Sample records for impurity density profiles

  1. Light impurity transport in JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  2. Classical confinement and outward convection of impurity ions in the MST RFP

    NASA Astrophysics Data System (ADS)

    Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Caspary, K. J.; Magee, R. M.; Brower, D. L.; Chapman, B. E.; Craig, D.; Ding, W. X.; Eilerman, S.; Fiksel, G.; Lin, L.; Nornberg, M.; Parke, E.; Reusch, J. A.; Sarff, J. S.

    2012-05-01

    Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.

  3. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  4. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    PubMed

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  5. Molybdenum emission from impurity-induced m= 1 snake-modes on the Alcator C-Mod tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Aparicio, L.; MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139; Bitter, M.

    2012-10-15

    A suite of novel high-resolution spectroscopic imaging diagnostics has facilitated the identification and localization of molybdenum impurities as the main species during the formation and lifetime of m= 1 impurity-induced snake-modes on Alcator C-Mod. Such measurements made it possible to infer, for the first time, the perturbed radiated power density profiles from which the impurity density can be deduced.

  6. Transport of light, trace impurities in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.

    2012-10-01

    Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.

  7. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  8. Understanding of impurity poloidal distribution in the edge pedestal by modelling

    NASA Astrophysics Data System (ADS)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team

    2015-07-01

    Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.

  9. Impact of impurities on zonal flow driven by trapped electron mode turbulence

    NASA Astrophysics Data System (ADS)

    Guo, Weixin; Wang, Lu; Zhuang, Ge

    2017-12-01

    The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.

  10. Poloidal asymmetries in edge transport barriersa)

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.

    2015-05-01

    Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.

  11. Carbon impurities behavior and its impact on ion thermal confinement in high-ion-temperature deuterium discharges on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Nagaoka, K.; Takahashi, H.; Yokoyama, M.; Murakami, S.; Nakano, H.; Ida, K.; Yoshinuma, M.; Seki, R.; Kamio, S.; Fujiwara, Y.; Oishi, T.; Goto, M.; Morita, S.; Morisaki, T.; Osakabe, M.; LHD Experiment Group1, the

    2018-07-01

    The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma.

  12. Full-f XGC1 gyrokinetic study of improved ion energy confinement from impurity stabilization of ITG turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Kyuho; Kwon, Jae-Min; Chang, C. S.; Seo, Janghoon; Ku, S.; Choe, W.

    2017-06-01

    Flux-driven full-f gyrokinetic simulations are performed to study carbon impurity effects on the ion temperature gradient (ITG) turbulence and ion thermal transport in a toroidal geometry. Employing the full-f gyrokinetic code XGC1, both main ions and impurities are evolved self-consistently including turbulence and neoclassical physics. It is found that the carbon impurity profile self-organizes to form an inwardly peaked density profile, which weakens the ITG instabilities and reduces the overall fluctuations and ion thermal transport. A stronger reduction appears in the low frequency components of the fluctuations. The global structure of E × B flow also changes, resulting in the reduction of global avalanche like transport events in the impure plasma. Detailed properties of impurity transport are also studied, and it is revealed that both the inward neoclassical pinch and the outward turbulent transport are equally important in the formation of the steady state impurity profile.

  13. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  14. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  15. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  16. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    NASA Astrophysics Data System (ADS)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  17. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    PubMed

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  18. Development of Long-Pulse Heating and Current Drive Actuators and Operational Techniques Compatible with a High-Z Divertor and First Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding

    Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less

  19. Correlated magnetic impurities in a superconductor: electron density profiles and robustness of superconductivity.

    PubMed

    Sacramento, P D; Dugaev, V K; Vieira, V R; Araújo, M A N

    2010-01-20

    The insertion of magnetic impurities in a conventional superconductor leads to various effects. In this work we show that the electron density is affected by the spins (considered as classical) both locally and globally. The charge accumulation is solved self-consistently. This affects the transport properties along magnetic domain walls. Also, we show that superconductivity is more robust if the spin locations are not random but correlated. © 2010 IOP Publishing Ltd

  20. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  1. The physics of W transport illuminated by recent progress in W density diagnostics at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Odstrcil, T.; Pütterich, T.; Angioni, C.; Bilato, R.; Gude, A.; Odstrcil, M.; ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-01-01

    Due to the high mass and charge of the heavy ions, centrifugal and electrostatic forces cause a significant variation in their poloidal density. The impact of these forces on the poloidal density profile of tungsten was investigated utilizing the detailed two-dimensional SXR emissivity profiles from the ASDEX Upgrade tokamak. The perturbation in the electrostatic potential generated by magnetic trapping of the non-thermal ions from neutral beam injection was found to be responsible for significant changes in the poloidal distribution of tungsten ions. An excellent match with the results from fast particle modeling was obtained, validating the model for the poloidal fast particle distribution. Additionally, an enhancement of the neoclassical transport due to an outboard side impurity localization was measured in the experiment when analyzing the tungsten flux between sawtooth crashes. A qualitative match with neoclassical modeling was found, demonstrating the possibility of minimizing neoclassical transport by an optimization of the poloidal asymmetry profile of the impurity.

  2. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2015-09-01

    We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.

  3. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir

    2016-10-01

    Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.

  4. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  5. Kinetic shear Alfvén instability in the presence of impurity ions in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Gaimin; Shen, Y.; Xie, T.

    2013-10-15

    The effects of impurity ions on the kinetic shear Alfvén (KSA) instability in tokamak plasmas are investigated by numerically solving the integral equations for the KSA eigenmode in the toroidal geometry. The kinetic effects of hydrogen and impurity ions, including transit motion, finite ion Larmor radius, and finite-orbit-width, are taken into account. Toroidicity induced linear mode coupling is included through the ballooning-mode representation. Here, the effects of carbon, oxygen, and tungsten ions on the KSA instability in toroidal plasmas are investigated. It is found that, depending on the concentration and density profile of the impurity ions, the latter can bemore » either stabilizing or destabilizing for the KSA modes. The results here confirm the importance of impurity ions in tokamak experiments and should be useful for analyzing experimental data as well as for understanding anomalous transport and control of tokamak plasmas.« less

  6. Gyrokinetic modeling of impurity peaking in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Manas, P.; Camenen, Y.; Benkadda, S.; Weisen, H.; Angioni, C.; Casson, F. J.; Giroud, C.; Gelfusa, M.; Maslov, M.

    2017-06-01

    Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor ( R / L nC ) on plasma parameters are investigated via multilinear regressions. A marked correlation between R / L nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, ν * , and T e / T i < 1 , the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher ν * and T e / T i > 1 , the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.

  7. Pedestal turbulence simulations using GENE

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Kotschenreuther, M.; Hatch, D. R.; Zheng, L. J.; Mahajan, S.; Diallo, A.; Groebner, R. J.; Hubbard, A. E.; Hughes, J. W.; Maggi, C. F.; Saarelma, S.; JET Contributors

    2017-10-01

    We match frequencies, power balance, and other transport characteristics of several pedestals-two DIIID ELMy H-modes and a C-Mod I-mode, and attempt this for a C-Mod ELMy H-mode. Observed quasi-coherent fluctuations (QCFs) on the DIIID shots are identified as MTMs. The MTMs match frequency and power balance (with slight adjustment of temperature profile), and cause low transport in the density, ion heat and impurity channels- consistent with observed inter-ELM evolution of ion and electron temperature, electron and impurity density, or transport analysis of those channels. KBM can be ruled out as the dominant agent for heat transport. We find the Weakly Coherent Mode on C-Mod I-mode may be an electrostatic heavy particle/ITG mode. Analysis is ongoing for the C-Mod ELMy H-mode QCF. Pedestal density profiles in JET-ILW are consistent with ITG induced particle pinch. Work supported by US DOE under DE-FC02-04ER54698, DE-FG02-04ER54742 and DE-FC02-99ER54512 and by Eurofusion under Grant No. 633053.

  8. Direct measurements and comparisons between deuterium and impurity rotation and density profiles in the H-mode steep gradient region on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Chrystal, C.; Stagner, L.; Burrell, K.; Groebner, R. J.; Kaplan, D. H.; Nazikian, R.

    2016-10-01

    The recently commissioned edge deuterium charge exchange recombination (CER) spectroscopy diagnostic on DIII-D is providing direct measurements of the deuterium rotation, temperature, and density in H-mode pedestals. The deuterium temperature and temperature scale length can be 50 % lower than the carbon measurement in the gradient region of the pedestal, indicating that the ion pedestal pressure can deviate significantly from that inferred from carbon CER. In addition, deuterium exhibits a larger toroidal rotation in the co-Ip direction near the separatrix compared with the carbon. These differences are qualitatively consistent with theory-based models that identify thermal ion orbit loss across the separatrix as a source of intrinsic angular momentum. The first direct measurements of the deuterium density pedestal profile show an inward shift of the impurity pedestal compared with the main ions, validating neoclassical predictions from the XGC0 code. Work supported by the U.S. DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  9. Dynamics of Fermionic Impurity in One Dimension

    NASA Astrophysics Data System (ADS)

    Guan, Huijie; Andrei, Natan

    2014-03-01

    We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Sego, Landon H.; Hoggard, Jamin C.

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA’s impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2-D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products ofmore » the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA’s useable impurity profile, (2) low selectivity among a CTA’s known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted towards higher volatility impurities are more likely to be altered by volatilization following CTA exposure.« less

  11. Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media.

    PubMed

    Fraga, Carlos G; Sego, Landon H; Hoggard, Jamin C; Acosta, Gabriel A Pérez; Viglino, Emilie A; Wahl, Jon H; Synovec, Robert E

    2012-12-28

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA's impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products of the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA's useable impurity profile, (2) low selectivity among a CTA's known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted toward higher volatility impurities are more likely to be altered by volatilization following CTA exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (<0 ), opposite to the case of ion temperature gradient (ITG) driven modes. Detailed analyses of the isotope mass dependence for TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results with experimental observations are discussed.

  13. Combined effects of drift waves and neoclassical transport on density profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P.

    2005-10-01

    The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.

  14. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less

  15. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2016-07-15

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less

  16. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  17. Tests of Transport Theory and Reduced Impurity Influx with Highly Radiative Plasmas in TFTR

    NASA Astrophysics Data System (ADS)

    Hill, K. W.

    1997-11-01

    The electron and ion temperature profiles in beam-heated plasmas were observed to be remarkably invariant when radiative losses were increased significantly through gas puffing of high-Z impurities (argon, krypton, xenon) in the Tokamak Fusion Test Reactor. Without impurity puffing, radiative losses accounted for typically only ~ 25\\char'45 of the input power and the radiation profile was strongly peaked at the plasma edge, where the dominant carbon impurity was not fully stripped. At central electron temperatures, T_eo, of ~ 6 keV, trace concentrations of krypton and xenon (n_z/ne ~ 10-3) generated flat and centrally peaked radiation profiles respectively, and a significant fraction of the input power (45-100\\char'45 ) was lost through radiation. This loss provided a nearly ideal technique for studying local heat transport in tokamaks because it perturbed the net heating profile strongly and in a measureable way, with little effect on the density and the beam deposition profiles. In supershot plasmas, Ti >> T_e, the ion temperature profile remained constant, or even increased modestly, as the radiated power fraction was increased to 75-90\\char'45 with krypton and xenon. This observation is surprising because ion-electron coupling is the dominant power loss term for the ions in the core of supershot plasmas, and the central Ti would have decreased a factor of two if the local ion thermal diffusivity had remained constant at its value without impurity puffing. In L-mode plasmas where ion-electron power coupling is a smaller term in the power balance, the electron temperature during impurity puffing also changed only ~ 10-15\\char'45 even as the net power flow through the electrons was decreased by a factor of ~ 3. The ``stiffness" of the temperature profiles to net input power is supportive of transport mechanisms which have a marginal-stability character. Preliminary comparisons of the temperature changes with predictions of the IFS/PPPL transport model,(M. Kotschenreuther, W. Dorland, M. A. Beer, and G. W. Hammett, Phys. Plasmas 2, 2381 (1995)) which has strong marginal-stability behavior, are reasonable; more detailed comparisons are in progress. Use of high-Z radiators did not impair fusion performance, confirming they can be used to reduce the heat flux to the plasma facing components with minimal ion dilution. At input power level s of 30-33 MW, enhanced radiation through krypton and xenon puffing eliminated serious carbon influx (carbon ``blooms") which occurred in comparable plasmas without impurity puffing.

  18. Transport Studies in Alcator C-Mod ITB Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Bonoli, P. T.; Ernst, D.; Greenwald, M. J.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Rice, J. E.; Wukitch, S.; Rowan, W.; Bespamyatnov, I.; Phillips, P.

    2008-11-01

    Internal transport barriers occur in C-Mod plasmas that have off-axis ICRF heating and also in Ohmic H-mode plasmas. These ITBs are marked by highly peaked density and pressure profiles, as they rely on a reduction of particle and thermal flux in the barrier region which allows the neoclassical pinch to peak the central density without reducing the central temperature. Enhancement of several core diagnostics has resulted in increased understanding of C-Mod ITBs. Ion temperature profile measurements have been obtained using an innovative design for x-ray crystal spectrometry and clearly show a barrier forming in the ion temperature profile. The phase contrast imaging (PCI) provides limited localization of the ITB related fluctuations that increase in strength as the central density increases. Simulation of triggering conditions, integrated simulations with fluctuation measurements, parametric studies, and transport implications of fully ionized boron impurity profiles in the plasma are under study. A summary of these results will be presented.

  19. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  20. Direct Measurement of Impurity Transport in a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; Bolte, N.; Heidbrink, W. W.; McWilliams, R.; Wessel, F.

    2011-10-01

    An optical tomography system has been developed and implemented in the Flux Coil Generated Field Reversed Configuration (FCG-FRC) at Tri Alpha Energy. Sixteen chords view ~ 35 % of the FRC at the mid-plane. The chords are arranged in two identical fans of eight chords each. To measure transport of an impurity species, argon, an FRC is generated using either Nitrogen or Deuterium as the primary species. A puff valve is activated prior to the shot such that the argon begins to bleed in to the vacuum chamber as the FRC is formed. The gas is puffed at the optimal location for tomographic reconstruction. Each chord is collimated to illuminate a fiber optic cable which is fed to an array of photomultiplier tubes which are fitted with neutral density and band pass filters to allow the appropriate amount of light from the emitting, singly ionized, argon at 434 . 8 nm to be measured. Using a preliminary assumption that density of argon is proportional to light intensity gathered data have been used to reconstruct density profiles. These profiles often peak near the field null. The data are being analyzed to determine diffusive and convective transport coefficients.

  1. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  2. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  3. Influence of ablation impurities on blunt body re-entry ionization

    NASA Technical Reports Server (NTRS)

    Schexnayder, C. J., Jr.; Evans, J. S.

    1974-01-01

    Electron density profiles which include the effect of an ablated sodium impurity were computed for the boundary layer on a blunt-nosed body re-entering the atmosphere at 7.62 km/sec. Profiles are computed from the nose to a distance of four diameters along the RAM C-payload. A finite-difference, laminar, nonequilibrium chemistry boundary-layer program was used. Comparison of theory with S-band diagnostic antenna results, electron concentration deduced from X- and C-band attenuation data, and Langmuir probe data at several different aft body locations show that agreement is good at high altitude. At the lower altitudes there is disagreement between theory and S-band antenna data where the apparent discrepancy is attributed to the three-body recombination rate constant used for deionization of sodium coupled with the effect of angle of attack.

  4. Kinetic neoclassical transport in the H-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less

  5. Radial magnetic compression in the expelled jet of a plasma deflagration accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Mouratidis, Theodore

    2016-02-29

    A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empiricalmore » scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.« less

  6. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    NASA Astrophysics Data System (ADS)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement Number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  7. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE PAGES

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...

    2016-09-26

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  8. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    PubMed

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  9. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  10. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  11. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    PubMed

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  12. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  13. Temperature Measurements in Compressed and Uncompressed SPECTOR Plasmas at General Fusion

    NASA Astrophysics Data System (ADS)

    Young, William; Carter, Neil; Howard, Stephen; Carle, Patrick; O'Shea, Peter; Fusion Team, General

    2017-10-01

    Accurate temperature measurements are critical to establishing the behavior of General Fusion's SPECTOR plasma injector, both before and during compression. As compression tests impose additional constraints on diagnostic access to the plasma, a two-color, filter-based soft x-ray electron temperature diagnostic has been implemented. Ion Doppler spectroscopy measurements also provide impurity ion temperatures on compression tests. The soft x-ray and ion Doppler spectroscopy measurements are being validated against a Thomson scattering system on an uncompressed version of SPECTOR with more diagnostic access. The multipoint Thomson scattering diagnostic also provides up to a six point temperature and density profile, with the density measurements validated against a far infrared interferometer. Temperatures above 300 eV have been demonstrated to be sustained for over 500 microseconds in uncompressed plasmas. Optimization of soft x-ray filters is ongoing, in order to balance blocking of impurity line radiation with signal strength.

  14. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics.

    PubMed

    Hoggard, Jamin C; Wahl, Jon H; Synovec, Robert E; Mong, Gary M; Fraga, Carlos G

    2010-01-15

    In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.

  15. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  16. Interpretation of plasma impurity deposition probes. Analytic approximation

    NASA Astrophysics Data System (ADS)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  17. Analysis of metallic impurity density profiles in low collisionality Joint European Torus H-mode and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.

    2006-04-01

    This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give ground to the idea that in ITER it should be possible to find conditions in which the risk of accumulation of metals such as nickel can be contained.

  18. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-01

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  19. Impurity profiling of trinitrotoluene using vacuum-outlet gas chromatography-mass spectrometry.

    PubMed

    Brust, Hanneke; Willemse, Sander; Zeng, Tuoyu; van Asten, Arian; Koeberg, Mattijs; van der Heijden, Antoine; Bolck, Annabel; Schoenmakers, Peter

    2014-12-29

    In this work, a reliable and robust vacuum-outlet gas chromatography-mass spectrometry (GC-MS) method is introduced for the identification and quantification of impurities in trinitrotoluene (TNT). Vacuum-outlet GC-MS allows for short analysis times; the analysis of impurities in TNT was performed in 4min. This study shows that impurity profiling of TNT can be used to investigate relations between TNT samples encountered in forensic casework. A wide variety of TNT samples were analyzed with the developed method. Dinitrobenzene, dinitrotoluene, trinitrotoluene and amino-dinitrotoluene isomers were detected at very low levels (<1wt.%) by applying the MS in selected-ion monitoring (SIM) mode. Limits of detection ranged from 6ng/mL for 2,6-dinitrotoluene to 43ng/mL for 4-amino-2,6-dinitrotoluene. Major impurities in TNT were 2,4-dinitrotoluene and 2,3,4-trinitrotoluene. Impurity profiles based on seven compounds showed to be useful to TNT samples from different sources. Statistical analysis of these impurity profiles using likelihood ratios demonstrated the potential to investigate whether two questioned TNT samples encountered in forensic casework are from the same source. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  1. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lau, R.; Beard, M.; Gupta, S. S.; Schatz, H.; Afanasjev, A. V.; Brown, E. F.; Deibel, A.; Gasques, L. R.; Hitt, G. W.; Hix, W. R.; Keek, L.; Möller, P.; Shternin, P. S.; Steiner, A. W.; Wiescher, M.; Xu, Y.

    2018-05-01

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is ρ =2× {10}12 {{g}} {cm}}-3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond ρ =2× {10}12 {{g}} {cm}}-3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.

  2. Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities

    DOE PAGES

    Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; ...

    2016-12-16

    Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi 2Sr 2CaCu 2O 8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω 1 ≈ 4 meV and Ω 2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as wellmore » as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.« less

  3. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  4. a Vacuum Ultraviolet Study of the Alcator C Tokamak Plasma Using a High Resolution, One-Dimensional Photon Counting Detector.

    NASA Astrophysics Data System (ADS)

    Benjamin, Russell D.

    A photon counting detector based on an image intensified photodiode array was developed to meet the needs of one particular area of spectroscopic study, the determination of the kinetic temperature of impurity species. The image intensifier incorporates 3 high strip current ( ~300 muA) microchannel plates in a 'Z' configuration to achieve the gain required for the detection of single photon events. The design, construction, and laboratory testing of this system to determine its suitability for fusion plasma diagnostics is described, in particular, the ability to measure emission line profiles in order to determine the kinetic temperature of the emitting species. The photon counting detector, mounted on the exit plane of a 1m Ebert-Fastie spectrometer, was used to make spectroscopic measurements of the local ion temperature in Alcator C plasmas using impurity emission lines. Alcator experiments on one particular method of RF heating in a tokamak plasma, the launching of Ion Bernstein waves (IBW), are discussed. The O V kinetic temperature increases during IBW injection as the pre-RF plasma density is raised (on a shot-to-shot basis) above the region in which significant increases in the central ion temperature are observed. In addition, ion temperature profiles were measured during Ion Bernstein wave experiments by combining this point derived from the fit to the emission line of O VII with neutral particle analyzer data. The incorporation of the O VII temperature point in the determination of the pre-RF ion temperature profile results in a significant reduction (~0.4 cm) in the characteristic width of this profile. The high resolution and geometric stability of the photon counting detector made possible the measurement of small wavelength shifts (Deltalambda ~ 0.01 A) and, therefore, the determination of small bulk plasma motions (in this case, poloidal rotation of the plasma) through the Doppler shift of impurity emission lines. The Zeeman effect makes a significant contribution to the measured line profile in high field tokamaks, even in the ultraviolet. Modelling of the Zeeman effect is discussed and applied to the impurity species observed in Alcator C plasmas. (Abstract shortened with permission of author.).

  5. Internal transport barrier in tokamak and helical plasmas

    NASA Astrophysics Data System (ADS)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the ITB and future prospects are discussed.

  6. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  7. Effect of V/III ratio on the surface morphology and electrical properties of m-plane (10 1 bar 0) GaN homoepitaxial layers

    NASA Astrophysics Data System (ADS)

    Barry, Ousmane I.; Tanaka, Atsushi; Nagamatsu, Kentaro; Bae, Si-Young; Lekhal, Kaddour; Matsushita, Junya; Deki, Manato; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi

    2017-06-01

    We have investigated the effect of V/III ratio on the surface morphology, impurity concentration and electrical properties of m-plane (10 1 bar 0) Gallium Nitride (GaN) homoepitaxial layers. Four-sided pyramidal hillocks are observed on the nominally on-axis m-plane GaN films. Hillocks sizes relatively increase by increasing the V/III ratio. All facets of pyramidal hillocks exhibit well-defined step-terrace features. Secondary ion mass spectrometry depth profiles reveal that carbon impurities decrease by increasing the V/III ratio while the lowest oxygen content is found at an optimized V/III ratio of 900. Vertical Schottky barrier diodes fabricated on the m-GaN samples were characterized. Low leakage current densities of the order of 10-10 A/cm2 at -5 V are obtained at the optimum V/III ratio. Oxygen impurities and screw-component dislocations around hillocks are found to have more detrimental impact on the leakage current mechanism.

  8. Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.

    PubMed

    Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart

    2011-02-28

    Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.

  9. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    NASA Astrophysics Data System (ADS)

    Pallix, J. B.; Becker, C. H.; Missert, N.; Char, K.; Hammond, R. H.

    1988-02-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-Tc superconducting thin film of nominal composition YBa2Cu3O7 deposited on SrTiO3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 Å thick film having critical current densities of 1 to 2×106 A/cm2. SALI depth profiles show this film to be more uniform than thicker films (˜1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y2O2+, Y2O3+, Y3O4+, Ba2O+, Ba2O2+, BaCu+, BaCuO+, YBaO2+, YSrO2+, etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and COx are evident particularly in the sample's near surface region (the top ˜100 Å).

  10. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  11. Forced degradation and impurity profiling: recent trends in analytical perspectives.

    PubMed

    Jain, Deepti; Basniwal, Pawan Kumar

    2013-12-01

    This review describes an epigrammatic impression of the recent trends in analytical perspectives of degradation and impurities profiling of pharmaceuticals including active pharmaceutical ingredient (API) as well as drug products during 2008-2012. These recent trends in forced degradation and impurity profiling were discussed on the head of year of publication; columns, matrix (API and dosage forms) and type of elution in chromatography (isocratic and gradient); therapeutic categories of the drug which were used for analysis. It focuses distinctly on comprehensive update of various analytical methods including hyphenated techniques for the identification and quantification of thresholds of impurities and degradants in different pharmaceutical matrices. © 2013 Elsevier B.V. All rights reserved.

  12. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.

  13. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, S. H., E-mail: shko@nfri.re.kr; Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions ismore » shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.« less

  14. Rotation and transport in Alcator C-Mod ITB plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 < r/a < 0.4) but rises steeply in the region where the foot in the ITB density profile is observed (0.5 < r/a < 0.7). A correspondingly strong E × B shear is seen at the location of the ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  15. Development of visual peak selection system based on multi-ISs normalization algorithm to apply to methamphetamine impurity profiling.

    PubMed

    Lee, Hun Joo; Han, Eunyoung; Lee, Jaesin; Chung, Heesun; Min, Sung-Gi

    2016-11-01

    The aim of this study is to improve resolution of impurity peaks using a newly devised normalization algorithm for multi-internal standards (ISs) and to describe a visual peak selection system (VPSS) for efficient support of impurity profiling. Drug trafficking routes, location of manufacture, or synthetic route can be identified from impurities in seized drugs. In the analysis of impurities, different chromatogram profiles are obtained from gas chromatography and used to examine similarities between drug samples. The data processing method using relative retention time (RRT) calculated by a single internal standard is not preferred when many internal standards are used and many chromatographic peaks present because of the risk of overlapping between peaks and difficulty in classifying impurities. In this study, impurities in methamphetamine (MA) were extracted by liquid-liquid extraction (LLE) method using ethylacetate containing 4 internal standards and analyzed by gas chromatography-flame ionization detection (GC-FID). The newly developed VPSS consists of an input module, a conversion module, and a detection module. The input module imports chromatograms collected from GC and performs preprocessing, which is converted with a normalization algorithm in the conversion module, and finally the detection module detects the impurities in MA samples using a visualized zoning user interface. The normalization algorithm in the conversion module was used to convert the raw data from GC-FID. The VPSS with the built-in normalization algorithm can effectively detect different impurities in samples even in complex matrices and has high resolution keeping the time sequence of chromatographic peaks the same as that of the RRT method. The system can widen a full range of chromatograms so that the peaks of impurities were better aligned for easy separation and classification. The resolution, accuracy, and speed of impurity profiling showed remarkable improvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A New Platform for Profiling Degradation-Related Impurities Via Exploiting the Opportunities Offered by Ion-Selective Electrodes: Determination of Both Diatrizoate Sodium and Its Cytotoxic Degradation Product.

    PubMed

    Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A

    2018-05-01

    Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for preliminary separation.

  17. Levothyroxine sodium revisited: A wholistic structural elucidation approach of new impurities via HPLC-HRMS/MS, on-line H/D exchange, NMR spectroscopy and chemical synthesis.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-02-20

    The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Recent trends in the impurity profile of pharmaceuticals

    PubMed Central

    Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin

    2010-01-01

    Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862

  19. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.

    2016-11-01

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

  20. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Rita; Beard, Mary; Gupta, Sanjib S.

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less

  1. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    DOE PAGES

    Lau, Rita; Beard, Mary; Gupta, Sanjib S.; ...

    2018-05-24

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less

  2. Prototype high resolution multienergy soft x-ray array for NSTX.

    PubMed

    Tritz, K; Stutman, D; Delgado-Aparicio, L; Finkenthal, M; Kaita, R; Roquemore, L

    2010-10-01

    A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T(e) in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.

  3. Active spectroscopic measurements using the ITER diagnostic system.

    PubMed

    Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A

    2010-10-01

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  4. Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, Dennis Patrick

    This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%) despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2-4% Li, 0.6-2% C, 0.4-0.7% O, and Z eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.

  5. Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Dennis Patrick

    This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%)more » despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with~2-4% Li, ~0.6-2% C, ~0.4-0.7% O, and Z_eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.« less

  6. Correlation between Charge Contrast Imaging and the Distribution of Some Trace Level Impurities in Gibbsite

    NASA Astrophysics Data System (ADS)

    Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.

    2000-01-01

    Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.

