence, initial circulation was generally underestimated. The underestimate for turbulent rings can be corrected if the transition time and velocity profile are accurately known, but this correction will not be feasible for experiments on real animals. It is therefore crucial that the circulation and impulse be estimated while the wake vortices are still laminar. The scaling of the ring Reynolds number suggests that flying animals of about the size of hawkmoths may be the largest animals whose wakes stay laminar for long enough to perform such measurements during hovering. Thus, at low advance ratios, they may be the largest animals for which wake circulation and impulse can be accurately measured. PMID:14561347

  11. Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers.

    PubMed

    Lenton, Gavin K; Doyle, Tim L A; Saxby, David J; Billing, Dan; Higgs, Jeremy; Lloyd, David G

    2018-04-01

    Soldiers carry heavy loads that may cause general discomfort, shoulder pain and injury. This study assessed if new body armour designs that incorporated a hip belt reduced shoulder pressures and improved comfort. Twenty-one Australian soldiers completed treadmill walking trials wearing six different body armours with two different loads (15 and 30 kg). Contact pressures applied to the shoulders were measured using pressure pads, and qualitative assessment of comfort and usability were acquired from questionnaires administered after walking trials. Walking with hip belt compared to no hip belt armour resulted in decreased mean and maximum shoulder pressures (p < 0.005), and 30% fewer participants experiencing shoulder discomfort (p < 0.005) in best designs, although hip discomfort did increase. Laterally concentrated shoulder pressures were associated with 1.34-times greater likelihood of discomfort (p = 0.026). Results indicate body armour and backpack designs should integrate a hip belt and distribute load closer to shoulder midline to reduce load carriage discomfort and, potentially, injury risk. Practitioner Summary: Soldiers carry heavy loads that increase their risk of discomfort and injury. New body armour designs are thought to ease this burden by transferring the load to the hips. This study demonstrated that designs incorporating a hip belt reduced shoulder pressure and shoulder discomfort compared to the current armour design.

  12. Effect of Loading Efficiency on the Process of Consolidation in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Lo, W. C.; Lee, J. W.; Deng, J. H.; Liu, J. H.

    2016-12-01

    Loading efficiency is an undrained poroelastic coefficient that causes an increase in the pore pressure due to an increase in the compressive axial stress. In order to illustrate the importance of loading efficiency on the process of consolidation in unsaturated soils, we utilize two assumptions proposed by Biot (1941) and Terzaghi (1943) to formulate the initial conditions taking account of loading efficiency and without consideration of loading efficiency, respectively. In Biot's theory (1941), he suggested that water is not allowed to escape when the external loading is instantly applied on a porous medium. Accordingly, the soil texture sample is considered to be undrained, and the linearized increment of the fluid content is equal to zero. For this reason, water and air can sustain an external loading only partially at the moment it is imposed, leading to an immediate one-dimensional consolidation. On the contrary, Terzaghi (1943) posited that as the external loading is initially applied, it is entirely sustained by the pore fluid. Thus, the initial water and air pressures are equal to the stress of external loading. Numerical calculations of excess pore water pressure and total settlement were made for a soil with clay texture as an illustrative example. A comparative study shows that in the early stage of consolidation, the model of considering loading efficiency generates larger time-dependent total settlement and also has the highest value of excess pore water pressure initially. The physical cause behind this difference is that the initial conditions established from Biot's theory is much smaller, reflecting the soil skeleton to carry most of external load at the moment it is imposed. Our results indicate that, in terms of the initial conditions for water and air pressures, the loading efficiency must be taken into account in the early stage of consolidation.

  13. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats.

    PubMed

    Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D

    2007-02-01

    We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.

  14. Piezoresistive method for a laser induced shock wave detection on solids

    NASA Astrophysics Data System (ADS)

    Gonzalez-Romero, R.; Garcia-Torales, G.; Gomez Rosas, G.; Strojnik, M.

