Analysis of the Effects of Impurities in Silicon. [to determine solar cell efficiency
NASA Technical Reports Server (NTRS)
Wohlgemuth, J. H.; Lafky, W. M.; Burkholder, J. H.
1979-01-01
A solar cell fabrication and analysis program to determine the effects on the resultant solar cell efficiency of impurities incorporated into silicon is conducted. Flight quality technologies and quality assurance are employed to assure that variations in cell performance are due to the impurities incorporated in the silicon. The type and level of impurity doping in each test lot is given and the mechanism responsible for the degradation of cell performance is identified and correlated to the doped impurities.
Rajan, Sharmila; Sonoda, Junichiro; Tully, Timothy; Williams, Ambrose J; Yang, Feng; Macchi, Frank; Hudson, Terry; Chen, Mark Z; Liu, Shannon; Valle, Nicole; Cowan, Kyra; Gelzleichter, Thomas
2018-04-13
bFKB1 is a humanized bispecific IgG1 antibody, created by conjoining an anti-Fibroblast Growth Factor Receptor 1 (FGFR1) half-antibody to an anti-Klothoβ (KLB) half-antibody, using the knobs-into-holes strategy. bFKB1 acts as a highly selective agonist for the FGFR1/KLB receptor complex and is intended to ameliorate obesity-associated metabolic defects by mimicking the activity of the hormone FGF21. An important aspect of the biologics product manufacturing process is to establish meaningful product specifications regarding the tolerable levels of impurities that copurify with the drug product. The aim of the current study was to determine acceptable levels of product-related impurities for bFKB1. To determine the tolerable levels of these impurities, we dosed obese mice with bFKB1 enriched with various levels of either HMW impurities or anti-FGFR1-related impurities, and measured biomarkers for KLB-independent FGFR1 signaling. Here, we show that product-related impurities of bFKB1, in particular, high molecular weight (HMW) impurities and anti-FGFR1-related impurities, when purposefully enriched, stimulate FGFR1 in a KLB-independent manner. By taking this approach, the tolerable levels of product-related impurities were successfully determined. Our study demonstrates a general pharmacology-guided approach to setting a product specification for a bispecific antibody whose homomultimer-related impurities could lead to undesired biological effects. Copyright © 2018. Published by Elsevier Inc.
Impurity effects in transition metal silicides
NASA Technical Reports Server (NTRS)
Lien, C.-D.; Nicolet, M.-A.
1984-01-01
Impurities can affect the properties of silicides directly by virtue of their presence. Impurities can also influence the processes by which silicides are formed. The effect of impurities on the reaction of transition metal films with a silicon substrate induced by thermal annealing are well documented. The interpretation of these results is discussed. It is shown that impurity redistribution is a major factor in determining how significant the effect of an impurity is. Redistribution observed for dopant impurities is also discussed.
Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials
NASA Technical Reports Server (NTRS)
Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.
1978-01-01
Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.
NASA Astrophysics Data System (ADS)
Gupta, Lokesh Kumar
2012-11-01
Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.
Toporisic, Rebeka; Mlakar, Anita; Hvala, Jernej; Prislan, Iztok; Zupancic-Kralj, Lucija
2010-06-05
Stress stability testing and forced degradation were used to determine the stability of enalapril maleate (EM) and to find a degradation pathway for the drug. The degradation impurities, formed under different stressed conditions, were investigated by HPLC and UPLC-MS methods. HPLC analysis showed several degradation impurities of which several were already determined, but on oxidation in the presence of magnesium monoperoxyphthalate (MMPP) several impurities of EM were observed which were not yet characterized. The HPLC methods for determination of EM were validated. The linearity of HPLC method was established in the concentration range between 0.5 and 10 microg/mL with correlation coefficient greater than 0.99. The LOD of EM was 0.2 microg/mL and LOQ was 0.5 microg/mL. The validated HPLC method was used to determine the degradation impurities in samples after stress stability testing and forced degradation of EM. In order to identify new degradation impurities of EM after forced degradation UPLC-MS/MS(n), Orbitrap has been used. It was found that new impurities are oxidation products: (S)-1-((S)-2-((S)-1-ethoxy-4-(o,m,p-hydroxyphenyl)-1-oxobutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid, (2S)-1-((2S)-2-((2S)-1-ethoxy-4-hydroxy-1-oxo-4-phenylbutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid. (S)-2-(3-phenylpropylamino)-1-(pyrrolidin-1-yl)propan-1-one was identified as a new degradation impurity. Copyright (c) 2010. Published by Elsevier B.V.
Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A
2018-05-01
Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for preliminary separation.
Tolle, John C; Becker, Calvin L; Califano, Jean C; Chang, Jane L; Gernhardt, Kevin; Napier, James J; Wittenberger, Steven J; Yuan, Judy
2009-01-01
Understanding impurity rejection in a drug substance crystallization process is valuable for establishing purity specifications for the starting materials used in the process. Impurity rejection has been determined for all known ABT-510 impurities and for many of the reasonable & conceivable impurities. Based on this study, a very high purity specification (e.g., > 99.7%) can be set for ABT-510 with a high level of confidence.
[Standard addition determination of impurities in Na2CrO4 by ICP-AES].
Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong
2015-02-01
Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.
Yang, H H Wendy
2017-01-01
A new practical and time-saving ultra-high performance liquid chromatography (UHPLC) method has been developed for determining the organic impurities in the anthraquinone color additives D&C Violet No. 2 and D&C Green No. 6. The impurities determined are p-toluidine, 1-hydroxyanthraquinone, 1,4-dihydroxyanthraquinone, and two subsidiary colors. The newly developed UHPLC method uses a 1.7-μ particle size C-18 column, 0.1 M ammonium acetate and acetonitrile as eluents, and photodiode array detection. For the quantification of the impurities, six-point calibration curves were used with correlation coefficients that ranged from 0.9974 to 0.9998. Recoveries of impurities ranged from 99 to 104%. Relative standard deviations ranged from 0.81 to 4.29%. The limits of detection for the impurities ranged from 0.0067% to 0.216%. Samples from sixteen batches of each color additive were analyzed, and the results favorably compared with the results obtained by gravity-elution column chromatography, thin-layer chromatography, and isooctane extraction. Unlike with those other methods, use of the UHPLC method permits all of the impurities to be determined in a single analysis, while also reducing the amount of organic waste and saving time and labor. The method is expected to be implemented by the U.S. Food and Drug Administration for analysis of color additive samples submitted for batch certification.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1980-01-01
Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.
NASA Astrophysics Data System (ADS)
Hottenhuis, M. H. J.; Lucasius, C. B.
1988-09-01
Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.
Analysis of the effects of impurities in silicon
NASA Technical Reports Server (NTRS)
Wohlgemuth, J.; Giuliano, M. N.
1980-01-01
A solar cell fabrication and analysis program was conducted to determine the effects on the resultant solar cell efficiency of impurities intentionally incorporated into silicon. It was found that certain impurities such as titanium, tantalum, and vanadium were bad, even in very small concentrations. Cell performance appeared relatively tolerable to impurities such as copper, carbon, calcium, chromium, iron and nickel (in the concentration levels which were considered).
Development of Impurity Profiling Methods Using Modern Analytical Techniques.
Ramachandra, Bondigalla
2017-01-02
This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.
Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe
2017-02-05
In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.
Determining factors for the presence of impurities in selectively collected biowaste.
Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta
2013-05-01
The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.
Gas chromatographic analysis of trace impurities in chlorine trifluoride.
Laurens, J B; Swinley, J M; de Coning, J P
2000-03-24
The gas chromatographic determination of trace gaseous impurities in highly reactive fluorinated gaseous matrices presents unique requirements to both equipment and techniques. Especially problematic are the gases normally present in ambient air namely oxygen and nitrogen. Analysing these gases at the low microl/l (ppm) level requires special equipment and this publication describes a custom-designed system utilising backflush column switching to protect the columns and detectors. A thermal conductivity detector with nickel filaments was used to determine ppm levels of impurities in ClF3.
Method for measuring radial impurity emission profiles using correlations of line integrated signals
NASA Astrophysics Data System (ADS)
Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.
2006-04-01
A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.
Method for detecting trace impurities in gases
Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.
1981-01-01
A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.
Method for detecting trace impurities in gases
Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.
A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.
Lifetime and diffusion length measurements on silicon material and solar cells
NASA Technical Reports Server (NTRS)
Othmer, S.; Chen, S. C.
1978-01-01
Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.
X-ray crystal spectrometer upgrade for ITER-like wall experiments at JETa)
NASA Astrophysics Data System (ADS)
Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Czarski, T.; Dominik, W.; Karpinski, L.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Conway, N. J.; Dalley, S.; Figueiredo, J.; Nakano, T.; Tyrrell, S.; Zastrow, K.-D.; Zoita, V.
2014-11-01
The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.
X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET.
Shumack, A E; Rzadkiewicz, J; Chernyshova, M; Jakubowska, K; Scholz, M; Byszuk, A; Cieszewski, R; Czarski, T; Dominik, W; Karpinski, L; Kasprowicz, G; Pozniak, K; Wojenski, A; Zabolotny, W; Conway, N J; Dalley, S; Figueiredo, J; Nakano, T; Tyrrell, S; Zastrow, K-D; Zoita, V
2014-11-01
The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.
The effects of impurities on the performance of silicon solar cells
NASA Technical Reports Server (NTRS)
Yamakawa, K. A.
1981-01-01
The major factors that determine the tolerable concentrations of impurities in silicon feedstock for solar cells used in power generation are discussed in this report. It is concluded that a solar-grade silicon can be defined only for a specific manufacturing process. It is also concluded that it is the electrical effects, efficiency and resistivity, that are dominant in determining tolerable concentrations of impurities in the silicon feedstock. Crystal growth effects may become important when faster growth rates and larger crystal diameters are developed and used.
Cryogenic Laser Calorimetry for Impurity Analysis
NASA Technical Reports Server (NTRS)
Swimm, R. T.
1985-01-01
The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.
Vojta, Jiří; Jedlička, Aleš; Coufal, Pavel; Janečková, Lucie
2015-05-10
A new rapid stability-indicating UPLC method for separation and determination of impurities in amlodipine besylate, valsartan and hydrochlorothiazide in their combined tablet dosage form was developed. The separation of Ph. Eur. related substances of amlodipine besylate (A, B, D, E, F, G), hydrochlorothiazide (A, B, C), valsartan (B, C), two other valsartan impurities (S)-2-(N-{[2'-cyanobiphenyl-4-yl]methyl}pentanamido)-3-methylbutanoic acid and (S)-3-methyl-2-{[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methylamino}butanoic acid and several unknown impurities was achieved by reversed phase liquid chromatography with UV detection. The detection wavelengths were set as follows: 225nm for valsartan, its impurities and for the impurity D of amlodipine, 271nm for hydrochlorothiazide and its impurities and 360nm for amlodipine and its impurities except for impurity D. Zorbax Eclipse C8 RRHD (100mm×3.0mm, 1.8μm) was used as a separation column and the analytes were eluted within 11min by a programmed gradient mixture of 0.01M phosphate buffer pH 2.5 and acetonitrile. The method was successfully validated in accordance to the International Conference of Harmonization (ICH) guidelines for amlodipine besylate and its impurity D, valsartan and its impurity C and hydrochlorothiazide and its impurities A, B and C. The triple-combined tablets were exposed to thermal, higher humidity, acid, alkaline, oxidative and photolytic stress conditions. Stressed samples were analyzed by the proposed method. All the significant degradation products and impurities were satisfactory separated from each other and from the principal peaks of drug substances. The peak purity test complied for peaks of amlodipine, valsartan and hydrochlorothiazide in all the stressed samples and indicated no co-elution of degradation products. The method was found to be precise, linear, accurate, sensitive, specific, robust and stability-indicating and could be used as a routine purity test method for amlodipine besylate, valsartan, hydrochlorothiazide and their pharmaceutical combinations. Copyright © 2015 Elsevier B.V. All rights reserved.
Stability of Weyl metals under impurity scattering
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.
2013-04-01
We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight-binding versions of the continuum models recently discussed by [Burkov, Hook, and Balents, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.235126 84, 235126 (2011)], describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected and that a scalar impurity will induce an intragap resonance over a wide range of scattering strength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength.
Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities
Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; ...
2016-12-16
Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi 2Sr 2CaCu 2O 8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω 1 ≈ 4 meV and Ω 2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as wellmore » as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.« less
Method for Determination of Less Than 5 ppm Oxygen in Sodium Samples
NASA Technical Reports Server (NTRS)
Reid, R. S.; Martin, J. J.; Schmidt, G. L.
2005-01-01
Alkali metals used in pumped loops or heat pipes must be sufficiently free of nonmetallic impurities to ensure long heat rejection system life. Life issues are well established for alkali metal systems. Impurities can form ternary compounds between the container and working fluid, leading to corrosion. This Technical Memorandum discusses the consequences of impurities and candidate measurement techniques to determine whether impurities have been reduced to suf.ciently low levels within a single-phase liquid metal loop or a closed two-phase heat transfer system, such as a heat pipe. These techniques include the vanadium wire equilibration, neutron activation analysis, plug traps, distillation, and chemical analysis. Conceptual procedures for performing vanadium wire equilibration purity measurements on sodium contained in a heat pipe are discussed in detail.
Vojta, Jiří; Hanzlík, Pavel; Jedlička, Aleš; Coufal, Pavel
2015-01-01
A new HPLC method for separation and determination of impurities in paracetamol, codeine phosphate hemihydrate and pitophenone hydrochloride in the presence of fenpiverinium bromide in combined suppository dosage form was developed and validated. The separation of paracetamol and its impurities 4-aminophenol, 4-nitrophenol, 4-chloracetanilid; codeine and its impurities methylcodeine, morphine, codeine dimer and 10-hydroxycodeine; pitophenone and its impurities 2-[4-[2-(1-piperidinyl)ethoxy]benzoyl] benzoic acid, 2-[4-[2-(1-piperidinyl)ethoxy]benzoyl]benzoic acid 2-(1-piperidinyl)-ethyl ester, methyl ester of 2-(4-hydroxybenzoyl) benzoic acid and fenpiverinium was achieved by using ion-pair reversed phase liquid chromatography with UV detection. Validation parameters such as the precision, accuracy, linearity, limit of detection (LOD), limit of quantification (LOQ) and robustness were verified for all the mentioned impurities of codeine phosphate hemihydrate and 4-aminophenol and 2-[4-[2-(1-piperidinyl)ethoxy]benzoyl] benzoic acid as the main degradation products of paracetamol and pitophenone hydrochloride, respectively. The described method was found to be useful for analysis of the stability samples and therefore suitable for routine purity testing of the drug product. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinberg, I.
1975-01-01
An experimental and theoretical investigation of the feasibility of using the MOS C-V (capacitance-voltage) technique to determine impurity and surface state concentrations on the diffused face of Si solar cells with Ta2O5 coatings. Impurity concentration 10 A from the diffused surface is found to be 2.9 times 10 to the 20th power per cu cm. Charge density in surface and oxide states is 2.1 times 10 to the 13th power per sq cm. These data agree with theoretical predictions.-
The effect of relative solubility on crystal purity
NASA Astrophysics Data System (ADS)
Givand, Jeffrey Christopher
This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.
A, Vijaya Bhaskar Reddy; Yusop, Zulkifli; Jaafar, Jafariah; Aris, Azmi B; Majid, Zaiton A; Umar, Khalid; Talib, Juhaizah
2016-09-05
In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N
2016-01-25
A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.; Bayervand, A.
2015-03-01
Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.
Stability of Weyl metals under imuurity scattering
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.
2013-03-01
We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight binding versions of the continuum models recently discussed by Burkov, Hook, and Balents, describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the impurity scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected, and that a scalar impurity will induce an intragap resonance over a wide range of scattering stength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength. This work is supported in part by the NSF through grant DMR-1007028. Work at LANL was supported by US DoE.
Porel, A.; Haty, Sanjukta; Kundu, A.
2011-01-01
The aim of the present study was the development and subsequent validation of a simple, precise and stability-indicating reversed phase HPLC method for the simultaneous determination of guaifenesin, terbutaline sulphate and bromhexine hydrochloride in the presence of their potential impurities in a single run. The photolytic as well as hydrolytic impurities were detected as 3,5-dihydroxybenzoic acid, 3,5-dihydroxybenzaldehyde, 1-(3,5-dihydroxyphenyl)-2-[(1,1-dimethylethyl) amino]-ethanone from terbutaline, 2-methoxyphenol and an unknown impurity identified as (2RS)-3-(2-hydroxyphenoxy)-propane-1,2-diol from guaifenesin. The chromatographic separation of all the three active components and their impurities was achieved on Wakosil II column, using phosphate buffer (pH 3.0) and acetonitrile as mobile phase which was delivered initially in the ratio of 80:20 (v/v) for 18 min, then changed to 60:40 (v/v) for next 12 min, and finally equilibrated back to 80:20 (v/v) for 10 min. Other HPLC parameters were: Flow rate at 1.0 ml/min, detection wavelengths 248 and 280 nm, injection volume 10 μl. The calibration graphs plotted with five concentrations of each component were linear with a regression coefficient R2 >0.9999. The limit of detection and limit of quantitation were estimated for all the five impurities. The established method was then validated for linearity, precision, accuracy, and specificity and demonstrated to be applicable to the determination of the active ingredients in commercial and model cough syrup. No interference from the formulation excipients was observed. These results suggest that this LC method can be used for the determination of multiple active ingredients and their impurities in a cough and cold syrup. PMID:22131621
Porel, A; Haty, Sanjukta; Kundu, A
2011-01-01
The aim of the present study was the development and subsequent validation of a simple, precise and stability-indicating reversed phase HPLC method for the simultaneous determination of guaifenesin, terbutaline sulphate and bromhexine hydrochloride in the presence of their potential impurities in a single run. The photolytic as well as hydrolytic impurities were detected as 3,5-dihydroxybenzoic acid, 3,5-dihydroxybenzaldehyde, 1-(3,5-dihydroxyphenyl)-2-[(1,1-dimethylethyl) amino]-ethanone from terbutaline, 2-methoxyphenol and an unknown impurity identified as (2RS)-3-(2-hydroxyphenoxy)-propane-1,2-diol from guaifenesin. The chromatographic separation of all the three active components and their impurities was achieved on Wakosil II column, using phosphate buffer (pH 3.0) and acetonitrile as mobile phase which was delivered initially in the ratio of 80:20 (v/v) for 18 min, then changed to 60:40 (v/v) for next 12 min, and finally equilibrated back to 80:20 (v/v) for 10 min. Other HPLC parameters were: Flow rate at 1.0 ml/min, detection wavelengths 248 and 280 nm, injection volume 10 μl. The calibration graphs plotted with five concentrations of each component were linear with a regression coefficient R(2) >0.9999. The limit of detection and limit of quantitation were estimated for all the five impurities. The established method was then validated for linearity, precision, accuracy, and specificity and demonstrated to be applicable to the determination of the active ingredients in commercial and model cough syrup. No interference from the formulation excipients was observed. These results suggest that this LC method can be used for the determination of multiple active ingredients and their impurities in a cough and cold syrup.
Impurity gettering in silicon using cavities formed by helium implantation and annealing
Myers, Jr., Samuel M.; Bishop, Dawn M.; Follstaedt, David M.
1998-01-01
Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer.
Impurity gettering in silicon using cavities formed by helium implantation and annealing
Myers, S.M. Jr.; Bishop, D.M.; Follstaedt, D.M.
1998-11-24
Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer. 4 figs.