  7. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  8. Control of edge localized modes by pedestal deposited impurity in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Mazon, D.; Zou, X. L.; Zhong, W. L.; Gao, J. M.; Zhang, K.; Sun, P.; Dong, C. F.; Cui, Z. Y.; Liu, Yi; Shi, Z. B.; Yu, D. L.; Cheng, J.; Jiang, M.; Xu, J. Q.; Isobe, M.; Xiao, G. L.; Chen, W.; Song, S. D.; Bai, X. Y.; Zhang, P. F.; Yuan, G. L.; Ji, X. Q.; Li, Y. G.; Zhou, Y.; Delpech, L.; Ekedahl, A.; Giruzzi, G.; Hoang, T.; Peysson, Y.; Song, X. M.; Song, X. Y.; Li, X.; Ding, X. T.; Dong, J. Q.; Yang, Q. W.; Xu, M.; Duan, X. R.; Liu, Y.; the HL-2A Team

    2018-04-01

    Effect of the pedestal deposited impurity on the edge-localized mode (ELM) behaviour has been observed and intensively investigated in the HL-2A tokamak. Impurities have been externally seeded by a newly developed laser blow-off (LBO) system. Both mitigation and suppression of ELMs have been realized by LBO-seeded impurity. Measurements have shown that the LBO-seeded impurity particles are mainly deposited in the pedestal region. During the ELM mitigation phase, the pedestal density fluctuation is significantly increased, indicating that the ELM mitigation may be achieved by the enhancement of the pedestal transport. The transition from ELM mitigation to ELM suppression was triggered when the number of the LBO-seeded impurity exceeds a threshold value. During the ELM suppression phase, a harmonic coherent mode (HCM) is excited by the LBO-seeded impurity, and the pedestal density fluctuation is significantly decreased, the electron density is continuously increased, implying that HCM may reduce the pedestal turbulence, suppress ELMs, increase the pedestal pressure, thus extending the Peeling-Ballooning instability limit. It has been found that the occurance of the ELM mitigation and ELM suppression closely depends on the LBO laser spot diameter.

  9. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited).

    PubMed

    Delgado-Aparicio, L F; Maddox, J; Pablant, N; Hill, K; Bitter, M; Rice, J E; Granetz, R; Hubbard, A; Irby, J; Greenwald, M; Marmar, E; Tritz, K; Stutman, D; Stratton, B; Efthimion, P

    2016-11-01

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e , n Z , ΔZ eff , and n e,fast ). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.

  10. In-situ observation of impurity diffusion boundary layer in silicon Czochralski growth

    NASA Astrophysics Data System (ADS)

    Kakimoto, Koichi; Eguchi, Minoru; Watanabe, Hisao; Hibiya, Taketoshi

    1990-01-01

    In-situ observation of the impurity diffusion boundary layer during single crystal growth of indium-doped silicon was carried out by X-ray radiography. The difference in the transmitted X-ray image compared with molten silicon just beneath the crystal-melt interface was attributed to the concentration of indium impurities having a larger absorption coefficient. The intensity profile of the transmitted X-ray can be reproduced by a transmittance calculation that considers the meniscus shape and impurity distribution. The impurity distribution profile near the crystal-melt interface was estimated using the Burton-Prim-Slichter (BPS) equation. The observed impurity diffusion boundary layer thickness was about 0.5 mm. It was found that the boundary layer thickness was not constant in the radial direction, which cannot be explained by the BPS theory, since it is based on a one-dimensional calculation.

  11. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394

  12. An Experimental Design Approach for Impurity Profiling of Valacyclovir-Related Products by RP-HPLC

    PubMed Central

    Katakam, Prakash; Dey, Baishakhi; Hwisa, Nagiat T; Assaleh, Fathi H; Chandu, Babu R; Singla, Rajeev K; Mitra, Analava

    2014-01-01

    Abstract Impurity profiling has become an important phase of pharmaceutical research where both spectroscopic and chromatographic methods find applications. The analytical methodology needs to be very sensitive, specific, and precise which will separate and determine the impurity of interest at the 0.1% level. Current research reports a validated RP-HPLC method to detect and separate valacyclovir-related impurities (Imp-E and Imp-G) using the Box-Behnken design approach of response surface methodology. A gradient mobile phase (buffer: acetonitrile as mobile phase A and acetonitrile: methanol as mobile phase B) was used. Linearity was found in the concentration range of 50–150 μg/mL. The mean recovery of impurities was 99.9% and 103.2%, respectively. The %RSD for the peak areas of Imp-E and Imp-G were 0.9 and 0.1, respectively. No blank interferences at the retention times of the impurities suggest the specificity of the method. The LOD values were 0.0024 μg/mL for Imp-E and 0.04 μg/mL for Imp-G and the LOQ values were obtained as 0.0082 μg/mL and 0.136 μg/mL, respectively, for the impurities. The S/N ratios in both cases were within the specification limits. Proper peak shapes and satisfactory resolution with good retention times suggested the suitability of the method for impurity profiling of valacyclovir-related drug substances. PMID:25853072

  13. The Low-Recycling Lithium Boundary and Implications for Plasma Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, Erik Michael

    Pumping of incident hydrogen and impurity ions by lithium enables control of the particle inventory and fueling profile in magnetic-confined plasmas, and may raise the plasma temperature near the wall. As a result, the density gradient is expected to contribute substantially to the free-energy, affecting particle and thermal transport from micro-turbulence which is typically the dominant transport mechanism in high-temperature fusion experiments. Transport in gyrokinetic simulations of density-gradient-dominated profiles is characterized by a small linear critical gradient, large particle flux, and preferential diffusion of cold particles. As a result, the heat flux is below 5/2 or even 3/2 times themore » particle flux, usually assumed to be the minimum for convection. While surprising, this result is consistent with increasing entropy. Coupled TEM-ITG (ion-temperature- gradient) simulations using ηe = ηi find η = ∇T /∇n∼0.8 maximizes the linear critical pressure gradient, which suggests that experiments operating near marginal ITG stability with larger η would increase the linear critical pressure gradient by transferring free-energy from the temperature gradient to the density gradient. Simulations were performed with profiles predicted for the Lithium Tokamak Experiment (LTX) if ion thermal transport was neoclassical, while electron thermal transport and particle transport were a fixed ratio above the neoclassical level. A robust TEM instability was found for the outer half radius, while the ITG was found to be driven unstable as well during gas puff fueling. This suggests that TEM transport will be an important transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing mechanisms, may dominate over neoclassical transport. A diagnostic suite has been developed to measure hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can be achieved in a small tokamak using solid lithium coatings, assess its dependence on the operating condition of the lithium surface, and evaluate its impact on the discharge. Coatings on the close-fitting stainless-steel substrate produce a significant reduction in recyling, so that the effective particle confinement times are as low as 1 ms. Measurements of particle inventory in the plasma and hydrogen Lyman-α emission indicate that hydrogen recycling at the surface increases as subsequent discharges are performed; nevertheless, strong pumping of hydrogen is observed even after almost double the cumulative fueling is applied that should saturate the lithium coating to the penetration depth of hydrogen ions. Probe measurements show that when external fueling is terminated, the scrape-off-layer of discharges with fresh coatings decays to lower density and rises to higher electron temperature than for discharges with a partially-passivated surface, consistent with reduced edge cooling from recycled particles. Near the end of the discharge, higher plasma current correlates with reduced τp* and hydrogen emission, suggesting that discharges with fresh coatings achieve higher electron temperature in the core. A novel approach using neutral modeling was developed for the inverse problem of determining the distribution of recycled particle flux from PFC surfaces given a large number of emission measurements, revealing that extremely low levels of recycling (Rcore∼0.6 and Rplate∼0.8) have been achieved with solid lithium coatings. Together with impurity emission measurements, modeling suggests that during periods of particularly low electron density, influx of impurities from the walls contributes substantially to the global particle balance.« less

  14. Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering.

    PubMed

    Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S

    2008-10-03

    We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.

  15. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  16. A model relating radiated power and impurity concentrations during Ne, N and Ar injection in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.

    2000-10-01

    A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.

  17. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling [The inter-ELM W erosion profile in DIII-D H-mode discharges and benchmarking with OEDGE+ERO modeling

    DOE PAGES

    Abrams, Tyler; Ding, Rui; Guo, Houyang Y.; ...

    2017-04-03

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and TZM molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but divergemore » at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. As a result, it is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.« less

  18. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling [The inter-ELM W erosion profile in DIII-D H-mode discharges and benchmarking with OEDGE+ERO modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler; Ding, Rui; Guo, Houyang Y.

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and TZM molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but divergemore » at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. As a result, it is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.« less

  19. Modernized active spectroscopic diagnostics (CXRS) of the T-10 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupin, V. A., E-mail: Krupin-VA@nrcki.ru; Klyuchnikov, L. A., E-mail: Lklyuchnikov@list.ru; Korobov, K. V., E-mail: Korobov-KV@nrcki.ru

    2015-12-15

    This work presents the results of modernization of the CXRS (charge exchange recombination spectroscopy) diagnostics [1] at the T-10 tokamak. The relevance of this work is due to the importance of measurements of the ion temperature and nuclei density of the working gas and impurities for analysis of transport processes in the plasma ion component. Measurements of radial profiles of the ion temperature are extremely important for investigating the geodesic acoustic mode behavior which is conducted at the T-10 [2]. The modernized scheme of CXRS measurements, as well as the design and operational features of the spectrometer created for themore » new diagnostics, is described. Principles of data recording and further processing are considered in detail; attention is given to the problem of calibration of the whole complex of equipment. The performed changes in diagnostics allow the measurements to be taken simultaneously in three spectral intervals: in the region of the beam line H{sub α}, the CXRS line of carbon ion C{sup 5+}, and the CXRS line of one of the hydrogen-like ions: He{sup 1+}, Li{sup 2+}, N{sup 6+}, O{sup 7+} or Ne{sup 9+}. This makes it possible to measure the density profiles of two plasma impurities simultaneously, as well as the ion temperature from CXRS lines of different elements. The modernized diagnostics significantly broadens the possibilities of studying the physics of transport processes and quasi-coherent modes of plasma oscillations at the T-10.« less

  20. Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.

    PubMed

    Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M

    2015-03-01

    This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors

    DOE PAGES

    Lian, Cheng; Liu, Kun; Liu, Honglai; ...

    2017-06-08

    Room-temperature ionic liquids (RTILs) have been widely used as electrolytes to enhance the capacitive performance of electrochemical capacitors also known as supercapacitors. Whereas impurities are ubiquitous in RTILs (e.g., water, alkali salts, and organic solvents), little is known about their influences on the electrochemical behavior of electrochemical devices. In this work, we investigate different impurities in RTILs within the micropores of carbon electrodes via the classical density functional theory (CDFT). We find that under certain conditions impurities can significantly change the charging behavior of electric double layers and the shape of differential capacitance curves even at very low concentrations. Moremore » interestingly, an impurity with a strong affinity to the nanopore can increase the energy density beyond a critical charging potential. As a result, our theoretical predictions provide further understanding of how impurity in RTILs affects the performance of supercapacitors.« less

  2. Theory of Friedel oscillations in monolayer graphene and group-VI dichalcogenides in a magnetic field

    NASA Astrophysics Data System (ADS)

    Rusin, Tomasz M.; Zawadzki, Wlodek

    2018-05-01

    Friedel oscillations (FO) of electron density caused by a deltalike neutral impurity in two-dimensional (2D) systems in a magnetic field are calculated. Three 2D cases are considered: free electron gas, monolayer graphene, and group-VI dichalcogenides. An exact form of the renormalized Green's function is used in the calculations, as obtained by a summation of the infinite Dyson series and regularization procedure. Final results are valid for large ranges of potential strengths V0, electron densities ne, magnetic fields B , and distances from the impurity r . Realistic models for the impurities are used. The first FO of induced density in WS2 are described by the relation Δ n (r ) ∝sin(2 π r /TFO) /r2 , where TFO∝1 /√{EF} . For weak impurity potentials, the amplitudes of FO are proportional to V0. For attractive potentials and high fields, the total electron density remains positive for all r . On the other hand, for low fields, repulsive potentials and small r , the total electron density may become negative, so that many-body effects should be taken into account.

  3. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less

  5. Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)

    DOE PAGES

    Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; ...

    2016-11-14

    A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less

  6. Effective ion charge (Zeff) measurements and impurity behavior in KSTAR

    NASA Astrophysics Data System (ADS)

    Sarwar, S.; Na, H. K.; Park, J. M.

    2018-04-01

    A visible bremsstrahlung detector array diagnostic system has been developed on the Korea Superconducting Tokamak Advanced Research (KSTAR) to view the whole minor radius in a narrow region of the continuum free of spectral lines. The interference filters coupled with photomultiplier tubes have been employed to determine the effective charge Zeff by using visible bremsstrahlung data during neutral beam injection in the KSTAR plasma. The Zeff profiles are typically flat for L-mode plasmas and evolve to hollow profiles during the H mode in the KSTAR. A comparison of the visible bremsstrahlung emission based on the calculated Zeff profiles is consistent with measured values of Zeff from a visible spectrometer in the core plasma. The electron temperature is measured by X-ray imaging crystal spectrometry, and electron density needed for the analysis is taken by the assumption of parabolic profiles of these parameters. The line of sight averaged local bremsstrahlung emissivity is determined with low uncertainty, and the radial emissivity is obtained by using the Abel inversion technique. In addition, a dependence of effective charge Zeff on the line-averaged electron density is evaluated, and Zeff is also determined to observe the effect of boronization.

  7. Formation and stability of impurity "snakes" in tokamak plasmas.

    PubMed

    Delgado-Aparicio, L; Sugiyama, L; Granetz, R; Gates, D A; Rice, J E; Reinke, M L; Bitter, M; Fredrickson, E; Gao, C; Greenwald, M; Hill, K; Hubbard, A; Hughes, J W; Marmar, E; Pablant, N; Podpaly, Y; Scott, S; Wilson, R; Wolfe, S; Wukitch, S

    2013-02-08

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q<1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.

  8. Effects of limiter biasing on the ATF torsatron

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Aceto, S. C.; Baylor, L. R.; Bell, J. D.; Bigelow, T. S.; England, A. C.; Harris, J. H.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Ma, C. H.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Zielinski, J. J.

    1992-12-01

    Positive limiter biasing on the currentless ATF torsatron produces a significant increase in the particle confinement with no improvement in the energy confinement. Experiments have been carried out in 1-T plasmas with ˜400 kW of ECH. Two rail limiters located at the last closed flux surface (LCFS), one at the top and one at the bottom of the device, are biased at positive and negative potentials with respect to the vessel. When the limiters are positively biased at up to 300 V, the density increases sharply to the ECH cutoff value. At the same time, the H α radiation drops, indicating that the particle confinement improves. When the density is kept constant, the H α radiation is further reduced and there is almost no change of plasma stored energy. Under these conditions, the density profiles become peaked and the electric field becomes outward-pointing outside the LCFS and more negative inside the LCFS. In contrast, negative biasing yields some reduction of the density and stored energy at constant gas feed, and the plasma potential profile remains the same. Biasing has almost no effect on the intrinsic impurity levels in the plasma.

  9. Efficient design and verification of diagnostics for impurity transport experiments.

    PubMed

    Chilenski, M A; Greenwald, M J; Marzouk, Y M; Rice, J E; White, A E

    2018-01-01

    Recent attempts to measure impurity transport in Alcator C-Mod using an x-ray imaging crystal spectrometer and laser blow-off impurity injector have failed to yield unique reconstructions of the transport coefficient profiles. This paper presents a fast, linearized model which was constructed to estimate diagnostic requirements for impurity transport experiments. The analysis shows that the spectroscopic diagnostics on Alcator C-Mod should be capable of inferring simple profiles of impurity diffusion D Z and convection V Z accurate to better than ±10% uncertainty, suggesting that the failure to infer unique D Z and V Z from experimental data is attributable to an inadequate analysis procedure rather than the result of insufficient diagnostics. Furthermore, the analysis reveals that even a modest spatial resolution can overcome a low time resolution. This approach can be adapted to design and verify diagnostics for transport experiments on any magnetic confinement device.

  10. Impurity self-energy in the strongly-correlated Bose systems

    NASA Astrophysics Data System (ADS)

    Panochko, Galyna; Pastukhov, Volodymyr; Vakarchuk, Ivan

    2018-02-01

    We proposed the nonperturbative scheme for the calculation of the impurity spectrum in the Bose system at zero temperature. The method is based on the path-integral formulation and describes an impurity as a zero-density ideal Fermi gas interacting with Bose system for which the action is written in terms of density fluctuations. On the example of the 3He atom immersed in the liquid helium-4 a good consistency with experimental data and results of Monte Carlo simulations is shown.

  11. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Finkenthal, M.; Soukhanovskii, V.

    In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less

  12. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H.more » Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.« less

  13. Polymeric efficiency in remove impurities during cottonseed biodiesel production

    NASA Astrophysics Data System (ADS)

    Lin, H. L.; Liang, Y. H.; Yan, J.; Lin, H. D.; Espinosa, A. R.

    2016-07-01

    This paper describes a new process for developing biodiesel by polymer from crude cottonseed oil. The study was conducted to examine the effectiveness of the alkali transesterification-flocculation-sedimentation process on fast glycerol and other impurities in the separation from biodiesel by using quaternary polyamine-based cationic polymers SL2700 and polyacylamide cationic polymer SAL1100. The settling velocity of glycerol and other impurities in biodiesel was investigated through settling test experiments; the quality of the biodiesel was investigated by evaluating the viscosity and density. The results revealed that SL2700, SAL1100 and their combination dramatically improved the settling velocity of glycerol and other impurities materials than traditional method. SL 2700 with molecular weight of 0.2 million Da and charge density of 50% then plus SAL1100 with molecular weight of 11 million Da and charge density of 10% induced observable particle aggregation with the best settling performance.

  14. Extension of the operational regime of the LHD towards a deuterium experiment

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.

    2017-10-01

    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskey, S. R.; Grierson, B. A.; Stagner, L.

    Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less

  16. Investigation of impurity transport using laser blow-off technique in the HL-2A Ohmic and ECRH plasmas

    NASA Astrophysics Data System (ADS)

    Kai, Zhang; Zheng-Ying, Cui; Ping, Sun; Chun-Feng, Dong; Wei, Deng; Yun-Bo, Dong; Shao-Dong, Song; Min, Jiang; Yong-Gao, Li; Ping, Lu; Qing-Wei, Yang

    2016-06-01

    Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating (ECRH) are studied in the HL-2A tokamak by laser blow-off (LBO) technique. The progression of aluminium ions as the trace impurity is monitored by soft x-ray (SXR) and bolometer detector arrays with good temporal and spatial resolutions. Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed. Based on the numerical simulation with one-dimensional (1D) impurity transport code STRAHL, the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot. The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case, and that the convection velocity V changes from negative (inward) for the Ohmic case to partially positive (outward) for the ECRH case. The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.

  17. Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.

    2009-12-01

    The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible ice tensile strengths that might occur on Titan and other solar system bodies.

  18. Modelling of nitrogen seeding experiments in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Fable, E.; Dux, R.; Ryter, F.; ASDEX Upgrade Team

    2018-03-01

    Experiments using nitrogen were conducted in H-mode plasmas at ASDEX Upgrade that has a full-W wall. The edge region of H-mode plasmas is modulated by the edge-localized modes (ELMs) which lead to a loss of energy and particles from the confined plasma. In order to gain a better understanding of the complex physical mechanisms which govern the behaviour of radiation and impurities in the presence of ELMs, the evolution of impurities and radiation has been modelled in a time-dependent way. The simulations have been carried out with the ASTRA-STRAHL package featuring the self-consistent interplay between impurity transport, radiation, heat and particle transport of the background plasma, and the effects of ELMs. ELMs are modelled based on the two different assumptions of a diffusive and a convective transport, respectively. The experimental discharge behaviour was reproduced providing only transport coefficients, heat, and particle source. The results underlie the importance of non-coronal effects through the ELM-induced transport which lead to a strong enhancement of the nitrogen radiation. Taking these effects into account is crucial in order to not underestimate the radiation. The radiation properties of high-Z impurities such as tungsten are instead very weakly influenced by non-coronal effects due to its faster equilibration time. While the nitrogen density does not change significantly decreasing the ELM frequency, tungsten density and consequently the radiation increase strongly. The degree to which W is flushed out depends on whether the ELM transport is diffusive or convective. Simulations show that for the N seeded cases considered here, the diffusive model reproduces more accurately the experimental observations. The different behaviour of N and W can be explained in terms of profile peaking which increases with Z (neoclassical pinch). The strong increase in W radiation when the ELM frequency is decreased is not only due to the lack of a sufficiently strong flush out of this impurity but also to the fact that the long time between two crashes gives the impurities time to penetrate further into the plasma escaping the region where they can be flushed out. This is in agreement with the experimental observations and highlights the importance of maintaining high ELM frequencies for the stability and performance of the discharges.

  19. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    NASA Astrophysics Data System (ADS)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.

  20. Log-rise of the resistivity in the holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.

    2018-03-01

    We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.

  1. Floquet theory of microwave absorption by an impurity in the two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2018-03-01

    We investigate the dynamics of a two-dimensional electron gas (2DEG) under circular polarized microwave radiation in the presence of dilute localized impurities. Inspired by recent developments on Floquet topological insulators we obtain the Floquet wave functions of this system which allow us to predict the microwave absorption and charge density responses of the electron gas; we demonstrate how these properties can be understood from the underlying semiclassical dynamics even for impurities with a size of around a magnetic length. The charge density response takes the form of a rotating charge density vortex around the impurity that can lead to a significant renormalization of the external microwave field which becomes strongly inhomogeneous on the scale of a cyclotron radius around the impurity. We show that this inhomogeneity can suppress the circular polarization dependence which is theoretically expected for microwave induced resistance oscillations but which was not observed in experiments on semiconducting 2DEGs. Our explanation for this so far unexplained polarization independence has close similarities with the Azbel'-Kaner effect in metals where the interaction length between the microwave field and conduction electrons is much smaller than the cyclotron radius due to skin effect generating harmonics of the cyclotron resonance.

  2. Continuous profiles of microstructure, stable water isotopes and impurity content of the 2m snow pack from three polar drill sites

    NASA Astrophysics Data System (ADS)

    Freitag, Johannes; Schaller, Christoph; Kipfstuhl, Sepp; Hörhold, Maria; Schaidt, Maximilian; Sander, Merle; Moser, Dorothea

    2017-04-01

    Interpreting polar ice as climate archive requires profound knowledge about the formation of climate-proxies within the upper snow column. In order to investigate different impact factors on signal formation we performed a multiproxy- approach for 2m deep snow profiles by continuously measuring the 3D-microstructure using core-scale X-CT and the isotopic composition and impurity load in discrete samples of 1.1cm spatial resolution. The study includes profiles from a low-accumulation site on the East Antarctic plateau (Kohnen Station, DML), a typical medium-accumulation site on the North-East-Greenland ice sheet (EGRIP drilling camp) and a high-accumulation site on the Renland ice cap (East-coast of Greenland, RECAP drilling camp). Major observations are the tooth-shaped imprint of structural anisotropy and sulfate concentrations at the low accumulation site, the clear isotopic inter-annual variations that are in line with distinct impurity peaks at the high-accumulation site and the unexpected missing footprint of ice crusts and refrozen melt layers within the impurity- and isotope records for all sites.

  3. HPLC-MS Examination of Impurities in Pentaerythritol Tetranitrate

    NASA Astrophysics Data System (ADS)

    Brown, Geoffrey W.; Giambra, Anna M.

    2014-04-01

    Pentaerythritol tetranitrate (PETN) has trace homolog impurities that can be detected by high-performance liquid chromatography-mass spectrometry. Consideration of observed impurity masses and candidate structures based on known pentaerythritol impurities allows identification of 22 compounds in the data. These are all consistent with either fully nitrated homologs or derivatives substituted with methyl, methoxy, or hydroxyl groups in place of a nitric ester. Examining relative impurity concentrations in three starting batches of PETN and six subsequently processed batches shows that it is possible to use relative concentration profiles as a fingerprint to differentiate batches and follow them through recrystallization steps.

  4. Control of ITBs in Magnetically Confined Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.

    2017-10-01

    In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.

  5. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.

    2011-12-23

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less

  6. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less

  7. Magnetic Reconnections in Mast

    NASA Astrophysics Data System (ADS)

    Turri, G.; Buttery, R. J.; Hastie, R. J.; Gimblett, C. G.; Cowley, S. C.; Lehane, I.

    2004-11-01

    In MAST the appearance of a spontaneous snake in the plasma core has many of the properties of a full reconnection. Analysis of SXR and TS data indicates a strongly radiating core with high impurity levels forming before the onset of the snake. Following the appearance of an x-point (island on the q=1 surface) the former core is hypothesised to move off axis and shrink, appearing as a radiative region with flux-tube-like rotating helical structure (the snake). A code has been developed to compare this with a slow full Kadomtsev type reconnection process including effects of impurities, density and temperature perturbations, current profile evolution and transport. The code reproduces many of the trends and effects seen in the data, confirming the event as consistent with full reconnection. The time-scale of the event is also consistent with estimates of hybrid growth times for such a reconnection process. Further analysis will be presented exploring the physics of this process in more detail.

  8. Polarity dependence of Mn incorporation in (Ga,Mn)N superlattices

    NASA Astrophysics Data System (ADS)

    Tropf, L.; Kunert, G.; Jakieła, R.; Wilhelm, R. A.; Figge, S.; Grenzer, J.; Hommel, D.

    2016-03-01

    In the context of recent efforts to combine high Mn concentrations in (Ga,Mn)N with a pronounced p-type carrier density, (Ga,Mn)N/GaN:Mg-superlattices have been fabricated using plasma-assisted molecular beam epitaxy. Profiles of the dopant atomic densities in the heterostructures are obtained by secondary ion mass spectroscopy. They show an abrupt drop of two to three orders of magnitude in both Mn and Mg concentrations after the first GaN:Mg layer above a critical Mg-flux. Scanning electron microscopy before and after selective etching reveals a polarity inversion from originally Ga-face to N-face GaN in samples in which high Mg fluxes were applied. From our observations, we are able to draw an analogy between the impurity incorporation laws of Mg and Mn.

  9. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling

    NASA Astrophysics Data System (ADS)

    Abrams, T.; Ding, R.; Guo, H. Y.; Thomas, D. M.; Chrobak, C. P.; Rudakov, D. L.; McLean, A. G.; Unterberg, E. A.; Briesemeister, A. R.; Stangeby, P. C.; Elder, J. D.; Wampler, W. R.; Watkins, J. G.

    2017-05-01

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but diverge at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. It is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.

  10. Deuterium charge exchange recombination spectroscopy from the top of the pedestal to the scrape off layer in H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Stagner, L.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Ashourvan, A.; Pablant, N. A.

    2017-10-01

    Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D [J.L. Luxon, Nucl. Fusion 42 (2002) 614] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the Dα spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (C6+) and main-ion (D+) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D+ temperature can be half the value of the C6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. These measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.

  11. Deuterium charge exchange recombination spectroscopy from the top of the pedestal to the scrape off layer in H-mode plasmas

    DOE PAGES

    Haskey, S. R.; Grierson, B. A.; Stagner, L.; ...

    2017-10-25

    Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less

  12. Study of impurity transport in HL-2A ECRH L-mode plasmas with radially different ECRH power depositions

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Zhang, K.; Morita, S.; Ji, X. Q.; Ding, X. T.; Xu, Y.; Sun, P.; Gao, J. M.; Dong, C. F.; Zheng, D. L.; Li, Y. G.; Jiang, M.; Li, D.; Zhong, W. L.; Liu, Yi; Dong, Y. B.; Song, S. D.; Yu, L. M.; Shi, Z. B.; Fu, B. Z.; Lu, P.; Huang, M.; Yuan, B. S.; Yang, Q. W.; Duan, X. R.

    2018-05-01

    In HL-2A, an inverse sawtooth oscillation is observed with a long-lasting m/n  =  1/1 mode during ECRH phase with power deposition inside sawtooth inversion radius (inner-deposited ECRH), while a normal sawtooth instead appears when the ECRH power is deposited outside sawtooth inversion radius (outer-deposited ECRH). Aluminum is then injected as a trace impurity with laser blow-off (LBO) method into the inner- and outer-deposited ECRH phases of HL-2A discharges to investigate the effect of ECRH on impurity transport. Temporal behavior of soft x-ray (SXR) array signals is analyzed with a 1D impurity transport code, and radial structures of impurity transport coefficients are obtained. The result shows that the radial transport of Al ions is strongly enhanced during the inner-deposited ECRH phase. In particular, an outward convection velocity is developed with positive values of 0  ⩽  V(ρ)  ⩽  3.8 m s-1 in ρ  ⩽  0.5, while the convection velocity is inward in ρ  ⩾  0.6. In the outer-deposited ECRH discharge, on the other hand, the convection velocity takes a big negative value in ρ  ⩽  0.4 and close to zero at ρ ~ 0.6. In ohmic discharges, an inward V(ρ) always appears in the whole plasma radii and gradually increases toward the plasma edge (-3.2 m s-1 at ρ  =  1). The simulation result also indicates that centrally-peaked Al ion density profiles presented in the outer-deposited ECRH discharge can be flattened by the inner-deposited ECRH. Modification of impurity transport is discussed in the presence of long-lasting m/n  =  1/1 MHD mode.