    2017-08-01

    A laser shock wave is a mechanical high-pressure impulse with a duration of a few nanoseconds induced by a high power laser pulse. We performed wave pressure measurements in order to build and check mathematical models. They are used for wave applications in material science, health, and defense, to list a few. Piezoresistive methods have been shown to be highly sensitive, linear, and highly appropriate for practical implementation, compared with piezoelectric methods employed in shock wave pressure measurements. In this work, we develop a novel method to obtain the sensitivity of a piezoresistive measurement system. The results shows that it is possible to use a mechanical method to measure pressure of a laser induced shock wave in nanosecond range. Experimental pressure measurements are presented.

  15. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    NASA Technical Reports Server (NTRS)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  16. An apparatus for altering the mechanical load of the respiratory system.

    PubMed

    Younes, M; Bilan, D; Jung, D; Kroker, H

    1987-06-01

    We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.

  17. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  19. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  20. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  1. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  2. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  3. 46 CFR 154.517 - Piping: Liquid pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping: Liquid pressure relief. 154.517 Section 154.517... and Process Piping Systems § 154.517 Piping: Liquid pressure relief. The cargo loading and discharge crossover headers, cargo hoses, and cargo loading arms must have means to relieve cargo pressure and to...

  4. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    NASA Astrophysics Data System (ADS)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  5. The behaviour of arcs in carbon mixed-mode high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tucker, M. D.; Putman, K. J.; Ganesan, R.; Lattemann, M.; Stueber, M.; Ulrich, S.; Bilek, M. M. M.; McKenzie, D. R.; Marks, N. A.

    2017-04-01

    Mixed-mode deposition of carbon is an extension of high-power impulse magnetron sputtering in which a short-lived arc is deliberately allowed to ignite on the target surface to increase the ionised fraction of carbon in the deposition flux. Here we investigate the ignition and evolution of these arcs and examine their behaviour for different conditions of argon pressure, power supply voltage, and current. We find that mixed-mode deposition is sensitive to the condition of the target surface, and changing the operating parameters causes changes in the target surface condition which themselves affect the discharge in a process of negative feedback. Initially the arcs are evenly distributed on the target racetrack, but after a long period of operation the mode of erosion changes and arcs become localised in a small region, resulting in a pronounced nodular structure. We also quantify macroparticle generation and observe a power-law size distribution typical of arc discharges. Fewer particles are generated for operation at lower Ar pressure when the arc spot velocity is higher.

  6. Rotational polarities of sudden impulses in the magnetotail lobe

    NASA Technical Reports Server (NTRS)

    Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.

    1992-01-01

    A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.

  7. Explicit Finite Element Method for Transparency Impact Analysis

    DTIC Science & Technology

    1991-06-01

    investigators have employed a similar concept for fiber-reinforced composite laminates (Chow 1971, 1975; Noor 1975, 1989; Chatterjee, 1979). Consider...Intense Impulsive Loads, It. J. Nuon. Meth. Engng. 14, 1865- 1871. Jones, R. M. (1975), Mechanics of Composite Materials, Scripta Book Co., Washington, D...Structural Dynamics, J. Eng. Mech. Div. 85, 67-94. Noor, A. K. (1975), Stability of Multilayered Composite Plates, Fibre Sci. Tech. 8, 81-89. Noor, A. K

  8. Use of the Fakopp TreeSonic acoustic device to estimate wood quality characteristics in loblolly pine trees planted at different densities

    Treesearch

    Ralph L. Amateis; Harold E. Burkhart

    2015-01-01

    A Fakopp TreeSonic acoustic device was used to measure time of flight (TOF) impulses through sample trees prior to felling from 27-year-old loblolly pine (Pinus taeda L.) plantations established at different planting densities. After felling, the sample trees were sawn into lumber and the boards subjected to edgewise bending under 2-point loading. Bending properties...