Wirelessly controlled micro- and nanostructures for bioapplications
NASA Astrophysics Data System (ADS)
Lindo, Andre Machado
Apresentar uma contribuicao para a caracterizacao e compreensao do comportamento hidrodinâmico da laguna Ria de Aveiro, baseada num estudo experimental e num estudo de modelacao numerica, e o objectivo deste trabalho. As caracteristicas hidrologicas da Ria de Aveiro foram investigadas atraves da realizacao de varias campanhas de amostragem, tendo sido efectuadas medicoes de altura de agua, salinidade, temperatura da agua e velocidade da corrente em varias estacoes distribuidas ao longo de quatro canais principais da laguna. None
Response of impurity particle confinement time to external actuators in QH-mode plasmas on DIII-D
Grierson, Brian A.; Burrell, Keith H.; Garofalo, Andrea M.; ...
2014-11-04
A series of quiescent H-mode discharges have been executed with the specific aim of determining the particle confinement time of impurities in the presence of the edge harmonic oscillation. These discharges utilize non-intrinsic, non-recycling fully-stripped fluorine as the diagnostic species monitored by charge-exchange recombination spectroscopy. It is found that the EHO is an efficient means of impurity expulsion from the core plasma, with impurity exhaust rates comparable to or exceeding those in companion ELMing discharges. Furthermore, as the external torque from neutral beam injection is lowered, the global energy confinement time increases while the impurity confinement time does not displaymore » an increase.« less
Chan, Tze-Ming; Pramanik, Birendra; Aslanian, Robert; Gullo, Vincent; Patel, Mahesh; Cronin, Bart; Boyce, Chris; McCormick, Kevin; Berlin, Mike; Zhu, Xiaohong; Buevich, Alexei; Heimark, Larry; Bartner, Peter; Chen, Guodong; Pu, Haiyan; Hegde, Vinod
2009-02-20
Investigation of unexpected levels of impurities in Intron product has revealed the presence of low levels of impurities leached from the silicone tubing (Rehau RAU-SIK) on the Bosch filling line. In order to investigate the effect of these compounds (1a, 1b and 2) on humans, they were isolated identified and synthesized. They were extracted from the tubing by stirring in Intron placebo at room temperature for 72 h and were enriched on a reverse phase CHP-20P column, eluting with gradient aqueous ACN and were separated by HPLC. Structural elucidation of 1a, 1b and 2 by MS and NMR studies demonstrated them to be halogenated biphenyl carboxylic acids. The structures were confirmed by independent synthesis. Levels of extractable impurities in first filled vials of actual production are estimated to be in the range of 0.01-0.55 microg/vial for each leached impurity. Potential toxicity of these extractables does not represent a risk for patients under the conditions of clinical use.
Li, Wei; Wang, Jun; Yan, Zheng-Yu
2015-10-10
A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, S. Yu., E-mail: sergei-davydov@mail.ru
The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less
Impact of the Injection Protocol on an Impurity's Stationary State
NASA Astrophysics Data System (ADS)
Gamayun, Oleksandr; Lychkovskiy, Oleg; Burovski, Evgeni; Malcomson, Matthew; Cheianov, Vadim V.; Zvonarev, Mikhail B.
2018-06-01
We examine stationary-state properties of an impurity particle injected into a one-dimensional quantum gas. We show that the value of the impurity's end velocity lies between zero and the speed of sound in the gas and is determined by the injection protocol. This way, the impurity's constant motion is a dynamically emergent phenomenon whose description goes beyond accounting for the kinematic constraints of the Landau approach to superfluidity. We provide exact analytic results in the thermodynamic limit and perform finite-size numerical simulations to demonstrate that the predicted phenomena are within the reach of the ultracold gas experiments.
Method and apparatus for detecting and measuring trace impurities in flowing gases
Taylor, Gene W.; Dowdy, Edward J.
1979-01-01
Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.
Robustness against non-magnetic impurities in topological superconductors
NASA Astrophysics Data System (ADS)
Nagai, Y.; Ota, Y.; Machida, M.
2014-12-01
We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.
Gaussian impurity moving through a Bose-Einstein superfluid
NASA Astrophysics Data System (ADS)
Pinsker, Florian
2017-09-01
In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.
ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.
Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K
2017-01-01
Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Li, Hua-Bin; Jiang, Yue; Chen, Feng
2002-02-27
A simple and efficient method for the isolation and purification of lutein from the microalga Chlorella vulgaris was developed. Crude lutein was obtained by extraction with dichloromethane from the microalga after saponification. Partition values of lutein in the two-phase system of ethanol-water-dichloromethane at different ratios were measured by HPLC so as to assist the determination of an appropriate condition for washing water-soluble impurities in the crude lutein. Partition values of lutein in another two-phase system of ethanol-water-hexane at different ratios were also measured by HPLC for determining the condition for removing fat-soluble impurities. The water-soluble impurities in the crude lutein were removed by washing with 30% aqueous ethanol, and the fat-soluble impurities were removed by extraction with hexane. The final purity of lutein obtained was 90-98%, and the yield was 85-91%.
Preparation and characterization of novel nanocomposites of inorganic/polysaccharide type =
NASA Astrophysics Data System (ADS)
Oliveira, Fabiane Costa
O uso de polimeros naturais no ambito da preparacao de nanocompositos nao tem sido tao amplamente estudado quando comparado com os polimeros sinteticos. Assim, esta tese tem como objectivo estudar metodologias para a preparacao de novos materiais nanocompositos sob a forma de dispersoes e filmes utilizando polissacarideos como matriz. A tese esta dividida em cinco capitulos sendo o ultimo capitulo dedicado as conclusoes gerais e a sugestoes para trabalhos futuros. Inicialmente e apresentada uma breve revisao bibliografica sobre os principais temas colocando esta tese em contexto. Consideracoes sobre o uso de polimeros naturais e a sua combinacao com a utilizacao de nanoparticulas inorganicas para a fabricacao de novos bionanocomposites sao descritas e os objectivos e outline da tese sao tambem apresentados. No segundo capitulo, a preparacao de particulas de silica puras ou modificadas bem como a sua caracterizacao por FTIR, SEM, TEM, TGA, DLS (tamanho e potencial zeta) e medicoes de angulo de contacto sao discutidas. De modo a melhorar a compatibilidade da silica com os polissacarideos, as particulas SiO2 foram modificados com dois compostos do tipo organosilano: 3- metacril-oxipropil-trimetoxissilano (MPS) e 3-aminopropil-trimetoxissilano (APS). As particulas SiO2 MPS foram posteriormente encapsuladas com de poli(metacrilato de glicidilo) utilizando a tecnica de polimerizacao em emulsao. A utilizacao dos nanocompositos resultantes na preparacao de dispersoes de bionanocompositos nao foi bem sucedida e por esse motivo nao os estudos nao foram prosseguidos. O uso de SiO2 APS na preparacao de dispersoes bionanocomposite foi eficiente. No terceiro capitulo e apresentada uma revisao sobre dispersoes bionanocompositas e respectiva caracterizacao destacando aspectos fundamentais sobre reologia e microestrutura. Em seguida, e discutido o estudo sistematico realizado sobre o comportamento reologico de dispersoes de SiO2 utilizando tres polissacarideos distintos no que concerne a carga e as caracteristicas gelificantes: a goma de alfarroba (nao ionica), o quitosano (cationico) e a goma xantana (anionica) cujas propriedades reologicas sao amplamente conhecidas. Os estudos reologicos realizados sob diferentes condicoes demonstraram que a formacao de geis frageis e/ou bem estruturados depende do tamanho SiO2, da concentracao, do pH e da forca ionica. Estes estudos foram confirmados por analises microestruturais usando a microscopia electronica a baixas temperaturas (Cryo-SEM). No quarto capitulo, sao apresentados os estudos relativos a preparacao e caracterizacao de filmes bionanocompositos utilizando quitosano como matriz. Primeiramente e apresentada uma revisao sobre filmes de bionanocompositos e os aspectos fundamentais das tecnicas de caracterizacao utilizadas. A escolha do plasticizante e da sua concentracao sao discutidas com base nas propriedades de filmes de quitosano preparados. Em seguida, o efeito da concentracao de silica e dos metodos utilizados para a dispersar na matriz de polissacarideo, bem como o efeito da modificacao da superficie da silica e avaliado. As caracteristicas da superficie e as propriedades de barreira, mecanicas e termicas sao discutidas para cada conjunto de filmes preparados antes e apos a sua neutralizacao. Os resultados obtidos mostraram que a dispersao das cargas no plasticizante e posterior adicao a matriz polissacaridica resultaram apenas em pequenas melhorias ja que o problema da agregacao de silica nao foi ultrapassado. Por esse motivo foram preparados filmes com SiO2 APS os quais apresentaram propriedades melhores apesar da agregacao das particulas nao ter sido completamente impedida. Tal pode estar relacionado com o processo de secagem dos filmes. Finalmente, no capitulo 5, sao apresentadas as principais conclusoes obtidas e algumas sugestoes para trabalho futuro.
Zeng, Hongxia; Wang, Fan; Zhu, Bingqi; Zhong, Weihui; Shan, Weiguang; Wang, Jian
2016-08-15
The structures of photodegradation impurities in cilnidipine were studied by liquid chromatography/Q-Orbitrap mass spectrometry (LC/Q-Orbitrap MS) for the further improvement of the official monographs in Pharmacopoeias. The complete fragmentation patterns of impurities were investigated to obtain their structural information. Two pathways of photodegradation of cilnidipine were also explored to clarify the source of impurities in cilnidipine. Chromatographic separation was performed on a Boston Group C18 column (250 mm × 4.6 mm, 5 μm). The mobile phase consisted of acetonitrile/H2 O at a ratio of 75:25 (v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC/MS in both positive and negative ion modes was firstly performed using a Thermo LC system coupled with a Q-Orbitrap high-resolution mass spectrometer. LC/MS/MS analysis was also carried out on target compounds to obtain as much structural information as possible. Five novel photodegradation impurities of cilnidipine were separated and identified based on the high-resolution MS/MS data. Impurity III was synthesized and its structure was confirmed by (1) H-NMR and (13) C-NMR data. Two photodegradation pathways to produce different photodegradation impurities were also revealed in this study. Among those impurities, impurities II and III were the main impurities which existed in the cilnidipine available on the market. Impurity II (the Z-isomer) was mainly produced when cilnidipine powder was directly exposed to daylight while impurity III (containing a piperidine ring) was mainly produced when cilnidipine was exposed to daylight in an ethanolic solution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, D. P.; Bell, R. E.; Kaita, R.; Lucia, M.; Schmitt, J. C.; Scotti, F.; Kubota, S.; Hansen, C.; Biewer, T. M.; Gray, T. K.
2016-10-01
The Lithium Tokamak Experiment (LTX) is a modest-sized spherical tokamak with all-metal plasma facing components (PFCs), uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma. This work presents measurements of core plasma impurity concentrations and transport in LTX. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2 - 4 % Li, 0.6 - 2 % C, 0.4 - 0.7 % O, and Zeff < 1.2 . Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, and neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two. However, time-independent simulations with MIST indicated that neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles. Progress on additional analysis, including time-dependent impurity transport simulations and impurity measurements with liquid lithium coatings, and plans for diagnostic upgrades and future experiments in LTX- β will also be presented. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas.
Gamayun, O; Lychkovskiy, O; Cheianov, V
2014-09-01
A kinetic theory describing the motion of an impurity particle in a degenerate Tonks-Girardeau gas is presented. The theory is based on the one-dimensional Boltzmann equation. An iterative procedure for solving this equation is proposed, leading to the exact solution in a number of special cases and to an approximate solution with the explicitly specified precision in a general case. Previously we reported that the impurity reaches a nonthermal steady state, characterized by an impurity momentum p(∞) depending on its initial momentum p(0) [E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy, Phys. Rev. A 89, 041601(R) (2014)]. In the present paper the detailed derivation of p(∞)(p(0)) is provided. We also study the motion of an impurity under the action of a constant force F. It is demonstrated that if the impurity is heavier than the host particles, m(i)>m(h), damped oscillations of the impurity momentum develop, while in the opposite case, m(i)
Isolation and identification of three potential impurities of pholcodine bulk drug substance.
Denk, O M; Gray, A I; Skellern, G G; Watson, D G
2000-07-01
Three previously unreported manufacturing impurities were isolated from a pholcodine mother liquor using preparative reversed-phase HPLC. The liquor was the residue remaining after recrystallisation of a production batch of pholcodine. The impurities, which are structurally related to pholcodine, were initially detected by thin-layer chromatography (TLC). Their structures were determined after separation by preparative HPLC (Econo-Prep 5 microm C18 column, 30 cm x 21.2 mm i.d.). Structure elucidation was carried out using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and ultra violet (UV) spectroscopy. The impurities were identified as alkylated derivatives of pholcodine possessing second 2-morpholinoethyl substituents at various positions.
[Determination of unknown impurities in cefotiam hexetil by HPLC-MS/MS].
Tang, Qun-Xing; Liu, Ming-Dong; Yan, You-Yi; Ye, Yi; Wang, Zhi-Hui; Zhan, Lan-Fen; Liao, Lin-Chuan
2013-05-01
To detect unknown impurities in raw drug material of cefotiam hexetil. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed for the determination of impurities in cefotiam hexetil. Agilent SB-C18 column (150 mm x 2.1 mm i. d. , 3.5 microm particles) was used for chromatographic separations of cofotiam hexetil dissolved in deionized water, with mobile phase consisting of (A) 0.1% formic acid and (B) acetonitrile and timed gradient program T (min)/B (%): 0/3, 5/3, 15/20, 20/40, 30/60, 40/80. The flow rate was set at 0. 3 mL/min with DAD detector wavelength fixed at 254 nm. Electrospray ionization source was applied and operated in positive ion MRM mode. The source voltage was kept at 4 kV and cone voltage was 100 V with the mass range m/z 50-1000. Nitrogen was used as nebulizing gas and the nebulizer pressure was 40 psi. The drying gas temperature was 350 degrees C and the drying gas flow was 10 L/min. Results Unknown impurities of cefotiam hexetil were identified. Substance 1 was delta3-isomer of cefotiam hexetil. The structures of 3 other substances were also determined. The method is sensitive, rapid and credible for the analysis of cefotiam hexetil and its related impurities, which can be applied in quality control of cefotiam hexetil.
Severo, J H F; Nascimento, I C; Kuznetov, Yu K; Tsypin, V S; Galvão, R M O; Tendler, M
2007-04-01
The method for plasma rotation measurement in the tokamak TCABR is reported in this article. During a discharge, an optical spectrometer is used to scan sequentially spectral lines of plasma impurities and spectral lines of a calibration lamp. Knowing the scanning velocity of the diffraction grating of the spectrometer with adequate precision, the Doppler shifts of impurity lines are determined. The photomultiplier output voltage signals are recorded with adequate sampling rate. With this method the residual poloidal and toroidal plasma rotation velocities were determined, assuming that they are the same as those of the impurity ions. The results show reasonable agreement with the neoclassical theory and with results from similar tokamaks.
On Dipole Moment of Impurity Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Konobeeva, N. N.; Ten, A. V.; Belonenko, M. B.
2017-04-01
Propagation of a two-dimensional electromagnetic pulse in an array of semiconductor carbon nanotubes with impurities is investigated. The parameters of dipole moments of impurities are determined. The Maxwell equation and the equation of motion for dipole polarization are jointly solved. The dynamics of the electromagnetic pulse is examined as a function of the dipole moment. It is shown that taking polarization into account does not have a substantial effect on the propagation process, but alters the optical pulse shape.
Effect of impurities in polybutene on the quality of alkenylsuccinic anhydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarmolyuk, B.M.; Pustovit, V.E.; Bereza, L.I.
1984-03-01
Synthesis of alkenylsuccini anhydrides (ASAs) was carried out in thermostable ampules at 230/sup 0/C in the course of 12 hours at an MA:PB molar ratio of 1.3:1 in a medium of prepurified petroleum xylene (30%). Freshly distilled maleic anhydride and industrial specimens of polybutene were used in the experiments. It was established that the main impurities which are formed in the production of polybutene and in its processing are ions of sodium, peroxide compounds and products of decomposition of the polymerization catalyst. The concentration of sodium ion was determined by an atomic adsorption method on an A-3000 instrument, the concentrationmore » of peroxides was determined by iodometry (3), and the concentration of catalyst decomposition products was determined from the amount of mechanical impurities.« less
Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J
2017-02-20
The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Azougagh, M; Elkarbane, M; Bakhous, K; Issmaili, S; Skalli, A; Iben Moussad, S; Benaji, B
2016-09-01
An innovative simple, fast, precise and accurate ultra-high performance liquid chromatography (UPLC) method was developed for the determination of diclofenac (Dic) along with its impurities including the new dimer impurity in various pharmaceutical dosage forms. An Acquity HSS T3 (C18, 100×2.1mm, 1.8μm) column in gradient mode was used with mobile phase comprising of phosphoric acid, which has a pH value of 2.3 and methanol. The flow rate and the injection volume were set at 0.35ml·min(-1) and 1μl, respectively, and the UV detection was carried out at 254nm by using photodiode array detector. Dic was subjected to stress conditions from acid, base, hydrolytic, thermal, oxidative and photolytic degradation. The new developed method was successfully validated in accordance to the International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantitation, precision, linearity, accuracy and robustness. The degradation products were well resolved from main peak and its seven impurities, proving the specificity power of the method. The method showed good linearity with consistent recoveries for Dic content and its impurities. The relative percentage of standard deviation obtained for the repeatability and intermediate precision experiments was less than 3% and LOQ was less than 0.5μg·ml(-1) for all compounds. The new proposed method was found to be accurate, precise, specific, linear and robust. In addition, the method was successfully applied for the assay determination of Dic and its impurities in the several pharmaceutical dosage forms. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Trace impurities analysis determined by neutron activation in the PbI 2 crystal semiconductor
NASA Astrophysics Data System (ADS)
Hamada, M. M.; Oliveira, I. B.; Armelin, M. J.; Mesquita, C. H.
2003-06-01
In this work, a methodology for impurity analysis of PbI 2 was studied to investigate the effectiveness of the purification. Commercial salts were purified by the multi passes zone refining and grown by the Bridgman method. To evaluate the purification efficiency, samples from the bottom, middle and upper sections of the ZR ingot were analyzed after 200, 300 and 500 purification passes, by measurements of the impurity concentrations, using the neutron activation analysis (NAA) technique. There was a significant reduction of the impurities according to the purification numbers. The reduction efficiency was different for each element, namely: Au>Mn>Co˜Ag>K˜Br. The impurity concentration of the crystals grown after 200, 300 and 500 passes and the PbI 2 starting material were analyzed by NAA and plasma optical emission spectroscopy.
Nucleation and convection effects in protein crystal growth
NASA Technical Reports Server (NTRS)
Rosenberger, Franz (Principal Investigator)
1996-01-01
The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.
Identification, preparation and UHPLC determination of process-related impurity in zolmitriptan.
Douša, Michal; Gibala, Petr; Rádl, Stanislav; Klecán, Ondřej; Mandelová, Zuzana; Břicháč, Jiří; Pekárek, Tomáš
2012-01-25
A new impurity was detected and determined using gradient ion-pair UHPLC method with UV detection in zolmitriptan (ZOL). Using MS, NMR and IR study the impurity was identified as (4S,4'S)-4,4'-(2,2'-(4-(dimethylamino)butane-1,1-diyl)bis(3-(2-(dimethylamino) ethyl)-1H-indole-5,2-diyl))bis(methylene)di(oxazolidin-2-one) (ZOL-dimer). The standard of ZOL-dimer was consequently prepared via organic synthesis followed by semipreparative HPLC purification. The UHPLC method was optimized in order to selectively detect and quantify other known and unknown process-related impurities and degradation products of ZOL as well. The presented method which was validated with respect to linearity, accuracy, precision and selectivity has an advantage of a very quick UHPLC chromatographic separation (less than 7 min including re-equilibration time) and therefore is highly suitable for routine analysis of related substances and stability studies of ZOL. Copyright © 2011 Elsevier B.V. All rights reserved.