  13. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface mightmore » produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.« less

  14. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1-x ,Ga x )Se2 Film Fabricated by Three-Stage Process

    NASA Astrophysics Data System (ADS)

    Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki

    2018-02-01

    For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

  15. Modeling of non-stationary local response on impurity penetration in plasma

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Koltunov, M.

    2012-04-01

    In fusion devices, strongly localized intensive sources of impurities may arise unexpectedly, e.g., if the wall is excessively demolished by hot plasma particles, or can be created deliberately through impurity seeding. The spreading of impurities from such sources both along and perpendicular to the magnetic field is affected by coulomb collisions with background particles, ionization, acceleration by electric field, etc. Simultaneously, the plasma itself can be significantly disturbed by these interactions. To describe self-consistently the impurity spreading process and the plasma response, three-dimensional fluid equations for the particle, parallel momentum, and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solutions in principal details: the maximum densities of impurity ions of different charges, the dimensions both along and across the magnetic field of the shells occupied by these particles, the characteristic temperatures of all plasma components, and the densities of the main ions and electrons in different shells. The results of modeling for penetration of lithium singly charged particles in tokamak edge plasma are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures, implying an outstanding role of coulomb collisions between main and impurity ions, is proposed.

  16. Diffusive charge transport in graphene on SiO 2

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  17. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  18. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  19. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  20. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  1. Transient snakes in an ohmic plasma associated with a minor disruption in the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Songtao; Xu, Liqing; Hu, Liqun; Chen, Kaiyun

    2014-05-01

    A transient burst (ms, an order of the fast-particle slowdown timescale) of a spontaneous snake is observed for the first time in a HT-7 heavy impurity ohmic plasma. The features of the low-Z impurity snake are presented. The flatten electron profile due to the heavy impurity reveals the formation of a large magnetic island. The foot of the impurity accumulation is consistent with the location of the transient snake. The strong frequency-chirping behaviors and the spatial structures of the snake are also presented.

  2. Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit

    NASA Astrophysics Data System (ADS)

    Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin

    2015-08-01

    By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.

  3. Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation

    NASA Astrophysics Data System (ADS)

    Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.

    2018-06-01

    The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N  >  3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.

  4. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less

  5. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  6. Kinetic neoclassical calculations of impurity radiation profiles

    DOE PAGES

    Stotler, D. P.; Battaglia, D. J.; Hager, R.; ...

    2016-12-30

    Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions atmore » a given electron temperature. As a result, analogous simulations with a neon impurity yield qualitatively similar results.« less

  7. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  8. Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon

    NASA Astrophysics Data System (ADS)

    Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter

    2015-09-01

    The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.

  9. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation

    NASA Astrophysics Data System (ADS)

    Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T.

    2018-07-01

    We derive a formula for the effective critical electric field for runaway generation and decay that accounts for the presence of partially ionized impurities in combination with synchrotron and bremsstrahlung radiation losses. We show that the effective critical field is drastically larger than the classical Connor–Hastie field, and even exceeds the value obtained by replacing the free electron density by the total electron density (including both free and bound electrons). Using a kinetic equation solver with an inductive electric field, we show that the runaway current decay after an impurity injection is expected to be linear in time and proportional to the effective critical electric field in highly inductive tokamak devices. This is relevant for the efficacy of mitigation strategies for runaway electrons since it reduces the required amount of injected impurities to achieve a certain current decay rate.

  11. Simultaneous detection and quantitation of organic impurities in methamphetamine by ultra-high-performance liquid chromatography-tandem mass spectrometry, a complementary technique for methamphetamine profiling.

    PubMed

    Li, Li; Brown, Jaclyn L; Toske, Steven G

    2018-04-06

    The analysis of organic impurities plays an important role in the impurity profiling of methamphetamine, which in turn provides valuable information about methamphetamine manufacturing, in particular its synthetic route, chemicals, and precursors used. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is ideally suited for this purpose due to its excellent sensitivity, selectivity, and wide linear range in multiple reaction monitoring (MRM) mode. In this study, a dilute-and-shoot UHPLC-MS/MS method was developed for the simultaneous identification and quantitation of 23 organic manufacturing impurities in illicit methamphetamine. The developed method was validated in terms of stability, limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, and precision. More than 100 illicitly prepared methamphetamine samples were analyzed. Due to its ability to detect ephedrine/pseudoephedrine and its high sensitivity for critical target markers (eg, chloro-pseudoephedrine, N-cyclohexylamphetamine, and compounds B and P), more impurities and precursor/pre-precursors were identified and quantified versus the current procedure by gas chromatography-mass spectrometry (GC-MS). Consequently, more samples could be classified by their synthetic routes. However, the UHPLC-MS/MS method has difficulty in detecting neutral and untargeted emerging manufacturing impurities and can therefore only serve as a complement to the current method. Despite this deficiency, the quantitative information acquired by the presented UHPLC-MS/MS methodology increased the sample discrimination power, thereby enhancing the capacity of methamphetamine profiling program (MPP) to conduct sample-sample comparisons. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  12. Evaluating the Sources of Graphene’s Resistivity Using Differential Conductance

    DOE PAGES

    Somphonsane, R.; Ramamoorthy, H.; He, G.; ...

    2017-09-04

    We explore the contributions to the electrical resistance of monolayer and bilayer graphene, revealing transitions between different regimes of charge carrier scattering. In monolayer graphene at low densities, a nonmonotonic variation of the resistance is observed as a function of temperature. Such behaviour is consistent with the influence of scattering from screened Coulomb impurities. At higher densities, the resistance instead varies in a manner consistent with the influence of scattering from acoustic and optical phonons. The crossover from phonon-, to charged-impurity, limited conduction occurs once the concentration of gate-induced carriers is reduced below that of the residual carriers. In bilayermore » graphene, the resistance exhibits a monotonic decrease with increasing temperature for all densities, with the importance of short-range impurity scattering resulting in a “universal” density-independent (scaled) conductivity at high densities. At lower densities, the conductivity deviates from this universal curve, pointing to the importance of thermal activation of carriers out of charge puddles. These various assignments, in both systems, are made possible by an approach of “differential-conductance mapping”, which allows us to suppress quantum corrections to reveal the underlying mechanisms governing the resistivity.« less

  13. Evaluating the Sources of Graphene’s Resistivity Using Differential Conductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somphonsane, R.; Ramamoorthy, H.; He, G.

    We explore the contributions to the electrical resistance of monolayer and bilayer graphene, revealing transitions between different regimes of charge carrier scattering. In monolayer graphene at low densities, a nonmonotonic variation of the resistance is observed as a function of temperature. Such behaviour is consistent with the influence of scattering from screened Coulomb impurities. At higher densities, the resistance instead varies in a manner consistent with the influence of scattering from acoustic and optical phonons. The crossover from phonon-, to charged-impurity, limited conduction occurs once the concentration of gate-induced carriers is reduced below that of the residual carriers. In bilayermore » graphene, the resistance exhibits a monotonic decrease with increasing temperature for all densities, with the importance of short-range impurity scattering resulting in a “universal” density-independent (scaled) conductivity at high densities. At lower densities, the conductivity deviates from this universal curve, pointing to the importance of thermal activation of carriers out of charge puddles. These various assignments, in both systems, are made possible by an approach of “differential-conductance mapping”, which allows us to suppress quantum corrections to reveal the underlying mechanisms governing the resistivity.« less

  14. Oscillating-Crucible Technique for Silicon Growth

    NASA Technical Reports Server (NTRS)

    Daud, T.; Dumas, K. A.; Kim, K. M.; Schwuttke, G. H.; Smetana, P.

    1984-01-01

    Technique yields better mixing of impurities and superior qualiity crystals. Accellerated motion stirs melt which reduces temperature gradients and decreases boundary layer for diffusion of impurities near growing surface. Results better mixing of impurities into melt, decrease in tendency for dendritic growth or cellular growth and crystals with low dislocation density. Applied with success to solution growth and Czochralski growth, resulting in large crystals of superior quality.

  15. Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator

    NASA Astrophysics Data System (ADS)

    Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.

    2017-10-01

    Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.

  16. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep

    We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less

  17. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    DOE PAGES

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep; ...

    2016-05-13

    We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less

  18. Modelling of plasma-wall interaction and impurity transport in fusion devices and prompt deposition of tungsten as application

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Tskhakaya, D.; Brezinsek, S.; Borodin, D.; Romazanov, J.; Ding, R.; Eksaeva, A.; Linsmeier, Ch

    2018-01-01

    Main processes of plasma-wall interaction and impurity transport in fusion devices and their impact on the availability of the devices are presented and modelling tools, in particular the three-dimensional Monte-Carlo code ERO, are introduced. The capability of ERO is demonstrated on the example of tungsten erosion and deposition modelling. The dependence of tungsten deposition on plasma temperature and density is studied by simulations with a simplified geometry assuming (almost) constant plasma parameters. The amount of deposition increases with increasing electron temperature and density. Up to 100% of eroded tungsten can be promptly deposited near to the location of erosion at very high densities (˜1 × 1014 cm-3 expected e.g. in the divertor of ITER). The effect of the sheath characteristics on tungsten prompt deposition is investigated by using particle-in-cell (PIC) simulations to spatially resolve the plasma parameters inside the sheath. Applying PIC data instead of non-resolved sheath leads in general to smaller tungsten deposition, which is mainly due to a density and temperature decrease towards the surface within the sheath. Two-dimensional tungsten erosion/deposition simulations, assuming symmetry in toroidal direction but poloidally spatially varying plasma parameter profiles, have been carried out for the JET divertor. The simulations reveal, similar to experimental findings, that tungsten gross erosion is dominated in H-mode plasmas by the intra-ELM phases. However, due to deposition, the net tungsten erosion can be similar within intra- and inter-ELM phases if the inter-ELM electron temperature is high enough. Also, the simulated deposition fraction of about 84% in between ELMs is in line with spectroscopic observations from which a lower limit of 50% has been estimated.

  19. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    NASA Astrophysics Data System (ADS)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  20. Thermal island destabilization and the Greenwald limit

    DOE PAGES

    White, R. B.; Gates, D. A.; Brennan, D. P.

    2015-02-24

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. A magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration is evident in a fusion device. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Furthermore, modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturatedmore » island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. In addition destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  1. Thermal island destabilization and the Greenwald limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. A magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration is evident in a fusion device. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Furthermore, modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturatedmore » island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. In addition destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  2. Thermal island destabilization and the Greenwald limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Becausemore » field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  3. Local density approximation in site-occupation embedding theory

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel

    2017-01-01

    Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.

  4. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  5. Edge Stability and Performance of the ELM-Free Quiescent H-Mode and the Quiescent Double Barrier Mode on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W P; Burrell, K H; Casper, T A

    2004-12-03

    The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less

  6. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  7. Characteristics of Muti-pulsing CHI driven ST plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.

  8. Overview of Recent Alcator C-Mod Highlights

    NASA Astrophysics Data System (ADS)

    Marmar, Earl; C-Mod Team

    2013-10-01

    Analysis and modeling of recent C-Mod experiments has yielded significant results across multiple research topics. I-mode provides routine access to high confinement plasma (H98 up to 1.2) in quasi-steady state, without large ELMs; pedestal pressure and impurity transport are regulated by short-wavelength EM waves, and core turbulence is reduced. Multi-channel transport is being investigated in Ohmic and RF-heated plasmas, using advanced diagnostics to validate non-linear gyrokinetic simulations. Results from the new field-aligned ICRF antenna, including significantly reduced high-Z metal impurity contamination, and greatly improved load-tolerance, are being understood through antenna-plasma modeling. Reduced LHCD efficiency at high density correlates with parametric decay and enhanced edge absorption. Strong flow drive and edge turbulence suppression are seen from LHRF, providing new approaches for plasma control. Plasma density profiles directly in front of the LH coupler show non-linear modifications, with important consequences for wave coupling. Disruption-mitigation experiments using massive gas injection at multiple toroidal locations show unexpected results, with potentially significant implications for ITER. First results from a novel accelerator-based PMI diagnostic are presented. What would be the world's first actively-heated high-temperature advanced tungsten divertor is designed and ready for construction. Conceptual designs are being developed for an ultra-advanced divertor facility, Alcator DX, to attack key FNSF and DEMO heat-flux challenges integrated with a high-performance core. Supported by USDOE.

  9. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  10. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  11. Comparison of resistive MHD simulations and experimental CHI discharges in NSTX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.; Raman, R.; Fatima, F.

    2013-10-01

    Resistive MHD simulations using NIMROD simulate CHI discharges for NSTX startup plasmas. Quantitative comparison with experiment ensures that the simulation physics includes a minimal physics set needed to extend the simulations to new experiments, e.g. NSTX-U. Important are time-varying vacuum magnetic field, ohmic heating, thermal transport, impurity radiation, and spatially-varying plasma parameters including density. Equilibria are compared with experimental injector currents, voltages and parameters including toroidal current, photographs of emitted light and measurements of midplane temperature profiles, radiation and surface heating. Initial results demonstrate that adjusting impurity radiation and cross-field transport yields temperatures and injected-current channel widths similar to experiment. These determine the plasma resistance, feeding back to the impedance on the injector power supply. Work performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344 at LLNL and DE-AC02-09CH11466 at PPPL, and grants DE-FC02-05ER54813 at PSI Center (U. Wisc.) and DOE-FG02-12ER55115 (at Princeton U.).

  12. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  13. Hydrodynamic model for conductivity in graphene.

    PubMed

    Mendoza, M; Herrmann, H J; Succi, S

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.

  14. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, R.; Bell, R. E.; Boyle, D. P.

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  15. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE PAGES

    Majeski, R.; Bell, R. E.; Boyle, D. P.; ...

    2017-03-20

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  16. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Merino, E.; Raitses, Y.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Bialek, J.; Biewer, T. M.; Canik, J. M.; Buzi, L.; Koel, B. E.; Patino, M. I.; Capece, A. M.; Hansen, C.; Jarboe, T.; Kubota, S.; Peebles, W. A.; Tritz, K.

    2017-05-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 × 1017 m-3, consistent with a low recycling metallic lithium boundary. Despite the high edge temperature, the core impurity content is low. Zeff is estimated to be ˜1.2, with a very modest contribution (<0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-β, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-β is briefly described.

  17. Nonlinear Burn Control and Operating Point Optimization in ITER

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  18. Comparing Turbulence Simulation with Experiment in DIII-D

    NASA Astrophysics Data System (ADS)

    Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.

    2000-10-01

    Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.

  19. Spin-polarized density-matrix functional theory of the single-impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Töws, W.; Pastor, G. M.

    2012-12-01

    Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.

  20. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  1. Presence, segregation and reactivity of H, C and N dissolved in some refractory oxides

    NASA Technical Reports Server (NTRS)

    Freund, F.

    1986-01-01

    The sources of impurities, particularly carbon, in high melting oxides and silicates are discussed, along with detection and quantification methods. The impurities are important for their effects on bulk material properties through the media of, e.g., surface or grain boundary characteristics. The impurities are usually encountered by the contact of the oxide (refractory) material with volatiles such as H2O and CO2, which become incorporated in the material and form anion complexes with oxygen acting as a covalent bonded ligand. The specific processes undergone by MgO in assimilating C impurities are delineated, using data obtained with X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry and nuclear reaction profiling. Finally, maintenance of a supersaturated solid solution with C impurities by space charge control is described as a means of offset impurity effects.

  2. Tunneling interstitial impurity in iron-chalcogenide-based superconductors

    NASA Astrophysics Data System (ADS)

    Huang, Huaixiang; Zhang, Degang; Gao, Yi; Ren, Wei; Ting, C. S.

    2016-02-01

    A pronounced local in-gap zero-energy bound state (ZBS) has been observed by recent scanning tunneling microscopy experiments on the interstitial Fe impurity (IFI) and its nearest-neighboring sites in an FeTe0.5Se0.5 superconducting (SC) compound. By introducing an impurity mechanism, the so-called tunneling impurity, and based on the Bogoliubov-de Gennes equations, we investigate the low-lying energy states of the IFI and the underlying Fe plane. The calculations are performed in the presence as well as in the absence of a magnetic field. We find the IFI-induced ZBS does not shift or split in a magnetic field as long as the tunneling parameter between the IFI and the Fe plane is sufficiently small and the Fe plane is deep in the SC state. Our results are in good agreement with experiments. We also show that in the underdoped cases, modulation of the spin density wave or charge density wave will suppress the intensity of the ZBS on the Fe plane in a vortex state.

  3. Inclusion behavior of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization: Combined first-principles calculation and experimental study

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku

    2013-05-01

    The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.

  4. Child-Langmuir flow in a planar diode filled with charged dust impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant

    The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less

  5. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  6. Biasing experiments on the Advanced Toroidal Facility

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.

    1992-09-01

    Biasing experiments have been carried out in 1 T plasmas with approximately 200 kW of electron cyclotron heating (ECH) in the current-fire Advanced Toroidal Facility (ATF) torsatron. Two rail limiters, one at the top and one at the bottom of the device, located at the last closed flux surface (LCFS), are, biased at positive and negative potentials with respect to the vacuum vessel. When the limiters are positively biased at up to 300 V and the plasma density is controlled with a significantly reduced gas feed, the H(sub alpha) radiation from both the limiter and the wall drops, indicating reduced particle recycling as a result of improved particle confinement. For bias voltages around +100 V, there is almost no change of plasma stored energy W(sub p), but W(sub p) then drops with the higher biasing voltages. Positive biasing has caused the core plasma density profile to become peaked and the electric field to become more negative inside the LCFS. At the same time, edge plasma fluctuations are reduced significantly and their power spectrum becomes less broad. The propagation direction of these electrostatic fluctuations reverses to the ion diamagnetic direction, and their wavelengths become longer. The resulting fluctuation-induced particle flux is also reduced. Power deposition on the limiters is lower as a result of reduced edge plasma density and temperature. Negative biasing yields somewhat less improvement in the particle confinement while having almost no apparent effect on W(sub p) or on the core and the edge plasma density and temperature profiles. Simultaneous measurements of the plasma potential profile indicate almost no significant change. Biasing has almost no effect on the intrinsic impurity levels in the plasma.

  7. An integrated charge exchange recombination spectroscopy/beam emission spectroscopy diagnostic for Alcator C-Mod tokamak.

    PubMed

    Bespamyatnov, I O; Rowan, W L; Liao, K T; Granetz, R S

    2010-10-01

    A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.

  8. Hydrodynamic Model for Conductivity in Graphene

    PubMed Central

    Mendoza, M.; Herrmann, H. J.; Succi, S.

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277

  9. Effect of normal impurities on anisotropic superconductors with variable density of states

    NASA Astrophysics Data System (ADS)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  10. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  11. Study of the Effects of Impurities on the Properties of Silicon Materials and Performance of Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1979-01-01

    Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.

  12. Fano-shaped impurity spectral density, electric-field-induced in-gap state, and local magnetic moment of an adatom on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua

    2017-08-01

    Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.

  13. Robustness against non-magnetic impurities in topological superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Ota, Y.; Machida, M.

    2014-12-01

    We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.

  14. Analysis of filament statistics in fast camera data on MAST

    NASA Astrophysics Data System (ADS)

    Farley, Tom; Militello, Fulvio; Walkden, Nick; Harrison, James; Silburn, Scott; Bradley, James

    2017-10-01

    Coherent filamentary structures have been shown to play a dominant role in turbulent cross-field particle transport [D'Ippolito 2011]. An improved understanding of filaments is vital in order to control scrape off layer (SOL) density profiles and thus control first wall erosion, impurity flushing and coupling of radio frequency heating in future devices. The Elzar code [T. Farley, 2017 in prep.] is applied to MAST data. The code uses information about the magnetic equilibrium to calculate the intensity of light emission along field lines as seen in the camera images, as a function of the field lines' radial and toroidal locations at the mid-plane. In this way a `pseudo-inversion' of the intensity profiles in the camera images is achieved from which filaments can be identified and measured. In this work, a statistical analysis of the intensity fluctuations along field lines in the camera field of view is performed using techniques similar to those typically applied in standard Langmuir probe analyses. These filament statistics are interpreted in terms of the theoretical ergodic framework presented by F. Militello & J.T. Omotani, 2016, in order to better understand how time averaged filament dynamics produce the more familiar SOL density profiles. This work has received funding from the RCUK Energy programme (Grant Number EP/P012450/1), from Euratom (Grant Agreement No. 633053) and from the EUROfusion consortium.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smentkowski, Vincent S., E-mail: smentkow@ge.com

    Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondarymore » Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.« less

  16. Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Angioni, C.

    2014-11-07

    In this paper, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch-Schl¨uter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impuritymore » Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number.« less

  17. Vortices, skyrmions, and chirality waves in frustrated Mott insulators with a quenched periodic array of impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo

    Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less

  18. Vortices, skyrmions, and chirality waves in frustrated Mott insulators with a quenched periodic array of impurities

    DOE PAGES

    Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo; ...

    2016-11-10

    Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less

  19. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  20. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  1. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires.

    PubMed

    Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling

    2017-02-28

    Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.

  2. Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise

    NASA Astrophysics Data System (ADS)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.

  3. An accurate MOS measurement procedure for work function difference in the Al/SiO 2/Si system

    NASA Astrophysics Data System (ADS)

    Krautschneider, W. H.; Laschinski, J.; Seifert, W.; Wagemann, H. G.

    1986-05-01

    Determination of Al/Si work function difference φMS is achieved by means of capacitance measurements of differently manufactured MOS varactors (Al/SiO 2/ n-Si) with variable oxide thickness ("step varactor"). For the φMS evaluation the influences of interface (fQ it) and oxide (ifQ f) charges have been considered, and models of their charges and dipole behaviour are described. Midgap band bending has been chosen as best condition for the evaluation of ΦMSO as basic amount of work function difference with negligible interference of Qit. Plots of Φ MSvs ψS for numerous specimens indicate that, usually, dipole voltage ΔΦ is closely connected to ΦMS within the voltage drop across the MOS varactor according to ΦMS = ΦMSO + qΔΦ. For the evaluation of dipole voltage ΔΦ models of charge density Qit within interface states are presented which assume dominating donor or acceptor states within the two halves of the band gap. Corrections of impurity homogeneity across the wafer and of impurity profile into the depth of the chips are considered. For the work function difference extrapolated to intrinsic density, ΦMSO = (-0.26 ± 0.05) eV holds. Additionally from midgap through inversion of n-Si, dipole voltage was observed ( ΔΦ = 0.015 V) which was caused by interface states and oxide charge 3 nm apart from one another.

  4. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    NASA Astrophysics Data System (ADS)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  5. Global modelling of plasma-wall interaction in reversed field pinches

    NASA Astrophysics Data System (ADS)

    Bagatin, M.; Costa, S.; Ortolani, S.

    1989-04-01

    The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.

  6. Impurity transport in enhanced confinement regimes in RFX-mod Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Carraro, Lorella; Menmuir, Sheena; Fassina, Alessandro

    2010-11-01

    The results of impurity transport studies in RFX-mod enhanced confinement quasi-single helicity (QSH) and single helical axis (SHAx) regimes are presented and discussed. The impurity diffusion coefficient and pinch velocity are obtained through comparing experimental emission pattern (line emission and SXR time evolutions, SXR profiles) with the results of a 1-D impurity transport code. Previous analysis [S. Menmuir et al. to be published in Plasma Phys. Contr. Fus.] of impurity transport in RFX-mod standard discharges showed that the impurity pinch velocity, always directed outwards, features a barrier with high values around r/a = 0.8, where the diffusion coefficient decreases by one order of magnitude. In the QSH regime, the transition region in D and v is more internal and the barrier in velocity is wider and stronger. New results have been obtained in experiments with Ni laser blow-off (LBO) injection in high current discharges (Ip>1.5 MA) with long lasting QSH, to better characterize the Ni behavior inside the helical magnetic topology.

  7. Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, D. P.; Bell, R. E.; Kaita, R.; Lucia, M.; Schmitt, J. C.; Scotti, F.; Kubota, S.; Hansen, C.; Biewer, T. M.; Gray, T. K.

    2016-10-01

    The Lithium Tokamak Experiment (LTX) is a modest-sized spherical tokamak with all-metal plasma facing components (PFCs), uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma. This work presents measurements of core plasma impurity concentrations and transport in LTX. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2 - 4 % Li, 0.6 - 2 % C, 0.4 - 0.7 % O, and Zeff < 1.2 . Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, and neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two. However, time-independent simulations with MIST indicated that neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles. Progress on additional analysis, including time-dependent impurity transport simulations and impurity measurements with liquid lithium coatings, and plans for diagnostic upgrades and future experiments in LTX- β will also be presented. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  8. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  9. Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.

    2014-09-01

    In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.

  10. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuraptsev, A. S., E-mail: aleksej-kurapcev@yandex.ru; Sokolov, I. M.

    We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry–Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity canmore » affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.« less

  12. Scale-invariant puddles in graphene: Geometric properties of electron-hole distribution at the Dirac point.

    PubMed

    Najafi, M N; Nezhadhaghighi, M Ghasemi

    2017-03-01

    We characterize the carrier density profile of the ground state of graphene in the presence of particle-particle interaction and random charged impurity in zero gate voltage. We provide detailed analysis on the resulting spatially inhomogeneous electron gas, taking into account the particle-particle interaction and the remote Coulomb disorder on an equal footing within the Thomas-Fermi-Dirac theory. We present some general features of the carrier density probability measure of the graphene sheet. We also show that, when viewed as a random surface, the electron-hole puddles at zero chemical potential show peculiar self-similar statistical properties. Although the disorder potential is chosen to be Gaussian, we show that the charge field is non-Gaussian with unusual Kondev relations, which can be regarded as a new class of two-dimensional random-field surfaces. Using Schramm-Loewner (SLE) evolution, we numerically demonstrate that the ungated graphene has conformal invariance and the random zero-charge density contours are SLE_{κ} with κ=1.8±0.2, consistent with c=-3 conformal field theory.

  13. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    PubMed

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-02

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock or stock group for a subset of United States stocks resulted in cross-validation errors ranging from 0 to 5.3%.

  14. Diffusive charge transport in graphene

    NASA Astrophysics Data System (ADS)

    Chen, Jianhao

    The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.

  15. Plasma chemistry study of PLAD processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{submore » 4} and GeH{sub 4} are studied and demonstrated.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isler, R.C.; Colchin, R.J.; Wade, M.R.

    Collapses of stored energy are typically observed in low-density ({anti n}{sub e} {approx} 10{sup 13} cm{sup {minus}3}) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 {times} 10{sup 13} cm{sup {minus}3}. Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas.more » Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles.« less

  17. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    Here, by employing a neutral gas shielding (NGS) model to characterize impurity granule injection, the ablation rates for three different species of granule: lithium, boron, and carbon, are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model, we quantify the ablation rate with respect to the plasma density profile. The species-specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m s –1 are presented for NSTX-U L-mode type plasmas, as well as H-mode dischargesmore » with low natural ELM frequency. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50–150 m s –1. In H-mode discharges these simulations show that the majority of the injected granule is ablated within or just past the edge steep gradient region. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of ELM crashes.« less

  18. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2017-05-16

    Here, by employing a neutral gas shielding (NGS) model to characterize impurity granule injection, the ablation rates for three different species of granule: lithium, boron, and carbon, are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model, we quantify the ablation rate with respect to the plasma density profile. The species-specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m s –1 are presented for NSTX-U L-mode type plasmas, as well as H-mode dischargesmore » with low natural ELM frequency. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50–150 m s –1. In H-mode discharges these simulations show that the majority of the injected granule is ablated within or just past the edge steep gradient region. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of ELM crashes.« less

  19. Quasibound states in short SNS junctions with point defects

    NASA Astrophysics Data System (ADS)

    Bespalov, A. A.

    2018-04-01

    Using the Green functions technique, we study the subgap spectrum of short three-dimensional superconductor-normal metal-superconductor junctions containing one or two point impurities in the normal layer. We find that a single nonmagnetic or magnetic defect induces two quasibound Shiba-like states. If the defect is located close to the junction edge, the energies of these states oscillate as functions of the distance between the impurity and the edge. In the case of two nonmagnetic impurities, there are generally four quasibound states (two per spin projection). Their energies oscillate as functions of the distance between the impurities, and reach their asymptotic values when this distance becomes much larger than the Fermi wavelength. The contributions of the impurities to the Josephson current, local density of states, and to the normal-state conductance of the junction are analyzed.