  9. ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot

    DTIC Science & Technology

    2016-10-09

    ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot * Marco Hutter1, Christian Gehring2, Dominic Jud1, Andreas Lauber1, C. Dario Bellicoso1...Abstract— This paper introduces ANYmal, a quadrupedal robot that features outstanding mobility and dynamic motion capability. Thanks to novel...compliant joint modules with integrated electronics, the 30 kg, 0.5 m tall robotic dog is torque controllable and very robust against impulsive loads during

  10. Simulating Underbelly Blast Events using Abaqus/Explicit - CEL

    DTIC Science & Technology

    2013-01-15

    describe the material. As a result, a Langragian treatment of the structure is preferred. Therefore, a finite element solver with the capability of...algorithm is a two part process in which all material is deformed with a Lagrange treatment in a given time increment. This is followed by a remapping...accurately describe the material response of geological materials subjected to high impulse loading (i.e. shock events). The hydrostatic behavior of

  11. Blood Pressure and Arterial Load After Transcatheter Aortic Valve Replacement for Aortic Stenosis.

    PubMed

    Lindman, Brian R; Otto, Catherine M; Douglas, Pamela S; Hahn, Rebecca T; Elmariah, Sammy; Weissman, Neil J; Stewart, William J; Ayele, Girma M; Zhang, Feifan; Zajarias, Alan; Maniar, Hersh S; Jilaihawi, Hasan; Blackstone, Eugene; Chinnakondepalli, Khaja M; Tuzcu, E Murat; Leon, Martin B; Pibarot, Philippe

    2017-07-01

    After aortic valve replacement, left ventricular afterload is often characterized by the residual valve obstruction. Our objective was to determine whether higher systemic arterial afterload-as reflected in blood pressure, pulsatile and resistive load-is associated with adverse clinical outcomes after transcatheter aortic valve replacement (TAVR). Total, pulsatile, and resistive arterial load were measured in 2141 patients with severe aortic stenosis treated with TAVR in the PARTNER I trial (Placement of Aortic Transcatheter Valve) who had systolic blood pressure (SBP) and an echocardiogram obtained 30 days after TAVR. The primary end point was 30-day to 1-year all-cause mortality. Lower SBP at 30 days after TAVR was associated with higher mortality (20.0% for SBP 100-129 mm Hg versus 12.0% for SBP 130-170 mm Hg; P <0.001). This association remained significant after adjustment, was consistent across subgroups, and confirmed in sensitivity analyses. In adjusted models that included SBP, higher total and pulsatile arterial load were associated with increased mortality ( P <0.001 for all), but resistive load was not. Patients with low 30-day SBP and high pulsatile load had a 3-fold higher mortality than those with high 30-day SBP and low pulsatile load (26.1% versus 8.1%; hazard ratio, 3.62; 95% confidence interval, 2.36-5.55). Even after relief of valve obstruction in patients with aortic stenosis, there is an independent association between post-TAVR blood pressure, systemic arterial load, and mortality. Blood pressure goals in patients with a history of aortic stenosis may need to be redefined. Increased pulsatile arterial load, rather than blood pressure, may be a target for adjunctive medical therapy to improve outcomes after TAVR. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00530894. © 2017 American Heart Association, Inc.

  12. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    NASA Astrophysics Data System (ADS)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  13. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  14. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking.

    PubMed

    Lee, Jinkyu; Yoon, Yong-Jin; Shin, Choongsoo S

    2017-12-01

    The purpose of this study was to investigate the effect of load carriage on the kinematics and kinetics of the ankle and knee joints during uphill walking, including joint work, range of motion (ROM), and stance time. Fourteen males walked at a self-selected speed on an uphill (15°) slope wearing military boots and carrying a rifle in hand without a backpack (control condition) and with a backpack. The results showed that the stance time significantly decreased with backpack carriage (p < .05). The mediolateral impulse significantly increased with backpack carriage (p < .05). In the ankle joints, the inversion-eversion, and dorsi-plantar flexion ROM in the ankle joints increased with backpack carriage (p < .05). The greater dorsi-plantar flexion ROM with backpack carriage suggested 1 strategy for obtaining high plantar flexor power during uphill walking. The result of the increased mediolateral impulse and inversion-eversion ROM in the ankle joints indicated an increase in body instability caused by an elevated center of mass with backpack carriage during uphill walking. The decreased stance time indicated that an increase in walking speed could be a compensatory mechanism for reducing the instability of the body during uphill walking while carrying a heavy backpack.

  15. Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads

    NASA Astrophysics Data System (ADS)

    Şahan, Mehmet Fatih

    2017-11-01

    In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.