Backscattering spectrometry device for identifying unknown elements present in a workpiece
Doyle, Barney L.; Knapp, James A.
1991-01-01
A backscattering spectrometry method and device for identifying and quantifying impurities in a workpiece during processing and manufacturing of that workpiece. While the workpiece is implanted with an ion beam, that same ion beam backscatters resulting from collisions with known atoms and with impurities within the workpiece. Those ions backscatter along a predetermined scattering angle and are filtered using a self-supporting filter to stop the ions with a lower energy because they collided with the known atoms of the workpiece of a smaller mass. Those ions which pass through the filter have a greater energy resulting from impact with impurities having a greater mass than the known atoms of the workpiece. A detector counts the number and measures the energy of the ions which pass through the filter. From the energy determination and knowledge of the scattering angle, a mass calculation determines the identity, and from the number and solid angle of the scattering angle, a relative concentration of the impurity is obtained.
Single magnetic adsorbates on s-wave superconductors
NASA Astrophysics Data System (ADS)
Heinrich, Benjamin W.; Pascual, Jose I.; Franke, Katharina J.
2018-02-01
In superconductors, magnetic impurities induce a pair-breaking potential for Cooper pairs, which locally affects the Bogoliubov quasiparticles and gives rise to Yu-Shiba-Rusinov (YSR or Shiba, in short) bound states in the density of states (DoS). These states carry information on the magnetic coupling strength of the impurity with the superconductor, which determines the many-body ground state properties of the system. Recently, the interest in Shiba physics was boosted by the prediction of topological superconductivity and Majorana modes in magnetically coupled chains and arrays of Shiba impurities. Here, we review the physical insights obtained by scanning tunneling microscopy into single magnetic adsorbates on the s-wave superconductor lead (Pb). We explore the tunneling processes into Shiba states, show how magnetic anisotropy affects many-body excitations, and determine the crossing of the many-body ground state through a quantum phase transition. Finally, we discuss the coupling of impurities into dimers and chains and their relation to Majorana physics.
Magnusson, Jeanette; Wan, Hong; Blomberg, Lars G
2002-09-01
Determination of enantiomeric purity is most often done under overload conditions, which leads to deformed peaks. In general, the best resolutions are obtained when the small peak appears before the large peak in the electropherogram. To be able to determine the R(+)-impurity in the S(-)-form as well as the S(-)-impurity in the R(+)-form the elution orders have to be reversed. The present paper describes reversal of enantiomeric elution order for the basic analyte propranolol and the acidic analyte ibuprofen. For propranolol, a charged heptakis-(6-sulfo)-beta-cyclodextrin (CD) is used in the background electrolyte. For ibuprofen, a mix of the charged heptakis-(6-sulfo)-beta-CD and the uncharged heptakis-(2,3,6-tri-O-methyl)-beta-CD is used in the background electrolyte. The use of a coated capillary and reversal of the polarity shift the elution order, buffer composition is unchanged in both cases. The enantiomers of propranolol and ibuprofen are well separated on both the coated and uncoated capillaries. Detection limits of enantiomer impurities are investigated using spiked samples of both propranolol and ibuprofen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp
2015-12-28
The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point outmore » a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The physical origin of this “self-averaging” under the fully coherent environments is attributed to the broadness of the energy spectrum of the in-coming electrons from the reservoirs.« less
NASA Astrophysics Data System (ADS)
Schneider, Clinton W.
1998-12-01
Single crystals of the high temperature superconductor Bisb2Srsb2Casb1(Cusb{1-x}Msb{x})sb2)Osb{8+delta} have been grown for M = Zn, Ni, Co, Fe, and Pd in order to probe the effect of transition metal impurities on superconducting properties. Samples have been characterized by XRD, electron microprobe, and transport measurements. Measurement of resistance is used to determine the depression of Tsb{c} due to the impurities. We determine a value dTsb{c}/dx = -7.8K/at/for all substituents, independent of magnetic moment. Considered in terms of the Abrikosov-Gorkov theory for impurity scattering in superconductors, this result agrees with a d-wave order parameter and strong coupling.
Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T
2008-03-28
A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.
Chahrour, Osama; Malone, John; Collins, Mark; Salmon, Vrushali; Greenan, Catherine; Bombardier, Amy; Ma, Zhongze; Dunwoody, Nick
2017-10-25
The new guidelines of the United States pharmacopeia (USP), European pharmacopeia (EP) and international conference on harmonization (ICH) regulating elemental impurities limits in pharmaceuticals signify the end of unspecific analysis of metals as outlined in USP 〈231〉. The new guidelines specify both daily doses and concentration/limits of elemental impurities in pharmaceutical final products, active pharmaceutical ingredients (API) and excipients. In chapter USP 〈233〉 method implementation, validation and quality control during the analytical process are described. We herein report the use of a stabilising matrix that overcomes low spike recovery problem encountered with Os and allows the determination of all USP required elemental impurities (As, Cd, Hg, Pb, V, Cr, Ni, Mo, Cu, Pt, Pd, Ru, Rh, Os and Ir) in a single analysis. The matrix was used in the validation of a method to determine elemental impurities in TP-6076 active pharmaceutical ingredient (API) by ICP-MS according to the procedures defined in USP〈233〉 and to GMP requirements. This validation will support the regulatory submission of TP-6076 which is a novel tetracycline analogue effective against the most urgent multidrug-resistant gram-negative bacteria. Evaluation of TP-6076 in IND-enabling toxicology studies has led to the initiation of a phase 1 clinical trial. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals
NASA Astrophysics Data System (ADS)
Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.
2018-05-01
The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.
Bose polaron problem: Effect of mass imbalance on binding energy
NASA Astrophysics Data System (ADS)
Ardila, L. A. Peña; Giorgini, S.
2016-12-01
By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.
Impurity characterization of magnesium diuranate using simultaneous TG-DTA-FTIR measurements
NASA Astrophysics Data System (ADS)
Raje, Naina; Ghonge, Darshana K.; Hemantha Rao, G. V. S.; Reddy, A. V. R.
2013-05-01
Current studies describe the application of simultaneous thermogravimetry-differential thermal analysis - evolved gas analysis techniques for the compositional characterization of magnesium diuranate (MDU) with respect to the impurities present in the matrix. The stoichiometric composition of MDU was identified as MgU2O7ṡ3H2O. Presence of carbonate and sulphate as impurities in the matrix was confirmed through the evolved gas analysis using Fourier Transformation Infrared Spectrometry detection. Carbon and magnesium hydroxide content present as impurities in magnesium diuranate have been determined quantitatively using TG and FTIR techniques and the results are in good agreement. Powder X-ray diffraction analysis of magnesium diuranate suggests the presence of magnesium hydroxide as impurity in the matrix. Also these studies confirm the formation of magnesium uranate, uranium sesquioxide and uranium dioxide above 1000 °C, due to the decomposition of magnesium diuranate.
Mahaboob Basha, D; Venkata Reddy, G; Gopi Krishna, Y; Kumara Swamy, B E; Vijay, Rajani
2018-04-19
The first approach of this research paper explores the simultaneous characterization and determination of theAsulam active ingredient and its associated nine impurities in bulk batch production by the gradient reverse-phase high-performance liquid chromatographic (RP-HPLC) method. The best separation from its potential impurities and reproducible method was achieved by selecting the Cosmosil C-18 (250 × 4.6 mm, 5 μm particle size) analytical column with a run time of 40 min. The pumping chromatographic mobile phase was composed of 0.1% formic acid in milli-Q water (pH ~2.72) and methanol (80 + 20, v/v). An ambient column-oven temperature and UV detection at 260 nm were used. For this broad resolution, a gradient program was employed at a flow rate of 1.20 mL/min. All potential related substances in Asulam bulk manufacturing were ascertained by mass, proton nuclear magnetic resonance, and infrared spectroscopy. The developed HPLC method was validated with respect to linearity (25.64-151.83 mg/L for Asulam and 0.71-16.29, 1.02-12.26, 1.01-20.29, 0.60-10.01, 1.04-16.65, 0.94-22.47, 0.93-16.60, 1.00-12.45, 1.00-12.45, and 0.71-12.17 mg/L for Impurities A to I with a correlation coefficient 0.999 for Asulam and all the impurities), precision (RSD, % for active analyte Asulam and impurities were ˂2%), accuracy (percent recovery for Asulam at two levels ranged from 99.28 to 99.35%, and for Impurities A to I, it was 93.44 to 101.41%), and specificity. Hence, this simple and reliable HPLC method was able to determine the purity of Asulam active analyte and the level of impurities in bulk batch synthesis. By using this quantified procedure, five self-made production batches were analyzed simultaneously.
Douša, Michal; Doubský, Jan; Srbek, Jan
2016-07-01
An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.
2010-01-01
Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394
Impurity effects in highly frustrated diamond-lattice antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon
2011-08-01
We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile
2012-02-01
We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
NASA Astrophysics Data System (ADS)
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.
2015-07-01
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional `Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Douša, Michal; Srbek, Jan; Rádl, Stanislav; Cerný, Josef; Klecán, Ondřej; Havlíček, Jaroslav; Tkadlecová, Marcela; Pekárek, Tomáš; Gibala, Petr; Nováková, Lucie
2014-06-01
Two new impurities were described and determined using gradient HPLC method with UV detection in retigabine (RET). Using LC-HRMS, NMR and IR analysis the impurities were identified as RET-dimer I: diethyl {4,4'-diamino-6,6'-bis[(4-fluorobenzyl)amino]biphenyl-3,3'-diyl}biscarbamate and RET-dimer II: ethyl {2-amino-5-[{2-amino-4-[(4-fluorobenzyl) amino] phenyl} (ethoxycarbonyl) amino]-4-[(4-fluorobenzyl)amino] phenyl}carbamate. Reference standards of these impurities were synthesized followed by semipreparative HPLC purification. The mechanism of the formation of these impurities is also discussed. An HPLC method was optimized in order to separate, selectively detect and quantify all process-related impurities and degradation products of RET. The presented method, which was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ) and selectivity is very quick (less than 11min including re-equilibration time) and therefore highly suitable for routine analysis of RET related substances as well as stability studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Reddy, G V Ram; Kumar, A Praveen; Reddy, B Venkateswara; Sreeramulu, J
2009-10-01
Anhydro-simvastatin and simvastatin dimer are the two main impurities in the fermentation broth as well as in the final product of simvastatin, which is a hypolipidemic drug. An unknown impurity with m/z 451 for [(M + H)(+)] was detected in the analysis of final simvastatin drug sample. By using reverse phase high performance liquid chromatography (HPLC)-mass spectrometry (MS) and MS/MS spectra, the unknown impurity was detected and identified. Separation was achieved on ACE-5 C18 (150 x 4.6 mm, 3 microm column) at the flow rate of 1.2 ml min(-1) applying gradient elution of mobile phase A consisting of Milli-Q water of pH 3.0 with formic acid and B consisting of acetonitrile. MS/MS spectrum of the unknown impurity was obtained using HPLC-MS equipped with positive electrosoray ionization (ESI). The unknown impurity is named as 7-[7-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1 -yl]-3-hydroxy-5-hydroxymethyl-heptanoic acid.
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.
2015-01-01
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional ‘Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities. PMID:26139568
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V
2015-07-03
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Determination of a Definition of Solar Grade Silicon
NASA Technical Reports Server (NTRS)
Hill, D. E.; Gutsche, H. W.
1975-01-01
A definition of solar grade silicon was determined by investigating the singular and the combined effect of the impurities usually found in metallurgical grade silicon on solar cell device performance. The impurity matrix was defined by Jet Propulsion Laboratory Technical Direction Memorandum. The initial work was focussed on standardizing the solar cell process and test procedure, growing baseline crystals, growing crystals contaminated with carbon, iron, nickel, zirconium, aluminum and vanadium, solar blank preparation, and material characterization.
Effect of interfacial oxide layers on the current-voltage characteristics of Al-Si contacts
NASA Technical Reports Server (NTRS)
Porter, W. A.; Parker, D. L.
1976-01-01
Aluminum-silicon contacts with very thin interfacial oxide layers and various surface impurity concentrations are studied for both n and p-type silicon. To determine the surface impurity concentrations on p(+)-p and n(+)-n structures, a modified C-V technique was utilized. Effects of interfacial oxide layers and surface impurity concentrations on current-voltage characteristics are discussed based on the energy band diagrams from the conductance-voltage plots. The interfacial oxide and aluminum layer causes image contrasts on X-ray topographs.
Rao, Dantu Durga; Satyanarayana, N V; Malleswara Reddy, A; Sait, Shakil S; Chakole, Dinesh; Mukkanti, K
2010-02-05
A novel stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the determination of purity of desloratadine in presence of its impurities and forced degradation products. The method was developed using Waters Aquity BEH C18 column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 280nm. The run time was 8min within which desloratadine and its five impurities were well separated. Desloratadine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Desloratadine was found to degrade significantly in oxidative and thermal stress conditions and stable in acid, base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of desloratadine in pharmaceutical dosage forms.
NASA Astrophysics Data System (ADS)
Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus
2018-05-01
Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.
Quality-by-design approach for the development of telmisartan potassium tablets.
Oh, Ga-Hui; Park, Jin-Hyun; Shin, Hye-Won; Kim, Joo-Eun; Park, Young-Joon
2018-05-01
A quality-by-design approach was adopted to develop telmisartan potassium (TP) tablets, which were bioequivalent with the commercially available Micardis ® (telmisartan free base) tablets. The dissolution pattern and impurity profile of TP tablets differed from those of Micardis ® tablets because telmisartan free base is poorly soluble in water. After identifying the quality target product profile and critical quality attributes (CQAs), drug dissolution, and impurities were predicted to be risky CQAs. To determine the exact range and cause of risks, we used the risk assessment (RA) tools, preliminary hazard analysis and failure mode and effect analysis to determine the parameters affecting drug dissolution, impurities, and formulation. The range of the design space was optimized using the face-centered central composite design among the design of experiment (DOE) methods. The binder, disintegrant, and kneading time in the wet granulation were identified as X values affecting Y values (disintegration, hardness, friability, dissolution, and impurities). After determining the design space with the desired Y values, the TP tablets were formulated and their dissolution pattern was compared with that of the reference tablet. The selected TP tablet formulated using design space showed a similar dissolution to that of Micardis ® tablets at pH 7.5. The QbD approach TP tablet was bioequivalent to Micardis ® tablets in beagle dogs.
Rao, R Nageswara; Nagaraju, V
2004-11-19
A simple and rapid reversed-phase high-performance liquid chromatographic method for separation and determination of process-related impurities of difloxacin (DFL) was developed. The separation was achieved on a reversed-phase C(18) column using methanol-water-acetic acid (78:21.9:0.1, v/v/v) as a mobile solvent at a flow rate of 1.0 ml/min at 28 degrees C using UV detection at 230 nm. It was linear over a range of 0.03 x 10(-6) to 1.60 x 10(-6)g for process related impurities and 0.05 x 10(-6) to 2.40 x 10(-6)g for difloxacin. The detection limits were 0.009 x 10(-6) to 0.024 x 10(-6)g for all the compounds examined. The recoveries were found to be in the range of 97.6-102.0% for impurities as well as difloxacin. The precision and robustness of the method were evaluated. It was used for not only quality assurance, but also monitoring the synthetic reactions involved in the process development work of difloxacin. The method was found to be specific, precise and reliable for the determination of unreacted levels of raw materials, intermediates in the reaction mixtures and the finished products of difloxacin.
Glycolic acid physical properties and impurities assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Pickenheim, B. R.; Hay, M. S.
This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However,more » these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.« less
Wright, J. Fraser
2014-01-01
Adeno-associated virus (AAV)-based vectors expressing therapeutic genes continue to demonstrate great promise for the treatment of a wide variety of diseases and together with other gene transfer vectors represent an emerging new therapeutic paradigm comparable in potential impact on human health to that achieved by recombinant proteins and vaccines. A challenge for the current pipeline of AAV-based investigational products as they advance through clinical development is the identification, characterization and lot-to-lot control of the process- and product-related impurities present in even highly purified preparations. Especially challenging are AAV vector product-related impurities that closely resemble the vector itself and are, in some cases, without clear precedent in established biotherapeutic products. The determination of acceptable levels of these impurities in vectors prepared for human clinical product development, with the goal of new product licensure, requires careful risk and feasibility assessment. This review focuses primarily on the AAV product-related impurities that have been described in vectors prepared for clinical development. PMID:28548061
An Experimental Design Approach for Impurity Profiling of Valacyclovir-Related Products by RP-HPLC
Katakam, Prakash; Dey, Baishakhi; Hwisa, Nagiat T; Assaleh, Fathi H; Chandu, Babu R; Singla, Rajeev K; Mitra, Analava
2014-01-01
Abstract Impurity profiling has become an important phase of pharmaceutical research where both spectroscopic and chromatographic methods find applications. The analytical methodology needs to be very sensitive, specific, and precise which will separate and determine the impurity of interest at the 0.1% level. Current research reports a validated RP-HPLC method to detect and separate valacyclovir-related impurities (Imp-E and Imp-G) using the Box-Behnken design approach of response surface methodology. A gradient mobile phase (buffer: acetonitrile as mobile phase A and acetonitrile: methanol as mobile phase B) was used. Linearity was found in the concentration range of 50–150 μg/mL. The mean recovery of impurities was 99.9% and 103.2%, respectively. The %RSD for the peak areas of Imp-E and Imp-G were 0.9 and 0.1, respectively. No blank interferences at the retention times of the impurities suggest the specificity of the method. The LOD values were 0.0024 μg/mL for Imp-E and 0.04 μg/mL for Imp-G and the LOQ values were obtained as 0.0082 μg/mL and 0.136 μg/mL, respectively, for the impurities. The S/N ratios in both cases were within the specification limits. Proper peak shapes and satisfactory resolution with good retention times suggested the suitability of the method for impurity profiling of valacyclovir-related drug substances. PMID:25853072
Settling of virgin olive oil from horizontal screw solid bowl in static conditions.
Gila, Abraham M; Bejaoui, Mohamed A; Beltrán, Gabriel; Jiménez, Antonio
2017-08-01
This work was aimed to study the clarification efficiency of natural decantation in settling tank on virgin olive oil obtained from a two-ways continuous process. For this purpose, the impurities content of the virgin olive oil were monitored during settling process in settling tank at two different depths. Efficiency of purging system was determined for two days. The experiments were performed at industrial scale during three crop years. During the first minutes of settling was observed an ascent of the smaller organic particles of the oil. Then, most of the virgin olive oil impurities were settled at 300 min, independently of the initial content of virgin olive oil. Finally, oil decantation showed slower rate. Higher clarification values were obtained for those decanter oils with higher impurities content, achieving clarification percentages between of 62.69 and 95.91% at 48 h of settling. The highest settling efficiency was observed for those decanter oils with initial higher impurities content. The purging system used in the settling tanks was not able to remove the most of settled impurities since a considerable amount of the impurities remained in the tank after 48 h, between 13.6 and 71.41% for the studied oils. In the tank purges was observed important oil losses. Therefore, decantation was not an efficient system for oil clarification since its settling capacity varied depending on the initial impurities content and due to the settled impurities can not be removed fully by purging system.