  20. Variable-range-hopping magnetoresistance

    NASA Astrophysics Data System (ADS)

    Azbel, Mark Ya

    1991-03-01

    The hopping magnetoresistance R of a two-dimensional insulator with metallic impurities is considered. In sufficiently weak magnetic fields it increases or decreases depending on the impurity density n: It decreases if n is low and increases if n is high. In high magnetic fields B, it always exponentially increases with √B . Such fields yield a one-dimensional temperature dependence: lnR~1/ √T . The calculation provides an accurate leading approximation for small impurities with one eigenstate in their potential well. In the limit of infinitesimally small impurities, an impurity potential is described by a generalized function. This function, similar to a δ function, is localized at a point, but, contrary to a δ function in the dimensionality above 1, it has finite eigenenergies. Such functions may be helpful in the study of scattering and localization of any waves.

  1. Oscillatory interaction between O impurities and Al adatoms on Al(111) and its effect on nucleation and growth.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Henri; Linke, Udo; Feibelman, Peter Julian

    2003-07-01

    We present a combined experimental and theoretical study of submonolayer growth in the presence of predeposited immobile impurities. Scanning tunneling microscopy measurements of Al/Al(1 1 1) epitaxy in the presence of oxygen adsorbates show that immobile O impurities influence all aspects of the early stages of homoepitaxial growth on Al(1 1 1). Possible scenarios for modified growth are investigated using kinetic Monte Carlo simulations. Dependences of island density on temperature, impurity concentration and strength and type of adatom-impurity interaction are compared. The comparison shows that the morphology of the growing Al film cannot result from only one interaction type: attractivemore » or repulsive. An oscillatory interaction, suggested by ab initio calculations, is proposed to explain the behavior of the system.« less

  2. Spectral density method to Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chebrolu, Narasimha Raju, E-mail: narasimharaju.phy@gmail.com; Chatterjee, Ashok

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  3. Density of Electronic States in Impurity-Doped Quantum Well Wires

    NASA Astrophysics Data System (ADS)

    Sierra-Ortega, J.; Mikhailov, I. D.

    2003-03-01

    We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)

  4. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun viamore » the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.« less

  5. Progress in Titanium Metal Powder Injection Molding.

    PubMed

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  6. Progress in Titanium Metal Powder Injection Molding

    PubMed Central

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458

  7. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  8. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

    PubMed Central

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S.; Desai, Dhruv K.; Rodgers, Griffin F.; Bradley, Aaron J.; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F.

    2015-01-01

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene’s charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene’s electronic properties.1-8 Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge2 and/or molecular5 states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies.2-5 These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961

  9. Impurity Induced Phase Competition and Supersolidity

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  10. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou

    2018-04-01

    The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

  11. Impurity-induced deep centers in Tl 6SI 4

    DOE PAGES

    Shi, Hongliang; Lin, Wenwen; Kanatzidis, Mercouri G.; ...

    2017-04-13

    Tl 6SI 4 is a promising material for room-temperature semiconductor radiation detection applications. The history of the development of semiconductor radiation detection materials has demonstrated that impurities strongly affect the carrier transport and that material purification is a critically important step in improving the carrier transport and thereby the detector performance. Here, we report combined experimental and theoretical studies of impurities in Tl 6SI 4. Impurity concentrations in Tl 6SI 4 were analyzed by glow discharge mass spectrometry. Purification of the raw material by multi-pass vertical narrow zone refining was found to be effective in reducing the concentrations of mostmore » impurities. Density functional theory calculations were also performed to study the trapping levels introduced by the main impurities detected in experiments. We show that, among dozens of detected impurities, most are either electrically inactive or shallow. In the purified Tl 6SI 4 sample, only Bi has a significant concentration (0.2 ppm wt) and introduces deep electron trapping levels in the band gap. Lastly, improvement of the purification processes is expected to further reduce the impurity concentrations and their impact on carrier transport in Tl 6SI 4, leading to improved detector performance.« less

  12. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  13. Wide-view charge exchange recombination spectroscopy diagnostic for Alcator C-Mod.

    PubMed

    Rowan, W L; Bespamyatnov, I O; Granetz, R S

    2008-10-01

    This diagnostic measures temperature, density, and rotation for the fully stripped boron ion between the pedestal top and the plasma core with resolution consistent with the profile gradients. The diagnostic neutral beam used for the measurements generates a 50 keV, 6 A hydrogen beam. The optical systems provide views in both poloidal and toroidal directions. The imaging spectrometer is optimized to simultaneously accept 45 views as input with minimum cross-talk. In situ calibration techniques are applied for spatial location, spectral intensity, and wavelength. In the analysis, measured spectra are fitted to a model constructed from a detailed description of the emission physics. Methods for removal of interfering spectra are included. Applications include impurity and thermal transport.

  14. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  15. Power Balance and Impurity Studies in TCS

    NASA Astrophysics Data System (ADS)

    Grossnickle, J. A.; Pietrzyk, Z. A.; Vlases, G. C.

    2003-10-01

    A "zero-dimension" power balance model was developed based on measurements of absorbed power, radiated power, absolute D_α, temperature, and density for the TCS device. Radiation was determined to be the dominant source of power loss for medium to high density plasmas. The total radiated power was strongly correlated with the Oxygen line radiation. This suggests Oxygen is the dominant radiating species, which was confirmed by doping studies. These also extrapolate to a Carbon content below 1.5%. Determining the source of the impurities is an important question that must be answered for the TCS upgrade. Preliminary indications are that the primary sources of Oxygen are the stainless steel end cones. A Ti gettering system is being installed to reduce this Oxygen source. A field line code has been developed for use in tracking where open field lines terminate on the walls. Output from this code is also used to generate grids for an impurity tracking code.

  16. Nonequilibrium theory of tunneling into a localized state in a superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ivar; Mozyrsky, Dmitry

    2014-09-01

    A single static magnetic impurity in a fully gapped superconductor leads to the formation of an intragap quasiparticle bound state. At temperatures much below the superconducting transition, the energy relaxation and spin dephasing of the state are expected to be exponentially suppressed. The presence of such a state can be detected in electron tunneling experiments as a pair of conductance peaks at positive and negative biases. Here we show that, for an arbitrarily weak tunneling strength, the peaks have to be symmetric with respect to the applied bias. This is in contrast to the standard result in which the tunnelingmore » conductance is proportional to the local (in general, particle-hole asymmetric) density of states. The asymmetry can be recovered if one allows for either a finite density of impurity states, or if impurities are coupled to another, nonsuperconducting, equilibrium bath.« less

  17. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  18. Proximity-induced magnetism in transition-metal substituted graphene

    PubMed Central

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-01-01

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646

  19. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less

  20. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  1. Glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  2. Piezoresistive silicon pressure sensors in cryogenic environment

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Chapman, John J.

    1989-01-01

    This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.

  3. Berezinskii-Kosterlitz-Thouless phase transition for the dilute planar rotator model on a triangular lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yunzhou; Yi Lin; Wysin, G. M.

    2008-10-15

    The Berezinskii-Kosterlitz-Thouless (BKT) phase transition for the dilute planar rotator model on a triangular lattice is studied by using a hybrid Monte Carlo method. The phase-transition temperatures for different nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of plane magnetic susceptibility, helicity modulus, and Binder's fourth cumulant. It is found that the phase-transition temperature decreases with increasing impurity density {rho} and the BKT phase transition vanishes when the magnetic occupancy falls to the site percolation threshold: 1-{rho}{sub c}=p{sub c}=0.5.

  4. Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.

    1996-03-01

    LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.

  5. New insights on boundary plasma turbulence and the Quasi-Coherent Mode in Alcator C-Mod using a Mirror Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Labombard, Brian

    2013-10-01

    A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.

  6. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loarte, A.; Polevoi, A. R.; Hosokawa, M.

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results,more » however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.« less

  7. Estimating the entropy and quantifying the impurity of a swarm of surface-hopping trajectories: A new perspective on decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Wenjun; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu

    2014-05-28

    In this article, we consider the intrinsic entropy of Tully's fewest switches surface hopping (FSSH) algorithm (as estimated by the impurity of the density matrix) [J. Chem. Phys. 93, 1061 (1990)]. We show that, even for a closed system, the total impurity of a FSSH calculation increases in time (rather than stays constant). This apparent failure of the FSSH algorithm can be traced back to an incorrect, approximate treatment of the electronic coherence between wavepackets moving along different potential energy surfaces. This incorrect treatment of electronic coherence also prevents the FSSH algorithm from correctly describing wavepacket recoherences (which is amore » well established limitation of the FSSH method). Nevertheless, despite these limitations, the FSSH algorithm often predicts accurate observables because the electronic coherence density is modulated by a phase factor which varies rapidly in phase space and which often integrates to almost zero. Adding “decoherence” events on top of a FSSH calculation completely destroys the incorrect FSSH electronic coherence and effectively sets the Poincaré recurrence time for wavepacket recoherence to infinity; this modification usually increases FSSH accuracy (assuming there are no recoherences) while also offering long-time stability for trajectories. In practice, we show that introducing “decoherence” events does not change the total FSSH impurity significantly, but does lead to more accurate evaluations of the impurity of the electronic subsystem.« less

  8. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  9. Binding energy of donor impurity states and optical absorption in the Tietz-Hua quantum well under an applied electric field

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Kasapoglu, E.; Sakiroglu, S.; Duque, C. A.; Sökmen, I.

    2018-04-01

    For a quantum well which has the Tietz-Hua potential, the ground and some excited donor impurity binding energies and the total absorption coefficients, including linear and third order nonlinear terms for the transitions between the related impurity states with respect to the structure parameters and the impurity position as well as the electric field strength are investigated. The binding energies were obtained using the effective-mass approximation within a variational scheme and the optical transitions between any two impurity states were calculated by using the density matrix formalism and the perturbation expansion method. Our results show that the effects of the electric field and the structure parameters on the optical transitions are more pronounced. So we can adjust the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric field as well as the structure parameters.

  10. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  11. Effects of alloying and transmutation impurities on stability and mobility of helium in tungsten under a fusion environment

    NASA Astrophysics Data System (ADS)

    Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Wang, Zhiguang

    2013-07-01

    The behaviour of helium in metals is particularly significant in fusion research due to the He-induced degradation of materials. A small amount of impurities introduced either by intentional alloying or by transmutation reactions, will interact with He and lead the microstructure and mechanical properties of materials to change. In this paper, we present the results of first-principles calculations on the interactions of He with impurities and He diffusion around them in tungsten (W), including the interstitials Be, C, N, O, and substitutional solutes Re, Ta, Tc, Nb, V, Os, Ti, Si, Zr, Y and Sc. We find that the trapping radii of interstitial atoms on He are much larger than those of substitutional solutes. The binding energies between the substitutional impurities and He increase linearly with the relative charge densities at the He occupation site, indicating that He atoms easily aggregate at the low charge density site. The sequence of diffusion energy barriers of He around the possible alloying elements is Ti > V > Os > Ta > Re. The present results suggest that Ta might be chosen as a relatively suitable alloying element compared with other possible ones.

  12. Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO 2

    DOE PAGES

    Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; ...

    2014-10-28

    We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO 2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO 2. We find that formation of impurity states results in changes on the valency of Co in LiCoO 2. Variation of the Co U shifts the energy of the impuritymore » state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO 2.« less

  13. Application of the MOS C-V technique to determine impurity concentrations and surface parameters on the diffused face of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.

    1975-01-01

    An experimental and theoretical investigation of the feasibility of using the MOS C-V (capacitance-voltage) technique to determine impurity and surface state concentrations on the diffused face of Si solar cells with Ta2O5 coatings. Impurity concentration 10 A from the diffused surface is found to be 2.9 times 10 to the 20th power per cu cm. Charge density in surface and oxide states is 2.1 times 10 to the 13th power per sq cm. These data agree with theoretical predictions.-

  14. DFTB+ and lanthanides

    NASA Astrophysics Data System (ADS)

    Hourahine, B.; Aradi, B.; Frauenheim, T.

    2010-07-01

    DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.

  15. Quality-by-design approach for the development of telmisartan potassium tablets.

    PubMed

    Oh, Ga-Hui; Park, Jin-Hyun; Shin, Hye-Won; Kim, Joo-Eun; Park, Young-Joon

    2018-05-01

    A quality-by-design approach was adopted to develop telmisartan potassium (TP) tablets, which were bioequivalent with the commercially available Micardis ® (telmisartan free base) tablets. The dissolution pattern and impurity profile of TP tablets differed from those of Micardis ® tablets because telmisartan free base is poorly soluble in water. After identifying the quality target product profile and critical quality attributes (CQAs), drug dissolution, and impurities were predicted to be risky CQAs. To determine the exact range and cause of risks, we used the risk assessment (RA) tools, preliminary hazard analysis and failure mode and effect analysis to determine the parameters affecting drug dissolution, impurities, and formulation. The range of the design space was optimized using the face-centered central composite design among the design of experiment (DOE) methods. The binder, disintegrant, and kneading time in the wet granulation were identified as X values affecting Y values (disintegration, hardness, friability, dissolution, and impurities). After determining the design space with the desired Y values, the TP tablets were formulated and their dissolution pattern was compared with that of the reference tablet. The selected TP tablet formulated using design space showed a similar dissolution to that of Micardis ® tablets at pH 7.5. The QbD approach TP tablet was bioequivalent to Micardis ® tablets in beagle dogs.

  16. Neoclassical poloidal and toroidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-08-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less

  17. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  18. Determining factors for the presence of impurities in selectively collected biowaste.

    PubMed

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta

    2013-05-01

    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.

  19. Classification of illicit heroin by UPLC-Q-TOF analysis of acidic and neutral manufacturing impurities.

    PubMed

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping

    2015-12-01

    The illicit manufacture of heroin results in the formation of trace levels of acidic and neutral manufacturing impurities that provide valuable information about the manufacturing process used. In this work, a new ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) method; that features high resolution, mass accuracy and sensitivity for profiling neutral and acidic heroin manufacturing impurities was developed. After the UPLC-Q-TOF analysis, the retention times and m/z data pairs of acidic and neutral manufacturing impurities were detected, and 19 peaks were found to be evidently different between heroin samples from "Golden Triangle" and "Golden Crescent". Based on the data set of these 19 impurities in 150 authentic heroin samples, classification of heroin geographic origins was successfully achieved utilizing partial least squares discriminant analysis (PLS-DA). By analyzing another data set of 267 authentic heroin samples, the developed discrimiant model was validated and proved to be accurate and reliable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Collision of impurities with Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.

    2018-04-01

    Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.

  1. Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo

    Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal havingmore » 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)« less

  2. Coulomb disorder in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2015-03-01

    In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Delgado-Aparicio, et. al.

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried-out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q < 1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma densitymore » and temperature« less

  4. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  5. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.

  6. Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement

    DOE PAGES

    Wang, H. Q.; Guo, Houyang Y.; Petrie, Thomas W.; ...

    2017-03-18

    The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N 2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N 2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss powermore » to the L-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection leads to an increase in core radiation, up to 50% of the injected power, and a reduction in pedestal temperature over 60%, thus significantly degrading the confinement, i.e., with H 98 reducing from 1.1 to below 0.7. As for Ne seeding, H 98 near 0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N 2 seeded plasmas, radiation is predominately confined in the boundary plasma, with up to 50% of heating power being radiated in the divertor region and less than 25% in the core at the onset of detachment. In the case of strong N 2 gas puffing, the confinement recovers during the detachment, from ~20% reduction at the onset of the detachment to greater than that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.« less

  7. A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew C.

    Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the density of states for the 3d-orbitals can also be obtained.

  8. Proximity-induced magnetism in transition-metal substituted graphene

    DOE PAGES

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; ...

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less

  9. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ram Sevak, E-mail: singh915@gmail.com

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to havemore » metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.« less

  10. Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; Calvo, I.; Satake, S.; Alonso, A.; Nunami, M.; Yokoyama, M.; Sato, M.; Estrada, T.; Fontdecaba, J. M.; Liniers, M.; McCarthy, K. J.; Medina, F.; Van Milligen, B. Ph; Ochando, M.; Parra, F.; Sugama, H.; Zhezhera, A.; The LHD Experimental Team; The TJ-II Team

    2017-01-01

    Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In this work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the large helical device (Yoshinuma et al and The LHD Experimental Group 2009 Nucl. Fusion 49 062002, Ida et al and The LHD Experimental Group 2009 Phys. Plasmas 16 056111 and Yokoyama et al and LHD Experimental Group 2002 Nucl. Fusion 42 143), can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.

  11. ELM elimination with lithium aerosol injection in upper-single null discharges using the tungsten divertor in EAST

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Maingi, R.; Hu, J.; Lunsford, R.; Diallo, A.; Tritz, K.; Osborne, T.; Canik, J.; Zuo, G.; Wang, L.; Xu, G.; Gong, X.; EAST Team Team

    2017-10-01

    A reproducible, fully non-inductive H-mode regime devoid of large ELMs has been achieved by continuous Li injection in EAST into the upper `ITER-like' tungsten divertor, extending previous results on the graphite divertor. These discharges did not suffer from density or impurity accumulation, and maintained constant core radiated power. The new results extend the energy confinement multiplier H98(y,2) 1.2, as compared to H98(y,2) 0.75 previously on the graphite divertor. The observed ELM elimination is correlated with a decrease in particle recycling, as expected from the strong Li coating before the experiment, and real-time Li aerosol injection. In addition, core W concentration was reduced during the Li injection. ELM elimination is likely related to the reduced recycling and density /temperature profile changes. A low-n electromagnetic coherent mode (MCM) at 40kHz became stronger in amplitude and also more coherent. The MCM shows strong magnetic fluctuations as measured by fast Mirnov coils, but weak density fluctuations. As compared to the graphite divertor, Li injection into the tungsten divertor eliminated ELMs at twice the previous auxiliary heating power, and reduced pedestal collisionality.

  12. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2015-12-01

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod's field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.

  13. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G., E-mail: tgjenkins@txcorp.com; Smithe, David N., E-mail: smithe@txcorp.com

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scansmore » over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.« less

  14. Third-harmonic generation of a laser-driven quantum dot with impurity

    NASA Astrophysics Data System (ADS)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  15. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  16. Electronic structure of Fe, Co, and Ni impurities in Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Acker, J.F.; Weijs, P.W.J.; Fuggle, J.C.

    1988-11-15

    A photoemission study of the valence bands of the dilute alloys PdFe, PdCo, and PdNi is presented. We use the Cooper minimum effect to estimate the local density of states on the impurity site. The behavior of transition-metal impurities in a transition-metal matrix is shown to be very different from their behavior in s-p metals. Our conclusion is that the Fe and Co 3d states are mixed with states throughout the Pd 4d band, while the Ni contribution to the spectra is dominated by a peak of (minority) 3d states near the Fermi level.

  17. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    PubMed

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  18. Dominant source of disorder in graphene: charged impurities or ripples?

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Uppstu, Andreas; Harju, Ari

    2017-06-01

    Experimentally produced graphene sheets exhibit a wide range of mobility values. Both extrinsic charged impurities and intrinsic ripples (corrugations) have been suggested to induce long-range disorder in graphene and could be a candidate for the dominant source of disorder. Here, using large-scale molecular dynamics and quantum transport simulations, we find that the hopping disorder and the gauge and scalar potentials induced by the ripples are short-ranged, in strong contrast with predictions by continuous models, and the transport fingerprints of the ripple disorder are very different from those of charged impurities. We conclude that charged impurities are the dominant source of disorder in most graphene samples, whereas scattering by ripples is mainly relevant in the high carrier density limit of ultraclean graphene samples (with a charged impurity concentration less than about 10 ppm) at room and higher temperatures. Our finding is valuable to theoretical modelling of transport properties of not only graphene, but also other two-dimensional materials, as the thermal ripples are universal.

  19. Influence of damped propagation of dopant on the static and frequency-dependent third nonlinear polarizability of quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-07-01

    We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.

  20. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  1. The origin of the residual conductivity of GaN films on ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  2. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  3. On the radiative effects of light-absorbing impurities on snowpack evolution

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.

    2017-12-01

    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  4. Stable glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  5. Phonon dispersion and local density of states in NiPd alloy using modified embedded atom method potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Subodh, E-mail: subodhssgk@gmail.com; Chand, Manesh, E-mail: maneshchand@gmail.com; Dabral, Krishna, E-mail: kmkrishna.dabral@gmail.com

    2016-05-06

    A modified embedded atom method (MEAM) potential model up to second neighbours has been used to calculate the phonon dispersions for Ni{sub 0.55}Pd{sub 0.45} alloy in which Pd is introduced as substitutional impurity. Using the force-constants obtained from MEAM potential, the local vibrational density of states in host Ni and substitutional Pd atoms using Green’s function method has been calculated. The calculation of phonon dispersions of NiPd alloy shows a good agreement with the experimental results. Condition of resonance mode has also been investigated and resonance mode in the frequency spectrum of impurity atom at low frequency is observed.

  6. Measurements and modeling of intra-ELM tungsten sourcing and transport in DIII-D

    NASA Astrophysics Data System (ADS)

    Abrams, T.; Leonard, A. W.; Thomas, D. M.; McLean, A. G.; Makowski, M. A.; Wang, H. Q.; Unterberg, E. A.; Briesemeister, A. R.; Rudakov, D. L.; Bykov, I.; Donovan, D.

    2017-10-01

    Intra-ELM tungsten erosion profiles in the DIII-D divertor, acquired via W I spectroscopy with high temporal and spatial resolution, are consistent with SDTrim.SP sputtering modeling using measured ion saturation currents and impact energies during ELMs as input and an ad-hoc 2% C2+ impurity flux. The W sputtering profile peaks close to the OSP both during and between ELMs in the favorable BT direction. In reverse BT the W source peaks close to the OSP between ELMs but strongly broadens and shifts outboard during ELMs, heuristically consistent with radially outward ion transport via ExB drifts. Ion impact energies during ELMs (inferred taking the ratio of divertor heat flux to the ion saturation current) are found to be approximately equal to Te,ped, lower than the 4*Te,ped value predicted by the Fundamenski/Moulton free streaming model. These impact energies imply both D main ions and C impurities contribute strongly to W sputtering during ELMs on DIII-D. This work represents progress towards a predictive model to link upstream conditions (i.e., pedestal height) and SOL impurity levels to the ELM-induced W impurity source at both the strike-point and far-target regions in the ITER divertor. Correlations between ELM size/frequency and SOL W fluxes measured via a midplane deposition probe will also be presented. Work supported by US DOE under DE-FC02-04ER54698.

  7. Spatial structure of correlations around a quantum impurity at the edge of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.

    2017-07-01

    We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.

  8. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, S.; Goto, M.; Murakami, I.

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have beenmore » measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.« less

  9. Profiling indomethacin impurities using high-performance liquid chromatography and nuclear magnetic resonance.

    PubMed

    Hess, S; Teubert, U; Ortwein, J; Eger, K

    2001-12-01

    The anti-inflammatory drug indomethacin was investigated regarding new related impurities. Therefore, related substances 2-9 were prepared by independent synthesis and physicochemically characterized. To determine indomethacin and its related substances, a new HPLC-UV method was developed and validated. Indomethacin and its impurities were eluted on a C(18) column with a mobile phase consisting of methanol and an aqueous solution of 0.2% phosphoric acid at a flow rate of 1.5 ml/min and were quantified by UV detection at 320 nm. Overall, the HPLC-UV method was simple and reliable for the detection of eight impurities in indomethacin. In addition to the HPLC-UV method, 1H nuclear magnetic resonance (NMR) was used to investigate indomethacin regarding impurities. For that purpose, related substances 2-9 were systematically added to indomethacin and investigated. The NMR method was found to be very useful for the identification of impurities in bulk substance without prior separation. Both HPLC-UV and NMR were used to analyze 38 batches of indomethacin available on the European market. The outcome was that 42% of the batches did not meet the compendial requirements although they met the specifications of current compendial methods. Some batches contained the previously undescribed impurity 8, while other batches contained by-products from two distinct synthetic routes. The methods presented herein are important contributions to the ongoing efforts to reduce impurities and therefore the risk of adverse side-effects in drugs that are no longer under patent protection.

  10. Bose polaronic soliton-molecule and vector solitons in PT -symmetric potential

    NASA Astrophysics Data System (ADS)

    Boudjemâa, Abdelâali

    2017-07-01

    We study analytically and numerically the properties of polaronic soliton molecules and vector solitons of a trapped Bose-Einstein condensate (BEC)-impurity mixture subjected to a PT -symmetric potential in a quasi one-dimensional geometry employing our time-dependent Hartree-Fock-Bogoliubov equations. Analytical results, based on a variational approach and checked with direct numerical simulations reveal that the width, chirp, the vibration frequency and the profile of impurity solitons are enhanced by varying the strengths of real and imaginary parts of PT -symmetric potential as well as the boson-boson and boson-impurity interaction. We address the impact of the imaginary part of the potential, which represents a gain-loss mechanism, on the dynamics and on the stability of the impurity soliton-molecule. We show that for sufficiently strong complex part of the potential, the single soliton exhibits a snake instability and the molecule destroys analogous to the dissociation of a diatomic molecule. We discuss, on the other hand, the formation of several unusual families of three-component vector solitons in the BEC-impurity mixture. An unconventional dark (D)-bright (B) soliton conversion is found.

  11. Dynamical signatures of bound states in waveguide QED

    NASA Astrophysics Data System (ADS)

    Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J.

    2017-08-01

    We study the spontaneous decay of an impurity coupled to a linear array of bosonic cavities forming a single-band photonic waveguide. The average frequency of the emitted photon is different from the frequency for single-photon resonant scattering, which perfectly matches the bare frequency of the excited state of the impurity. We study how the energy of the excited state of the impurity influences the spatial profile of the emitted photon. The farther the energy is from the middle of the photonic band, the farther the wave packet is from the causal limit. In particular, if the energy lies in the middle of the band, the wave packet is localized around the causal limit. Besides, the occupation of the excited state of the impurity presents a rich dynamics: it shows an exponential decay up to intermediate times, this is followed by a power-law tail in the long-time regime, and it finally reaches an oscillatory stationary regime. Finally, we show that this phenomenology is robust under the presence of losses, both in the impurity and in the cavities.

  12. Electronic properties of disordered Weyl semimetals at charge neutrality

    NASA Astrophysics Data System (ADS)

    Holder, Tobias; Huang, Chia-Wei; Ostrovsky, Pavel M.

    2017-11-01

    Weyl semimetals have been intensely studied as a three-dimensional realization of a Dirac-like excitation spectrum where the conduction bands and valence bands touch at isolated Weyl points in momentum space. Like in graphene, this property entails various peculiar electronic properties. However, recent theoretical studies have suggested that resonant scattering from rare regions can give rise to a nonzero density of states even at charge neutrality. Here, we give a detailed account of this effect and demonstrate how the semimetallic nature is suppressed at the lowest scales. To this end, we develop a self-consistent T -matrix approach to investigate the density of states beyond the limit of weak disorder. Our results show a nonvanishing density of states at the Weyl point, which exhibits a nonanalytic dependence on the impurity density. This unusually strong effect of rare regions leads to a revised estimate for the conductivity close to the Weyl point and emphasizes possible deviations from semimetallic behavior in dirty Weyl semimetals at charge neutrality even with very low impurity concentration.

  13. Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism

    DOE PAGES

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2016-05-12

    We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum,more » we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO 2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. As a result, they improve with fewer impurities, at lower temperatures, and at higher carrier densities.« less

  14. Demonstrating the Physics Basis for the ITER 15 MA Inductive Discharge on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Wolfe, S. M.; Hutchinson, I. H.; Hughes, J. W.; Lin, Y.; Ma, Y.; Mikkelsen, D. R.; Poli, F.; Reinke, M. L.; Wukitch, S. J.

    2012-10-01

    Rampup discharges in C-Mod, matching ITE's current diffusion times show ICRF heating can save V-s but results in only weak effects on the current profile, despite strong modifications of the central electron temperature. Simulation of these discharges with TSC, and TORIC for ICRF, using multiple transport models, do not reproduce the temperature profile evolution, or the experimental internal self-inductance li, by sufficiently large amounts to be unacceptable for projections to ITER operation. For the flattop phase experiments EDA H-modes approach the ITER parameter targets of q95=3, H98=1, n/nGr=0.85, betaN=1.7, and k=1.8, and sustain them similar to a normalized ITER flattop time. The discharges show a degradation of energy confinement at higher densities, but increasing H98 with increasing net power to the plasma. For these discharges intrinsic impurities (B, Mo) provided radiated power fractions of 25-37%. Experiments show the plasma can remain in H-mode in rampdown with ICRF injection, the density will decrease with Ip while in the H-mode, and the back transition occurs when the net power reaches about half the L-H transition power. C-Mod indicates that faster rampdowns are preferable. Work supported by US Dept of Energy under DE-AC02-CH0911466 and DE-FC02-99ER54512.