  16. Upper limb joint forces and moments during underwater cyclical movements.

    PubMed

    Lauer, Jessy; Rouard, Annie Hélène; Vilas-Boas, João Paulo

    2016-10-03

    Sound inverse dynamics modeling is lacking in aquatic locomotion research because of the difficulty in measuring hydrodynamic forces in dynamic conditions. Here we report the successful implementation and validation of an innovative methodology crossing new computational fluid dynamics and inverse dynamics techniques to quantify upper limb joint forces and moments while moving in water. Upper limb kinematics of seven male swimmers sculling while ballasted with 4kg was recorded through underwater motion capture. Together with body scans, segment inertial properties, and hydrodynamic resistances computed from a unique dynamic mesh algorithm capable to handle large body deformations, these data were fed into an inverse dynamics model to solve for joint kinetics. Simulation validity was assessed by comparing the impulse produced by the arms, calculated by integrating vertical forces over a stroke period, to the net theoretical impulse of buoyancy and ballast forces. A resulting gap of 1.2±3.5% provided confidence in the results. Upper limb joint load was within 5% of swimmer׳s body weight, which tends to supports the use of low-load aquatic exercises to reduce joint stress. We expect this significant methodological improvement to pave the way towards deeper insights into the mechanics of aquatic movement and the establishment of practice guidelines in rehabilitation, fitness or swimming performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Repeatability of knee impulsive loading measurements with skin-mounted accelerometers and lower limb surface electromyographic recordings during gait in knee osteoarthritic and asymptomatic individuals

    PubMed Central

    Lyytinen, T.; Bragge, T.; Hakkarainen, M.; Liikavainio, T.; Karjalainen, P.A.; Arokoski, J.P.

    2016-01-01

    Objectives: To determine the repeatability of knee joint impulsive loading measurements with skin-mounted accelerometers (SMAs) and lower limb surface electromyography (EMG) recordings during gait. Methods: Triaxial SMA and EMG from 4 muscles during level and stair walking in nine healthy and nine knee osteoarthritis (OA) subjects were used. The initial peak acceleration (IPA), root mean square (RMS), maximal acceleration transient rate (ATRmax) and mean EMG activity (EMGact) were calculated. The coefficient of variation (CV) and the intraclass correlation coefficient (ICC) were calculated to measure repeatability. Results: The CV and ICC of RMS accelerations ranged from 4.9% to 10.9% and from 0.69 to 0.96 in both study groups during level walking. The CV and ICC of IPA and ATRmax varied from 7.7% to 14.2% and from 0.85 to 0.99 during level and stairs up walking in healthy subjects. The CV and ICC of EMGact ranged from 8.3% to 31.7% and from 0.16 to 0.97 in both study groups. Conclusions: RMS accelerations exhibited good repeatability during walking in healthy and knee OA subjects. The repeatability of EMG measurements was acceptable in healthy subjects depending on the measured muscles. PMID:26944825

  18. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  19. [Effect of different backpack loads on physiological parame ters in walking].

    PubMed

    Zhao, Meiya; Tian, Shan; Tang, Qiaohong; Ni, Yikun; Wang, Lizhen; Fan, Yubo

    2014-10-01

    This study investigated the effect of prolonged walking with load carriage on body posture, muscle fatigue, heart rate and blood pressure of the tested subjects. Ten healthy volunteers performed 30 min walking trials on treadmill (speed = 1.1 m/s) with different backpack loads [0% body weight (BW), 10% BW, 15% BW and 20% BW]. The change of body posture, muscle fatigue, heart rate and blood pressure before and after walking and the recovery of muscle fatigue during the rest time (0, 5, 10 and 15 min) were collected using the Bortec AMT-8 and the NDI Optotrak Certus. Results showed that the forward trunk and head angle, muscle fatigue, heart rate and blood pressure increased with the increasing backpack loads and bearing time. With the 20% BW load, the forward angle, muscle fatigue and systolic pressure were significantly higher than with lighter weights. No significantly increased heart rate and diastolic pressure were found. Decreased muscle fatigue was found after removing the backpack in each load trial. But the recovery of the person with 20% BW load was slower than that of 0% BW, 10% BW and 15% BW. These findings indicated that the upper limit of backpack loads for college-aged students should be between 15% BW and 20% BW according to muscle fatigue and forward angle. It is suggested that backpack loads should be restricted to no more than 15% BW for walks of up to 30 min duration to avoid irreversible muscle fatigue.