Hess, S; Teubert, U; Ortwein, J; Eger, K
2001-12-01
The anti-inflammatory drug indomethacin was investigated regarding new related impurities. Therefore, related substances 2-9 were prepared by independent synthesis and physicochemically characterized. To determine indomethacin and its related substances, a new HPLC-UV method was developed and validated. Indomethacin and its impurities were eluted on a C(18) column with a mobile phase consisting of methanol and an aqueous solution of 0.2% phosphoric acid at a flow rate of 1.5 ml/min and were quantified by UV detection at 320 nm. Overall, the HPLC-UV method was simple and reliable for the detection of eight impurities in indomethacin. In addition to the HPLC-UV method, 1H nuclear magnetic resonance (NMR) was used to investigate indomethacin regarding impurities. For that purpose, related substances 2-9 were systematically added to indomethacin and investigated. The NMR method was found to be very useful for the identification of impurities in bulk substance without prior separation. Both HPLC-UV and NMR were used to analyze 38 batches of indomethacin available on the European market. The outcome was that 42% of the batches did not meet the compendial requirements although they met the specifications of current compendial methods. Some batches contained the previously undescribed impurity 8, while other batches contained by-products from two distinct synthetic routes. The methods presented herein are important contributions to the ongoing efforts to reduce impurities and therefore the risk of adverse side-effects in drugs that are no longer under patent protection.
Effects of impurities in coal-derived liquids on accelerated hot corrosion of superalloys
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1980-01-01
A Mach 0.3 burner rig was used to determine the effects of potential coal derived liquid fuel impurity combustion of products on hot corrosion in IN-100, IN-792, IN_738, U-700, Mar M-509, and 304 stainless steel. The impurities, added as aqueous solutions to the combustor, were salts of sodium, potassium, vanadium, molybdenum, tungsten, phosphorus, and lead. Extent of attack was determined by metal consumption and compared to the effects of sodium alone. Vanadium, molybdenum, tungsten, phosphorous, and lead in combination with sodium all resulted in increased attack as compared with sodium alone at some temperatures, apparently due in large part to the extension of the formation of liquid deposits. Varying the sodium-potassium ratio had little effect for ratios less than 1:3 for which reduced, but measurable, attack was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, D.J.; Panitz, J.K.G.; Mattox, D.M.
The erosion of materials by low energy ions is of concern in fusion reactors since high Z impurities in the plasma cause radiation cooling. Ion bombardment of the fusion reactor chamber walls arises from ions of fuel (D, T) material, gaseous impurities (O, C), and impurities from eroded components (Fe, Co, Ni, C, Mo, etc.) being accelerated across the wall sheath potential (0.1 to 1 keV). A Kaufman type ion source has been characterized for use with hydrogen, and subsequently used to determine the relative erosion rates of bulk Mo, C, Cu, coating of TiB/sub 2/, B/sub 4/C, Be, VBe/submore » 12/ and other materials. Ions of hydrogen (Z=1), argon (Z=18), and xenon (Z=54) at acceleration potentials of 250, 500, and 1000 V have been used to determine erosion yields.« less
Physicochemical characterization of ezetimibe and its impurities
NASA Astrophysics Data System (ADS)
Filip, Katarzyna; Bańkowski, Krzysztof; Sidoryk, Katarzyna; Zagrodzka, Joanna; Łaszcz, Marta; Trzcińska, Kinga; Szyprowska, Anna; Cmoch, Piotr; Maruszak, Wioleta
2011-04-01
The physicochemical characterization of major degradation and process-related impurities associated with the synthesis of ezetimibe was performed. The possibility of forming the undesirable ( R, R, S) stereoisomer of ezetimibe has been mentioned in literature (Vinod KK, Suhail A, Bhupendra T, Nitin G US 2010/0010212 A1, Ind-Swift Laboratories Limited WO 2008/096372), but no study of its structure determination has been published yet. This paper discusses the structure elucidation of the ( R, R, S) stereoisomer as well as ezetimibe degradation product on the bases of NMR, IR and MS data. Other potential impurities of ezetimibe are also described. A selective and stability-indicating high-performance liquid chromatography method with dual UV detection was developed for the determination of chemical and stereochemical purity of ezetimibe. The characterization of particle size and shape for ezetimibe and its stereoisomer is also described.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.
2013-11-01
The well-known one-dimensional Burton-Prim-Slichter and Ostrogorsky-Müller analytical models obtained for the stationary mass transfer regime describe in a simple form the dependence of the effective impurity segregation coefficient on the ratio of the crystal growth and convective flow rates. Solutions for the initial transient regime are found in both models. It is shown that the formulas obtained make it possible to determine both the crystal growth rate and the convective mixing intensity on the basis of the analysis of impurity segregation in crystal.
Kalafut, P; Kucera, R; Klimes, J; Sochor, J
2009-07-12
3-[4-(2-Methylpropyl)phenyl]propanoic acid has been introduced as impurity F to the European Pharmacopoeia in its Supplement 4.2. In contrast to other impurities, which are evaluated by HPLC, the content of impurity F is determined by gas chromatography after previous derivatization. Thus a novel reversed-phase HPLC method was developed to simplify the evaluation of pharmacopoeial impurity F of ibuprofen. Favourable properties of zirconia stationary phases were employed for this purpose. The HPLC separation was achieved on a Zr-CARB column (150 mm x 4.6mm i.d., 5 microm) using the mobile phase acetonitrile-phosphate buffer (pH 3.5, 25 mM) (38:62, v/v), temperature 80 degrees C and the flow rate 1.2 ml min(-1). The fluorescence detection was employed to enhance the sensitivity of the method. Optimal detection parameters were chosen on the basis of fluorescence spectra of the analytes. The excitation and emission wavelengths were 220 nm and 285 nm, respectively. The analysis was completed within 25 min. The subsequent validation of the method confirmed the applicability of method for the analytical assay of impurity F.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, Dennis Patrick
This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%) despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2-4% Li, 0.6-2% C, 0.4-0.7% O, and Z eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Dennis Patrick
This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%)more » despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with~2-4% Li, ~0.6-2% C, ~0.4-0.7% O, and Z_eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.« less
Arrhenius, Karine; Brown, Andrew S; van der Veen, Adriaan M H
2016-01-01
The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement. Copyright © 2015 Elsevier B.V. All rights reserved.
Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.
Klobčar, Slavko; Prosen, Helena
2015-12-01
The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lim, J. W.; Mimura, K.; Isshiki, M.
2005-02-01
Cu films were deposited on Si(100) substrates by applying a negative substrate bias voltage using the non-mass-separated ion beam deposition method. Glow-discharge mass spectrometry was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. It was found that the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage, although both the Cu films were contaminated during the deposition. The purification effect might result from the following reasons: (i) the Penning ionization and an ionization mechanism proposed in the present study, (ii) a difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.
Plutonium oxalate precipitation for trace elemental determination in plutonium materials
Xu, Ning; Gallimore, David; Lujan, Elmer; ...
2015-05-26
In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.
Determination of carrier concentration and compensation microprofiles in GaAs
NASA Technical Reports Server (NTRS)
Jastrzebski, L.; Lagowski, J.; Walukiewicz, W.; Gatos, H. C.
1980-01-01
Simultaneous microprofiling of semiconductor free carrier, donor, and acceptor concentrations was achieved for the first time from the absolute value of the free carrier absorption coefficient and its wavelength dependence determined by IR absorption in a scanning mode. Employing Ge- and Si-doped melt-grown GaAs, striking differences were found between the variations of electron concentration and those of ionized impurity concentrations. These results showed clearly that the electronic characteristics of this material are controlled by amphoteric doping and deviations from stoichiometry rather than by impurity segregation.
Power Balance and Impurity Studies in TCS
NASA Astrophysics Data System (ADS)
Grossnickle, J. A.; Pietrzyk, Z. A.; Vlases, G. C.
2003-10-01
A "zero-dimension" power balance model was developed based on measurements of absorbed power, radiated power, absolute D_α, temperature, and density for the TCS device. Radiation was determined to be the dominant source of power loss for medium to high density plasmas. The total radiated power was strongly correlated with the Oxygen line radiation. This suggests Oxygen is the dominant radiating species, which was confirmed by doping studies. These also extrapolate to a Carbon content below 1.5%. Determining the source of the impurities is an important question that must be answered for the TCS upgrade. Preliminary indications are that the primary sources of Oxygen are the stainless steel end cones. A Ti gettering system is being installed to reduce this Oxygen source. A field line code has been developed for use in tracking where open field lines terminate on the walls. Output from this code is also used to generate grids for an impurity tracking code.
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.
2015-01-01
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646
Kumar, Namala Durga Atchuta; Babu, K. Sudhakar; Gosada, Ullas; Sharma, Nitish
2012-01-01
Introduction: A selective, specific, and sensitive “Ultra High-Pressure Liquid Chromatography” (UPLC) method was developed for determination of candesartan cilexetil impurities as well asits degradent in tablet formulation. Materials and Methods: The chromatographic separation was performed on Waters Acquity UPLC system and BEH Shield RP18 column using gradient elution of mobile phase A and B. 0.01 M phosphate buffer adjusted pH 3.0 with Orthophosphoric acid was used as mobile phase A and 95% acetonitrile with 5% Milli Q Water was used as mobile phase B. Ultraviolet (UV) detection was performed at 254 nm and 210 nm, where (CDS-6), (CDS-5), (CDS-7), (Ethyl Candesartan), (Desethyl CCX), (N-Ethyl), (CCX-1), (1 N Ethyl Oxo CCX), (2 N Ethyl Oxo CCX), (2 N Ethyl) and any unknown impurity were monitored at 254 nm wavelength, and two process-related impurities, trityl alcohol and MTE impurity, were estimated at 210 nm. Candesartan cilexetil andimpurities were chromatographed with a total run time of 20 min. Results: Calibration showed that the response of impurity was a linear function of concentration over the range limit of quantification to 2 μg/mL (r2≥0.999) and the method was validated over this range for precision, intermediate precision, accuracy, linearity, and specificity. For the precision study, percentage relative standard deviation of each impurity was <15% (n=6). Conclusion: The method was found to be precise, accurate, linear, and specific. The proposed method was successfully employed for estimation of candesartan cilexetil impurities in pharmaceutical preparations. PMID:23781475
NASA Technical Reports Server (NTRS)
1980-01-01
Measurements in an Auger spectrometer of surface impurity concentrations on liquid gallium showed that the principle impurities were oxygen and carbon. The impurities showed a tendency to collect into plates or clumps. In Pb rich Pb-Sn off eutectic alloys, macrosegration caused by solutal convection was not reduced by vertical or horizontal fields of 0.1 T, but downward solidification virtually eliminated macrosegration in small diameter samples. Phase assemblages of selected compositions on the joints K(Fe0.5 Si-0.5) O2 -SiO2 and KFeO2 - SiO2 were determined over a large range of oxygen partial pressures and the temperature range 800 C to 1400 C.
Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A
2007-01-01
The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.
Sorption of Liquids on Impurities in Polymers, As Affected by the Sorption History
NASA Astrophysics Data System (ADS)
Ageev, E. P.; Strusovskaya, N. L.; Matushkina, N. N.
2018-02-01
An unusual effect is observed that occurs during the sorption of liquids by polymers: The sorption flux directed from the liquid into the polymer bulk transfers only the sorbate, while the spontaneously established backward flux carries a sorbate‒impurity complex into the liquid. It is shown that this effect can be used to remove hydrophilic impurities from a hydrophobic polymer. It is assumed that delocalized (and mobile) sorbent particles participate in this phenomenon and include them in the proposed mechanism of sorption. The inversion of gradient of chemical potential upon the formation of delocalized particles determines the backward material flow.
Karasali, Helen; Kasiotis, Konstantinos M; Machera, Kyriaki; Ambrus, Arpad
2014-11-26
Counterfeit pesticides threaten public health, food trade, and the environment. The present work draws attention to the importance of regular monitoring of impurities in formulated pesticide products. General screening revealed the presence of carbaryl as a contaminant in a copper oxychloride formulated product. In this paper, as a case study, a liquid chromatographic diode array-mass spectrometric method developed for general screening of pesticide products and quantitative determination of carbaryl together with its validation is presented. The proposed testing strategy is considered suitable for use as a general approach for testing organic contaminants and impurities in solid pesticide formulations.
Stability of the two-dimensional Fermi polaron
NASA Astrophysics Data System (ADS)
Griesemer, Marcel; Linden, Ulrich
2018-02-01
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.
Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.
2002-05-01
Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.
Bourichi, Houda; Brik, Youness; Hubert, Philipe; Cherrah, Yahia; Bouklouze, Abdelaziz
2012-01-01
In this paper, we report the results of quality control based in physicochemical characterization and impurities determination of three samples of fluconazole drug substances marketed in Morocco. These samples were supplied by different pharmaceuticals companies. The sample A, as the discovered product, was supplied by Pfizer, while samples B and C (generics), were manufactured by two different Indian industries. Solid-state characterization of the three samples was realized with different physicochemical methods as: X-ray powder diffraction, Fourier-transformation infrared spectroscopy, differential scanning calorimetry. High performance liquid chromatography was used to quantify the impurities in the different samples. The results from the physicochemical methods cited above, showed difference in polymorph structure of the three drug substances. Sample A consisted in pure polymorph III, sample B consisted in pure polymorph II, sample C consisted in a mixture of fluconazole Form III, form II and the monohydrate. This result was confirmed by differential scanning calorimetry. Also it was demonstrated that solvents used during the re-crystallization step were among the origins of these differences in the structure form. On the other hand, the result of the stability study under humidity and temperature showed that fluconazole polymorphic transformation could be owed to the no compliance with the conditions of storage. The HPLC analysis of these compounds showed the presence of specific impurities for each polymorphic form, and a possible relationship could be exist between impurities and crystalline form of fluconazole. PMID:29403776
NASA Astrophysics Data System (ADS)
Yong, Cheng
2018-03-01
The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.
Cryogenic molecular separation system for radioactive (11)C ion acceleration.
Katagiri, K; Noda, A; Suzuki, K; Nagatsu, K; Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Ramzdorf, A Yu; Nakao, M; Hojo, S; Wakui, T; Noda, K
2015-12-01
A (11)C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. In the ISOL system, (11)CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive (12)CH4 gases, which can simulate the chemical characteristics of (11)CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.
Effect of atomic disorder on the magnetic phase separation.
Groshev, A G; Arzhnikov, A K
2018-05-10
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Effect of atomic disorder on the magnetic phase separation
NASA Astrophysics Data System (ADS)
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc
NASA Astrophysics Data System (ADS)
Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.
2017-01-01
Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...
2018-03-01
Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less
NASA Astrophysics Data System (ADS)
Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.
2007-04-01
We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.
Passive particle dosimetry. [silver halide crystal growth
NASA Technical Reports Server (NTRS)
Childs, C. B.
1977-01-01
Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
NASA Astrophysics Data System (ADS)
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.
2018-03-01
We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.
Subsurface segregation of yttria in yttria stabilized zirconia
NASA Astrophysics Data System (ADS)
de Ridder, M.; van Welzenis, R. G.; van der Gon, A. W. Denier; Brongersma, H. H.; Wulff, S.; Chu, W.-F.; Weppner, W.
2002-09-01
The segregation behavior in 3 and 10 mol % polycrystalline yttria stabilized zirconia (YSZ), calcined at temperatures ranging from 300 to 1600 degC, is characterized using low-energy ion scattering (LEIS). In order to be able to separate the Y and Zr LEIS signals, YSZ samples have been prepared using isotopically enriched 94ZrO2 instead of natural zirconia. The samples are made via a special precipitation method at a low temperature. The segregation to the outermost surface layer is dominated by impurities. The increased impurity levels are restricted to this first layer, which underlines the importance of the use of LEIS for this study. For temperatures of 1000 degC and higher, the oxides of the impurities Na, Si, and Ca even cover the surface completely. The performance of a device like the solid oxide fuel cell which has an YSZ electrolyte and a working temperature around 1000 degC, will, therefore, be strongly hampered by these impurities. The reduction of impurities, to prevent accumulation at the surface, will only be effective if the total impurity bulk concentration can be reduced below the 10 ppm level. Due to the presence of the impurities, yttria cannot accumulate in the outermost layer. It does so, in contrast to the general belief, in the subsurface layer and to much higher concentrations than the values reported previously. The difference in the interfacial free energies of Y2O3 and ZrO2 is determined to be -21plus-or-minus3 kJ/mol.
Ishiwata, Kiichi; Hayashi, Kunpei; Sakai, Masanari; Kawauchi, Sugio; Hasegawa, Hideaki; Toyohara, Jun
2017-01-01
To elucidate the radionuclides and radiochemical impurities included in radiosynthesis processes of positron emission tomography (PET) tracers. Target materials and PET tracers were produced using a cyclotron/synthesis system from Sumitomo Heavy Industry. Positron and γ-ray emitting radionuclides were quantified by measuring radioactivity decay and using the high-purity Ge detector, respectively. Radiochemical species in gaseous and aqueous target materials were analyzed by gas and ion chromatography, respectively. Target materials had considerable levels of several positron emitters in addition to the positron of interest, and in the case of aqueous target materials extremely low levels of many γ-emitters. Five 11 C-, 15 O-, or 18 F-labeled tracers produced from gaseous materials via chemical reactions had no radionuclidic impurities, whereas 18 F-FDG, 18 F-NaF, and 13 N-NH 3 produced from aqueous materials had several γ-emitters as well as impure positron emitters. 15 O-Labeled CO 2 , O 2 , and CO had a radionuclidic impurity 13 N-N 2 (0.5-0.7 %). Target materials had several positron emitters other than the positron of interest, and extremely low level γ-emitters in the case of aqueous materials. PET tracers produced from gaseous materials except for 15 O-labeled gases had no impure radionuclides, whereas those derived from aqueous materials contained acceptable levels of impure positron emitters and extremely low levels of several γ-emitters.
Xu, Qun; Tan, Shane; Petrova, Katya
2016-01-25
The European Pharmacopeia (EP) metoprolol impurities M and N are polar, nonchromophoric α-hydroxyamines, which are poorly retained in a conventional reversed-phase chromatographic system and are invisible for UV detection. Impurities M and N are currently analyzed by TLC methods in the EP as specified impurities and in the United States Pharmacopeia-National Formulary (USP-NF) as unspecified impurities. In order to modernize the USP monographs of metoprolol drug substances and related drug products, a hydrophilic interaction chromatography (HILIC) method coupled with a charged aerosol detector (CAD) was explored for the analysis of the two impurities. A comprehensive column screening that covers a variety of HILIC stationary phases (underivatized silica, amide, diol, amino, zwitterionic, polysuccinimide, cyclodextrin, and mixed-mode) and optimization of HPLC conditions led to the identification of a Halo Penta HILIC column (4.6 × 150 mm, 5 μm) and a mobile phase comprising 85% acetonitrile and 15% ammonium formate buffer (100 mM, pH 3.2). Efficient separations of metoprolol, succinic acid, and EP metoprolol impurities M and N were achieved within a short time frame (<8 min). The HILIC-CAD method was subsequently validated per USP validation guidelines with respect to specificity, robustness, linearity, accuracy, and precision, and could be incorporated into the current USP-NF monographs to replace the outdated TLC methods. Furthermore, the developed method was successfully applied to determine organic impurities in metoprolol drug substance (metoprolol succinate) and drug products (metoprolol tartrate injection and metoprolol succinate extended release tablets). Copyright © 2015 Elsevier B.V. All rights reserved.