  15. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  16. Nanorelief of the natural cleavage surface of triglycine sulphate crystals with substitutional and interstitial impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belugina, N. V.; Gainutdinov, R. V.; Tolstikhina, A. L., E-mail: alla@ns.crys.ras.ru

    2011-11-15

    Ferroelectric triglycine sulphate crystals (TGS) with substitutional (LADTGS+ADP, DTGS) and interstitial (Cr) impurities have been studied by atomic-force microscopy, X-ray diffraction, and X-ray fluorescence. The nanorelief parameters of the mirror cleavage TGS(010) surface have been measured with a high accuracy. A correlation between the crystal defect density in the bulk and the cleavage surface nanorelief is revealed at the submicrometer level.

  17. Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team

    2017-08-01

    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes  >40 MW m-2 down to  <10 MW m-2 while maintaining excellent core confinement, H 98  >  1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.

  18. Predictions of H-mode performance in ITER

    NASA Astrophysics Data System (ADS)

    Budny, Robert

    2008-11-01

    Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP [1] code is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT. [0pt] [1] R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 (2008) 075005.

  19. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NASA Astrophysics Data System (ADS)

    Crombé, K; Andrew, Y; Biewer, T M; Blanco, E; de Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Tala, T; von Hellermann, M; Zastrow, K-D; JET EFDA Contributors

    2009-05-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (vθ) in the ITB region is measured to be of the order of a few tens of km s-1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of vθ is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.

  20. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombe, K.; Andrew, Y.; Biewer, Theodore M

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v ) in the ITB region is measured tomore » be of the order of a few tens of km s 1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.« less

  1. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases.

    PubMed

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline

    2015-08-21

    Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5μm fully porous or 2.6-2.7μm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    NASA Astrophysics Data System (ADS)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  3. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  4. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  5. Power balance and characterization of impurities in the Maryland Spheromak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Claude

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T e and higher n e than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to bemore » directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.« less

  6. Cd in SnO: Probing structural effects on the electronic structure of doped oxide semiconductors through the electric field gradient at the Cd nucleus

    NASA Astrophysics Data System (ADS)

    Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.

    2007-04-01

    We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.

  7. LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.

    1994-02-01

    The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport

  8. Electrical properties of grain boundaries and dislocations in crystalline silicon: Influence of impurity incorporation and hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Yongkook

    This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.

  9. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Heng, LAN; Guosheng, XU; Kevin, TRITZ; Ning, YAN; Tonghui, SHI; Yongliang, LI; Tengfei, WANG; Liang, WANG; Jingbo, CHEN; Yanmin, DUAN; Yi, YUAN; Youwen, SUN; Shuai, GU; Qing, ZANG; Ran, CHEN; Liang, CHEN; Xingwei, ZHENG; Shuliang, CHEN; Huan, LIU; Yang, YE; Huiqian, WANG; Baonian, WAN; the EAST Team

    2017-12-01

    A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (∼1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/a∼ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.

  10. Effect of charged impurities and morphology on oxidation reactivity of graphene

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Cullen, William; Einstein, Theodore; Fuhrer, Michael

    2012-02-01

    Chemical reactivity of single layer graphene supported on a substrate is observed to be enhanced over thicker graphene. Possible mechanisms for the enhancement are Fermi level fluctuations due to ionized impurities on the substrate, and structural deformation of graphene induced by coupling to the substrate geometry. Here, we study the substrate-dependent oxidation reactivity of graphene, employing various substrates such as SiO2, mica, SiO2 nanoparticle thin film, and hexagonal boron nitride, which exhibit different charged impurity concentrations and surface roughness. Graphene is prepared on each substrate via mechanical exfoliation and oxidized in Ar/O2 mixture at temperatures from 400-600 ^oC. After oxidation, the Raman spectrum of graphene is measured, and the Raman D to G peak ratio is used to quantify the density of point defects introduced by oxidation. We will discuss the correlations among the defect density in oxidized graphene, substrate charge inhomogeneity, substrate corrugations, and graphene layer thickness. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.

  11. Valency configuration of transition metal impurities in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Leon; Schulthess, Thomas C; Svane, Axel

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less

  12. Validity criteria for Fermi's golden rule scattering rates applied to metallic nanowires.

    PubMed

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2016-09-14

    Fermi's golden rule underpins the investigation of mobile carriers propagating through various solids, being a standard tool to calculate their scattering rates. As such, it provides a perturbative estimate under the implicit assumption that the effect of the interaction Hamiltonian which causes the scattering events is sufficiently small. To check the validity of this assumption, we present a general framework to derive simple validity criteria in order to assess whether the scattering rates can be trusted for the system under consideration, given its statistical properties such as average size, electron density, impurity density et cetera. We derive concrete validity criteria for metallic nanowires with conduction electrons populating a single parabolic band subjected to different elastic scattering mechanisms: impurities, grain boundaries and surface roughness.

  13. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  14. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    NASA Astrophysics Data System (ADS)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  15. Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: sergei-davydov@mail.ru

    The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less

  16. Solutal Convection Around Growing Protein Crystal and Diffusional Purification in Space

    NASA Technical Reports Server (NTRS)

    Lee, Chun P.; Chernov, Alexander A.

    2004-01-01

    At least some protein crystals were found to preferentially trap microheterogeneous impurities. The latter are, for example, dimmer molecules of the crystallizing proteines (e.g. ferritin, lysozyme), or the regular molecules on which surfaces small molecules or ions are adsorbed (e.g. acetilated lysozyme) and modi@ molecular charge. Impurities may induce lattice defects and deteriorate structural resolution. Distribution of impurities between mother solution and gorwing crystal is defined by two interrelated distribution coefficients: kappa = rho(sup c, sub 2) and K = (rho(sup c, sub 2)/rho(sup c, sub 1)/rho(sub 2)/rho(sub 1). Here, rho(sub 2), rho(sub 1) and rho(sup c, sub 2) are densities of impurity (2) and regular protein (1) in solution at the growing interface and within the crystal ("c"). For the microheterogeneous impurities studied, K approx. = 2 - 4, so that kappa approx. - 10(exp 2) - 10(exp 3), since K = kappa (rho(sub 1)/rho(sup c, sub 1) and protein solubility ratio rho(sub 1)/rho(sub=p c, sub 2) much less than 1. Therefore, a crystal growing in absence of convection purifies mother solution around itself, grows cleaner and, probably, more perfect. If convection is present, the solution flow permanently brings new impurities to the crystal. This work theoretically addressed two subjects: 1) onset of convection, 2) distribution of impurities.

  17. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also, pressure increases caused by the impurities and the partitioning between CO2 and other non-condensable gases were explored. In addition, the possibility of using these contaminants as a tracer were examined.

  18. An Optoelectronics Research Center

    DTIC Science & Technology

    2006-03-08

    compared with a -2 mm wide slab, -200 nrn thick silicon (SOl) top-only-gate planar MOSFET with otherwise similar doping profiles, gate length and...acoustic phonons, impurity doping profile and surface roughness influences the transport process in the channel regions. The electron mobility in the...application areas including: nanoscale epitaxial growth for semiconductor heterostructures; nanofluidics for biological separations; nanomagnetics for

  19. Impurity behavior during ion-Bernstein wave heating in PBX-M

    NASA Astrophysics Data System (ADS)

    Isler, R. C.; Post-Zwicker, A. P.; Paul, S. F.; Tighe, W.; Ono, M.; Leblanc, B. P.; Bell, R.; Kugel, H. W.; Kaita, R.

    1994-07-01

    Ion-Bernstein-wave heating (IBWH) has been tested in several tokamaks. In some cases the results have been quite positive, producing temperature increases and also improving both energy and particle confinement times, whereas in others, no distinctive changes were observed. Most recently, IBWH has been utilized in the Princeton Beta Experiment-Modified (PBX-M) where the long-range goal is the achievement of operation in the second stable region by current and pressure profile control. Investigations have been performed in this machine using IBWH as the sole source of auxiliary power or using IBWH in conjunction with neutral-beam injection (NBI) or with lower-hybrid current drive (LHCD). Impurity studies seem particularly important for IBWH since not only have influxes often been observed to increase, but the global impurity confinement time has also been shown to lengthen as the confinement of the working gas improved. The authors present here a set of characteristic experimental results regarding the impurity behavior in PBX-M; in general, these are consonant with previous observations in other tokamaks.

  20. Numerical Characterization of Wall Recycling Conditions of the HIDRA Stellarator using EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Marcinko, Steven; Curreli, Davide

    2015-11-01

    The wall recycling conditions created by energetic bombardment of plasma-facing components (PFCs) are of critical importance to determining the plasma and impurity profile in the edge region of a magnetically confined plasma. In this work a pre-online numerical characterization of the edge plasma in HIDRA has been carried out. HIDRA is the former WEGA experiment, now relocated to the University of Illinois at Urbana-Champaign. Numerical simulations of the HIDRA edge environment are performed utilizing the 3D edge plasma and neutral transport code EMC3-EIRENE [Y. Feng J. Nucl. Mater 241-243, 930 (1997)]. In our analysis, emphasis is placed on the influence of the neutrals and the impurities on edge plasma profiles and thus on energy and particle fluxes impingent onto PFCs. We examine the effect of different wall types, comparing high recycling conditions to situations of low recycling. The effect of intrinsic impurity screening is also taken into account under the expected HIDRA operating regimes. We report the calculated particle confinement time and fluid moments of both plasma and neutrals at the low recycling regimes expected with lithium-based PFCs, and compare them with the high recycling regimes found with conventional metal-based PFCs.

  1. High Performance Double-null Plasma Operation Under Radiating Divertor Conditions

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Osborne, T.; Leonard, A. W.; Luce, T. C.; Petty, C. C.; Fenstermacher, M. E.; Lasnier, C. J.; Turco, F.; Watkins, J. G.

    2017-10-01

    We report on heat flux reduction experiments in which deuterium/neon- or deuterium/argon-based radiating mantle/divertor approaches were applied to high performance double-null (DN) plasmas (H98 1.4-1.7,βN 4 , q 95 6) with a combined neutral beam and ECH power input PIN 15 MW. When the radial location of the ECH deposition is close to the magnetic axis (e.g., ρ <=0.20), the radial profiles of both injected and intrinsic impurities are flat to somewhat hollow. For deposition farther out (e.g., ρ=0.45), the impurity profiles are highly peaked on axis, which would make high performance DN operation with impurity injection more problematical. Comparison of neon with argon `seeding' with respect to core dilution, energy confinement, and heat flux reduction under these conditions favors argon. Conditions that lead to an improved τE as predicted previously from ELITE code analysis, i.e., very high PIN, proximity to magnetic balance, and higher q95, are largely consistent with this data. Work was supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54761, and DE-AC04-94AL85000.

  2. Non-Implanted Gallium-Arsenide and its Subsequent Annealing Effects.

    NASA Astrophysics Data System (ADS)

    Liou, Lih-Yeh

    Infrared spectroscopy is used to study ion-implanted GaAs and its subsequent annealing effects. The damage in the implantation region causes a change in dielectric constant resulting in an infrared reflection spectrum which shows the interference pattern of a multilayer structure. Reflection data are fitted by values calculated from a physically realistic model by using computer codes. The first part in this work studies the solid state regrowth of amorphous GaAs made by Be implantation at -100(DEGREES)C. The regrowth temperature is around 200(DEGREES)C. The regrowth starts with a narrowing of the transition region and the transformation of the implanted layer from as-implanted amorphous (a-l) state to thermally-stablized amorphous (a-ll) state. The non-epitaxial recrystallization from both the surface and the interfacial region follows. The final regrown layer has a slightly higher refractive index than the crystalline value, indicating a high residual defect concentration. The temperature dependent regrowth velocity and the activation energy for this process are determined. The second part studies the free carrier activation in Be-implanted GaAs. Free holes are activated with prolonged annealing at 400(DEGREES)C ((TURN)50 hours) or a shorter time at higher temperature. The carrier contribution to the dielectric constant is calculated from the classical model and best fit to the reflection results show that the carrier profile can be approximated by a two half-Gaussians joined smoothly at their peaks. The peak position for the profile occurs deeper than that for the Be impurity profile measured by SIMS. The carrier distribution is speculated to be the result of the Be impurity, Ga vacancy and possible compensating defect distributions. The final part studies the free carrier removal by proton implantation in heavily doped, high carrier density, n-type GaAs. The as-implantation region is highly compensated until annealed at 550(DEGREES)C. After annealing between 300 and 400(DEGREES)C, the infrared results show a partially compensated region diffused deeply into substrate from the as-implanted region. The SIMS measurements show a well correlated hydrogen diffusion layer which suggests that the compensation defect is hydrogen related. After 500(DEGREES)C, the hydrogen diffusion layer is still observed, but the compensation layer has disappeared. The diffusion coefficient of the compensating defect and the activation energy for this process are determined. Carbon -implanted GaAs having a high carrier density substrate is also measured and compared with the H-implanted cases. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  3. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  4. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors.

    PubMed

    Shi, Lin; Wang, Lin-Wang

    2012-12-14

    Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel algorithm is introduced to calculate such a deep level nonradiative recombination rate using the ab initio density functional theory. This algorithm can calculate the electron-phonon coupling constants all at once. An approximation is presented to calculate the phonon modes for one impurity in a large supercell. The neutral Zn impurity site together with a N vacancy is considered as the carrier-capturing deep impurity level in bulk GaN. Its capture coefficient is calculated as 5.57 × 10(-10)cm(3)/s at 300 K. We found that there is no apparent onset of such a nonradiative process as a function of temperature.

  5. Molecular Kondo effect in flat-band lattices

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Thuy Thi

    2018-04-01

    The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.

  6. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2010-11-01

    There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.

  7. Quantum corral effects on competing orders and electronic states in chiral d + id or f-wave superconductors.

    PubMed

    Zuo, Xian-Jun

    2018-03-07

    Self-consistent calculations are performed to characterize the quantum corral effects on the electronic states of chiral d + id or f-wave superconductors in this paper. A variety of spatial structures of competing orders are revealed in the presence of ferromagnetic nano-corrals, and superconducting islands are found to be absent in the case of small corrals while being seen for large corrals. Compared with the local suppression of superconductivity by a magnetic impurity inside the corral, surprisingly, an additional remarkable feature, i.e., obvious oscillations or enhancement of superconductivity around a non-magnetic impurity, is observed inside the magnetic corral. This is important in view of applications, especially in view of the demand for devices to locally produce strong superconductivity. Meanwhile, the charge density displays obvious modulations due to quantum confinement but in contrast, the spin density pattern exhibits its robustness against the corral effect. Furthermore, we explore the local density of states so as to be directly checked by experiments. We demonstrate that a magnetic corral can suppress the formation of quasi-particle bound states induced by an impurity inside the corral in the chiral d + id state while the f-wave case shows different behaviors. These results also propose a new route to make a distinction between the two competing pairing states in triangular-lattice superconductors.

  8. Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi

    2017-10-01

    The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.

  9. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas. Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moos, H W; Armstrong, L Jr

    1980-01-01

    The work performed from mid-January 1979 through 1980 is described. EUV diagnostic studies have been performed at the Alcator A and C Tokamaks, and on TMX. A toroidal asymmetry has been found in the low density phase of Alcator A. The confinement time of impurities has been measured on Alcator A. Impurity concentrations in the center cell of TMX have been studied using EUV spectroscopic techniques. A time resolving spectrograph with 1024 detector elements is essentially complete.

  10. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    NASA Astrophysics Data System (ADS)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  11. Simultaneous excitation of the snake-like oscillations and the m/n = 1/1 resistive interchange modes around the iota = 1 rational surface just after hydrogen pellet injections in LHD plasmas

    NASA Astrophysics Data System (ADS)

    Bando, T.; Ohdachi, S.; Suzuki, Y.; Sakamoto, R.; Narushima, Y.; Takemura, Y.; Watanabe, K. Y.; Sakakibara, S.; Du, X. D.; Motojima, G.; Tanaka, K.; Morisaki, T.; LHD Experiment Group

    2018-01-01

    Two types of oscillation phenomena are found just after hydrogen ice pellet injections in the Large Helical Device (LHD). Oscillation phenomena appear when the deposition profile of a hydrogen ice pellet is localized around the rotational transform ι = 1 rational surface. At first, damping oscillations (type-I) appear only in the soft X-ray (SX) emission. They are followed by the second type of oscillations (type-II) where the magnetic fluctuations and density fluctuations synchronized to the SX fluctuations are observed. Both oscillations have poloidal/toroidal mode number, m/n = 1/1. Since the type-II oscillations appear when the local pressure is large and/or the local magnetic Reynold's number is small, it is reasonable that type-II oscillations are caused by the resistive interchange modes. Because both types of oscillations appear simultaneously at slightly different locations and with slightly different frequencies, it is certain that type-I oscillations are different from type-II oscillations, which we believe is the MHD instability. It is possible that type-I oscillations are caused by the asymmetric concentration of the impurities. The type-I oscillations are similar to the impurity snake phenomena observed in tokamaks though type-I oscillations survive only several tens of milliseconds in LHD.

  12. Simultaneous profile measurements of medium- and high-Z impurity concentrations (nZ/ne) , Te , ΔZeff and n e2Zeff in MCF plasmas from multi-energy x-rays

    NASA Astrophysics Data System (ADS)

    Maddox, Jacob; Delgado-Aparicio, Luis; Pablant, Novimir; Rutman, Max; Hill, Ken; Bitter, Manfred; Reinke, Matthew; Rice, John

    2016-10-01

    Novel energy resolved measurements of x-ray emissions were used to characterize impurity concentrations, electron temperature, and ΔZeff in a variety of Alcator C-Mod plasmas. A PILATUS2 detector programmed in a multi-energy configuration and used in a pinhole camera geometry provides the capability to function similar to a pulse height analyzer (PHA) but with full plasma profile views and sufficient spatial ( 1 cm), energy ( .5 keV), and temporal ( 10 ms) resolution. Each of the PILATUS2's 100k (487x195) pixels can be set to an energy threshold, which sorts x-ray emissions into energy bins by counting only photons with energy above the threshold energy. By setting every 13th pixel row to the same energy bin and the 12 interjacent pixel rows to different energy bins on the PILATUS2 detector gives 38 poloidal sightlines (487 rows/13 energy bins). The number of photons detected in each energy bin depends on (nZ/ne) , Te, and ne2Zeff, so that these plasma parameters can be extracted by fitting the data to an emission model, which includes free-free, free-bound, and bound-bound emissions from a De/H background plasma with perturbing medium and high-Z impurities, like intrinsic Mo, Fe, and Cu or injected W. Also, radial electron temperature profiles were measured during LHRF and ICRF and compared to Thomson scattering and ECE.

  13. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  14. Effect of impurity doping on tunneling conductance in AB-stacked bi-layer graphene: A tight-binding study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, G. C., E-mail: siva1987@iopb.res.in, E-mail: skp@iopb.res.in, E-mail: gcr@iopb.res.in; Sahu, Sivabrata; Panda, S. K.

    2016-04-13

    We report here a microscopic tight-binding model calculation for AB-stacked bilayer graphene in presence of biasing potential between the two layers and the impurity effects to study the evolution of the total density of states with special emphasis on opening of band gap near Dirac point. We have calculated the electron Green’s functions for both the A and B sub-lattices by Zubarev technique. The imaginary part of the Green’s function gives the partial and total density of states of electrons. The density of states are computed numerically for 1000 × 1000 grid points of the electron momentum. The evolution ofmore » the opening of band gap near van-Hove singularities as well as near Dirac point is investigated by varying the different interlayer hoppings and the biasing potentials. The inter layer hopping splits the density of states at van-Hove singularities and produces a V-shaped gap near Dirac point. Further the biasing potential introduces a U shaped gap near Dirac point with a density minimum at the applied potential(i.e. at V/2).« less

  15. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE PAGES

    Singh, Andy; Luening, Katharina; Brennan, Sean; ...

    2017-01-01

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  16. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Andy; Luening, Katharina; Brennan, Sean

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  17. Chemometrics-assisted chromatographic fingerprinting: An illicit methamphetamine case study.

    PubMed

    Shekari, Nafiseh; Vosough, Maryam; Tabar Heidar, Kourosh

    2017-03-01

    The volatile chemical constituents in complex mixtures can be analyzed using gas chromatography with mass spectrometry. This analysis allows the tentative identification of diverse impurities of an illicit methamphetamine sample. The acquired two-dimensional data of liquid-liquid extraction was resolved by multivariate curve resolution alternating curve resolution to elucidate the embedded peaks effectively. This is the first report on the application of a curve resolution approach for chromatogram fingerprinting to identify particularly the embedded impurities of a drug of abuse. Indeed, the strong and broad peak of methamphetamine makes identifying the underlying peaks problematic and even impossible. Mathematical separation instead of conventional chromatographic approaches was performed in a way that trace components embedded in methamphetamine peak were successfully resolved. Comprehensive analysis of the chromatogram, using multivariate curve resolution, resulted in elution profiles and mass spectra for each pure compound. Impurities such as benzaldehyde, benzyl alcohol, benzene, propenyl methyl ketone, benzyl methyl ketone, amphetamine, N-benzyl-2-methylaziridine, phenethylamine, N,N,α-trimethylamine, phenethylamine, N,α,α-trimethylmethamphetamine, N-acetylmethamphetamine, N-formylmethamphetamine, and other chemicals were identified. A route-specific impurity, N-benzyl-2-methylaziridine, indicating a synthesis route based on ephedrine/pseudoephedrine was identified. Moreover, this is the first report on the detection of impurities such as phenethylamine, N,α,α-trimethylamine (a structurally related impurity), and clonitazene (as an adulterant) in an illicit methamphetamine sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Validity criteria for Fermi’s golden rule scattering rates applied to metallic nanowires

    NASA Astrophysics Data System (ADS)

    Moors, Kristof; Sorée, Bart; Magnus, Wim

    2016-09-01

    Fermi’s golden rule underpins the investigation of mobile carriers propagating through various solids, being a standard tool to calculate their scattering rates. As such, it provides a perturbative estimate under the implicit assumption that the effect of the interaction Hamiltonian which causes the scattering events is sufficiently small. To check the validity of this assumption, we present a general framework to derive simple validity criteria in order to assess whether the scattering rates can be trusted for the system under consideration, given its statistical properties such as average size, electron density, impurity density et cetera. We derive concrete validity criteria for metallic nanowires with conduction electrons populating a single parabolic band subjected to different elastic scattering mechanisms: impurities, grain boundaries and surface roughness.

  19. Investigations on the heat flux and impurity for the HL-2M divertor

    NASA Astrophysics Data System (ADS)

    Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.

    2016-12-01

    The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}}   =  0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}}   =  2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better performance in terms of the parameters of discharges.

  20. Disorder and superfluid density in overdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Lee-Hone, N. R.; Dodge, J. S.; Broun, D. M.

    2017-07-01

    We calculate superfluid density for a dirty d -wave superconductor. The effects of impurity scattering are treated within the self-consistent t -matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parametrization of the Fermi surface, we find a superfluid density that is both correlated with Tc and linear in temperature, in good correspondence with recent experiments on overdoped La2 -xSrxCuO4 .

  1. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  2. Plasma profile evolution during disruption mitigation via massive gas injection on MAST

    NASA Astrophysics Data System (ADS)

    Thornton, A. J.; Gibson, K. J.; Chapman, I. T.; Harrison, J. R.; Kirk, A.; Lisgo, S. W.; Lehnen, M.; Martin, R.; Scannell, R.; Cullen, A.; the MAST Team

    2012-06-01

    Massive gas injection (MGI) is one means of ameliorating disruptions in future devices such as ITER, where the stored energy in the plasma is an order of magnitude larger than in present-day devices. The penetration of the injected impurities during MGI in MAST is diagnosed using a combination of high-speed (20 kHz) visible imaging and high spatial (1 cm) and temporal (0.1 ms) resolution Thomson scattering (TS) measurements of the plasma temperature and density. It is seen that the rational surfaces, in particular q = 2, are the critical surfaces for disruption mitigation. The TS data shows the build-up of density on rational surfaces in the edge cooling period of the mitigation, leading to the collapse of the plasma in a thermal quench. The TS data are confirmed by the visible imaging, which shows filamentary structures present at the start of the thermal quench. The filamentary structures have a topology which matches that of a q = 2 field line in MAST, suggesting that they are located on the q = 2 surface. Linearized magnetohydrodynamic stability analysis using the TS profiles suggests that the large density build-up on the rational surfaces drives modes within the plasma which lead to the thermal quench. The presence of such modes is seen experimentally in the form of magnetic fluctuations on Mirnov coils and the growth of an n = 1 toroidal mode in the period prior to the thermal quench. These results support the observations of other machines that the 2/1 mode is the likely trigger for the thermal quench in a mitigated disruption and suggests that the mitigation process in spherical tokamaks is similar to that in conventional aspect ratio devices.

  3. Chalcogen doping at anionic site: A scheme towards more dispersive valence band in CuAlO2

    NASA Astrophysics Data System (ADS)

    Mazumder, Nilesh; Sen, Dipayan; Chattopadhyay, Kalyan Kumar

    2013-02-01

    Using first-principles calculations, we propose to enhance the dispersion of the top of valence band at high-symmetry points by selective introduction of chalcogen (Ch) impurities at oxygen site. As ab-plane hole mobility of CuAlO2 is large enough to support a band-conduction model over a polaronic one at room temperature [M. S. Lee et al. Appl. Phys. Lett. 79, 2029, (2001); J. Tate et al. Phys. Rev. B 80, 165206, (2009)], we examine its electronic and optical properties normal to c-axis. Intrinsic indirectness of energy-gap at Γ-point can be effectively removed along with substantial increase in density of states near Fermi level (EF) upon Ch addition. This can be attributed to S 2p-Cu 3d interaction just at or below EF, which should result in significantly improved carrier mobility and conductivity profile for this important p-type TCO.

  4. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  5. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  6. The ab initio Calculation of Electric Field Gradient at the Site of P Impurity in α-Al3O2

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao-Li; Yuan, Da-Qing; Zhang, Huan-Qiao; Fan, Ping; Zuo, Yi; Zheng, Yong-Nan; Masuta, K.; Fukuda, M.; Mihara, M.; Minamisono, T.; Kitagawa, A.; Zhu, Sheng-Yun

    2012-09-01

    An ab initio calculation of the electric-field gradient (EFG) at the site of a phosphorous impurity substituting an Al atom in α-Al2O3 is carried out using the WIEN2k code with the full-potential linearized augmented plane wave plus local orbital method (LAPW+lo) in the frame of density functional theory. The atomic lattice relaxations caused by the implanted impurities were calculated for two different charged states to well describe the electronic structure of the doped system. The EFG at the site of the phosphorous impurity in the charged supercell calculated with the exchange-correlation potential of the Wu-Cohen generalized gradient approximation (WC-GGA) is 0.573 × 1021 V/m2. Then, the nuclear quadrupole moment of the I = 3 state in 28P is deduced to be 137 mb from the quadrupole interaction frequency of 190 kHz measured recently by the β-NQR method.

  7. Trapped one-dimensional ideal Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Brouzos, I.

    2013-08-01

    Ground-state properties of a single impurity in a one-dimensional Fermi gas are investigated in uniform and trapped geometries. The energy of a trapped system is obtained (i) by generalizing the McGuire expression from a uniform to trapped system (ii) within the local density approximation (iii) using the perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that there is a closed formula based on the exact solution of the homogeneous case which provides a precise estimation for the energy of a trapped system even for a small number of fermions and arbitrary coupling constant of the impurity. Using this expression, we analyze energy contributions from kinetic, interaction, and potential components, as well as spatial properties such as the system size and the pair-correlation function. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.

  8. Single magnetic adsorbates on s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Heinrich, Benjamin W.; Pascual, Jose I.; Franke, Katharina J.

    2018-02-01

    In superconductors, magnetic impurities induce a pair-breaking potential for Cooper pairs, which locally affects the Bogoliubov quasiparticles and gives rise to Yu-Shiba-Rusinov (YSR or Shiba, in short) bound states in the density of states (DoS). These states carry information on the magnetic coupling strength of the impurity with the superconductor, which determines the many-body ground state properties of the system. Recently, the interest in Shiba physics was boosted by the prediction of topological superconductivity and Majorana modes in magnetically coupled chains and arrays of Shiba impurities. Here, we review the physical insights obtained by scanning tunneling microscopy into single magnetic adsorbates on the s-wave superconductor lead (Pb). We explore the tunneling processes into Shiba states, show how magnetic anisotropy affects many-body excitations, and determine the crossing of the many-body ground state through a quantum phase transition. Finally, we discuss the coupling of impurities into dimers and chains and their relation to Majorana physics.