  20. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  1. 46 CFR 54.01-30 - Loadings (modifies UG-22).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Loadings (modifies UG-22). 54.01-30 Section 54.01-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-30 Loadings (modifies UG-22). (a) The loadings for pressure vessels shall be as required by UG-22 of section VIII of the...

  2. 46 CFR 54.01-30 - Loadings (modifies UG-22).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Loadings (modifies UG-22). 54.01-30 Section 54.01-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-30 Loadings (modifies UG-22). (a) The loadings for pressure vessels shall be as required by UG-22 of section VIII of the...

  3. 46 CFR 54.01-30 - Loadings (modifies UG-22).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Loadings (modifies UG-22). 54.01-30 Section 54.01-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-30 Loadings (modifies UG-22). (a) The loadings for pressure vessels shall be as required by UG-22 of section VIII of the...

  4. 46 CFR 54.01-30 - Loadings (modifies UG-22).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Loadings (modifies UG-22). 54.01-30 Section 54.01-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-30 Loadings (modifies UG-22). (a) The loadings for pressure vessels shall be as required by UG-22 of section VIII of the...

  5. 46 CFR 54.01-30 - Loadings (modifies UG-22).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Loadings (modifies UG-22). 54.01-30 Section 54.01-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS General Requirements § 54.01-30 Loadings (modifies UG-22). (a) The loadings for pressure vessels shall be as required by UG-22 of section VIII of the...

  6. Acoustical properties of individual liposome-loaded microbubbles.

    PubMed

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico

    2012-12-01

    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Design and Performance Estimates of an Ablative Gallium Electromagnetic Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.

    2012-01-01

    The present study details the high-power condensable propellant research being conducted at NASA Glenn Research Center. The gallium electromagnetic thruster is an ablative coaxial accelerator designed to operate at arc discharge currents in the range of 10-25 kA. The thruster is driven by a four-parallel line pulse forming network capable of producing a 250 microsec pulse with a 60 kA amplitude. A torsional-type thrust stand is used to measure the impulse of a coaxial GEM thruster. Tests are conducted in a vacuum chamber 1.5 m in diameter and 4.5 m long with a background pressure of 2 microtorr. Electromagnetic scaling calculations predict a thruster efficiency of 50% at a specific impulse of 2800 seconds.

  8. Micropropulsion devices based on molecular acceleration by pulsed optical lattices

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail N.; Gimelshein, Sergey F.; Barker, Peter F.

    2006-03-01

    The ability of a traveling periodic optical potential to increase the thrust and specific impulse of microthrusters is investigated. Two flow regimes, high density and low density, are considered. The thrust from a micronozzle, with a stagnation pressure of 1 atm and temperature of 300 K, can be increased by more than an order of magnitude. These conditions can be achieved for a constant velocity lattice, produced by two near counterpropagating optical fields that are focused into the nozzle throat. A propulsion system that operates in low-density regime and is driven by molecules trapped by an accelerating optical lattice is proposed. It is shown that such a system has a potential to achieve a specific impulse of thousands of seconds.

  9. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  10. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  11. Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.

    2008-01-01

    This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.

  12. In-flight investigation of shuttle tile pressure orifice installations

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Meyer, Robert R., Jr.

    1990-01-01

    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions.