Development of adsorptive hybrid filters to enable two-step purification of biologics
Peck, Michael; Voloshin, Alexei M.; Moreno, Angela M.; Tan, Zhijun; Hester, Jonathan; Borys, Michael C.; Li, Zheng Jian
2017-01-01
ABSTRACT Recent progress in mammalian cell culture process has resulted in significantly increased product titers, but also a substantial increase in process- and product-related impurities. Due to the diverse physicochemical properties of these impurities, there is constant need for new technologies that offer higher productivity and improved economics without sacrificing the process robustness required to meet final drug substance specifications. Here, we examined the use of new synthetic adsorptive hybrid filters (AHF) modified with the high binding capacity of quaternary amine (Emphaze™ AEX) and salt-tolerant biomimetic (Emphaze™ ST-AEX) ligands for clearance of process-related impurities like host cell protein (HCP), residual DNA, and virus. The potential to remove soluble aggregates was also examined. Our aim was to develop a mechanistic understanding of the interactions governing adsorptive removal of impurities during filtration by evaluating the effect of various filter types, feed streams, and process conditions on impurity removal. The ionic capacity of these filters was measured and correlated with their ability to remove impurities for multiple molecules. The ionic capacity of AHF significantly exceeded that of traditional adsorptive depth filters (ADF) by 40% for the Emphaze™ AEX and by 700% for the Emphaze™ ST-AEX, providing substantially higher reduction of soluble anionic impurities, including DNA, HCPs and model virus. Nevertheless, we determined that ADF with filter aid provided additional hydrophobic functionality that resulted in removal of higher molecular weight species than AHF. Implementing AHF demonstrated improved process-related impurity removal and viral clearance after Protein A chromatography and enabled a two-step purification process. The consequences of enhanced process performance are far reaching because it allows the downstream polishing train to be restructured and simplified, and chromatographic purity standards to be met with a reduced number of chromatographic steps. PMID:27929735
NASA Technical Reports Server (NTRS)
Nicolaescu, I. I.
1974-01-01
Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.
Super Yang-Mills theory with impurity walls and instanton moduli spaces
NASA Astrophysics Data System (ADS)
Cherkis, Sergey A.; O'Hara, Clare; Sämann, Christian
2011-06-01
We explore maximally supersymmetric Yang-Mills theory with walls of impurities respecting half of the supersymmetries. The walls carry fundamental or bifundamental matter multiplets. We employ three-dimensional N=2 superspace language to identify the Higgs branch of this theory. We find that the vacuum conditions determining the Higgs branch are exactly the bow equations yielding Yang-Mills instantons on a multi-Taub-NUT space. Under electric-magnetic duality, the super Yang-Mills theory describing the bulk is mapped to itself, while the fundamental- and bifundamental-carrying impurity walls are interchanged. We perform a one-loop computation on the Coulomb branch of the dual theory to find the asymptotic metric on the original Higgs branch.
Process-induced defects in terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Li, S. S.; Sah, C. T.
1975-01-01
Experimental and theoretical work on low resistivity, high efficiency solar cells indicates the dominant role that defects take in determining performance. High doping mechanisms produce gap shrinkage by band tailing, impurity band widening and impurity misfit; altered interband transmission rates result from Auger impact, SRH processes, or from electronic tunneling via defects. Characterizations of cell materials for their defects and their relations to the chosen fabrication processes are proposed.
Evaluation of Li{sub 3}N accumulation in a fused LiCl/Li salt matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, C.S.
1998-09-01
Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research, a pilot scale of the preprocessing stage is being designed by ANL-West to demonstrate the in situ hot cell capability of the chemical reduction process. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent light water reactor uranium oxide fuel. A simple analysis was performed in which the sources of impurities inmore » the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation, and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hot cell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix, and the mass rate for the device was determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Fink, S.
2012-08-01
During processing of Salt Batches 3 and 4 in the Modular Caustic-Side Solvent Extraction Unit (MCU), the decontamination efficiency for cesium declined from historical values and from expectations based on laboratory testing. This report documents efforts to analyze samples of solvent and process solutions from MCU in an attempt to understand the cause of the reduced performance and to recommend mitigations. CWT Solutions from MCU from the time period of variable decontamination factor (DF) performance which covers from April 2011 to September 2011 (during processing of Salt Batch 4) were examined for impurities using chromatography and spectroscopy. The results indicatemore » that impurities were found to be of two types: aromatic containing impurities most likely from Modifier degradation and aliphatic type impurities most likely from Isopar{reg_sign} L and tri-n-octylamine (TOA) degradation. Caustic washing the Solvent Hold Tank (SHT) solution with 1M NaOH improved its extraction ability as determined from {sup 22}Na uptake tests. Evidence from this work showed that pH variance in the aqueous solutions within the range of 1M nitric acid to 1.91M NaOH that contacted the solvent samples does not influence the analytical determination of the TOA concentration by GC-MS.« less
NASA Astrophysics Data System (ADS)
Shiokawa, Yohei; Jung, JinWon; Otsuka, Takahiko; Sahashi, Masashi
2015-08-01
Nano-contact magnetoresistance (NCMR) spin-valves (SVs) using an AlOx nano-oxide-layer (NOL) have numerous nanocontacts in the thin AlOx oxide layer. The NCMR theoretically depends on the bulk scattering spin asymmetry ( β) of the ferromagnetic material in the nanocontacts. To determine the relationship between NCMR and β, we investigated the dependence of NCMR on the composition of the ferromagnetic material Co1-xFex. The samples were annealed at 270 °C and 380 °C to enhance the MR ratio. For both annealing temperatures, the magnetorsistance ratio in the low-resistance area product region at less than 1 Ω μm2 was maximized for Co0.5Fe0.5. To evaluate β exactly, we fabricated current-perpendicular-to-plane giant magnetoresistance SVs with Co1-xFex/Cu/Co1-xFex layers and used Valet and Fert's theory to solve the diffusion equation of the spin accumulation for a ferromagnetic layer/non-ferromagnetic layer of five layers with a finite diffusion length. The evaluated β for Co1-xFex was also maximized for Co0.5Fe0.5. Additionally, to determine the difference between the experimental MR ratio of NCMR SVs and the theoretical MR ratio, we fabricated Co0.5Fe0.5 with oxygen impurities and estimated the decrease in β with increasing oxygen impurity concentration. Our Co0.5Fe0.5 nano-contacts fabricated using ion-assisted oxidation may contain oxygen impurities, and the oxygen impurities might cause a decrease in β and the MR ratio.
NASA Astrophysics Data System (ADS)
Joung, Wukchul; Park, Jihye; Pearce, Jonathan V.
2018-06-01
In this work, the liquidus temperature of tin was determined by melting the sample using the pressure-controlled loop heat pipe. Square wave-type pressure steps generated periodic 0.7 °C temperature steps in the isothermal region in the vicinity of the tin sample, and the tin was melted with controllable heat pulses from the generated temperature changes. The melting temperatures at specific melted fractions were measured, and they were extrapolated to the melted fraction of unity to determine the liquidus temperature of tin. To investigate the influence of the impurity distribution on the melting behavior, a molten tin sample was solidified by an outward slow freezing or by quenching to segregate the impurities inside the sample with concentrations increasing outwards or to spread the impurities uniformly, respectively. The measured melting temperatures followed the local solidus temperature variations well in the case of the segregated sample and stayed near the solidus temperature in the quenched sample due to the microscopic melting behavior. The extrapolated melting temperatures of the segregated and quenched samples were 0.95 mK and 0.49 mK higher than the outside-nucleated freezing temperature of tin (with uncertainties of 0.15 mK and 0.16 mK, at approximately 95% level of confidence), respectively. The extrapolated melting temperature of the segregated sample was supposed to be a closer approximation to the liquidus temperature of tin, whereas the quenched sample yielded the possibility of a misleading extrapolation to the solidus temperature. Therefore, the determination of the liquidus temperature could result in different extrapolated melting temperatures depending on the way the impurities were distributed within the sample, which has implications for the contemporary methodology for realizing temperature fixed points of the International Temperature Scale of 1990 (ITS-90).
Jadhav, Sushant B; Reddy, P Sunil; Narayanan, Kalyanaraman L; Bhosale, Popatrao N
2017-06-27
The novel reverse phase-high performance liquid chromatography (RP-HPLC), stability indicating method was developed for determination of linagliptin (LGP) and its related substances in linagliptin and metformin HCl (MET HCl) tablets by implementing design of experiment to understand the critical method parameters and their relation with critical method attributes; to ensure robustness of the method. The separation of nine specified impurities was achieved with a Zorbax SB-Aq 250 × 4.6 mm, 5 µm column, using gradient elution and a detector wavelength of 225 nm, and validated in accordance with International Conference on Harmonization (ICH) guidelines and found to be accurate, precise, reproducible, robust, and specific . The drug was found to be degrading extensively in heat, humidity, basic, and oxidation conditions and was forming degradation products during stability studies. After slight modification in the buffer and the column, the same method was used for liquid chromatography-mass spectrometry (LC-MS) and ultra-performance liquid chromatography -time-of-flight/mass spectrometry UPLC-TOF/MS analysis, to identify m/z and fragmentation of maximum unspecified degradation products i.e., Impurity-VII ( 7 ), Impurity-VIII ( 8 ), and Impurity-IX ( 9 ) formed during stability studies. Based on the results, a degradation pathway for the drug has been proposed and synthesis of Impurity-VII ( 7 ) is also discussed to ensure an in-depth understanding of LGP and its related degradation products and optimum performance during the lifetime of the product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G.
In this study, an experimental design matrix was created and executed in order to test the effects of various real-world factors on the ability of the (1) accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposuremore » time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) ADS-SPME with vacuum (i.e., reduced pressure) increased the amount of detected CAS impurity, as measured by GC/MS peak area, by a factor of 1.7 to 1.9 for PWB under certain experimental conditions, (2) the amount of detected CAS impurity was most influenced by spiked volume, stock, and ADS headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, the ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB.« less
Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei
2018-06-04
Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.
Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G
2017-03-01
In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; ...
2015-08-03
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less
NASA Technical Reports Server (NTRS)
Cockrum, R. H.
1982-01-01
One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.
NASA Technical Reports Server (NTRS)
Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.
1981-01-01
The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.
Direct evidence for As as a Zn-site impurity in ZnO.
Wahl, U; Rita, E; Correia, J G; Marques, A C; Alves, E; Soares, J C
2005-11-18
Arsenic has been reported in the literature as one of the few p-type dopants in the technologically promising II-VI semiconductor ZnO. However, there is an ongoing debate whether the p-type character is due to As simply replacing O atoms or to the formation of more complicated defect complexes, possibly involving As on Zn sites. We have determined the lattice location of implanted As in ZnO by means of conversion-electron emission channeling from radioactive (73)As. In contrast to what one might expect from its nature as a group V element, we find that As does not occupy substitutional O sites but in its large majority substitutional Zn sites. Arsenic in ZnO (and probably also in GaN) is thus an interesting example for an impurity in a semiconductor where the major impurity lattice site is determined by atomic size and electronegativity rather than its position in the periodic system.
NASA Astrophysics Data System (ADS)
Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.
2018-03-01
In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce internal corrosion and deposits containing products of their degradation.
Nonequilibrium gas absorption in rotating permeable media
NASA Astrophysics Data System (ADS)
Baev, V. K.; Bazhaikin, A. N.
2016-08-01
The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.
Pilot study on peptide purity—synthetic human C-peptide
NASA Astrophysics Data System (ADS)
Josephs, R. D.; Li, M.; Song, D.; Daireaux, A.; Choteau, T.; Stoppacher, N.; Westwood, S.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Melanson, J. E.; Ün, I.; Gören, A. C.; Quaglia, M.; Warren, J.
2017-01-01
Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P55.2, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Four Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-P55.2. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a quantitative nuclear magnetic resonance spectroscopy (qNMR) corrected for peptide impurities. Other participants provided results obtained by peptide impurity corrected amino acid analysis (PICAA) or elemental analysis (PICCHN). It was decided to assign reference values based on the KCRVs of CCQM-K115 for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the reference value. The reference value for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The reference value for the mass fraction of hCP for CCQM-KP55.2 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. Inspection of the degree of equivalence plots for CCQM-P55.2 for the mass fraction of hCP shows that three results agree with the reference value. Main text To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.
NASA Astrophysics Data System (ADS)
Dinh Hoi, Bui; Yarmohammadi, Mohsen
2018-04-01
We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.
Inelastic fingerprints of hydrogen contamination in atomic gold wire systems
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads
2007-03-01
We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductance of gold wires is only slightly reduced from the conductance quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to use the conductance itself to distinguish between various configurations. On the other hand, our calculations of the inelastic signals predict significant differences between pure and hydrogen contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A detailed characterization of gold wires with a hydrogen impurity should therefore be possible from the strain dependence of the inelastic signals in the conductance.
Hauder, J; Benz, H; Rüter, M; Piringer, O-G
2013-01-01
Recycled board plays an important role in food packaging, but the great variety of organic impurities must be considered as potential food contaminants. The diffusion behaviour of the impurities is significantly different from that in plastic materials. The two-layer concept for paper and board introduced recently is now treated in more detail. In the rate-determining surface region the diffusion coefficients of the n-alkanes in the homologous series with 15-35 carbon atoms decrease proportionally as their vapour pressures. This leads to a different equation of the diffusion coefficients in comparison with that for the core layer. Different polarities of the migrants have additional influences on the diffusion due to their interactions with the fibre matrix. A new analytical method for the quantification of aromatic impurities has previously been developed. Based on this method and on the described diffusion behaviour, a migration model for specific and global mass transfer of impurities from recycled board into dry food and food simulants is given.
Gradient RP-HPLC method for the determination of potential impurities in atazanavir sulfate.
Chitturi, Sreenivasa Rao; Somannavar, Yallappa Somappa; Peruri, Badarinadh Gupta; Nallapati, Sreenivas; Sharma, Hemant Kumar; Budidet, Shankar Reddy; Handa, Vijay Kumar; Vurimindi, Hima Bindu
2011-04-28
This paper proposes a simple and selective RP-HPLC method for the determination of process impurities and degradation products (degradants) of atazanavir sulfate (ATV) drug substance. Chromatographic separation was achieved on Ascentis(®) Express C8, (150mm×4.6mm, 2.7μm) column thermostated at 30°C under gradient elution by a binary mixture of potassium dihydrogen phosphate (pH 3.5, 0.02M) and ACN at a flow rate of 1.0ml/min. A photodiode array (PDA) detector set at 250nm was used for detection. Stress testing (forced degradation) of ATV was carried out under acidic, alkaline, oxidative, photolytic, thermal and humidity conditions. In presence of alkali, ATV transformed into cyclized products and the order of degradation reaction is determined by the method of initial rates. The unknown process impurities and alkaline degradants are isolated by preparative LC and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectral data. The developed method is validated with respect to sensitivity (lod and loq), linearity, precision, accuracy and robustness and can be implemented for routine quality control analysis and stability testing of ATV. Copyright © 2011 Elsevier B.V. All rights reserved.
Płonka, Marlena; Walorczyk, Stanisław; Miszczyk, Marek; Kronenbach-Dylong, Dorota
2016-11-01
An analytical method for simultaneous determination of the active substance (chlorpyrifos) and its relevant impurity (sulfotep) in commercial pesticide formulations has been developed and validated. The proposed method entails extraction of the analytes from samples by sonication with acetone and analysis by gas chromatography-flame ionization detection (GC-FID). The proposed method was characterized by satisfactory accuracy and precision. The repeatability expressed as relative standard deviation (RSD) was lower than the acceptable values calculated from the modified Horwitz equation whereas individual recoveries were in the range of 98-102% and 80-120% for chlorpyrifos and sulfotep, respectively. The limit of quantification (LOQ) for the impurity (sulfotep) was 0.003 mg mL(-1) corresponding to the maximum permitted level according to Food and Agricultural Organization of the United Nations (FAO) specifications for the active substance (chlorpyrifos) being 3 g kg(-1) of the chlorpyrifos content found. The main advantage of the proposed method was a considerable reduction in the analysis time since both analytes were determined based on a single injection into the GC-FID. Analysis of real samples of commercial pesticide formulations confirmed fitness-for-purpose of the proposed method.
NASA Astrophysics Data System (ADS)
Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing
2018-06-01
The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).
Field aligned flows driven by neutral puffing at MAST
NASA Astrophysics Data System (ADS)
Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.
2018-06-01
Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.
Kahsay, Getu; Shraim, Fairouz; Villatte, Philippe; Rotger, Jacques; Cassus-Coussère, Céline; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin
2013-03-05
A simple, robust and fast high-performance liquid chromatographic method is described for the analysis of oxytetracycline and its related impurities. The principal peak and impurities are all baseline separated in 20 min using an Inertsil C₈ (150 mm × 4.6 mm, 5 μm) column kept at 50 °C. The mobile phase consists of a gradient mixture of mobile phases A (0.05% trifluoroacetic acid in water) and B (acetonitrile-methanol-tetrahydrofuran, 80:15:5, v/v/v) pumped at a flow rate of 1.3 ml/min. UV detection was performed at 254 nm. The developed method was validated for its robustness, sensitivity, precision and linearity in the range from limit of quantification (LOQ) to 120%. The limits of detection (LOD) and LOQ were found to be 0.08 μg/ml and 0.32 μg/ml, respectively. This method allows the separation of oxytetracycline from all known and 5 unknown impurities, which is better than previously reported in the literature. Moreover, the simple mobile phase composition devoid of non-volatile buffers made the method suitable to interface with mass spectrometry for further characterization of unknown impurities. The developed method has been applied for determination of related substances in oxytetracycline bulk samples available from four manufacturers. The validation results demonstrate that the method is reliable for quantification of oxytetracycline and its impurities. Copyright © 2012 Elsevier B.V. All rights reserved.
Veronin, Michael A; Nutan, Mohammad T; Dodla, Uday Krishna Reddy
2014-10-01
The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not equivalent with regards to potency and levels of impurities. These findings have implications for safety and effectiveness that should be addressed by clinicians to safeguard consumers who choose to purchase sildenafil citrate and foreign-manufactured drugs, in general, via the Internet.
Nutan, Mohammad T.; Dodla, Uday Krishna Reddy
2014-01-01
Background: The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. Objective: The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. Methods: A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Results: Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Conclusions: Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not equivalent with regards to potency and levels of impurities. These findings have implications for safety and effectiveness that should be addressed by clinicians to safeguard consumers who choose to purchase sildenafil citrate and foreign-manufactured drugs, in general, via the Internet. PMID:25360239
The threshold sensitivity of the molecular condensation nuclei detector
NASA Astrophysics Data System (ADS)
Kuptsov, Vladimir D.; Katelevsky, Vadim Y.; Valyukhov, Vladimir P.
2015-05-01
Molecular condensation nuclei (MCN) method is used in production engineering and process monitoring and relates to optical metrology methods of measuring the concentrations of various contaminants in the environment. Ultra high sensitivity of MCN method to a class of substances is determined by measuring the optical scattering aerosol particles, at the centers of which are located the detectable impurities molecules. This article investigates the influence of MCN manifestations coefficient (ratio of the concentration of aerosol particles to the concentration of molecules detectable impurities) on the sensitivity of the MCN detector. The MCN method is based on the application of various physicochemical processes to the flow of a gas containing impurities. As a result of these processes aerosol particle that are about 106 times larger than the original molecule of the impurity are produced. The ability of the aerosol particle to scatter incident light also increases ~1014 ÷1016 times compared with the original molecule and the aerosol particle with the molecule of the impurity in the center is easily detected by light scattering inside a photometer. By measuring of the light scattering intensity is determined concentration of chemical impurities in the air. An application nephelometric optical metrology scheme of light scattering by aerosol particles ensures stable operation of reliable and flexible measuring systems. Light scattering by aerosol particles is calculated on the basis of the Mie's theory as aerosol particle sizes comparable to the wavelength of the optical radiation. The experimental results are shown for detectable impurities of metal carbonyls. Gas analyzers based on the MCN method find application in industries with the possibility of highly toxic emissions into the atmosphere (carbonyl technology of metal coatings and products, destruction of chemical weapons, etc.), during storage and transportation of toxic substances, as well as in the inspection of large-scale objects. There are some perspective areas of use MCN detector: prevention of illegal use of dangerous substances, revealing of their origin and leakage paths by means of marking with special non-radioactive chemical compounds; investigation of large-scale atmospheric circulation with the help of marking substances; nondestructive inspection for highly efficient filters with indicating agent concentration and for the inspection of the devices of high level tightness (heat-exchangers of fast nuclear reactors).