  9. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  10. Quasiparticle density of states, localization, and distributed disorder in the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Sulangi, Miguel Antonio; Zaanen, Jan

    2018-04-01

    We explore the effects of various kinds of random disorder on the quasiparticle density of states of two-dimensional d -wave superconductors using an exact real-space method, incorporating realistic details known about the cuprates. Random on-site energy and pointlike unitary impurity models are found to give rise to a vanishing DOS at the Fermi energy for narrow distributions and low concentrations, respectively, and lead to a finite, but suppressed, DOS at unrealistically large levels of disorder. Smooth disorder arising from impurities located away from the copper-oxide planes meanwhile gives rise to a finite DOS at realistic impurity concentrations. For the case of smooth disorder whose average potential is zero, a resonance is found at zero energy for the quasiparticle DOS at large impurity concentrations. We discuss the implications of these results on the computed low-temperature specific heat, the behavior of which we find is strongly affected by the amount of disorder present in the system. We also compute the localization length as a function of disorder strength for various types of disorder and find that intermediate- and high-energy states are quasiextended for low disorder, and that states near the Fermi energy are strongly localized and have a localization length that exhibits an unusual dependence on the amount of disorder. We comment on the origin of disorder in the cuprates and provide constraints on these based on known results from scanning tunneling spectroscopy and specific heat experiments.

  11. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell

    NASA Astrophysics Data System (ADS)

    Kewei, Cao; Tong, Liu; Jingming, Liu; Hui, Xie; Dongyan, Tao; Youwen, Zhao; Zhiyuan, Dong; Feng, Hui

    2016-06-01

    Low dislocation density Ge wafers grown by a vertical gradient freeze (VGF) method used for the fabrication of multi-junction photovoltaic cells (MJC) have been studied by a whole wafer scale measurement of the lattice parameter, X-ray rocking curves, etch pit density (EPD), impurities concentration, minority carrier lifetime and residual stress. Impurity content in the VGF-Ge wafers, including that of B, is quite low although B2O3 encapsulation is used in the growth process. An obvious difference exists across the whole wafer regarding the distribution of etch pit density, lattice parameter, full width at half maximum (FWHM) of the X-ray rocking curve and residual stress measured by Raman spectra. These are in contrast to a reference Ge substrate wafer grown by the Cz method. The influence of the VGF-Ge substrate on the performance of the MJC is analyzed and evaluated by a comparison of the statistical results of cell parameters. Project supported by the National Natural Science Foundation of China (No. 61474104).

  12. Neoclassical impurity transport in stellarator geometry

    NASA Astrophysics Data System (ADS)

    García-Regaña, J. M.; Beidler, C. D.; Kleiber, R.; Turkin, Y.; Maaßberg, H.; Helander, P.; Kauffmann, K.

    2012-03-01

    The appearance of a (neoclassical) inward radial electric field in stellarators is known to cause, under certain plasma conditions, the accumulation of impurities in the core, and sometimes the subsequent plasma radiative collapse. Quantitatively neoclassical theory has barely covered the impurity transport due to the conventional neglect of the assumed first order electrostatic potential and density, φ1 and n1 respectively, in the drift kinetic ordering. This practice, which ignores the fulfilment of the quasi-neutrality condition, carries intrinsically the assumption Z|e|φ1/kBT1, with Z the atomic number, |e| the unit charge, kB the Boltzmann constant and T the temperature. This inequality, valid for the bulk plasma, is violated by high Z impurities. In this work the δf PIC Monte Carlo code EUTERPE [1] together with the GSRAKE code [2] are used to obtain the first numerical output of neoclassical impurity dynamics retaining φ1 and n1 in the drift kinetic equation. The case of the LHD stellarator is considered.[4pt] [1] V. Kornilov et al, Nucl. Fusion 45 238, 2005.[0pt] [2] D. Beidler and W. D. D'haeseleer, Plasma Phys. Control. Fusion 37 463, 1995.

  13. Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Xiang, Nong; Men, Zongzheng

    2018-01-01

    The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.

  14. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G.

    In this study, an experimental design matrix was created and executed in order to test the effects of various real-world factors on the ability of the (1) accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposuremore » time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) ADS-SPME with vacuum (i.e., reduced pressure) increased the amount of detected CAS impurity, as measured by GC/MS peak area, by a factor of 1.7 to 1.9 for PWB under certain experimental conditions, (2) the amount of detected CAS impurity was most influenced by spiked volume, stock, and ADS headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, the ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB.« less

  15. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction.

    PubMed

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G

    2017-03-01

    In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electrochemical Behaviour and Electrorefining of Cobalt in NaCl-KCl-K2TiF6 Melt

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Sergey A.; Kazakova, Olga S.; Makarova, Olga V.

    2009-08-01

    The electrorefining of cobalt in NaCl-KCl-K2TiF6 (20 wt%) melt has been investigated. It was shown that complexes of Ti(III) and Co(II) appeared in the melt due to the reaction 2Ti(IV) + Co → 2Ti(III) + Co(II) and this reaction was entirely shifted to the right hand side. On the base of linear sweep voltammetry diagnostic criteria it was found that the discharge of Co(II) to Co metal is controlled by diffusion. The limiting current density of discharge Co(II) to metal in NaCl-KCl-K2TiF6 (20 wt%) melt was determined by steady-state voltammetry. The electrorefining of cobalt was carried out in hermetic electrolyser under argon atmosphere. Initial cathodic current density was changed from 0.2 Acm-2 up to 0.7 Acm-2, the electrolysis temperature varied within 973 - 1123 K. Behaviour of impurities during cobalt electrorefining was discussed. It was shown that electrorefining led to the elimination of most of the interstitial impurities (H2, N2, O2, C), with the result that the remaining impurity levels below 10 ppm impart high ductility to cobalt.

  17. Defect charge states in Si doped hexagonal boron-nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.

    2016-02-01

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  18. Study on gamma and electron beam sterilization of third generation cephalosporins cefdinir and cefixime in solid state

    NASA Astrophysics Data System (ADS)

    Singh, Babita K.; Parwate, Dilip V.; Das Sarma, Indrani B.; Shukla, Sudhir K.

    2010-10-01

    The effect of gamma radiation from 60Co source and 2 MeV e-beam was studied on two thermolabile cephalosporin antibiotics viz cefdinir and cefixime in solid state. The parameters studied to assess radiolytic degradation were loss of chemical and microbiological potency, change in optical rotation, electronic and vibrational absorption characteristics, thermal behavior and color modification. ESR spectroscopic study, HPLC related impurity profile, thermogram and Raman spectrum are applied in deducing the nature of radiolytic impurities and their formation hypotheses. Cefixime is radiation sensitive, whereas cefdinir has acceptable radiation resistance at 25 kGy dose. The nature of radiolytic related impurities and their concentrations indicates that the lactam ring is not highly susceptible to direct radiation attack, which otherwise is considered very sensitive to stress (thermal, chemical and photochemical).

  19. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  20. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    PubMed

    Solomon, Paige; Nelson, Jenny

    2018-03-01

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  1. Propellant Improvement Program. Volume 2. Iron Contamination Effect in HDA (High Density Acid)

    DTIC Science & Technology

    Density Acid ( HDA ) and the effect of iron impurity level up to 100 parts per million as Fe2O3 on HDA heat transfer. Thirty tests were conducted using...resistance heated, circular, 6061T6 aluminum tubes. Results showed that normal nucleate boiling did not occur with either of the HDA compositions. The

  2. Ge p-channel tunneling FETs with steep phosphorus profile source junctions

    NASA Astrophysics Data System (ADS)

    Takaguchi, Ryotaro; Matsumura, Ryo; Katoh, Takumi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    The solid-phase diffusion processes of three n-type dopants, i.e., phosphorus (P), arsenic (As), and antimony (Sb), from spin-on-glass (SOG) into Ge are compared. We show that P diffusion can realize both the highest impurity concentration (˜7 × 1019 cm-3) and the steepest impurity profile (˜10 nm/dec) among the cases of the three n-type dopants because the diffusion coefficient is strongly dependent on the dopant concentration. As a result, we can conclude that P is the most suitable dopant for the source formation of Ge p-channel TFETs. Using this P diffusion, we fabricate Ge p-channel TFETs with high-P-concentration and steep-P-profile source junctions and demonstrate their operation. A high ON current of ˜1.7 µA/µm is obtained at room temperature. However, the subthreshold swing and ON current/OFF current ratio are degraded by any generation-recombination-related current component. At 150 K, SSmin of ˜108 mV/dec and ON/OFF ratio of ˜3.5 × 105 are obtained.

  3. DFT+U Study of Chemical Impurities in PuO 2

    DOE PAGES

    Hernandez, Sarah C.; Holby, Edward F.

    2016-05-24

    In this paper, we employ density functional theory to explore the effects of impurities in the fluorite crystal structure of PuO 2. The impurities that were considered are known impurities that exist in metallic δ-phase Pu, including H, C, Fe, and Ga. These impurities were placed at various high-symmetry sites within the PuO 2 structure including an octahedral interstitial site, an interstitial site with coordination to two neighboring O atoms, an O substitutional site, and a Pu substitutional site. Incorporation energies were calculated to be energetically unfavorable for all sites except the Pu substitutional site. When impurities were placed inmore » a Pu substitutional site, complexes incorporating the impurities and O formed within the PuO 2 structure. The observed defect-oxygen structures were OH, CO 3, FeO 5, and GaO 3. The presence of these defects led to distortion of the surrounding O atoms within the structure, producing long-range disorder of O atoms. In contrast, perturbations of Pu atoms had a relatively short-range effect on the relaxed structures. These effects are demonstrated via radial distribution functions for O and Pu vacancies. Calculated electronic structure revealed hybridization of the impurity atom with the O valence states and a relative decrease in the Pu 5f states. Minor differences in band gaps were observed for the defected PuO 2 structures containing H, C, and Ga. Finally, Fe-containing structures, however, were calculated to have a significantly decreased band gap, where the implementation of a Hubbard U parameter on the Fe 3d orbitals will maintain the calculated PuO 2 band gap.« less

  4. Statistical analysis of variations in impurity ion heating at reconnection events in the Madison Symmetric Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartolano, M. S.; Craig, D., E-mail: darren.craig@wheaton.edu; Den Hartog, D. J.

    2014-01-15

    The connection between impurity ion heating and other physical processes in the plasma is evaluated by studying variations in the amount of ion heating at reconnection events in the Madison Symmetric Torus (MST). Correlation of the change in ion temperature with individual tearing mode amplitudes indicates that the edge-resonant modes are better predictors for the amount of global ion heating than the core-resonant modes. There is also a strong correlation between ion heating and current profile relaxation. Simultaneous measurements of the ion temperature at different toroidal locations reveal, for the first time, a toroidal asymmetry to the ion heating inmore » MST. These results present challenges for existing heating theories and suggest a stronger connection between edge-resonant tearing modes, current profile relaxation, and ion heating than has been previously thought.« less

  5. Predictions of high QDT in ITER H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Budny, Robert

    2009-05-01

    Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP code (see R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 075005, and F. Halpern, A. Kritz, G. Bateman, R.V. Budny, and D. McCune, Phys. Plasmas 15 062505) is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT.

  6. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  7. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    NASA Astrophysics Data System (ADS)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (<0.1) from lithium. So far experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stablemore » isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to originate from the carbon source and process used to make the HCN utilized in cyanide synthesis. Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability (so far) of using anion impurities for matching a cyanide sample to its country of manufacture (i.e., factory). Variable selection reduced errors for those classification methods having errors greater than zero with iPLS-forward selection, and F-ratio typically providing the lowest errors. Finally, using anion profiles to match cyanides to a specific stock or stock group resulted in cross-validation errors ranging from zero to 5.3%.« less

  9. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  10. Surface impedance and optimum surface resistance of a superconductor with an imperfect surface

    NASA Astrophysics Data System (ADS)

    Gurevich, Alex; Kubo, Takayuki

    2017-11-01

    We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.

  11. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations

    NASA Astrophysics Data System (ADS)

    Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan

    2015-04-01

    Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.

  12. Characterization of irradiation induced deep and shallow impurities

    NASA Astrophysics Data System (ADS)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  13. Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles

    NASA Astrophysics Data System (ADS)

    Woods, Keenan N.

    Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing. Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II. This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions. This dissertation includes previously published coauthored material.

  14. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.

    PubMed

    Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G

    2015-05-13

    Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.

  15. Neutral source and particle balance in the HSX edge

    NASA Astrophysics Data System (ADS)

    Stephey, Laurie; Kumar, Santhosh; Bader, Aaron; Akerson, Adrian; Schmitz, Oliver; Anderson, David; A, Simon; Talmadge, Joseph; Hegna, Chris

    2015-11-01

    The ability to control the neutral particle and impurity source in fusion devices is critical to obtaining high purity, high confinement plasmas. The neutral particle source defines the edge density gradients and plasma flows. To understand the relationship between the neutral particle source, plasma density gradients and plasma edge and core transport in HSX, a single reservoir particle balance is being used to provide a complete particle inventory. Detailed spectroscopic measurements of hydrogen and helium emission have yielded neutral and plasma profiles and ionization length estimations. The plasma puff source rate has been directly measured. To determine the recycling source rate, two specially designed limiters will be inserted to intercept 99% of the field lines, resulting in a well-defined LCFS and plasma interaction zone. Single limiter insertion resulted in a 50% reduction in global line emission, implying a reduction in wall recycling. Future camera and probe measurements will provide a recycling source rate. HSX neutral physics is also being investigated using EMC3-EIRENE. All results are discussed along with complementary plans for the Wendelstein 7-X startup phase. This work supported by US DOE Grant DE-FG02-93ER54222 and DE-SC0006103.

  16. Deposition Profile Analysis from DIII-D Metal Rings Campaign Outer-Midplane Collector Probe Diagnostic and Utilization of Enriched Isotopic Tungsten Tracer Particles

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Duran, J.; Zamperini, S.; Lee, S.; Unterberg, E. A.; Wampler, W. R.; Rudakov, D. L.; Elder, D.; Stangeby, P. C.; Abrams, T.

    2017-10-01

    The DIII-D Metal Rings Campaign used isotopically-enriched, W-coated divertor tiles coupled with dual-facing midplane collector probes (CPs) in the far Scrape-off Layer (SOL). Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) results are presented characterizing the isotopic ratios of deposited W on the CPs and which give quantitative information on the transport of W from specific poloidal locations within the lower outer divertor region having different isotopically-marked tiles. Rutherford Backscattering Spectrometry (RBS) of these CPs has provided areal densities of elemental W content. These resultant W deposition profiles were compared with DIVIMP modelling of the far-SOL to better understand impurity transport in the edge plasma. CPs were exposed for 37 distinct operating configurations (L-mode/H-mode, forward/reverse Bt, strikepoint position). Radial decay lengths (RDL) between 5 and 50 mm were observed with consistently narrower RDL and higher peak W content on the side of the probes connected along field lines to the inner divertor, indicating a concentration of W in the upstream plasma. Correlations are discussed between peak W content, RDL, and isotopic profiles on the CPs over a wide range of conditions. Work supported by US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FC02-04ER54698, DE-NA0003525.

  17. Advanced tokamak investigations in full-tungsten ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, A.; Doerk, H.; Fischer, R.; Rittich, D.; Stober, J.; Burckhart, A.; Fable, E.; Geiger, B.; Mlynek, A.; Reich, M.; Zohm, H.; ASDEX Upgrade Team

    2018-05-01

    The appropriate tailoring of the q-profile is the key to accessing Advanced Tokamak (AT) scenarios, which are of great benefit to future all-metal fusion power plants. Such scenarios depend on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering of the electron density ne leads to a strong decrease in the collisionality with increasing electron temperature ν* ˜ Te-3 . Simultaneously, the conditions for low ne also benefit impurity accumulation. This paper reports on how radiative collapses due to central W accumulation were overcome by improved understanding of the changes to recycling and pumping, substantially expanded ECRH capacities for both heating and current drive, and a new solid W divertor capable of withstanding the power loads at low ne. Furthermore, it reports on various improvements to the reliability of the q-profile reconstruction. A candidate steady state scenario for ITER/DEMO (q95 = 5.3, βN = 2.7, fbs > 40%) is presented. The ion temperature profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. A fully non-inductive scenario at higher q95 = 7.1 for current drive model validation is also discussed. The results show that non-inductive operation is principally compatible with full-metal machines.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  19. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  20. Numerical analyses of baseline JT-60SA design concepts with the COREDIV code

    NASA Astrophysics Data System (ADS)

    Zagórski, R.; Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Garzotti, L.; Giruzzi, G.; Neu, R.; Romanelli, M.

    2017-06-01

    JT-60SA reference design scenarios at high (#3) and low (#2) density have been analyzed with the help of the self-consistent COREDIV code. Simulations results for a standard C wall and full W wall have been compared in terms of the influence of impurities, both intrinsic (C, W) and seeded (N, Ar, Ne, Kr), on the radiation losses and plasma parameters. For scenario #3 in a C environment, the regime of detachment on divertor plates can be achieved with N or Ne seeding, whereas for the low density and high power scenario (#2), the C and seeding impurity radiation does not effectively reduce power to the targets. In this case, only an increase of either average density or edge density together with Kr seeding might help to develop conditions with strong radiation losses and semi-detached conditions in the divertor. The calculations show that, in the case of a W divertor, the power load to the plate is mitigated by seeding and the central plasma dilution is smaller compared to the C divertor. For the high density case (#3) with Ne seeding, operation in full detachment mode is predicted. Ar seems to be an optimal choice for the low-density high-power scenario #2, showing a wide operating window, whereas Ne leads to high plasma dilution at high seeding levels albeit not achieving semi-detached conditions in the divertor.

  1. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  2. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE PAGES

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.; ...

    2017-12-19

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  3. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.

    PubMed

    Zhang, Degang

    2009-10-30

    The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.

  4. Negative quantum capacitance induced by midgap states in single-layer graphene.

    PubMed

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  5. Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene

    PubMed Central

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions. PMID:23784258

  6. Magnetic disorder in superconductors: Enhancement by mesoscopic fluctuations

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. S.; Skvortsov, M. A.

    2018-01-01

    We study the density of states (DOS) and the transition temperature Tc in a dirty superconducting film with rare classical magnetic impurities of an arbitrary strength described by the Poissonian statistics. We take into account that the potential disorder is a source of mesoscopic fluctuations of the local DOS, and, consequently, of the effective strength of magnetic impurities. We find that these mesoscopic fluctuations result in a nonzero DOS for all energies in the region of the phase diagram where without this effect the DOS is zero within the standard mean-field theory. This mechanism can be more efficient in filling the mean-field superconducting gap than rare fluctuations of the potential disorder (instantons). Depending on the magnetic impurity strength, the suppression of Tc by spin-flip scattering can be faster or slower than in the standard mean-field theory.

  7. Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.

    2016-10-01

    Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.

  8. Effect of impurities on the mechanical and electronic properties of Au, Ag, and Cu monatomic chain nanowires

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Gülseren, O.

    2011-08-01

    In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.

  9. Hydrogen passivation and multiple hydrogen-Hg vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te

    NASA Astrophysics Data System (ADS)

    Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.

    2011-09-01

    Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.

  10. Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste

    NASA Astrophysics Data System (ADS)

    Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.

    2003-08-01

    A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.

  11. Mechanism of Na accumulation at extended defects in Si from first-principles

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chan, Maria K. Y.

    2018-04-01

    Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.

  12. Influence of subsurface defects on damage performance of fused silica in ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo

    2013-02-01

    In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.

  13. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  14. Thermonuclear instabilities and plasma edge transport in tokamaks

    NASA Astrophysics Data System (ADS)

    Fulop, Tunde Maria

    High-energy ions generated by fusion reactions in a burning fusion plasma may give rise to different types of wave instabilities. The present thesis investigates two types of such instabilities which recently have been observed in fusion experiments: the Toroidal Alfvén Eigenmode (TAE) instability and the magnetoacoustic cyclotron instability (MCI) which is predicted to give rise to ion cyclotron emission (ICE). The TAE instability may degrade the confinement of fusion-produced high energy alpha particles and adversely affect the possibilities of reaching ignition. The present work derives it generalized expression for the linear growth rate of the instability, by including the effects of finite orbit width and finite Larmor radius of energetic particles, as well as the effects of mode localization and the possible mode excitation by both passing and trapped energetic ions. ICE does not threaten the plasma performance, but it might be useful as a fast ion diagnostic. The ICE originates from the MCI involving fast magnetoacoustic waves driven unstable by toroidicity-affected cyclotron resonance with fast ions. In the present thesis a detailed numerical and analytical investigation of this instability is presented, that explains most of the experimental ICE features observed in JET and TFTR. Moreover, the radial and poloidal localization of the fast magnetoacoustic eigenmodes is investigated, including the effects of toroidicity, ellipticity, the presence of a subpopulation of high energy ions and various profiles of the bulk ion density. In a fusion reactor, the transport of the particles near the edge have a strong influence on the global confinement of the plasma. In the edge region, where neutral atoms and impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. In this thesis, we explore the effect of neutral particles on the ion flow shear in the edge region. Furthermore, the neoclassical transport theory in an impure, toroidally rotating plasma is extended to allow for steeper pressure and temperature gradients than are usually considered.

  15. Electronic transport properties of Ti-impurity band in Si

    NASA Astrophysics Data System (ADS)

    Olea, J.; González-Díaz, G.; Pastor, D.; Mártil, I.

    2009-04-01

    In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.

  16. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  17. Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films

    NASA Astrophysics Data System (ADS)

    Ma, Deng-Hao; Zhang, Wei-Jia; Luo, Rui-Ying; Jiang, Zhao-Yi; Ma, Qiang; Ma, Xiao-Bo; Fan, Zhi-Qiang; Song, Deng-Yuan; Zhang, Lei

    2016-05-01

    Phosphorus doped Si nanocrystals (SNCs) emebedded in silicon-rich SiNx:H films were prepared using plasma enhanced chemical vapor deposition technique, and the effects of nitrogen incorporation on the microstructure and electronic properties of the thin films have been systematically studied. Transmission electron microscope and Raman observation revealed that nitrogen incorporation prevents the growth of Si nanocrystals, and that their sizes can be adjusted by varying the flow rate of NH3. The reduction of photoluminescence (PL) intensity in the range of 2.1-2.6 eV of photon energy was observed with increasing nitrogen impurity, and a maximal PL intensity in the range 1.6-2.0 eV was obtained when the incorporation flow ratio NH3/(SiH4+H2+PH3) was 0.02. The conductivity of the films is improved by means of proper nitrogen impurity doping, and proper doping causes the interface charge density of the heterojunction (H-J) device to be lower than the nc-Si:H/c-Si H-J device. As a result, the proper incorporation of nitrogen could not only reduce the silicon banding bond density, but also fill some carrier capture centers, and suppress the nonradiative recombination of electrons.

  18. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  19. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  20. Energy spectrum and electrical conductivity of graphene with a nitrogen impurity

    NASA Astrophysics Data System (ADS)

    Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.

    2015-04-01

    The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.

  1. Local magnetizations in impure two-dimensional antiferromagnets

    NASA Astrophysics Data System (ADS)

    van Luijk, J. A.; Arts, A. F. M.; de Wijn, H. W.

    1980-03-01

    The local magnetizations near dilute substitutional impurities in the quadratic-layer antiferromagnet K2MnF4 are studied both experimentally and theoretically. The impurities considered are the nonmagnetic Zn and Mg, as well as Ni. The magnetizations are probed through the positions of the impurity-associated satellites in the nuclear magnetic resonance of the out-of-layer and in-layer 19F nuclei adjacent to the magnetic ions. It is discussed in which way the effects of lattice deformations can be eliminated in order to obtain the variations of the local magnetizations with temperature. The theoretical treatment is based on Green's-function techniques. The decoupling employed is within the local spin-deviation operators and accounts for correlation between nearest neighbors. It reduces the renormalized spin-wave Hamiltonian to an effective quadratic form, rendering decoupling of Green's functions unnecessary. The spectral distributions of the excitations are calculated including local modes. The theory is subsequently applied to the 13-site cluster consisting of the impurity and the first three shells of Mn around it. Good agreement is found. The magnetization is significantly modified in the first shell. The further shells are only weakly affected, however somewhat stronger than in comparable three-dimensional systems. For nonmagnetic impurities the thermal spin deviation in the first shell is about 13 larger than that of the host; in the Ni-doped system the additional deviations are within 1%. The zero-point deviation of the Ni is 0.11 units of spin, as compared to 0.17 in the host. A further experimental result is a uniform shift, increasing with concentration, of the sublattice magnetization at large distance from the impurity. It must be related to the finite density of states near the zone center in two-dimensional systems. Finally, some data are presented on the local susceptibilities.

  2. The synthesis and characterisation of MDMA derived from a catalytic oxidation of material isolated from black pepper reveals potential route specific impurities.

    PubMed

    Plummer, Christopher M; Breadon, Thomas W; Pearson, James R; Jones, Oliver A H

    2016-05-01

    This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography.

    PubMed

    Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe

    2017-02-05

    In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Up-down asymmetry measurement of tungsten distribution in large helical device using two extreme ultraviolet (EUV) spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y., E-mail: liu.yang@nifs.ac.jp; Zhang, H. M.; Morita, S.

    Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.

  5. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic semiconductor NCs with LSPRs covering the entire spectral range, from the mid- to the NIR. We focus on copper chalcogenide NCs and impurity doped metal oxide NCs as the most investigated alternatives to noble metals. We shed light on the structural changes upon LSPR tuning in vacancy doped copper chalcogenide NCs and deliver a picture for the fundamentally different mechanism of LSPR modification of impurity doped metal oxide NCs. We review on the peculiar optical properties of plasmonic degenerately doped NCs by highlighting the variety of different optical measurements and optical modeling approaches. These findings are merged in an exhaustive section on new and exciting applications based on the special characteristics that plasmonic semiconductor NCs bring along.

  6. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    A. Kallenbachthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-10-01

    The ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of {{I}\\text{p}}=0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen {{E}\\text{N}}≥slant 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.

  7. Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.

    2017-12-01

    Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.

  8. Erosion and Retention Properties of Beyllium

    NASA Astrophysics Data System (ADS)

    Doerner, R.; Grossman, A.; Luckhardt, S.; Serayderian, R.; Sze, F. C.; Whyte, D. G.

    1997-11-01

    Experiments in PISCES-B have investigated the erosion and hydrogen retention characteristics of beryllium. The sputtering yield is strongly influenced by trace amounts (≈1 percent) of intrinsic plasma impurities. At low sample exposure temperatures (below 250^oC), the beryllium surface remains free of contaminants and a sputtering yield similar to that of beryllium-oxide is measured. At higher exposure temperatures, impurities deposited on the surface can diffuse into the bulk and reduce their chance of subsequent erosion. These impurities form a surface layer mixed with beryllium which exhibits a reduced sputtering yield. Depth profile analysis has determined the composition and chemical bonding of the impurity layer. The hydrogen isotope retention of beryllium under ITER first wall (temperature = 200^oC, ion flux = 1 x 10^21 m-2 s-1) and baffle (temperature = 500^oC, ion flux = 1 x 10^22 m-2 s-1) conditions has been investigated. The retained deuterium saturates above a fluence of 10^23 m-2 at about 4 x 10^20 m-2 for the 200^oC exposure and at 2 x 10^20 m-2 for the 500^oC case. The TMAP code is used to model the deuterium release characteristics.

  9. Disorder Problem In Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Nelson, Ryky; Ekuma, Chinedu; Terletska, Hanna; Sudhindra, Vidhyadhiraja; Moreno, Juana; Jarrell, Mark

    2015-03-01

    Motivated by experimental studies addressing the role of impurity disorder in diluted magnetic semiconductors (DMS), we investigate the effects of disorder using a simple tight-binding Hamiltonian with random impurity potential and spin-fermion exchange which is self-consistently solved using the typical medium theory. Adopting the typical density of states (TDoS) as the order parameter, we find that the TDoS vanishes below a critical concentration of the impurity, which indicates an Anderson localization transition in the system. Our results qualitatively explain why at concentrations lower than a critical value DMS are insulating and paramagnetic, while at larger concentrations are ferromagnetic. We also compare several simple models to explore the interplay between ferromagnetic order and disorder induced insulating behavior, and the role of the spin-orbit interaction on this competition. We apply our findings to (Ga,Mn)As and (Ga,Mn)N to compare and contrast their phase diagrams.