  13. The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure.

    PubMed

    Chuang, Shih-Youeng; Lin, Leou-Chyr; Hedman, Thomas P

    2010-10-01

    This study involves a biomechanical evaluation of a prospective injectable treatment for degenerative discs. The high osmolarity of the non-degenerated nucleus pulposus attracts water contributing to the hydrostatic behavior of the tissue. This intradiscal pressure is known to drop as fluid is exuded from the matrix due to compressive loading. The objective of this study was to compare the changes in intradiscal pressure in control and genipin cross-linked intervertebral discs. Thirty bovine lumbar motion segments were randomly divided into a phosphate-buffered saline control group and a 0.33% genipin group and soaked at room temperature for 2 days. A needle pressure sensor was held in the center of the disc while short-term and static creep compressive loads were applied. The control group demonstrated a 25% higher average intradiscal pressure compared to genipin-treated discs under 750 N compressive load (p=0.029). Depressurization during static compressive creep was 56% higher in the control than in the genipin group (p=0.014). These results suggest cross-linking induced changes in the poroelastic properties of the involved tissues affected the mechanics of compressive load support in the disc with lower levels of nucleus pressure, a corresponding decrease in the elastic expansion of the annulus, and an increased axial compressive loading of the inner and outer annulus tissues. It is possible that concurrent changes in hydraulic permeability and proteoglycan retention known to be associated with genipin cross-linking were also contributors to poroelastic changes. Reduction of peak pressures and moderation of pressure fluctuations could be beneficial relative to discogenic pain.

  14. The effect of circumferential distortion on fan performance at two levels of blade loading

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Sanger, N. L.

    1975-01-01

    Single stage fans designed for two levels of pressure ratio or blade loading were subjected to screen-induced circumferential distortions of 90-degree extent. Both fan rotors were designed for a blade tip speed of 425 m/sec, blade solidity of 1.3 and a hub-to-tip radius ratio of 0.5. Circumferential measurements of total pressure, temperature, static pressure, and flow angle were obtained at the hub, mean and tip radii at five axial stations. Rotor loading level did not appear to have a significant influence on rotor response to distorted flow. Losses in overall pressure ratio due to distortion were most severe in the stator hub region of the more highly loaded stage. At the near stall operating condition tip and hub regions of (either) rotor demonstrated different response characteristics to the distorted flow. No effect of loading was apparent on interactions between rotor and upstream distorted flow fields.

  15. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  16. Unsteady pressure loads in a generic high speed engine model

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.

    1992-01-01

    Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.

  17. The effects of backpack loads and spinal stabilization exercises on the dynamic foot pressure of elementary school children with idiopathic scoliosis

    PubMed Central

    Lee, Suemin; Shim, Jemyung

    2015-01-01

    [Purpose] The purpose of this study was to measure and observe the changes in dynamic plantar pressures when school children carried specific bag loads, and to determine whether improved physical balance after an eight-week spinal stabilization exercise program can influences plantar pressures. [Subjects] The subjects were 10 school students with Cobb angles of 10° or greater. [Methods] Gait View Pro 1.0 (Alfoots, Korea) was were based on to measure the pressure of the participants’ feet. Spinal stabilization exercises used TOGU Multi-roll Functional (TOGU, Germany) training. Dynamic plantar pressures were measured with bag loads of 0% no bag and 15% of subjects’ body weight. The independent t test was performed to analyze changes in plantar pressures. [Results] The plantar pressure measurements of bag load of 0% of subjects’ body weight before and after the spinal stabilization exercise program were not significantly different, but those of two foot areas with a 15% load were statistically significant (mt5, 67.32±24.25 and 51.77±25.52 kPa; lat heel, 126.00±20.46 and 102.08±23.87 kPa). [Conclusion] After performance of the spinal stabilization exercises subjects’ overall plantar pressures were reduced, which may suggest that physical balance improved. PMID:26311964

  18. Numerical analysis of behaviour of cross laminated timber (CLT) in blast loading

    NASA Astrophysics Data System (ADS)

    Šliseris, J.; Gaile, L.; Pakrastiņš, L.

    2017-10-01

    A non-linear computation model for CLT wall element that includes explicit dynamics and composite damage constitutive model was developed. The numerical model was compared with classical beam theory and it turned out that shear wood layer has significant shear deformations that must be taken into account when designing CLT. It turned out that impulse duration time has a major effect on the strength of CLT. Special attention must be payed when designing CLT wall, window and door architectural system in order to guarantee the robustness of structure. The proposed numerical modelling framework can be used when designing CLT buildings that can be affected by blast loading, whilst structural robustness must be guaranteed.

  19. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  20. Low-thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.

    1980-01-01

    Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion systems weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided a complete propellant inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and miscellaneous masses. The output also includes the masses of all tanks; the mass of the insulation, engines and other components; total wet system and burnout mass; system mass fraction; total impulse and burn time.

Top