Factorial experimental design intended for the optimization of the alumina purification conditions
NASA Astrophysics Data System (ADS)
Brahmi, Mounaouer; Ba, Mohamedou; Hidri, Yassine; Hassen, Abdennaceur
2018-04-01
The objective of this study was to determine the optimal conditions by using the experimental design methodology for the removal of some impurities associated with the alumina. So, three alumina qualities of different origins were investigated under the same conditions. The application of full-factorial designs on the samples of different qualities of alumina has followed the removal rates of the sodium oxide. However, a factorial experimental design was developed to describe the elimination of sodium oxide associated with the alumina. The experimental results showed that chemical analyze followed by XRF prior treatment of the samples, provided a primary idea concerning these prevailing impurities. Therefore, it appeared that the sodium oxide constituted the largest amount among all impurities. After the application of experimental design, analysis of the effectors different factors and their interactions showed that to have a better result, we should reduce the alumina quantity investigated and by against increase the stirring time for the first two samples, whereas, it was necessary to increase the alumina quantity in the case of the third sample. To expand and improve this research, we should take into account all existing impurities, since we found during this investigation that the levels of partial impurities increased after the treatment.
Agut, Christophe; Segalini, Audrey; Bauer, Michel; Boccardi, Giovanni
2006-05-03
The rounding of an analytical result is a process that should take into account the uncertainty of the result, which is in turn assessed during the validation exercise. Rounding rules are known in physical and analytical chemistry since a long time, but are often not used or misused in pharmaceutical analysis. The paper describes the theoretical background of the most common rules and their application to fix the rounding of results and specifications. The paper makes use of uncertainty values of impurity determination acquired during studies of reproducibility and intermediate precision with regards to 22 impurities of drug substances or drug products. As a general rule, authors propose the use of sound and well-established rounding rules to derive rounding from the results of the validation package.
Green's-function theory of dirty two-band superconductivity
NASA Astrophysics Data System (ADS)
Asano, Yasuhiro; Golubov, Alexander A.
2018-06-01
We study the effects of random nonmagnetic impurities on the superconducting transition temperature Tc in a two-band superconductor, where we assume an equal-time spin-singlet s -wave pair potential in each conduction band and the hybridization between the two bands as well as the band asymmetry. In the clean limit, the phase of hybridization determines the stability of two states, called s++ and s+-. The interband impurity scatterings decrease Tc of the two states exactly in the same manner when time-reversal symmetry is preserved in the Hamiltonian. We find that a superconductor with larger hybridization shows more moderate suppression of Tc. This effect can be explained by the presence of odd-frequency Cooper pairs, which are generated by the band hybridization in the clean limit and are broken by impurities.
Novel duplex vapor-electrochemical method for silicon solar cells
NASA Technical Reports Server (NTRS)
Kapur, V. K.; Nanis, L.; Sanjurjo, A.
1977-01-01
Silicon was produced by alternate pulse feeding of the reactants SiF4 gas and liquid sodium. The average temperature in the reactor could be controlled, by regulating the amount of reactant in each pulse. Silicon tetrafluoride gas was analyzed by mass spectrometry to determine the nature and amount of contained volatile impurities which included silicon oxyfluorides, sulfur oxyfluorides, and sulfur dioxide. Sodium metal was analyzed by emission spectrography, and it was found to contain only calcium and copper as impurities.
NASA Astrophysics Data System (ADS)
Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.
1992-01-01
The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.
NASA Technical Reports Server (NTRS)
Weinberg, I.
1975-01-01
The feasibility of using the MOS C-V technique to obtain information regarding impurity and surface state concentrations on the diffused face of silicon solar cells with Ta2O5 coatings is studied. Results indicate that the MOS C-V technique yields useful information concerning surface parameters which contribute to the high, efficiency limiting, surface recombination velocities on the n+ surface of silicon solar cells.
METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY
Fermi, E.; Anderson, H.L.
1961-01-24
A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.
Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Sunil P
2012-10-01
The objective of the current investigation was to study the degradation behavior of irinotecan hydrochloride under different International Conference on Harmonization (ICH) recommended stress conditions using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry and to establish a validated stability-indicating reverse-phase ultra-performance liquid chromatographic method for the quantitative determination of irinotecan hydrochloride and its seven impurities and degradation products in pharmaceutical dosage forms. Irinotecan hydrochloride was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Irinotecan hydrochloride was found to degrade significantly in oxidative and base hydrolysis and photolytic degradation conditions. The degradation products were well resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. Chromatographic separation was achieved on a Waters Acquity BEH C8 (100 × 2.1 mm) 1.7-µm column with a mobile phase containing a gradient mixture of solvent A (0.02M KH(2)PO(4) buffer, pH 3.4) and solvent B (a mixture of acetonitrile and methanol in the ratio of 62:38 v/v). The mobile phase was delivered at a flow rate of 0.3 mL/min with ultraviolet detection at 220 nm. The run time was 8 min, within which irinotecan and its seven impurities and degradation products were satisfactorily separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of irinotecan hydrochloride in pharmaceutical dosage forms.
Diffusion and phase change characterization by mass spectrometry
NASA Technical Reports Server (NTRS)
Koslin, M. E.; White, F. A.
1979-01-01
The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites.
Fluorescence metrology used for analytics of high-quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Haspel, Rainer; Rupertus, Volker
2004-09-01
Optical, glass ceramics and crystals are used for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. In order to qualify and control the material quality during the research and production processes several specialized ultra trace analytisis methods have to be appliedcs Schott Glas is applied. One focus of our the activities is the determination of impurities ranging in the sub ppb-regime, because such kind of impurity level is required e.g. for pure materials used for microlithography for example. Common analytical techniques for these impurity levels areSuch impurities are determined using analytical methods like LA ICP-MS and or Neutron Activation Analysis for example. On the other hand direct and non-destructive optical analysistic becomes is attractive because it visualizes the requirement of the optical applications additionally. Typical eExamples are absorption and laser resistivity measurements of optical material with optical methods like precision spectral photometers and or in-situ transmission measurements by means ofusing lamps and or UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). For a non-destructive qualification for the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometery is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity than state of the art UV absorption spectroscopy), fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analystics). An overview is given for spectral characteristics using specified standards, which are necessary to establish the analytical system. The elementary fluorescence and absorption of rare earth element impurities as well as crystal defects induced luminescence originated by impurities was investigated. Quantitative numbers are given for the relative quantum yield as well as for the excitation cross section for doped glass and calcium fluoride.
Krishnaiah, Ch; Reddy, A Raghupathi; Kumar, Ramesh; Mukkanti, K
2010-11-02
A simple, precise, accurate stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the quantitative determination of purity of Valsartan drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. The method was developed using Waters Aquity BEH C18 (100 mm x 2.1 mm, 1.7 microm) column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 225 nm, the run time was within 9.5 min, which Valsartan and its seven impurities were well separated. Valsartan was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Valsartan was found to degrade significantly in acid and oxidative stress conditions and stable in base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of Valsartan in pharmaceutical dosage forms.
Han, Stanisław; Karłowicz-Bodalska, Katarzyna; Potaczek, Piotr; Wójcik, Adam; Ozimek, Lukasz; Szura, Dorota; Musiał, Witold
2014-02-01
The identification of new contaminants is critical in the development of new medicinal products. Many impurities, such as pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, decanedioic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid, have been identified in samples of azelaic acid. The aim of this study was to identify impurities observed during the stability tests of a new liposomal dosage form of azelaic acid that is composed of phosphatidylcholine and a mixture of ethyl alcohol and water, using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD), gas chromatography-flame ionisation detection (GC-FID), and gas chromatography-mass spectrometry (GC-MS) methods. During the research and development of a new liposomal formulation of azelaic acid, we developed a method for determining the contamination of azelaic acid using HPLC-ELSD. During our analytical tests, we identified a previously unknown impurity of a liposomal preparation of azelaic acid that appeared in the liposomal formulation of azelaic acid during preliminary stability studies. The procedure led to the conclusion that the impurity was caused by the reaction of azelaic acid with one of the excipients that was applied in the product. The impurity was finally identified as an ethyl monoester of azelaic acid. The identification procedure of this compound was carried out in a series of experiments comparing the chromatograms that were obtained via the following chromatographic methods: HPLC-ELSD, GC-FID, and GC-MS. The final identification of the compound was carried out by GC with MS.
Satyanarayana Raju, T; Vishweshwari Kutty, O; Ganesh, V; Yadagiri Swamy, P
2012-08-01
Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm×4.6 mm, 5 μm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.
Yu, Xu; Wang, Fan; Li, Jiani; Shan, Weiguang; Zhu, Bingqi; Wang, Jian
2017-06-05
Thirteen unknown impurities in flomoxef sodium were separated and characterized by liquid chromatography coupled with high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF MS)with positive and negative modes of electrospray ionization method for further improvement of official monographs in pharmacopoeias. The fragmentation patterns of impurities in flomoxef in the negative ion mode were studied in detail, and new negative-ion fragmentation regularities were discovered. Chromatographic separation was performed on a Kromasil C18 column (250mm×4.6mm, 5μm). The mobile phase consisted of (A) ammonium formate aqueous solution (10mM)-methanol (84:16, v/v) and (B) ammonium formate aqueous solution (10mM)-methanol (47:53, v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC-MS in both positive and negative ion modes was firstly executed to obtain the m/z value of the molecules. Then LC-MS 2 and LC-MS 3 were carried out on target compounds to obtain as much structural information as possible. Complete fragmentation patterns of impurities were studied and used to obtain information about the structures of these impurities. Structures of thirteen unknown degradation products in flomoxef sodium were deduced based on the high resolution MS n data with both positive and negative modes. The forming mechanisms of degradation products in flomoxef sodium were also studied. Copyright © 2017. Published by Elsevier B.V.
Key comparison study on peptide purity—synthetic human C-peptide
NASA Astrophysics Data System (ADS)
Josephs, R. D.; Li, M.; Song, D.; Westwood, S.; Stoppacher, N.; Daireaux, A.; Choteau, T.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Flatschart, R.; Borges Oliveira, R.; Melanson, J. E.; Ohlendorf, R.; Henrion, A.; Kinumi, T.; Wong, L.; Liu, Q.; Oztug Senal, M.; Vatansever, B.; Ün, I.; Gören, A. C.; Akgöz, M.; Quaglia, M.; Warren, J.
2017-01-01
Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. More detailed studies on the identification/quantification of peptide related impurities and the hydrolysis efficiency revealed that the integrity of the impurity profile of the related peptide impurities obtained by the participant is crucial for the impact on accuracy of the hCP mass fraction assignment. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the KCRVPepImp. The KCRVPepImp for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The approach to obtain a KCRVhCP for the mass fraction of hCP is based on a mass balance calculation that takes into account the most exhaustive and elaborate set of results for the peptide related impurities KCRVPepImp, the TFA mass fraction value, water and other minor counter ions obtained by the coordinating laboratories. Differences in the quality of the results obtained for both peptides related impurity mass fractions and hCP mass fractions are better weighted and reflected in smaller uncertainties. The KCRVhCP for CCQM-K115 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. In general, mass balance approaches show smaller uncertainties than PICAA approaches and the majority of results obtained by the PICAA approach are in agreement because of larger corresponding uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.
2018-05-01
The efficiency of removal of volatile organic impurities in air by a pulsed corona discharge is investigated using model mixtures. Based on the method of competing reactions, an approach to estimating the qualitative and quantitative parameters of the employed electrophysical technique is proposed. The concept of the "toluene coefficient" characterizing the relative reactivity of a component as compared to toluene is introduced. It is proposed that the energy efficiency of the electrophysical method be estimated using the concept of diversified yield of the removal process. Such an approach makes it possible to substantially intensify the determination of energy parameters of removal of impurities and can also serve as a criterion for estimating the effectiveness of various methods in which a nonequilibrium plasma is used for air cleaning from volatile impurities.
Al-Khayat, Mohammad Ammar; Karabet, Francois; Al-Mardini, Mohammad Amer
2018-01-01
Formaldehyde is a highly reactive impurity that can be found in many pharmaceutical excipients. Trace levels of this impurity may affect drug product stability, safety, efficacy, and performance. A static headspace gas chromatographic method was developed and validated to determine formaldehyde in pharmaceutical excipients after an effective derivatization procedure using acidified ethanol. Diethoxymethane, the derivative of formaldehyde, was then directly analyzed by GC-FID. Despite the simplicity of the developed method, however, it is characterized by its specificity, accuracy, and precision. The limits of detection and quantification of formaldehyde in the samples were of 2.44 and 8.12 µg/g, respectively. This method is characterized by using simple and economic GC-FID technique instead of MS detection, and it is successfully used to analyze formaldehyde in commonly used pharmaceutical excipients. PMID:29686930
NASA Astrophysics Data System (ADS)
Sheela, K. Juliet; Subbulakshmi, N.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated on Cu2+ ion incorporated into the single crystals of potassium succinate-succinic acid (KSSA) at room temperature. Two magnetically in-equivalent Cu2+ sites in the lattice are identified, among them site I has been reported. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The co-ordination of the Cu2+ ion in this molecule is a distorted dodecahedron. From the calculated gxx, gyy, gzz and Axx, Ayy, Azz and their directional cosines values, location of site I impurity ion Cu2+ could be identified as a substituitional one. Also the ground state wave function of the impurity ion was found to be d2z.
Plummer, Christopher M; Breadon, Thomas W; Pearson, James R; Jones, Oliver A H
2016-05-01
This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Precipitation of impurities in 9-32-0 grade fluid fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillard, E.F.; Scheib, R.M.; Greenwell, B.E.
1986-01-01
For several years TVA has been studying production of 9-32-0 ammonium polyphosphate suspension produced from ammoniated merchant-grade wet-process orthophosphoric acid. Suspensions containing polyphosphate have an advantage over those that contain only orthophosphate in that they can be stored satisfactorily at much lower temperature. However, the introduction of polyphosphate (pyrophosphate anion) complicates the precipitation of impurities and has yielded inconsistent storage characteristics in 9-32-0 fluid fertilizers. Fluorine also has been shown to affect suspension fertilizer properties. The viscosity of 13-38-0 orthophosphate suspension fertilizers is affected by the atomic ratios F:(Al + Fe + Mg). Addition of fluorine prevents sludges and precipitatesmore » in ammonium polyphosphate fertilizer solutions - the proper amount of fluorine is related to the amount of each of the metallic impurities present and also to the fraction of the phosphate present as pyrophosphate. Incorporation of polyphosphate or fluorine or both has been shown to have positive effects on ammoniated wet-process phosphoric acid (WPPA), but they do not report the solubility relationships of the cation impurities (Fe, Al, Mg, and Ca) with respect to the anion constituents (PO/sub 4/, P/sub 2/O/sub 7/, and F). Therefore, a factorial study was developed to determine the solubility relationships of the precipitated metal impurities encountered in 9-32-0 fluid fertilizers. 10 refs., 1 fig., 20 tabs.« less
Grigori, Katerina; Loukas, Yannis L; Malenović, Anđelija; Samara, Vicky; Kalaskani, Anastasia; Dimovasili, Efi; Kalovidouri, Magda; Dotsikas, Yannis
2017-10-25
A sensitive Liquid Chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative analysis of three potential genotoxic impurities (318BP, M9, S5) in meropenem Active Pharmaceutical Ingredient (API). Due to the requirement for LOD values in ppb range, a high concentration of meropenem API (30mg/mL) had to be injected. Therefore, efficient determination of meropenem from its impurities became a critical aim of this study, in order to divert meropenem to waste, via a switching valve. After the selection of the important factors affecting analytes' elution, a Box-Behnken design was utilized to set the plan of experiments conducted with UV detector. As responses, the separation factor s between the last eluting impurity and meropenem, as well as meropenem retention factor k were used. Grid point search methodology was implemented aiming to obtain the optimal conditions that simultaneously comply to the conflicted criteria. Optimal mobile phase consisted of ACN, methanol and 0.09% HCOOH at a ratio 71/3.5/15.5v/v. All impurities and internal standard omeprazole were eluted before 7.5min and at 8.0min the eluents were directed to waste. The protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.
Contrera, Joseph F
2011-02-01
The Threshold of Toxicological Concern (TTC) is a level of exposure to a genotoxic impurity that is considered to represent a negligible risk to humans. The TTC was derived from the results of rodent carcinogenicity TD50 values that are a measure of carcinogenic potency. The TTC currently sets a default limit of 1.5 μg/day in food contact substances and pharmaceuticals for all genotoxic impurities without carcinogenicity data. Bercu et al. (2010) used the QSAR predicted TD50 to calculate a risk specific dose (RSD) which is a carcinogenic potency adjusted TTC for genotoxic impurities. This promising approach is currently limited by the software used, a combination of MC4PC (www.multicase.com) and a Lilly Inc. in-house software (VISDOM) that is not available to the public. In this report the TD50 and RSD were predicted using a commercially available software, SciQSAR (formally MDL-QSAR, www.scimatics.com) employing the same TD50 training data set and external validation test set that was used by Bercu et al. (2010). The results demonstrate the general applicability of QSAR predicted TD50 values to determine the RSDs for genotoxic impurities and the improved performance of SciQSAR for predicting TD50 values. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.
Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed reduced with the FA antenna configuration, the mechanism determining the SOL plasma potential in the presence of ICRF and its impact on impurity contamination and sources remains to be understood.« less
Kennedy, J.W.; Segre, E.G.
1958-08-26
A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.
NASA Astrophysics Data System (ADS)
Pearce, Jonathan V.; Gisby, John A.; Steur, Peter P. M.
2016-08-01
A knowledge of the effect of impurities at the level of parts per million on the freezing temperature of very pure metals is essential for realisation of ITS-90 fixed points. New information has become available for use with the thermodynamic modelling software MTDATA, permitting calculation of liquidus slopes, in the low concentration limit, of a wider range of binary alloy systems than was previously possible. In total, calculated values for 536 binary systems are given. In addition, new experimental determinations of phase diagrams, in the low impurity concentration limit, have recently appeared. All available data have been combined to provide a comprehensive set of liquidus slopes for impurities in ITS-90 metal fixed points. In total, liquidus slopes for 838 systems are tabulated for the fixed points Hg, Ga, In, Sn, Zn, Al, Ag, Au, and Cu. It is shown that the value of the liquidus slope as a function of impurity element atomic number can be approximated using a simple formula, and good qualitative agreement with the existing data is observed for the fixed points Al, Ag, Au and Cu, but curiously the formula is not applicable to the fixed points Hg, Ga, In, Sn, and Zn. Some discussion is made concerning the influence of oxygen on the liquidus slopes, and some calculations using MTDATA are discussed. The BIPM’s consultative committee for thermometry has long recognised that the sum of individual estimates method is the ideal approach for assessing uncertainties due to impurities, but the community has been largely powerless to use the model due to lack of data. Here, not only is data provided, but a simple model is given to enable known thermophysical data to be used directly to estimate impurity effects for a large fraction of the ITS-90 fixed points.