  10. Insight into point defects and impurities in titanium from first principles

    NASA Astrophysics Data System (ADS)

    Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.

    2018-03-01

    Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.

  11. Validation of multi-temperature nozzle flow code NOZNT

    NASA Technical Reports Server (NTRS)

    Park, Chul; Lee, Seung-Ho

    1993-01-01

    A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.

  12. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and comparemore » with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.« less

  13. In-situ pyrogenic production of biodiesel from swine fat.

    PubMed

    Lee, Jechan; Tsang, Yiu Fai; Jung, Jong-Min; Oh, Jeong-Ik; Kim, Hyung-Wook; Kwon, Eilhann E

    2016-11-01

    In-situ production of fatty acid methyl esters from swine fat via thermally induced pseudo-catalytic transesterification on silica was investigated in this study. Instead of methanol, dimethyl carbonate (DMC) was used as acyl acceptor to achieve environmental benefits and economic viability. Thermo-gravimetric analysis of swine fat reveals that swine fat contains 19.57wt.% of water and impurities. Moreover, the fatty acid profiles obtained under various conditions (extracted swine oil+methanol+NaOH, extracted swine oil+DMC+pseudo-catalytic, and swine fat+DMC+pseudo-catalytic) were compared. These profiles were identical, showing that the introduced in-situ transesterification is technically feasible. This also suggests that in-situ pseudo-catalytic transesterification has a high tolerance against impurities. This study also shows that FAME yield via in-situ pseudo-catalytic transesterification of swine fat reached up to 97.2% at 380°C. Therefore, in-situ pseudo-catalytic transesterification can be applicable to biodiesel production of other oil-bearing biomass feedstocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Key comparison study on peptide purity—synthetic human C-peptide

    NASA Astrophysics Data System (ADS)

    Josephs, R. D.; Li, M.; Song, D.; Westwood, S.; Stoppacher, N.; Daireaux, A.; Choteau, T.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Flatschart, R.; Borges Oliveira, R.; Melanson, J. E.; Ohlendorf, R.; Henrion, A.; Kinumi, T.; Wong, L.; Liu, Q.; Oztug Senal, M.; Vatansever, B.; Ün, I.; Gören, A. C.; Akgöz, M.; Quaglia, M.; Warren, J.

    2017-01-01

    Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. More detailed studies on the identification/quantification of peptide related impurities and the hydrolysis efficiency revealed that the integrity of the impurity profile of the related peptide impurities obtained by the participant is crucial for the impact on accuracy of the hCP mass fraction assignment. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the KCRVPepImp. The KCRVPepImp for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The approach to obtain a KCRVhCP for the mass fraction of hCP is based on a mass balance calculation that takes into account the most exhaustive and elaborate set of results for the peptide related impurities KCRVPepImp, the TFA mass fraction value, water and other minor counter ions obtained by the coordinating laboratories. Differences in the quality of the results obtained for both peptides related impurity mass fractions and hCP mass fractions are better weighted and reflected in smaller uncertainties. The KCRVhCP for CCQM-K115 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. In general, mass balance approaches show smaller uncertainties than PICAA approaches and the majority of results obtained by the PICAA approach are in agreement because of larger corresponding uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. MST Pellet Injector Upgrades to Probe Beta and Density Limits and Impurity Particle Transport

    NASA Astrophysics Data System (ADS)

    Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Kumar, S. T. A.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.

    2012-10-01

    Upgrades to the pellet injector on MST will allow for significantly increased fueling capability enabling density limit studies for previously unavailable density regimes. Thus far, Greenwald fractions of 1.2 and 1.5 have been achieved in 500 kA and 200 kA improved confinement plasmas, respectively. The size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, was increased to accommodate pellets of up to 4.0 mm in diameter, capable of fueling to Greenwald fractions > 2.0 for MST's peak current of 600 kA. Exploring the effect of increased density on NBI deposition shows that for MST's NBI, core deposition of 25 keV neutrals is optimized for densities of 2 -- 3 x 10^19 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. In addition, a modification to the injector has allowed operation using alternative pellet fuels with triple points significantly higher than that of deuterium (18.7 K). A small flow of helium into the pellet formation vacuum chamber introduces a controllable heat source capable of elevating the operating temperature of the injector. Injection of methane pellets with a triple point of 90.7 K results in a 12-fold increase in the core carbon impurity density. The flow rate is easily adjusted to optimize injector operating temperature for other fuel gases as well. Work supported by US DoE.

  16. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  17. Segregation of Impurities in Directionally Solidified Silicon

    NASA Technical Reports Server (NTRS)

    Ravishankar, P. S.; Younghouse, L. B.

    1984-01-01

    Hall measurements and four-point probe resistivity measurements are used to determine the concentration profile of boron and iron in doped semi-conductor silicon ingots grown by the Bridgman technique. The concentration profiles are fitted to the normal segregation equation and the effective segregation coefficient, K sub eff, is calculated. The average value of K sub eff, is 0.803 for boron. For iron, K sub eff, is concentration dependent and is in the range 0.00008 to 0.00012.

  18. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+delta

    PubMed

    Pan; Hudson; Lang; Eisaki; Uchida; Davis

    2000-02-17

    Although the crystal structures of the copper oxide high-temperature superconductors are complex and diverse, they all contain some crystal planes consisting of only copper and oxygen atoms in a square lattice: superconductivity is believed to originate from strongly interacting electrons in these CuO2 planes. Substituting a single impurity atom for a copper atom strongly perturbs the surrounding electronic environment and can therefore be used to probe high-temperature superconductivity at the atomic scale. This has provided the motivation for several experimental and theoretical studies. Scanning tunnelling microscopy (STM) is an ideal technique for the study of such effects at the atomic scale, as it has been used very successfully to probe individual impurity atoms in several other systems. Here we use STM to investigate the effects of individual zinc impurity atoms in the high-temperature superconductor Bi2Sr2CaCu2O8+delta. We find intense quasiparticle scattering resonances at the Zn sites, coincident with strong suppression of superconductivity within approximately 15 A of the scattering sites. Imaging of the spatial dependence of the quasiparticle density of states in the vicinity of the impurity atoms reveals the long-sought four-fold symmetric quasiparticle 'cloud' aligned with the nodes of the d-wave superconducting gap which is believed to characterize superconductivity in these materials.

  19. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  20. Self-assembling of impurity clusters in AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb)

    NASA Astrophysics Data System (ADS)

    Elyukhin, V. A.

    2015-11-01

    The self-assembling conditions of arrays of tetrahedral impurity clusters of two types in zinc blende AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb) are represented. Doping with one cation and two anion isoelectronic impurities transforms AlN into AlN-rich GaxAl1-xBVyCVzN1-y-z alloy of GaBV, GaCV, GaN, AlBV, AlCV and AlN. The cause of self-assembling is the preference of GaBV, GaCV and AlN bonding over that of GaN, AlBV, AlCV. The conditions are considered from 0 °C to 1000 °C in the dilute and ultra dilute limits for the cation and anion impurities, correspondingly. The temperature ranges between the cluster occurrence and self-assembling completion when the same anion impurities are in clusters are very small. 1P4Ga and 1As4Ga cluster occurrence temperatures are equal, correspondingly, to 797 °C and 736 °C at Ga content 2% and P and As contents 0.01%. 1P4Ga and 1Sb4Ga cluster occurrence temperatures are equal, correspondingly, to 976 °C and 736 °C at the same impurity contents. The cluster densities in AlN:(Ga, As, Sb) are close to those in AlN:(Ga, P, Sb). The results demonstrate that studied semiconductors are promising materials to produce arrays of identical ∼1 nm low band gap objects of two types embedded in the wide band gap matrix.

  1. In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji

    2018-03-01

    Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.

  2. Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.

    2018-04-01

    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.

  3. Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2011-10-01

    We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the real-space Bogoliubov-de Gennes equations on a square lattice within the Swiss-cheese model in the presence of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one correspondence between the local maps of the density of states, superconducting order parameter, and superfluid density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp=4% gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old) and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T2 dependence of the low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5, but follows the same trend of short-coherence-length high-Tc cuprate superconductors.

  4. A New Scaling for Divertor Detachment

    NASA Astrophysics Data System (ADS)

    Goldston, Robert

    2017-10-01

    The ITER design and future fusion power plant designs depend on divertor detachment, whether partial, pronounced or complete, both to limit heat flux to plasma-facing components and to limit surface erosion due to sputtering. Generally the parallel heat flux, estimated as proportional to Psep / R or Psep B / R , is used as a proxy for the difficulty of achieving detachment. Here we argue that the impurity cooling required for detachment is strongly dependent on the upstream separatrix density, which is limited by Greenwald scaling. Taking this into account self-consistently, along with the Heuristic Drift (HD) model for the SOL width, and using a Lengyel radiation model that includes non-coronal effects, we find that the relative impurity concentration, cz ≡nz /ne , required for detachment scales dominantly as cz Psep /Bp(nsep /nGW) 2 . The absence of any explicit favorable size scaling is concerning, as Psep must increase by an order of magnitude from present experiments to an economic fusion power system, while increases in the poloidal magnetic field strength are limited by magnet technology and MHD stability. This result should not be surprising, as it follows from the simplest scaling, Psep czne2VSOL , taking into account the Greenwald density limit and the HD SOL volume scaling. Reinke has combined a similar approach with the requirement to maintain H-mode, which sets a lower limit on Psep, and also arrives at an incentive for high field and disincentive for large size. These results should be challenged by comparison with 2D divertor codes and with measurements on existing experiments. In particular measurements are required for extrinsic divertor impurity concentration over a range of power and density conditions far from the regime where detachment can be achieved with deuterium puffing and intrinsic impurities alone. Nonetheless, these results suggest that higher magnetic field, stronger shaping, double-null operation, `advanced' divertor magnetic and baffle configurations, as well as lithium vapor targets merit greater attention. This work supported by the US DOE under contract DE-AC02-09CH11466.

  5. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.

    PubMed

    Krüger, B; Mrotzek, A; Wirtz, S

    2014-02-01

    In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high efficiency. The new technology was experimentally investigated and proven using model-RDF, actual-RDF and impurities of different densities. In addition, numerical simulations were also done. The fluidization chamber was operated in batch mode. The article describes experiences and difficulties in using rotating fluidized bed systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Theoretical study of impurity effects in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Navarro Gastiasoro, Maria; Hirschfeld, Peter; Andersen, Brian

    2013-03-01

    Several open questions remain unanswered for the iron-based superconductors (FeSC), including the importance of electronic correlations and the symmetry of the superconducting order parameter. Motivated by recent STM experiments which show a fascinating variety of resonant defect states in FeSC, we adopt a realistic five-band model including electronic Coulomb correlations to study local effects of disorder in the FeSC. In order to minimize the number of free parameters, we use the pairing interactions obtained from spin-fluctuation exchange to determine the homogeneous superconducting state. The ability of local impurity potentials to induce resonant states depends on their scattering strength Vimp; in addition, for appropriate Vimp, such states are associated with local orbital- and magnetic order. We investigate the density of states near such impurities and show how tunneling experiments may be used to probe local induced order. In the SDW phase, we show how C2 symmetry-breaking dimers are naturally formed around impurities which also form cigar-like (pi,pi) structures embedded in the (pi,0) magnetic bulk phase. Such electronic dimers have been shown to be candidates for explaining the so-called nematogens observed previously by QPI in Co-doped CaFe2As2.

  7. First-principles theory of doping in layered oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2017-12-01

    Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.

  8. Identification of the related substances of tilmicosin by liquid chromatography/ion trap mass spectrometry.

    PubMed

    Stoev, Georgi; Nazarov, Valeri

    2008-06-01

    Structures of seven impurities of the veterinary drug tilmicosin have been elucidated by multiple fragmentation with ion trap tandem mass spectrometry. All related compounds possess the main lactone ring of tilmicosin. The differences in their structures are due to the hydroxyl, mycaminose, 3,5-dimethylpiperidine and mycinose groups connected to C(3), C(5), C(6), C(14) of the lactone ring, respectively. The following compounds of the impurity profile of tilmicosin were identified: B - tilmicosin with a hydroxyl group at C(3); C - tilmicosin without a methyl group at the N-atom connected to C(3) of the mycaminose ring; D - tilmicosin with a hydroxyl group at C(6) of the mycaminose ring; E - tilmicosin with a methoxy group at C(3), F - desmicosin; G - 20-dihydrodesmicosin; and H - tilmicosin without a mycaminose ring. Isomers of the compounds B, C, D, E and H were identified by their mass chromatograms and retention times. The concentrations of the impurities varied in the range of 0.1% to 2.9%.

  9. Development and validation of a single robust HPLC method for the characterization of a pharmaceutical starting material and impurities from three suppliers using three separate synthetic routes.

    PubMed

    Sheldon, E M; Downar, J B

    2000-08-15

    Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.

  10. Thermionic performance of a cesium diminiode with relatively impure 110-tungsten electrodes

    NASA Technical Reports Server (NTRS)

    Smith, A. L.; Manista, E. J.; Morris, J. F.

    1974-01-01

    Thermionic performance data from a miniature plane cesium diode (diminiode) with 110-tungsten electrodes are presented. The diminiode has a guard-ringed collector and a spacing of 0.23 mm. The data were obtained by using a computerized acquisition system. The diode was tested at increments between 1700 and 1900 K for the emitter, 694 and 1101 K for the collector, and 519 and 650 K for the reservoir. A maximum power density of 4.5 W/sq cm was obtained at an emitter temperature of 1900 K. This relatively low output probably results from high carbon and sodium impurities in the electrode materials.

  11. Identification of microscopic hole-trapping mechanisms in nitride semiconductors

    DOE PAGES

    John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; ...

    2015-12-17

    Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrodinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.

  12. Complexity in estimation of esomeprazole and its related impurities' stability in various stress conditions in low-dose aspirin and esomeprazole magnesium capsules.

    PubMed

    Reddy, Palavai Sripal; Hotha, Kishore Kumar; Sait, Shakil

    2013-01-01

    A complex, sensitive, and precise high-performance liquid chromatographic method for the profiling of impurities of esomeprazole in low-dose aspirin and esomeprazole capsules has been developed, validated, and used for the determination of impurities in pharmaceutical products. Esomeprazole and its related impurities' development in the presence of aspirin was traditionally difficult due to aspirin's sensitivity to basic conditions and esomeprazole's sensitivity to acidic conditions. When aspirin is under basic, humid, and extreme temperature conditions, it produces salicylic acid and acetic acid moieties. These two byproducts create an acidic environment for the esomeprazole. Due to the volatility and migration phenomenon of the produced acetic acid and salicylic acid from aspirin in the capsule dosage form, esomeprazole's purity, stability, and quantification are affected. The objective of the present research work was to develop a gradient reversed-phase liquid chromatographic method to separate all the degradation products and process-related impurities from the main peak. The impurities were well-separated on a RP8 column (150 mm × 4.6mm, X-terra, RP8, 3.5μm) by the gradient program using a glycine buffer (0.08 M, pH adjusted to 9.0 with 50% NaOH), acetonitrile, and methanol at a flow rate of 1.0 mL min(-1) with detection wavelength at 305 nm and column temperature at 30°C. The developed method was found to be specific, precise, linear, accurate, rugged, and robust. LOQ values for all of the known impurities were below reporting thresholds. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation in the presence of aspirin. The developed RP-HPLC method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision, limit of detection, limit of quantification, ruggedness, and robustness.

  13. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.

    2002-05-01

    Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

  14. Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor using Liquid Chromatography–Mass Spectrometry, XCMS, and Chemometrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Clowers, Brian H.; Moore, Ronald J.

    2010-05-15

    This report demonstrates the use of bioinformatic and chemometric tools on liquid chromatography mass spectrometry (LC-MS) data for the discovery of ultra-trace forensic signatures for sample matching of various stocks of the nerve-agent precursor known as methylphosphonic dichloride (dichlor). The use of the bioinformatic tool known as XCMS was used to comprehensively search and find candidate LC-MS peaks in a known set of dichlor samples. These candidate peaks were down selected to a group of 34 impurity peaks. Hierarchal cluster analysis and factor analysis demonstrated the potential of these 34 impurities peaks for matching samples based on their stock source.more » Only one pair of dichlor stocks was not differentiated from one another. An acceptable chemometric approach for sample matching was determined to be variance scaling and signal averaging of normalized duplicate impurity profiles prior to classification by k-nearest neighbors. Using this approach, a test set of dichlor samples were all correctly matched to their source stock. The sample preparation and LC-MS method permitted the detection of dichlor impurities presumably in the parts-per-trillion (w/w). The detection of a common impurity in all dichlor stocks that were synthesized over a 14-year period and by different manufacturers was an unexpected discovery. Our described signature-discovery approach should be useful in the development of a forensic capability to help in criminal investigations following chemical attacks.« less

  15. Measurements of confined alphas and tritons in the MHD quiescent core of TFTR plasmas using the pellet charge exchange diagnostic

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Budny, R. V.; Mansfield, D. K.; Redi, M. H.; Roquemore, A. L.; Fisher, R. K.; Duong, H. H.; McChesney, J. M.; Parks, P. B.; Petrov, M. P.; Gorelenkov, N. N.

    1996-10-01

    The energy distributions and radial density profiles of the fast confined trapped alpha particles in DT experiments on TFTR are being measured in the energy range 0.5 - 3.5 MeV using the pellet charge exchange (PCX) diagnostic. A brief description of the measurement technique which involves active neutral particle analysis using the ablation cloud surrounding an injected impurity pellet as the neutralizer is presented. This paper focuses on alpha and triton measurements in the core of MHD quiescent TFTR discharges where the expected classical slowing-down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. In particular, the first measurement of the alpha slowing-down distribution up to the birth energy, obtained using boron pellet injection, is presented. The measurements are compared with predictions using either the TRANSP Monte Carlo code and/or a Fokker - Planck Post-TRANSP processor code, which assumes that the alphas and tritons are well confined and slow down classically. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with the code calculations. We can conclude that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons.

  16. Effects of positive ion implantation into antireflection coating of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Middleton, A. E.; Harpster, J. W.; Collis, W. J.; Kim, C. K.

    1971-01-01

    The state of technological development of Si solar cells for highest obtained efficiency and radiation resistance is summarized. The various theoretical analyses of Si solar cells are reviewed. It is shown that factors controlling blue response are carrier diffusion length, surface recombination, impurity concentration profile in surface region, high level of surface impurity concentration (degeneracy), reflection coefficient of oxide, and absorption coefficient of Si. The theory of ion implantation of charge into the oxide antireflection coating is developed and side effects are discussed. The experimental investigations were directed at determining whether the blue response of Si solar cells could be improved by phosphorus ion charges introduced into the oxide antireflection coating.

  17. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    DOE PAGES

    Elder, J. David; Stangeby, Peter C.; Abrams, Tyler W.; ...

    2017-04-19

    The OEDGE code is used to model tungsten erosion and transport for DIII-D experiments with toroidal rings of high-Z metal tiles. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasmamore » impurity simulations. We developed a new model for tungsten erosion in OEDGE which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. Furthermore, these values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport), the choice of tungsten atomic physics data used in the model (in particular sviz(Te) for W-atoms), and the model of the carbon flux and energy used for 2 calculating the tungsten source due to sputtering. The core tungsten density is found to be of order 10 15 m -3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned) with density decaying into the scrape off layer.« less

  18. A Theoretical Approach to the Calculation of Annealed Impurity Profiles of Ion Implanted Boron into Silicon.

    DTIC Science & Technology

    1977-06-01

    determined experimentally) and the distribution of energy deposited into nuclear processes by the boron ions. Damage is a product of this energy distri...energy deposited into nuclear processes, k is a constant adjusted to produce the total number of vacancies calculated in Fig. 11, and Tda m in the...profile computed from the energy depos- ited into nuclear processes = time constant for the release of vacancies fr( ,-, vacancy 1.- t ers C (liilibriul

  19. First-principles studies of electron transport in Ga2O3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; van de Walle, Chris G.

    Ga2O3 is a wide-gap semiconductor with a monoclinic crystal structure and a band gap of 4.8 eV. Its high carrier mobility and large band gap have attracted a lot of attention for use in high power electronics and transparent conductors. Despite its potential for adoption in these applications, an understanding of its carrier transport properties is still lacking. In this study we use first-principles calculations to analyze and compute the electron scattering rates in Ga2O3. Scattering due to ionized impurities and polar longitudinal-optical (LO) phonon is taken into account. We find that the electron mobility is nearly isotropic, despite the low-symmetry monoclinic structure of Ga2O3. At low carrier densities ( 1017 cm-3), the mobility is limited by LO phonon scattering. Scattering by ionized impurities becomes increasingly important at higher carrier densities. This type of scattering is enhanced when compensating native point defects are present; in particular, gallium vacancies, which are triply negatively charged, can have a strong effect on mobility. These effects explain the downturn in mobility observed in experiments at high carrier densities. This work was supported by ARO and NSF.

  20. Perfluoroalkyl acids (PFAAs) with isomer analysis in the commercial PFOS and PFOA products in China.

    PubMed

    Jiang, Weiwei; Zhang, Yifeng; Yang, Liping; Chu, Xiaolong; Zhu, Lingyan

    2015-05-01

    Perfluoroalkyl acids (PFAAs) have been widely used in consumer and industrial products for decades and are widely detected in the environment and humans all over the world. The information on the isomeric profiles of commercial products is important to identify the manufacturing origins of PFAAs in the environment. For the first time, the PFAA compositions and isomeric profiles of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) were reported in three PFOS and five PFOA commercial products manufactured in China. The purity of the three PFOS products was 76.7-80.6%. The major impurity in the PFOS products is PFOA, which contributes more than 10%. Other impurities include perfluorohexanesulfonate (PFHxS), perfluorohexanoate (PFHxA) and perfluoroheptanoate acids (PFHpA). The percentage of linear PFOS (n-PFOS) in the three products was 66.2-71.9%, similar to that in the product manufactured by 3M (70.3%). The purity of the five PFOA products was relatively high (94.0-95.8%), and the major impurity was PFOS (2.06-3.09%). The percentage of n-PFOA in the five PFOA products was 76.4-77.9%, which was similar to that in the 3M PFOA (78%). Although it is widely accepted that telomerization is currently the predominant manufacturing method for PFOA, yielding an isomerically pure and linear product, the results in the present study suggest that electrochemical fluorination is still used by some manufacturers in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Rare earth substitutional impurities in germanium: A hybrid density functional theory study

    NASA Astrophysics Data System (ADS)

    Igumbor, E.; Omotoso, E.; Tunhuma, S. M.; Danga, H. T.; Meyer, W. E.

    2017-10-01

    The Heyd, Scuseria, and Ernzerhof (HSE06) hybrid functional by means of density functional theory has been used to model the electronic and structural properties of rare earth (RE) substitutional impurities in germanium (REGe) . The formation and charge state transition energies for the REGe (RE = Ce, Pr, Er and Eu) were calculated. The energy of formation for the neutral charge state of the REGe lies between -0.14 and 3.13 eV. The formation energy result shows that the Pr dopant in Ge (PrGe) has the lowest formation energy of -0.14 eV, and is most energetically favourable under equilibrium conditions. The REGe induced charge state transition levels within the band gap of Ge. Shallow acceptor levels were induced by both the Eu (EuGe) and Pr (PrGe) dopants in Ge. The CeGe and ErGe exhibited properties of negative-U ordering with effective-U values of -0.85 and -1.07 eV, respectively.

  2. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  3. Effects of surface nanostructuring and impurity doping on ultrafast carrier dynamics of silicon photovoltaic cells: a pump-probe study

    NASA Astrophysics Data System (ADS)

    Chen, Tianyu; Nam, Yoon-Ho; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Song, Jae-Won; Lee, Jung-Ho; Zhang, Chao; Zhang, Yan

    2018-01-01

    We present femtosecond optical pump-terahertz probe studies on the ultrafast dynamical processes of photo-generated charge carriers in silicon photovoltaic cells with various nanostructured surfaces and doping densities. The pump-probe measurements provide direct insight on the lifetime of photo-generated carriers, frequency-dependent complex dielectric response along with photoconductivity of silicon photovoltaic cells excited by optical pump pulses. A lifetime of photo-generated carriers of tens of nanosecond is identified from the time-dependent pump-induced attenuation of the terahertz transmission. In addition, we find a large value of the imaginary part of the dielectric function and of the real part of the photoconductivity in silicon photovoltaic cells with micron length nanowires. We attribute these findings to the result of defect-enhanced electron-photon interactions. Moreover, doping densities of phosphorous impurities in silicon photovoltaic cells are also quantified using the Drude-Smith model with our measured frequency-dependent complex photoconductivities.

  4. Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets

    DOE PAGES

    Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; ...

    2017-02-08

    The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept bymore » computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors—one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.« less

  5. Determination of electron density and temperature in non-LTE plasmas from spectral lines of impurity ions

    NASA Technical Reports Server (NTRS)

    Kunc, Joseph A.

    1988-01-01

    A novel approach for calculating the populations of the excited Li-like ions C IV, N V, O VI, and Ne VIII is presented. The populations of the 2(2P), 3(2S), 3(2P), and 3(2D) electronic levels in these ions in optically thin plasmas with a broad range of electron density, N(e), and temperature, T(e), are determined from the collisional-radiative model by solving the system of rate equations for the production of excited ions; the equations are linear with respect to the excited ion populations, and the N(e) and T(e) are taken as independent variables. These populations are used to determine the ratios of line intensities for dipole allowed transitions between various energy levels. This approach can be applied to impurities other than the lithiumlike ions and is especially useful for diagnostics of systems where nonintrusive spectroscopic techniques must be used.

  6. Bonding and vibrations of CO molecules adsorbed at transition metal impurity sites on the MgO (001) surface. A density functional model cluster study

    NASA Astrophysics Data System (ADS)

    Neyman, K. M.; Rösch, N.

    1993-11-01

    First principles density functional cluster investigations of adsorption at the (001) surface of pure and doped magnesium oxide are carried out to characterize and compare the interaction of CO molecules with main group (Mg 2+) and d metal (Co 2+, Ni 2+, Cu 2+) surface cationic centers of the ionic substrate. The geometry of the adsorption complexes, the binding mechanism and spectroscopic manifestations of the surface species are analyzed. Special attention is payed to vibrational frequencies and intensities. The calculations qualitatively reproduce observed trends in the adsorption-induced frequency shifts for the series of the surface aggregates Mg 5cCO→Ni 5cCO→CO 5cCO and the corresponding change of the infrared intensities of the CO vibrational mode. For the transition metal impurity sites these results are rationalized in terms of a small, but notable Md πCOπ interaction.

  7. A computational study on tuning the field emission and electronic properties of BN nanocones by impurity atom doping

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.

    2018-06-01

    We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.

  8. Major fraction of black carbon is flushed from the melting New Hampshire snowpack nearly as quickly as soluble impurities

    NASA Astrophysics Data System (ADS)

    Lazarcik, James; Dibb, Jack E.; Adolph, Alden C.; Amante, Jacqueline M.; Wake, Cameron P.; Scheuer, Eric; Mineau, Madeleine M.; Albert, Mary R.

    2017-01-01

    Seasonal snowpacks accumulate impurities derived from atmospheric aerosols and trace gases throughout the winter and release them during snowmelt. Previous field and laboratory studies have shown that a snowpack can lose up to 80% of the soluble ion burden in the first 20% of the melt, an event commonly known as an ionic pulse. Other studies have concluded that particulate impurities (e.g., black carbon (BC)) concentrate in surface layers during melt which can have important implications for snowpack albedo. However, model and field studies have indicated that meltwater scavenging efficiency of BC in melting snowpacks is still an area of uncertainty. To quantify BC melt dynamics and the release of soluble impurities, we collected and analyzed near-daily chemical profiles in the snowpack at three sites during two winters in New Hampshire, United States of America. We observe an ionic pulse and a pulse of BC from the snowpack at the onset of melt; up to 62% of BC leaves within the first 24% of the melt. Surface concentrations of BC are higher than seasonal medians at the end of the winter season, but surface enhancements do not appear to be closely linked to decreases in snow-water equivalence caused by melting.

  9. A predictive model for the tokamak density limit

    DOE PAGES

    Teng, Q.; Brennan, D. P.; Delgado-Aparicio, L.; ...