Reddy, Palavai Sripal; Hotha, Kishore Kumar; Sait, Shakil
2013-01-01
A complex, sensitive, and precise high-performance liquid chromatographic method for the profiling of impurities of esomeprazole in low-dose aspirin and esomeprazole capsules has been developed, validated, and used for the determination of impurities in pharmaceutical products. Esomeprazole and its related impurities' development in the presence of aspirin was traditionally difficult due to aspirin's sensitivity to basic conditions and esomeprazole's sensitivity to acidic conditions. When aspirin is under basic, humid, and extreme temperature conditions, it produces salicylic acid and acetic acid moieties. These two byproducts create an acidic environment for the esomeprazole. Due to the volatility and migration phenomenon of the produced acetic acid and salicylic acid from aspirin in the capsule dosage form, esomeprazole's purity, stability, and quantification are affected. The objective of the present research work was to develop a gradient reversed-phase liquid chromatographic method to separate all the degradation products and process-related impurities from the main peak. The impurities were well-separated on a RP8 column (150 mm × 4.6mm, X-terra, RP8, 3.5μm) by the gradient program using a glycine buffer (0.08 M, pH adjusted to 9.0 with 50% NaOH), acetonitrile, and methanol at a flow rate of 1.0 mL min(-1) with detection wavelength at 305 nm and column temperature at 30°C. The developed method was found to be specific, precise, linear, accurate, rugged, and robust. LOQ values for all of the known impurities were below reporting thresholds. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation in the presence of aspirin. The developed RP-HPLC method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision, limit of detection, limit of quantification, ruggedness, and robustness.
NASA Astrophysics Data System (ADS)
Benjamin, Russell D.
A photon counting detector based on an image intensified photodiode array was developed to meet the needs of one particular area of spectroscopic study, the determination of the kinetic temperature of impurity species. The image intensifier incorporates 3 high strip current ( ~300 muA) microchannel plates in a 'Z' configuration to achieve the gain required for the detection of single photon events. The design, construction, and laboratory testing of this system to determine its suitability for fusion plasma diagnostics is described, in particular, the ability to measure emission line profiles in order to determine the kinetic temperature of the emitting species. The photon counting detector, mounted on the exit plane of a 1m Ebert-Fastie spectrometer, was used to make spectroscopic measurements of the local ion temperature in Alcator C plasmas using impurity emission lines. Alcator experiments on one particular method of RF heating in a tokamak plasma, the launching of Ion Bernstein waves (IBW), are discussed. The O V kinetic temperature increases during IBW injection as the pre-RF plasma density is raised (on a shot-to-shot basis) above the region in which significant increases in the central ion temperature are observed. In addition, ion temperature profiles were measured during Ion Bernstein wave experiments by combining this point derived from the fit to the emission line of O VII with neutral particle analyzer data. The incorporation of the O VII temperature point in the determination of the pre-RF ion temperature profile results in a significant reduction (~0.4 cm) in the characteristic width of this profile. The high resolution and geometric stability of the photon counting detector made possible the measurement of small wavelength shifts (Deltalambda ~ 0.01 A) and, therefore, the determination of small bulk plasma motions (in this case, poloidal rotation of the plasma) through the Doppler shift of impurity emission lines. The Zeeman effect makes a significant contribution to the measured line profile in high field tokamaks, even in the ultraviolet. Modelling of the Zeeman effect is discussed and applied to the impurity species observed in Alcator C plasmas. (Abstract shortened with permission of author.).
NASA Astrophysics Data System (ADS)
Vogl, Jochen; Kipphardt, Heinrich; Richter, Silke; Bremser, Wolfram; del Rocío Arvizu Torres, María; Manzano, Judith Velina Lara; Buzoianu, Mirella; Hill, Sarah; Petrov, Panayot; Goenaga-Infante, Heidi; Sargent, Mike; Fisicaro, Paola; Labarraque, Guillaume; Zhou, Tao; Turk, Gregory C.; Winchester, Michael; Miura, Tsutomu; Methven, Brad; Sturgeon, Ralph; Jährling, Reinhard; Rienitz, Olaf; Mariassy, Michal; Hankova, Zuzana; Sobina, Egor; Ivanovich Krylov, Anatoly; Anatolievich Kustikov, Yuri; Vladimirovich Smirnov, Vadim
2018-04-01
For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100%, or 1 kg kg-1. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011%. The calculated reference value, w(Zn) = 0.999 873 kg kg-1, was assigned an asymmetric combined uncertainty of +0.000 025 kg kg-1 and -0.000 028 kg kg-1. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition/dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process.
Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram
2003-01-01
We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.
Lalitha Devi, M; Chandrasekhar, K B
2009-12-05
The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).
Kapse, Gaurav; Patoliya, Pruthvi; Samadder, S R
2017-03-01
The huge quantity of effluent generated in coal washing processes contains large amount of suspended and dissolved solids, clay minerals, coal fines and other impurities associated with raw coal. The present system of recirculation of the effluent is found to be ineffective in removing colloidal fines, which is the major part of the impurities present in washery effluent. Hence, there is a need for the assessment of a better technique for an efficient removal of these impurities. This study deals with detailed characterisation of coal washery effluent and fine particles present in it. For efficient removal of impurities, the suitability of biocoag-flocculation process using Moringa oleifera seed biomass as a natural coagulant was examined. Various doses of M. oleifera ranging from 0.2 to 3 mL/L were used in order to determine the optimal conditions. The impact of the variations in pH of the effluent (2-10), contact time (5-30 min), settlement time (5-50 min), temperature (10-50 °C) and the effluent dilution (1:0-1:5) was also assessed to optimise the treatment process. Post treatment analysis was carried out for determination of the different parameters such as pH, conductivity, turbidity, solids and settling velocity. Excellent reduction in turbidity (97.42%) and suspended solids (97.78%) was observed at an optimum dose of M. oleifera seed coagulant of 0.8 mL/L with an optimum contact time of 15 and at 20 min of settling time. In comparison with very few past studies of M. oleifera in the treatment of coal washery effluent with high dose and inadequate removal, this study stands to be a major highlight with low dose and high removal of the impurities. M. oleifera coagulant is considered to be an environment-friendly material, therefore, its application is recommended for simple and efficient treatment of coal washery effluent.
NASA Astrophysics Data System (ADS)
Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Zabrodskii, A. G.
2011-12-01
For nondegenerate bulk semiconductors, we have used the virial theorem to derive an expression for the temperature Tj of the transition from the regime of "free" motion of electrons in the c-band (or holes in the υ-band) to their hopping motion between donors (or acceptors). Distribution of impurities over the crystal was assumed to be of the Poisson type, while distribution of their energy levels was assumed to be of the Gaussian type. Our conception of the virial theorem implementation is that the transition from the band-like conduction to hopping conduction occurs when the average kinetic energy of an electron in the c-band (hole in the υ-band) is equal to the half of the absolute value of the average energy of the Coulomb interaction of an electron (hole) with the nearest neighbor ionized donor (acceptor). Calculations of Tj according to our model agree with experimental data for crystals of Ge, Si, diamond, etc. up to the concentrations of a hydrogen-like impurity, at which the phase insulator-metal transition (Mott transition) occurs. Under the temperature Th ≈ Tj /3, when the nearest neighbor hopping conduction via impurity atoms dominates, we obtained expressions for the electrostatic field screening length Λh in the Debye-Hückel approximation, taking into account a nonzero width of the impurity energy band. It is shown that the measurements of quasistatic capacitance of the semiconductor in a metal-insulator-semiconductor structure in the regime of the flat bands at the temperature Th allow to determine the concentration of doping impurity or its compensation ratio by knowing Λh.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Sangeetha, D.; Kalyanraman, L.
2017-11-01
For determination of process related impurities and degradation products of asenapine maleate in asenapine sublingual Tablets, a reversed phase, stability indicating UPLC method was developed. Acetonitrile, methanol and potassium dihydrogen phosphate buffer with tetra-n- butyl ammonium hydrogen sulphate as ion pair (pH 2.2; 0.01 M) at flow rate of 0.2 ml/min were used in gradient elution mode. Separation was achieved by using acquity BEH Shield RP18 column (1.7 μm, 2.1 mm×100 mm) at 35 ºC. UV detection was performed at 228 nm. Subsequently the liquid chromatography method was validated as per ICH. The drug product was exposed to the stress conditions of acid hydrolysis, base hydrolysis, water hydrolysis, oxidative, thermal, and photolytic. In oxidative stress and thermal stress significant degradation was observed. All the degradation products were well separated from analyte peak and its impurities. Stability indicating nature of the method was proved by demonstrating the peak purity of Asenapine peak in all the stressed samples. The mass balance was found >95% for all the stress conditions. Based on method validation, the method was found specific, linear, accurate, precise, rugged and robust.
NASA Astrophysics Data System (ADS)
Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan
2014-12-01
Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.
Insight into point defects and impurities in titanium from first principles
NASA Astrophysics Data System (ADS)
Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.
2018-03-01
Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.
Theoretical study of impurity effects in iron-based superconductors
NASA Astrophysics Data System (ADS)
Navarro Gastiasoro, Maria; Hirschfeld, Peter; Andersen, Brian
2013-03-01
Several open questions remain unanswered for the iron-based superconductors (FeSC), including the importance of electronic correlations and the symmetry of the superconducting order parameter. Motivated by recent STM experiments which show a fascinating variety of resonant defect states in FeSC, we adopt a realistic five-band model including electronic Coulomb correlations to study local effects of disorder in the FeSC. In order to minimize the number of free parameters, we use the pairing interactions obtained from spin-fluctuation exchange to determine the homogeneous superconducting state. The ability of local impurity potentials to induce resonant states depends on their scattering strength Vimp; in addition, for appropriate Vimp, such states are associated with local orbital- and magnetic order. We investigate the density of states near such impurities and show how tunneling experiments may be used to probe local induced order. In the SDW phase, we show how C2 symmetry-breaking dimers are naturally formed around impurities which also form cigar-like (pi,pi) structures embedded in the (pi,0) magnetic bulk phase. Such electronic dimers have been shown to be candidates for explaining the so-called nematogens observed previously by QPI in Co-doped CaFe2As2.
NASA Astrophysics Data System (ADS)
Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.
2017-12-01
Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.
First-principles theory of doping in layered oxide electrode materials
NASA Astrophysics Data System (ADS)
Hoang, Khang
2017-12-01
Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.
Erosion and Retention Properties of Beyllium
NASA Astrophysics Data System (ADS)
Doerner, R.; Grossman, A.; Luckhardt, S.; Serayderian, R.; Sze, F. C.; Whyte, D. G.
1997-11-01
Experiments in PISCES-B have investigated the erosion and hydrogen retention characteristics of beryllium. The sputtering yield is strongly influenced by trace amounts (≈1 percent) of intrinsic plasma impurities. At low sample exposure temperatures (below 250^oC), the beryllium surface remains free of contaminants and a sputtering yield similar to that of beryllium-oxide is measured. At higher exposure temperatures, impurities deposited on the surface can diffuse into the bulk and reduce their chance of subsequent erosion. These impurities form a surface layer mixed with beryllium which exhibits a reduced sputtering yield. Depth profile analysis has determined the composition and chemical bonding of the impurity layer. The hydrogen isotope retention of beryllium under ITER first wall (temperature = 200^oC, ion flux = 1 x 10^21 m-2 s-1) and baffle (temperature = 500^oC, ion flux = 1 x 10^22 m-2 s-1) conditions has been investigated. The retained deuterium saturates above a fluence of 10^23 m-2 at about 4 x 10^20 m-2 for the 200^oC exposure and at 2 x 10^20 m-2 for the 500^oC case. The TMAP code is used to model the deuterium release characteristics.
NASA Astrophysics Data System (ADS)
McCarty, R. J.; Stebbins, J. F.
2015-12-01
This research seeks to constrain the crystallographic site preferences of aluminum in forsterite, clinoenstatite and periclase, mantle minerals in which this element is only found at low concentrations. Improved site preference information will help constrain thermodynamic descriptions of the substitution mechanisms, making them more useful to geobarometric and geothermometric techniques. Using high field magic angle spinning nuclear magnetic resonance (NMR) and electron probe microanalysis (EPMA), we constrain the site preferences of minor and trace amounts (2000 to 400 mol ppm) of aluminum in extremely pure synthetic forsterite, clinoenstatite and periclase. The primary challenge of this research is determining how much of each of the aluminum species observed by NMR in the bulk sample (abundances and coordinations) resides in the major synthesized mineral. In our samples, the aluminum partitions between small amounts (often <1%) of impurity phases with high aluminum concentrations, such as glass and accessory crystals, and the major, intended phase with low aluminum concentrations. We use EPMA composition maps to locate scarce impurity phases and EPMA point analyses to determine the aluminum concentrations in both the intended major phase and in the impurity phases. Long NMR acquisitions (several days) and careful subtraction of rotor background signals (present in even 'low-Al' zirconia rotor materials) are required to obtain adequate signal-to-noise ratios at such low concentrations. Ordered octahedral aluminum has been identified in forsterite, clinoenstatite, and periclase. Disordered 4, 5 and 6 coordinated aluminum species have also been observed, but it is still unclear if the disordered species are in the major mineral phases, the impurity phases or both.
Identification and characterization of potential impurities of donepezil.
Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K
2004-09-03
Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.
Görög, Sándor
2011-06-25
A critical review of the literature of the analysis of steroid hormone drugs is presented based on 213 publications published between 2004 and 2010. The state of the art of the assay and purity check of bulk drug materials is characterized on the basis of the principal pharmacopoeias supplemented by the literature dealing with their impurity profiling and solid state characterization. The determination of the active ingredients and impurities/degradants in pharmaceutical formulation by HPLC, other chromatographic, electrodriven, spectrophotometric and other methods is also summarized. A short section deals with the application of analytical methods in drug research. The literature of the determination of steroid hormones in environmental samples is summarized in tabulated form. Copyright © 2010 Elsevier B.V. All rights reserved.
Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao
2013-01-01
A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraga, Carlos G.; Clowers, Brian H.; Moore, Ronald J.
2010-05-15
This report demonstrates the use of bioinformatic and chemometric tools on liquid chromatography mass spectrometry (LC-MS) data for the discovery of ultra-trace forensic signatures for sample matching of various stocks of the nerve-agent precursor known as methylphosphonic dichloride (dichlor). The use of the bioinformatic tool known as XCMS was used to comprehensively search and find candidate LC-MS peaks in a known set of dichlor samples. These candidate peaks were down selected to a group of 34 impurity peaks. Hierarchal cluster analysis and factor analysis demonstrated the potential of these 34 impurities peaks for matching samples based on their stock source.more » Only one pair of dichlor stocks was not differentiated from one another. An acceptable chemometric approach for sample matching was determined to be variance scaling and signal averaging of normalized duplicate impurity profiles prior to classification by k-nearest neighbors. Using this approach, a test set of dichlor samples were all correctly matched to their source stock. The sample preparation and LC-MS method permitted the detection of dichlor impurities presumably in the parts-per-trillion (w/w). The detection of a common impurity in all dichlor stocks that were synthesized over a 14-year period and by different manufacturers was an unexpected discovery. Our described signature-discovery approach should be useful in the development of a forensic capability to help in criminal investigations following chemical attacks.« less
Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, Alla
Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, themore » aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for describing the ionization balance of plasmas, which in turn determines the lines contributing to the spectral emission and the radiative power loss. In particular, we have calculated relativistic atomic data and corresponding dielectronic satellite spectra of highly ionized W ions, such as, for example, Li-like W (with the shortest wavelength of x-ray radiation of about 0.2 Å) that might exist in ITER core plasmas at very high temperatures of 30-40 keV. In addition, we have completed relativistic calculations of low ionized W ions from Lu-like (W3+) to Er-like (W6+) and for Sm-like(W12+) and Pm-like (W13+) that cover a spectral range from few hundred to thousand Å and are more relevant to the edge plasma diagnostics in tokamak.« less
van Heugten, A J P; de Boer, W; de Vries, W S; Markesteijn, C M A; Vromans, H
2018-02-05
A stability indicating high performance liquid chromatography method has been developed for the determination of triamcinolone acetonide (TCA) and its main degradation products in ointment formulations. The method, based on extensive stress testing using metal salts, azobisisobutyronitrile, acid, base and peroxide, showed that TCA undergoes oxidative degradation. All degradation products were identified using HPLC mass spectrometry. Separation and quantification was achieved using an Altima C18 RP18 HP column (250×4.6mm 2 , with 5μm particles) using a mobile phase consisting of acetonitrile and water buffered at pH 7 using 10mM phosphate buffer. A gradient mode was operated at a flow rate of 1.5ml/min and detection was at 241nm. The method showed linearity for TCA and Impurity C in 0.02-125% of the workload, both square roots of the correlation coefficients were larger than 0.9999. Repeatability and intermediate precision were performed by six consecutive injections of both 1.25% and 125% of the work load for both TCA and Impurity C divided equally over two days. RSD were 0.6% and 0.7% for TCA and 0.5% and 0.1% for Impurity C respectively. Accuracy was determined as well, the average recoveries were 99.5% (±0.1%, n=3) for TCA and 96.9% (±1.3%, n=3) for impurity C respectively from spiked ointment samples. The robustness was also evaluated by variations of column (old vs new), mobile phase pH and filter retention. The applicability of the method was evaluated by analysis of a commercial ointment formulation. Interestingly, the extensive stress tests were able to predict all degradation products of TCA in a long term stability ointment sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemical trends for acceptor impurities in GaN
NASA Astrophysics Data System (ADS)
Neugebauer, Jörg; Van de Walle, Chris G.
1999-03-01
We present a comprehensive investigation of acceptor impurities in GaN, based on first-principles total-energy calculations. Two main factors are identified that determine acceptor incorporation: the strength of chemical bonding between the acceptor and its neighbors (which can be assessed by comparison with existing compounds) and the atomic size match between the acceptor and the host atom for which it substitutes. None of the candidates (Li, Na, K, Be, Zn, and Ca) exhibits characteristics which surpass those of Mg in all respects. Only Be emerges as a potential alternative dopant, although it may suffer from compensation by Be interstitial donors.
Modelling of convective processes during the Bridgman growth of poly-silicon
NASA Astrophysics Data System (ADS)
Popov, V. N.
2009-09-01
An original 3D model was used to numerically examine convective heat-and-mass transfer processes in the melt during the growth of polycrystalline silicon in vertical Bridgman configuration. The flow in the liquid was modelled using the Navier — Stokes equations in the Boussinesq approximation. The distribution of dissolved impurities was determined by solving the convective diffusion equation. The effects due to non-uniform heating of the lateral wall of the vessel and due to the shape of the crystallization front on the structure of melt flows and on the distribution of dissolved impurities in the liquid are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.
1986-10-20
The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.
Machine learning for many-body physics: The case of the Anderson impurity model
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...
2014-10-31
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
Sotnikov, E E; Kir'ianova, L F; Mikhaĭlova, R I; Ryzhova, I N; Moskovkin, A S
2009-01-01
The paper provides the results of gas chromatographic analysis of organic impurities in the drinking water after its contact with various packs and filters made from polymer materials. Vapor-phase analysis in combination with selective gas chromatographic detectors was used to determine volatile substances and liquid extraction in combination with chromatographic mass-spectrometry was employed to identify high-boiling compounds. The release sources of toxic compounds from materials to water, the taste and odor of which is affected by them were studied.
Machine learning for many-body physics: The case of the Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
Particle size reduction of Si3N4 with Si3N4 milling hardware
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Freedman, M. R.; Kiser, J. D.
1986-01-01
The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.