    2016-07-28

    We reproduce the Greenwald density limit, in all tokamak experiments by using a phenomenologically correct model with parameters in the range of experiments. A simple model of equilibrium evolution and local power balance inside the island has been implemented to calculate the radiation-driven thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island predicts the density limit within a few percent. Furthermore, we found the density limit and it is a local edge limit and weakly dependent on impurity densities. Ourmore » results are robust to a substantial variation in model parameters within the range of experiments.« less

  10. Decisive role of magnetism in the interaction of chromium and nickel solute atoms with 1/2$$\\langle$$111$$\\rangle$$-screw dislocation core in body-centered cubic iron

    DOE PAGES

    Odbadrakh, Kh.; Samolyuk, G.; Nicholson, D.; ...

    2016-09-13

    Resistance to swelling under irradiation and a low rate of corrosion in high temperature environments make Fe-Cr and Fe-Cr-Ni alloys promising structural materials for energy technologies. In this paper we report the results obtained using a combination of density functional theory (DFT) techniques: plane wave basis set solutions for pseudo-potentials and multiple scattering solutions for all electron potentials. We have found a very strong role of magnetism in the stability of screw dislocation cores in pure Fe and their interaction with Cr and Ni magnetic impurities. In particular, the screw dislocation quadrupole in Fe is stabilized only in the presencemore » of ferromagnetism. In addition, Ni atoms, who's magnetic moment is oriented along the magnetization direction of the Fe matrix, prefer to occupy in core positions whereas Cr atoms, which couple anti-ferromagnetically with the Fe matrix, prefer out of the dislocation core positions. In effect, Ni impurities are attracted to, while Cr impurities are repelled by the dislocation core. Moreover, we demonstrate that this contrasting behavior can be explained only by the nature of magnetic coupling of the impurities to the Fe matrix. In addition, Cr interaction with the dislocation core mirrors that of Ni if the Cr magnetic moment is constrained to be along the direction of Fe matrix magnetization. In addition, we have shown that the magnetic contribution can affect the impurity-impurity interaction at distances up to a few Burgers vectors. In particular, the distance between Cr atoms in Fe matrix should be at least 3–4 lattice parameters in order to eliminate finite size effects.« less

  11. Effect of the screened Coulomb disorder on magneto-transport in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Ji, Xuan-Ting; Lu, Hai-Zhou; Zhu, Zhen-Gang; Su, Gang

    2018-05-01

    The observation of negative longitudinal magnetoresistivity (NLMR) in Weyl semimetals has gained strong support in recent experiments. It is believed that charged impurities play an important role in the measurement of NLMR. We thus employ a screened Coulomb disorder to model charged impurities and derive a general screening length depending on the magnetic field, chemical potential and temperature. We study the magneto-transport in a two-node Weyl semimetal in which the intra-valley scattering and the inter-valley scattering can be explored simultaneously. We also calculate the effect of the misalignment of the external electric field and the magnetic field on the longitudinal and transverse magnetoconductivities, recovering the experimental observations. We show that the former (latter) is suppressed (enhanced) sensitively with the density of the impurity. This feature makes it hard to observe the NLMR in experiments in the heavy doping case. These results may be exploited to explain the sample-dependent observation of NLMR and deepen our understanding of magneto-transport in Weyl semimetals.

  12. Monatomic Au wire with a magnetic Ni impurity: Electronic structure and ballistic conductance

    NASA Astrophysics Data System (ADS)

    Miura, Yoshio; Mazzarello, Riccardo; Dal Corso, Andrea; Smogunov, Alexander; Tosatti, Erio

    2008-11-01

    The influence of a magnetic impurity (Ni atom) on the electronic, magnetic, and Landauer conductance properties of a monatomic Au wire is studied by first-principles density-functional calculations. We compare two adsorption geometries: bridge and substitutional. We find that the Ni atom remains magnetic in both cases; however, in the bridge geometry, the total spin is close to 1/2 and the symmetry of the hole is d3z2-r2 while in substitutional it is larger than 1/2 with two degenerate holes with symmetry dyz and dzx . By using the Büttiker-Landauer theory, we find that in the first case the ideal, frozen spin conductance is somewhat diminished by the Ni impurity, although quite sensitive to calculation details such as the position of the empty Ni d and s states, while in the substitutional case conductance remains close to the ideal value G0 (=2e2/h) of the pristine gold wire.

  13. Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido

    2018-04-01

    Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.

  14. Majorana spin in magnetic atomic chain systems

    NASA Astrophysics Data System (ADS)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  15. CONGENER PROFILES OF POLYBROMINATED BIPHENYLS, -DIBENZO-P-DIOXINS AND -DIBENZOFURANS AS IMPURITIES IN TECHNICAL PREPARATION OF POLYBROMIANTED DIPHENYL ETHERS.

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are flame retardants used in textiles, and electronic equipment to prevent these products from burning. PBDEs have been marketed as penta- (DE-71), octa- (DE-79), and deca-brominated (DE-83) preparations. Commercial PBDE preparations were an...

  16. Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana

    2018-04-01

    In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.

  17. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative ofmore » specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.« less

  18. Structural and electrical properties of Se-hyperdoped Si via ion implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Yuan, Ye; Heller, R.; Berencén, Y.; Böttger, R.; Rebohle, L.; Skorupa, W.; Helm, M.; Zhou, S.

    2018-06-01

    We report on the hyperdoping of silicon with selenium obtained by ion implantation followed by flash lamp annealing. It is shown that the degree of crystalline lattice recovery of the implanted layers and the Se substitutional fraction depend on the pulse duration and energy density of the flash. While the annealing at low energy densities leads to an incomplete recrystallization, annealing at high energy densities results in a decrease of the substitutional fraction of impurities. The electrical properties of the implanted layers are well-correlated with the structural properties resulting from different annealing processing.

  19. The presence of isolated hydrogen donors in heavily carbon-doped GaAs

    NASA Astrophysics Data System (ADS)

    Fushimi, Hiroshi; Wada, Kazumi

    1994-12-01

    The deactivation mechanism of carbon acceptors in GaAs has systematically been studied by measuring the annealing behavior and depth profiles of the carrier concentration. It is found that hydrogen impurities dominate carbon deactivation. Their deactivation undergoes two different ways: Hydrogen donors isolated from carbon acceptors compensate carbon and hydrogen impurities neutralize the carbon by forming neutral carbon-hydrogen complexes. The compensating hydrogen donors diffuse out extremely fast at relatively low temperatures. This is, to the best of our knowledge, the first report on the presence of isolated hydrogen donors in heavily carbon-doped GaAs. The dissociation of carbon-hydrogen complexes is much slower than reported. The mechanism is discussed in terms of a hydrogen retrapping effect by carbon.

  20. Design of tangential multi-energy SXR cameras for tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Yamazaki, H.; Delgado-Aparicio, L. F.; Pablant, N.; Hill, K.; Bitter, M.; Takase, Y.; Ono, M.; Stratton, B.

    2017-10-01

    A new synthetic diagnostic capability has been built to study the response of tangential multi-energy soft x-ray pin-hole cameras for arbitrary plasma densities (ne , D), temperature (Te) and ion concentrations (nZ). For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy soft xray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (e.g. Te, nZ and ΔZeff). These systems are designed to sample the continuum- and line-emission from low- to high-Z impurities (e.g. C, O, Al, Si, Ar, Ca, Fe, Ni and Mo) in multiple energy-ranges. These x-ray cameras will be installed in the MST-RFP, as well as NSTX-U and DIII-D tokamaks, measuring the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected for the new systems will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed for the case of NSTX-U.

  1. On a gas electron multiplier based synthetic diagnostic for soft x-ray tomography on WEST with focus on impurity transport studies

    NASA Astrophysics Data System (ADS)

    Jardin, A.; Mazon, D.; Malard, P.; O'Mullane, M.; Chernyshova, M.; Czarski, T.; Malinowski, K.; Kasprowicz, G.; Wojenski, A.; Pozniak, K.

    2017-08-01

    The tokamak WEST aims at testing ITER divertor high heat flux component technology in long pulse operation. Unfortunately, heavy impurities like tungsten (W) sputtered from the plasma facing components can pollute the plasma core by radiation cooling in the soft x-ray (SXR) range, which is detrimental for the energy confinement and plasma stability. SXR diagnostics give valuable information to monitor impurities and study their transport. The WEST SXR diagnostic is composed of two new cameras based on the Gas Electron Multiplier (GEM) technology. The WEST GEM cameras will be used for impurity transport studies by performing 2D tomographic reconstructions with spectral resolution in tunable energy bands. In this paper, we characterize the GEM spectral response and investigate W density reconstruction thanks to a synthetic diagnostic recently developed and coupled with a tomography algorithm based on the minimum Fisher information (MFI) inversion method. The synthetic diagnostic includes the SXR source from a given plasma scenario, the photoionization, electron cloud transport and avalanche in the detection volume using Magboltz, and tomographic reconstruction of the radiation from the GEM signal. Preliminary studies of the effect of transport on the W ionization equilibrium and on the reconstruction capabilities are also presented.

  2. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  3. Clusters of Point Defects Near Dislocations as a Tool to Control CdZnTe Electrical Parameters by Ultrasound

    NASA Astrophysics Data System (ADS)

    Olikh, Ya. M.; Tymochko, M. D.; Olikh, O. Ya.; Shenderovsky, V. A.

    2018-05-01

    We studied the temperature dependence (77-300 K) of the electron concentration and mobility using the Hall method under ultrasound (the acoustic Hall method) to determine the mechanisms by which ultrasound influences the electrical activity of near-dislocation clusters in n-type low-ohmic Cd1-x Zn x Te single crystals (N Cl ≈ 1024 m-3; x = 0; 0.04) with different dislocation density (0.4-5.1) × 1010 m-2. Changes in electrophysical parameters were found to occur as a function of temperature and ultrasound intensity. To evaluate the relative contribution of different charge carrier scattering mechanisms (lattice scattering, ionized impurity scattering, neutral impurity scattering, and dislocation scattering) and their change under ultrasound, a differential evolution method was used. This method made it possible to analyze experimental mobility μ H(T) by its nonlinear approximation with characteristic temperature dependence for each mechanism. An increase in neutral impurity scattering and a decrease in ionized impurity and dislocation scattering components were observed under ultrasound. The character and the amount of these acoustically induced changes correlate with particular sample dislocation characteristics. It was concluded that the observed effects are related to the acoustically induced transformation of the point-defect structure, mainly in the near dislocation crystal regions.

  4. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  5. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  6. Applications of X Radiography to Examination of Nuclear Graphite; APPLICATIONS DE LA RADIOGRAPHIE X A L'EXAMEN DU GRAPHITE NUCLEAIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnier, P.

    1960-06-01

    A technique which determines some important elements in the structure of graphite, osme dislocation lines, the presence of some dense impurities, and the local decreases in density, which develop in the course of oxidation, is described. (P.C.H.)

  7. Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Noor, Hidayati Syamimi Mohd; Babji, Abdul Salam; Lim, Seng Joe

    2018-04-01

    Edible bird nest (EBN) is a powerful and nutritious food usually consumed by the Chinese Community and it is considered among the most expensive animal products which are made up by salivation of swiftlets (Aerodramus fuciphagus). The other 5% to 10% are made up of foreign matters such as feathers, faecal matter and dirt. The EBN is graded based on its aesthetics as well as its cleaning processes. The aim of this study were to determine and compare EBN of different grades (A, B, C, D) in terms of proximate composition and amino acid profile, and next to enzymatically hydrolyse and determine the degree of hydrolysis (DH) and the recovery percentage of EBN hydrolysates. The enzymatic hydrolysis were performed as an alternative cleaning process of the various grades of EBN, where the glycoproteins were hydrolysed to glycopeptides, making them soluble and leaving behind other insoluble impurities. The results in this study showed that EBN contained high crude protein content: 60.59% (EBNA), 59.50% (EBNB), 54.29% (EBNC) and 56.57% (EBND). Lower grade EBNs (EBNC and EBND) has much higher ash content, i.e. impurities, compared to higher grade EBNs (EBNA and EBNB). In terms of amino acid profile, EBND showed the highest total amino acids compared to EBNA, EBNB and EBNC, with serine and aspartic acid being the main amino acids. Treating the EBN with alcalase for 1.0 - 4.0 hours produced hydrolysates with different degree of hydrolysis (DH), ranging from 10.83 %DH (EBNA) to 13.79 %DH (EBNC). The recovery of EBN after enzymatic hydrolysis range from 89 % (EBNB) to 99% (EBNA). Overall, results showed nutritional composition and amino acid profile of EBN of various grades were significantly different in its nutritional quality, while the enzymatic hydrolysis has successfully separated the impurities from the lower grades EBN.

  8. The major results from W7-AS stellarator

    NASA Astrophysics Data System (ADS)

    Wagner, Friedrich

    2002-11-01

    W7-AS has terminated operation this summer. In the last phase, W7-AS was equipped with an island divertor using the natural edge islands of the low-shear, n=5 design. NBI heating has been done with co-injection (3 MW), ECRH was successfully extended to high density with the OXB scheme, and ICRH was applied in all standard modes but also in beach wave heating. The island divertor allowed high β and provided excellent exhaust conditions thanks to the accessibility to high densities (ne <= 4 × 10^20 m-3). 3D edge modelling with the EMC3-EIRENE code predicted and explained the absence of the high-recycling regime and the low-density high-temperature momentum losses associated with the prominent role of the cross-field transport. The confinement of W7-AS is determined by two concept dependent features low shear and 3D geometry: τE depends strongly on low-order rationals; in the plasma core the neo-classical bifurcation between ion and electron roots is observed. A distinct difference to tokamaks is the lack of Te - profile resilience. The H-mode operational range is governed by poloidal flow damping. At high density, a further bifurcation appears into a regime characterised by good energy and low impurity confinement (HDH). Because of its appealing features, this regime will be described in detail. The most visible MHD are beam driven global Alfven modes and ELMs. The operational limits are set by NBI power: The balance of heating and edge radiation determines the density limit; the maximal β is limited to 3.1%. The operation at high densities and high β is quiescent and quasi-steady state. The intrinsic stellarator features - steady state and no disruptions - remain close to operational limits. The results of W7-AS confirm the design criteria of W7-X and contribute to establish the stellarator line as independent route to a reactor.

  9. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less

  10. Density of states and magnetotransport in Weyl semimetals with long-range disorder

    NASA Astrophysics Data System (ADS)

    Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.

    2015-11-01

    We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.

  11. Bose Condensation at He-4 Interfaces

    NASA Technical Reports Server (NTRS)

    Draeger, E. W.; Ceperley, D. M.

    2003-01-01

    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.

  12. Implementation of a physically-based scheme representing light-absorbing impurities deposition, evolution and radiative impacts in the SURFEX/Crocus model

    NASA Astrophysics Data System (ADS)

    Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.

    2017-12-01

    Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.

  13. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  14. Electron-hole collision limited transport in charge-neutral bilayer graphene

    NASA Astrophysics Data System (ADS)

    Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.

    2017-12-01

    Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.

  15. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  16. Fundamental limits on the electron mobility of β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G.

    2017-06-01

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga2O3. We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi’s golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga2O3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga2O3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 1017 to 1020 cm-3. We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 1019 cm-3. We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  17. Effect of starting powder characteristics on density, microstructure and low temperature oxidation behavior of a Si3N48w/o Y2O3 ceramic

    NASA Technical Reports Server (NTRS)

    Schuon, S.; Dutta, S.

    1980-01-01

    The densification and oxidation behavior of Si3N4 - 8w/oY2O3 prepared from three commercial starting powders were studied. Bars of SN 402, SN 502, and CP 85/15 were sintered for 3 to 4.5 hours at 1750 C. A second set was hot pressed for 2 hours at 1750 C. The microstructures were studied by transmission electron microscopy and scanning electron microscopy, densities were determined, and the phase compositions were determined by X-ray diffraction. Densification and microstructure were greatly influenced by the starting powder morphology and impurity content. Although SN 402 exhibited the maximum weight lose, the highest sintered and hot pressed densities were obtained with this powder. All powders had both equiaxed and elongated grains. Sintered bars were composed of beta silicon nitride and n-melelite. In contrast, hot pressed bars contained beta silicon nitride, H-phase, and J-phase, but no melelite. Yttria distribution in sintered bars was related to the presence of cation impurities such as Ca, Fe, and Mg. A limited oxidation study at 750 C in air showed no instability in these Si3N4 - 8 w/oY2O3 specimens, regardless of startin powder.

  18. Fundamental limits on the electron mobility of β-Ga2O3.

    PubMed

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G

    2017-06-14

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga 2 O 3 . We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi's golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga 2 O 3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga 2 O 3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 10 17 to 10 20 cm -3 . We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 10 19 cm -3 . We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  19. A white noise approach to the Feynman integrand for electrons in random media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grothaus, M., E-mail: grothaus@mathematik.uni-kl.de; Riemann, F., E-mail: riemann@mathematik.uni-kl.de; Suryawan, H. P., E-mail: suryawan@mathematik.uni-kl.de

    2014-01-15

    Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and usemore » a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)].« less

  20. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  1. Spin relaxation in n-type GaAs quantum wells from a fully microscopic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, M. W.; Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2007-01-15

    We perform a full microscopic investigation on the spin relaxation in n-type (001) GaAs quantum wells with an Al{sub 0.4}Ga{sub 0.6}As barrier due to the D'yakonov-Perel' mechanism from nearly 20 K to room temperature by constructing and numerically solving the kinetic spin Bloch equations. We consider all the relevant scattering such as the electron-acoustic-phonon, the electron-longitudinal-optical-phonon, the electron-nonmagnetic-impurity, and the electron-electron Coulomb scattering to the spin relaxation. The spin relaxation times calculated from our theory with a fitting spin splitting parameter are in good agreement with the experimental data by Ohno et al. [Physica E (Amsterdam) 6, 817 (2000)] overmore » the whole temperature regime (from 20 to 300 K). The value of the fitted spin splitting parameter agrees with many experiments and theoretical calculations. We further show the temperature dependence of the spin relaxation time under various conditions such as electron density, impurity density, and well width. We predict a peak solely due to the Coulomb scattering in the spin relaxation time at low temperature (<50 K) in samples with low electron density (e.g., density less than 1x10{sup 11} cm{sup -2}) but high mobility. This peak disappears in samples with high electron density (e.g., 2x10{sup 11} cm{sup -2}) and/or low mobility. The hot-electron spin kinetics at low temperature is also addressed with many features quite different from the high-temperature case predicted.« less

  2. Active spectroscopy upgrades and neutral beam injection on LTX- β

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Biewer, Theodore; Canik, John; Reinke, Matthew; Bell, Ronald; Boyle, Dennis; Guttenfelder, Walter; Kaita, Robert; Kozub, Thomas; Majeski, Richard; Merino, Enrique

    2017-10-01

    The LTX- β upgrade includes the addition of neutral beam injection (NBI) and increased active spectroscopy. Typical plasmas have been and are expected to remain inboard limited, at 14 cm with minor radii of 18-23 cm. The NBI, 35 Amps of 20 keV particles, will enable active diagnosis of ion velocity distribution profiles through charge exchange (CHERS). 18 CHERS views will cover more than a full minor radius, each sampling 2 cm of major radius. The system has both a set of beam directed ``active'' views and a symmetric set of views pointing away from the beam for stray light subtraction. Along with measuring ion temperatures and impurity transport, the CHERS diagnostic will measure the plasma rotation profiles. The recently described low recycling regime is predicted to allow for high rotational velocities due to the low neutral drag. The planned NBI has been predicted to give on axis velocities near 100 km/s. Flow shear is expected to increase confinement in this regime by suppressing trapped electron mode and other microturbulence enhanced transport. Upgrades to the Thomson scattering system, including an array of polychromators and a new camera, will assist in diagnosing the low density hot edge in this low recycling regime. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  3. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  4. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  5. Characterization of representative materials in support of safe, long term storage of surplus plutonium in DOE-STD-3013 containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul H; Narlesky, Joshua E; Worl, Laura A

    2010-01-01

    The Surveillance and Monitoring Program (SMP) is a joint LANL/SRS effort funded by DOE/EM to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performancemore » of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. The chlorides (NaCl, KCl, CaCl{sub 2}, and MgCl{sub 2}) range from less than half of the impurities present to nearly all the impurities. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on over 60 samples of plutonium chosen to represent the broader population of materials in storage. This paper will summarize the characterization data, including the origin and process history, particle size, surface area, density, calorimetry, chemical analysis, moisture analysis, prompt gamma, gas generation and corrosion behavior.« less

  6. Argon metastable dynamics and lifetimes in a direct current microdischarge

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-01

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  7. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  8. A multichannel visible spectroscopy system for the ITER-like W divertor on EAST.

    PubMed

    Mao, Hongmin; Ding, Fang; Luo, Guang-Nan; Hu, Zhenhua; Chen, Xiahua; Xu, Feng; Yang, Zhongshi; Chen, Jingbo; Wang, Liang; Ding, Rui; Zhang, Ling; Gao, Wei; Xu, Jichan; Wu, Chengrui

    2017-04-01

    To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.

  9. A multichannel visible spectroscopy system for the ITER-like W divertor on EAST

    NASA Astrophysics Data System (ADS)

    Mao, Hongmin; Ding, Fang; Luo, Guang-Nan; Hu, Zhenhua; Chen, Xiahua; Xu, Feng; Yang, Zhongshi; Chen, Jingbo; Wang, Liang; Ding, Rui; Zhang, Ling; Gao, Wei; Xu, Jichan; Wu, Chengrui

    2017-04-01

    To facilitate long-pulse high power operation, an ITER-like actively cooled tungsten (W) divertor was installed in Experimental Advanced Superconducting Tokamak (EAST) to replace the original upper graphite divertor in 2014. A dedicated multichannel visible spectroscopic diagnostic system has been accordingly developed for the characterization of the plasma and impurities in the W divertor. An array of 22 lines-of-sight (LOSs) provides a profile measurement of the light emitted from the plasma along upper outer divertor, and the other 17 vertical LOSs view the upper inner divertor, achieving a 13 mm poloidal resolution in both regions. The light emitted from the plasma is collected by a specially designed optical lens assembly and then transferred to a Czerny-Turner spectrometer via 40 m quartz fibers. At the end, the spectra dispersed by the spectrometer are recorded with an Electron-Multiplying Charge Coupled Device (EMCCD). The optical throughput and quantum efficiency of the system are optimized in the wavelength range 350-700 nm. The spectral resolution/coverage can be adjusted from 0.01 nm/3 nm to 0.41 nm/140 nm by switching the grating with suitable groove density. The frame rate depends on the setting of LOS number in EMCCD and can reach nearly 2 kHz for single LOS detection. The light collected by the front optical lens can also be divided and partly transferred to a photomultiplier tube array with specified bandpass filter, which can provide faster sampling rates by up to 200 kHz. The spectroscopic diagnostic is routinely operated in EAST discharges with absolute optical calibrations applied before and after each campaign, monitoring photon fluxes from impurities and H recycling in the upper divertor. This paper presents the technical details of the diagnostic and typical measurements during EAST discharges.

  10. METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE

    DOEpatents

    Sturm, B.J.

    1963-08-13

    High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)

  11. Electrodeless Plasma Source: Phase II Update

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth

    2012-10-01

    Eagle Harbor Technologies, in collaboration with the University of Washington, has developed a low-impurity, electrode-less plasma source (EPS) for start-up and source plasma injection for fusion science applications. In order to not interfere with the experiment, a pre-ionizer/plasma source must meet a few critical criteria including low impurity production, low electromagnetic interference (EMI), and minimal disruption to the magnetic geometry of the experiment. This system was designed to be UHV compatible and bakable. Here we present the results of the EPS Phase II upgrade. The output plasma density was increased by two orders of magnitude to >10^17 m-3 in hydrogen with no magnetic field injected. EPS system integration with the HIT-SI experiment has begun.

  12. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Geffe, Chernet Amente

    2018-03-01

    This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  13. Transport properties of bilayer graphene due to charged impurity scattering: Temperature-dependent screening and substrate effects

    NASA Astrophysics Data System (ADS)

    Linh, Dang Khanh; Khanh, Nguyen Quoc

    2018-03-01

    We calculate the zero-temperature conductivity of bilayer graphene (BLG) impacted by Coulomb impurity scattering using four different screening models: unscreened, Thomas-Fermi (TF), overscreened and random phase approximation (RPA). We also calculate the conductivity and thermal conductance of BLG using TF, zero- and finite-temperature RPA screening functions. We find large differences between the results of the models and show that TF and finite-temperature RPA give similar results for diffusion thermopower Sd. Using the finite-temperature RPA, we calculate temperature and density dependence of Sd in BLG on SiO2, HfO2 substrates and suspended BLG for different values of interlayer distance c and distance between the first layer and the substrate d.

  14. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  15. Reversed Hall effect and plasma conductivity in the presence of charged impurities

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2018-01-01

    The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Ding, R.; Stangeby, P. C.

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  17. Enhanced H-mode pedestals with lithium injection in DIII-D

    DOE PAGES

    Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...

    2015-05-08

    Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less

  18. Physics and performance of the I-mode regime over an expanded operating space on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Baek, S.-G.; Brunner, D.; Creely, A. J.; Cziegler, I.; Edlund, E.; Hughes, J. W.; LaBombard, B.; Lin, Y.; Liu, Z.; Marmar, E. S.; Reinke, M. L.; Rice, J. E.; Sorbom, B.; Sung, C.; Terry, J.; Theiler, C.; Tolman, E. A.; Walk, J. R.; White, A. E.; Whyte, D.; Wolfe, S. M.; Wukitch, S.; Xu, X. Q.; the Alcator C-Mod Team

    2017-12-01

    New results on the I-mode regime of operation on the Alcator C-Mod tokamak are reported. This ELM-free regime features high energy confinement and a steep temperature pedestal, while particle confinement remains at L-mode levels, giving stationary density and avoiding impurity accumulation. I-mode has now been obtained over nearly all of the magnetic fields and currents possible in this high field tokamak (I p 0.55-1.7 MA, B T 2.8-8 T) using a configuration with B  ×  ∇ B drift away from the X-point. Results at 8 T confirm that the L-I power threshold varies only weakly with B T, and that the power range for I-mode increases with B T; no 8 T discharges transitioned to H-mode. Parameter dependences of energy confinement are investigated. Core transport simulations are giving insight into the observed turbulence reduction, profile stiffness and confinement improvement. Pedestal models explain the observed stability to ELMs, and can simulate the observed weakly coherent mode. Conditions for I-H transitions have complex dependences on density as well as power. I-modes have now been maintained in near-DN configurations, leading to improved divertor power flux sharing. Prospects for I-mode on future fusion devices such as ITER and ARC are encouraging. Further experiments on other tokamaks are needed to improve confidence in extrapolation.

  19. Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions

    NASA Astrophysics Data System (ADS)

    van Swaaij, G. A.; Bystrov, K.; Borodin, D.; Kirschner, A.; van der Vegt, L. B.; van Rooij, G. J.; De Temmerman, G.; Goedheer, W. J.

    2012-09-01

    For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A 2Δ-X 2Π Gerö band around 430 nm. The CH A-level can be excited either by electron-impact (EI) or by dissociative recombination (DR) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by DR dominates at Te < 1.5 eV. The results indicate that the fraction of DR events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by EI de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at ne = 1.3 × 1020 m-3, to 2.8 at ne = 9.3 × 1020 m-3. Its inclusion significantly improved agreement between experiment and modeling.

  20. A simple method for the extraction and identification of light density microplastics from soil.

    PubMed

    Zhang, Shaoliang; Yang, Xiaomei; Gertsen, Hennie; Peters, Piet; Salánki, Tamás; Geissen, Violette

    2018-03-01

    This article introduces a simple and cost-saving method developed to extract, distinguish and quantify light density microplastics of polyethylene (PE) and polypropylene (PP) in soil. A floatation method using distilled water was used to extract the light density microplastics from soil samples. Microplastics and impurities were identified using a heating method (3-5s at 130°C). The number and size of particles were determined using a camera (Leica DFC 425) connected to a microscope (Leica wild M3C, Type S, simple light, 6.4×). Quantification of the microplastics was conducted using a developed model. Results showed that the floatation method was effective in extracting microplastics from soils, with recovery rates of approximately 90%. After being exposed to heat, the microplastics in the soil samples melted and were transformed into circular transparent particles while other impurities, such as organic matter and silicates were not changed by the heat. Regression analysis of microplastics weight and particle volume (a calculation based on image J software analysis) after heating showed the best fit (y=1.14x+0.46, R 2 =99%, p<0.001). Recovery rates based on the empirical model method were >80%. Results from field samples collected from North-western China prove that our method of repetitive floatation and heating can be used to extract, distinguish and quantify light density polyethylene microplastics in soils. Microplastics mass can be evaluated using the empirical model. Copyright © 2017 Elsevier B.V. All rights reserved.

Top