Tetramers of Two Heavy and Two Light Bosons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-07-01
This article considers the bound states of two heavy and two light bosons, when a short-range force attracts the bosons of different mass, and a short-range force repels the light bosons. The existence of such four-body bound states results from the competition between these two forces. For a given strength of the attraction, the critical strength of the repulsion necessary to unbind the four particles is calculated. This study is motivated by the experimental realisation of impurity atoms immersed in an atomic Bose-Einstein condensate, and aims at determining in which regime only one boson contributes to binding two impurities.
Exact edge, bulk, and bound states of finite topological systems
NASA Astrophysics Data System (ADS)
Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel
2018-05-01
Finite topologically nontrivial systems are characterized, among many other unique properties, by the presence of bound states at their physical edges. These topological edge modes can be distinguished from usual Shockley waves energetically, as their energies remain finite and in gap even when the boundaries of the system represent an effectively infinite and sharp energetic barrier. Theoretically, the existence of topological edge modes can be shown by means of the bulk-edge correspondence and topological invariants. On a clean one-dimensional lattice and reducible two-dimensional models, in either the commensurate or semi-infinite case, the edge modes can be essentially obtained analytically, as shown previously [Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993), 10.1103/PhysRevLett.71.3697; D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014), 10.1103/PhysRevA.89.023619]. In this work, we put forward a method for obtaining the spectrum and wave functions of topological edge modes for arbitrary finite lattices, including the incommensurate case. A small number of parameters are easily determined numerically, with the form of the eigenstates remaining fully analytical. We also obtain the bulk modes in the finite system analytically and their associated eigenenergies, which lie within the infinite-size limit continuum. Our method is general and can be easily applied to obtain the properties of nontopological models and/or extended to include impurities. As an example, we consider a relevant case of an impurity located next to one edge of a one-dimensional system, equivalent to a softened boundary in a separable two-dimensional model. We show that a localized impurity can have a drastic effect on the original topological edge modes of the system. Using the periodic Harper and Hofstadter models to illustrate our method, we find that, on increasing the impurity strength, edge states can enter or exit the continuum, and a trivial Shockley state bound to the impurity may appear. The fate of the topological edge modes in the presence of impurities can be addressed by quenching the impurity strength. We find that at certain critical impurity strengths, the transition probability for a particle initially prepared in an edge mode to decay into the bulk exhibits discontinuities that mark the entry and exit points of edge modes from and into the bulk spectrum.
Impurity-induced divertor plasma oscillations
Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...
2016-01-07
Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Horz, F.
2000-01-01
Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.
Microchemical urinalysis. IX - Determination of hydroxyproline in urine.
NASA Technical Reports Server (NTRS)
Grunbaum, B. W.; Pace, N.
1973-01-01
A simplified procedure is described for the determination of hydroxyproline in human or monkey urine. In this procedure 1 ml of urine is subjected in succession to hydrolysis, oxidation, extraction, and color development. During these steps impurities and interfering substances are eliminated, thus resulting in a chromophore due to hydroxyproline alone.
NASA Astrophysics Data System (ADS)
Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.
2017-12-01
Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.
Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Eyama, Sakae; Goto, Mari; Yoshioka, Mariko; Takatsu, Akiko
2015-01-01
To ensure the reliability of amino acid analyses, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed high-purity certified reference materials (CRMs) for 17 proteinogenic amino acids. These CRMs are intended for use as primary reference materials to enable the traceable quantification of amino acids. The purity of the present CRMs was determined based on two traceable methods: nonaqueous acidimetric titration and nitrogen determination by the Kjeldahl method. Since neither method could distinguish compounds with similar structures, such as amino acid-related impurities, impurities were thoroughly quantified by combining several HPLC methods, and subtracted from the obtained purity of each method. The property value of each amino acid was calculated as a weighted mean of the corrected purities by the two methods. The uncertainty of the property value was obtained by combining measurement uncertainties of the two methods, a difference between the two methods, the uncertainty from the contribution of impurities, and the uncertainty derived from inhomogeneity. The uncertainty derived from instability was considered to be negligible based on stability monitoring of some CRMs. The certified value of each amino acid, property value with uncertainty, was given for both with or without enantiomeric separation.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-05-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-07-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation
NASA Astrophysics Data System (ADS)
Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.
2004-09-01
The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.
Papandreou, Georgios; Zorpas, Kostas; Archontaki, Helen
2011-11-01
Simultaneous determination of aniracetam and its related impurities (2-pyrrolidinone, p-anisic acid, 4-p-anisamidobutyric acid and (p-anisoyl)-4-methyl-2-pyrrolidinone) was accomplished in the bulk drug and in a tablet formulation using a high performance liquid chromatographic method with UV detection. Separation was achieved on a Hypersil BDS-CN column (150 mm × 4.0 mm, 5 μm) using a gradient elution program with solvent A composed of phosphate buffer (pH 4.0; 0.010 M) and solvent B of acetonitrile-phosphate buffer (pH 4.0; 0.010 M) (90:10, v/v). The flow rate of the mobile phase was 1.0 mL min(-1) and the total elution time, including the column re-equilibration, was approximately 20 min. The UV detection wavelength was varied appropriately among 210, 250 and 280 nm. Injection volume was 20 μL and experiments were conducted at ambient temperature. The developed method was validated in terms of system suitability, selectivity, linearity, range, precision, accuracy, limits of detection and quantification for the impurities, short term and long term stability of the analytes in the prepared solutions and robustness, following the ICH guidelines. Therefore, the proposed method was suitable for the simultaneous determination of aniracetam and its studied related impurities. Copyright © 2011 Elsevier B.V. All rights reserved.
Benković, Goran; Skrlin, Ana; Madić, Tomislav; Debeljak, Zeljko; Medić-Šarić, Marica
2014-09-01
Current methods for determination of impurities with different charge-to-volume ratio are limited especially in terms of sensitivity and precision. The main goal of this research was to establish a quantitative method for determination of impurities with charges differing from that of recombinant human granulocyte colony-stimulating factor (rhG-CSF, filgrastim) with superior precision and sensitivity compared to existing methods. A CZE method has been developed, optimized, and validated for a purity assessment of filgrastim in liquid pharmaceutical formulations. Optimal separation of filgrastim from the related impurities with different charges was achieved on a 50 μm id fused-silica capillary of a total length of 80.5 cm. A BGE that contains 100 mM phosphoric acid adjusted to pH 7.0 with triethanolamine was used. The applied voltage was 20 kV while the temperature was maintained at 25°C. UV detection was set to 200 nm. Method was validated in terms of selectivity/specificity, linearity, precision, LOD, LOQ, stability, and robustness. Linearity was observed in the concentration range of 6-600 μg/mL and the LOQ was determined to be 0.3% relative to the concentration of filgrastim of 0.6 mg/mL. Other validation parameters were also found to be acceptable; thus the method was successfully applied for a quantitative purity assessment of filgrastim in a finished drug product. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Olikh, Ya. M.; Tymochko, M. D.; Olikh, O. Ya.; Shenderovsky, V. A.
2018-05-01
We studied the temperature dependence (77-300 K) of the electron concentration and mobility using the Hall method under ultrasound (the acoustic Hall method) to determine the mechanisms by which ultrasound influences the electrical activity of near-dislocation clusters in n-type low-ohmic Cd1-x Zn x Te single crystals (N Cl ≈ 1024 m-3; x = 0; 0.04) with different dislocation density (0.4-5.1) × 1010 m-2. Changes in electrophysical parameters were found to occur as a function of temperature and ultrasound intensity. To evaluate the relative contribution of different charge carrier scattering mechanisms (lattice scattering, ionized impurity scattering, neutral impurity scattering, and dislocation scattering) and their change under ultrasound, a differential evolution method was used. This method made it possible to analyze experimental mobility μ H(T) by its nonlinear approximation with characteristic temperature dependence for each mechanism. An increase in neutral impurity scattering and a decrease in ionized impurity and dislocation scattering components were observed under ultrasound. The character and the amount of these acoustically induced changes correlate with particular sample dislocation characteristics. It was concluded that the observed effects are related to the acoustically induced transformation of the point-defect structure, mainly in the near dislocation crystal regions.
NASA Astrophysics Data System (ADS)
Haycock, Barry; Lewis, James P.
2014-03-01
A group of materials that shows promise in optoelectronic applications is the family of oxide materials (delafossites), of the form ABO2, where the A site is a monovalent cation (e . g . , Cu, Ag, or Au) and the B site is a trivalent cation (e . g ., Ga, Y, Al, or In). The bandgap of some delafossites can be tailored for specific purposes, such as in photocatalysis applications, with B-site doping. We report on our recent investigations of the properties of CuGaO2, CuInO2, CuAlO2 and NaInO2 and predict the relative disorder of Fe impurities by comparing crystallographic metrics resulting from Fe doping. We performed approximately 10K calculations, in parallel on the Titan platform (Oak Ridge Leadership Computing Facility), of possible Fe-impurity permutations to determine the most-likely configurations of Fe impurities relative to each another. Our computational approach allows us to study large supercells, consisting of 432 atoms, which enable us to examine the properties of these materials in increments of 1% for the B-site doping of Fe. We will present results from our energetically-preferred supercells and discuss further applications of our techniques applied for characterization of new reconstructions via derived metrics.
Dai, Lulu; Yeh, Geoffrey K; Ran, Yingqing; Yehl, Peter; Zhang, Kelly
2017-04-15
Polyethylene glycol (PEG) based formulation and polyvinylchloride (PVC) tubing are frequently used for drug delivery and administration. The compatibility of a parenteral drug microdose formulation in intravenous infusion (IV) devices was studied to support the clinical determination of absolute bioavailability by the microdosing method. The investigational microdose formulation containing PEG was found prone to significant loss of potency within hours of storage in the PVC IV tubing due to degradation. Degradation occurred only when both PEG and PVC tubing were present. The degradation product could not be detected by LC/MS due to the significant interference from the high concentration of PEG (4%) matrix and the extremely low level of drug (0.6ppm). To obtain structural information of the degradation impurity and understand the cause of the degradation, a simple heart-cutting 2D-LC/MS approach was utilized to effectively separate the impurity from the complex PEG oligomers and overcome the matrix interference, enabling mass spectrometric analysis of the impurity. An oxidation- dominated mechanism was proposed in which the combination of PEG auto-oxidation and dehydrochlorination of the PVC tubing yielded an oxidative environment that enhanced radical propagation and accelerated degradation of the investigational parent drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.
Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A
2004-07-23
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society
Effects of Impurities and Processing on Silicon Solar Cells, Phase 3
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.
Process and system for removing impurities from a gas
Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S
2014-04-15
A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.
NASA Astrophysics Data System (ADS)
Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.
Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.
2016-04-07
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less
Tatebe, Chiye; Ohtsuki, Takashi; Fujita, Tsuyoshi; Nishiyama, Koji; Itoh, Sumio; Sugimoto, Naoki; Kubota, Hiroki; Tada, Atsuko; Sato, Kyoko; Akiyama, Hiroshi
2017-12-15
The main subsidiary color of structure in Food Red No. 106 (R106) was identified to be a desethyl derivative (R106-SubA). High-performance liquid chromatography (HPLC) was performed for the quantitative determination of benzaldehyde-2,4-disulfonic acid, N,N-diethyl-m-aminophenol, leuco acid, pyrone acid, R106-SubA, etc. in R106. An ammonium acetate solution (20mM) and acetonitrile:water (7:3) were used to stabilize the retention time of the HPLC analytes. The linearity of the calibration curves was in the range of 0.05-10μg/mL, with good correlation coefficients (R 2 >0.9983). The recoveries of impurities at levels 0.1%, 0.5% and 1% ranged from 94.2% to 106.6% with relative standard deviations of 0.1%-1.0%. While surveying commercial R106, the amounts obtained by area% determination were similar to those obtained by the calibration-curve determination. The area% determination by HPLC for the determinations of impurities in R106 is a simple and reliable method and can be applied in routine analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dzhumanov, S.; Karimboev, E. X.
2014-07-01
In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .
Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles
Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.
2006-01-01
Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.
An intense lithium ion beam source using vacuum baking and discharge cleaning techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.
We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm{sup 2} with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 {degree}C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorinemore » in the 1+ and 2+ charge states was significant ({similar to}25%). The remaining 65% of the beam consisted of Li{sup +} ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times.« less
NASA Astrophysics Data System (ADS)
Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.
2017-02-01
In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.
Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.
Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard
2014-09-01
The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.
Dubrovay, Zsófia; Háda, Viktor; Béni, Zoltán; Szántay, Csaba
2013-10-01
In the course of exploring the possibilities of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC. Following isolation by preparative HPLC, a combination of 1D and 2D ultra high-field NMR and high-resolution (HR) (LC-)MS/MS studies allowed the structural identification and complete spectral characterization of several hitherto unpublished VLB/VCR-analogue impurities. Since the impurities could not be isolated in entirely pure forms and were available only in minute, mass-limited quantities, accessing the spectral information needed for their ab initio structure determination was met with various practical difficulties. Successful structure determination therefore relied heavily on the availability and use of detailed and definitive spectral data for both VLB and VCR. In particular, the utilization of detailed (1)H, (13)C, and (15)N NMR assignments as well as (1)H-(1)H, (1)H-(13)C and (1)H-(15)N spin-spin connectivities pertaining to different solvents for VLB/VCR base and sulphate salt was required. Although NMR studies on VLB base and other bisindoles were reported earlier in the literature, an NMR characterization of VLB and VCR under the above-mentioned circumstances and using ultra-high field instrumentation is either scarcely available or entirely lacking, therefore the necessary data had to be obtained in-house. Likewise, a modern tandem HR-ESI-MS/MS(n) fragmentation study of VLB and VCR has not been published yet. In the present paper we therefore give a thorough NMR and MS characterization of VLB and VCR specifically with a view to filling this void and to provide sufficiently extensive and solid reference data for the structural investigation of the aforementioned VLB/VCR impurities. Besides being scientifically relevant in its own right, the disclosed data should be useful for anyone interested in VLB/VCR-related molecules at a structural level. Copyright © 2012 Elsevier B.V. All rights reserved.
Analytical advances in pharmaceutical impurity profiling.
Holm, René; Elder, David P
2016-05-25
Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Impurity-directed transport within a finite disordered lattice
NASA Astrophysics Data System (ADS)
Magnetta, Bradley J.; Ordonez, Gonzalo; Garmon, Savannah
2018-02-01
We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder. However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions, oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger than the Anderson localization length. The electron oscillations result from the interference of hybridized states, which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different regions of a 1D disordered lattice.
Du, Fuying; Fung, Ying Sing
2010-07-01
A new dual opposite carbon-fiber micro-disk electrode detector was fabricated and tested for hyphenation with CE in the polyphenol determination. Under optimized conditions, CE-dual opposite carbon-fiber micro-disk electrode was found able to baseline separate and determine five important polyphenols (trans-resveratrol, (+)-catechin, (-)-epicatechin, quercetin and gallic acid) in red wine within 16 min with low detection limit (0.031-0.21 mg/L) and satisfactory repeatability (2.0-3.3% RSD, n=5). The opposite dual electrode enables simultaneous determination of CE eluents for current ratio measured at +0.8 and +1.0 V versus Ag/AgCl for the peak purity assessment. The capability to identify the presence of co-migrating impurities in given polyphenol peaks was demonstrated in a mixed standard solution with overlapping (+)-catechin and (-)-epicatechin peaks and in commercial red wine with unknown impurities and confirming the reliability for polyphenol quantitation in red wine with matching migration time and current ratio.
NASA Technical Reports Server (NTRS)
Kunc, Joseph A.
1988-01-01
A novel approach for calculating the populations of the excited Li-like ions C IV, N V, O VI, and Ne VIII is presented. The populations of the 2(2P), 3(2S), 3(2P), and 3(2D) electronic levels in these ions in optically thin plasmas with a broad range of electron density, N(e), and temperature, T(e), are determined from the collisional-radiative model by solving the system of rate equations for the production of excited ions; the equations are linear with respect to the excited ion populations, and the N(e) and T(e) are taken as independent variables. These populations are used to determine the ratios of line intensities for dipole allowed transitions between various energy levels. This approach can be applied to impurities other than the lithiumlike ions and is especially useful for diagnostics of systems where nonintrusive spectroscopic techniques must be used.
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
The effect of impurities and incident angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot
2015-11-01
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.
Evaporation of Water Droplets Moving Through High-Temperature Gases
NASA Astrophysics Data System (ADS)
Kuznetsov, G. V.; Strizhak, P. A.
2018-01-01
With the use of high-speed recording and diagnostic facilities, an experimental study has been made of the evaporation of droplets (of characteristic size Rm ≈ 0.05-0.035 mm) of atomized flow of water-based suspensions with typical soil impurities (silt and clay) moving in a high-temperature (about 1100 K) gaseous medium (with the example of acetone combustion products). The relative mass concentration of soil components in the suspension was varied over the range of γ = 0-1%. A strong influence of the above impurities on the main characteristic of evaporation — the relative change in the droplet radius ΔR — has been established. The influence of the initial temperature (varied over the range of Tw = 278-320 K) of the atomized suspension on the evaporation rate of the latter has been determined. It has been shown that the values of integral characteristics of the process of evaporation of suspensions with soil impurities can be much (2-3 times) higher than for water without these components.
Kerr effect from diffractive skew scattering in chiral px +/- ipy superconductors
NASA Astrophysics Data System (ADS)
König, Elio; Levchenko, Alex
We calculate the temperature dependent anomalous ac Hall conductance σH (Ω , T) for a two-dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4. We concentrate on a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors. This work was financially supported in part by NSF Grants No. DMR-1606517 and ECCS-1560732 and at U of Wisconsin by the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.
The effects of impurities and incidence angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).
Apparatus and method for measuring and imaging surface resistance
Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.
1993-08-24
Apparatus and method for determining and imaging superconductor surface resistance. The apparatus comprises modified Gaussian confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor.
Influence of impurities on the high temperature conductivity of SrTiO3
NASA Astrophysics Data System (ADS)
Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.
2018-01-01
In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.
RAPID COMMUNICATION: Diffusion thermopower in graphene
NASA Astrophysics Data System (ADS)
Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.
2010-09-01
The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.
Particle-size reduction of Si3N4 powder with Si3N4 milling hardware
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Freedman, M. R.; Kiser, J. D.
1986-01-01
The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.
Impurities in silicon solar cells
NASA Technical Reports Server (NTRS)
Hopkins, R. H.
1985-01-01
Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.
Gaseous trace impurity analyzer and method
Edwards, Jr., David; Schneider, William
1980-01-01
Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.
Impurity bound states in mesoscopic topological superconducting loops
NASA Astrophysics Data System (ADS)
Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping
2018-06-01
We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.
The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study
NASA Technical Reports Server (NTRS)
Schall, Constance A.
1998-01-01
Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.
Incorporation of impurity to a tetragonal lysozyme crystal
NASA Astrophysics Data System (ADS)
Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo
1999-01-01
Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.
2012-01-01
Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations. PMID:23095253
Hanke, Alexander T; Tsintavi, Eleni; Ramirez Vazquez, Maria Del Pilar; van der Wielen, Luuk A M; Verhaert, Peter D E M; Eppink, Michel H M; van de Sandt, Emile J A X; Ottens, Marcel
2016-09-01
Knowledge-based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three-dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high-resolution reference chromatogram allows to assign the determined parameters to pseudo-components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high-throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283-1291, 2016. © 2016 American Institute of Chemical Engineers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAP by weight or less. An impurity does not serve a useful purpose in the production or use of the... (ppmv) or greater as methane that is determined using the test methods in Method 21, appendix A of part...
Quantum interference on electron scattering in graphene by carbon impurities in underlying h -BN
NASA Astrophysics Data System (ADS)
Kaneko, Tomoaki; Koshino, Mikito; Saito, Riichiro
2017-03-01
Electronic structures and transport properties of graphene on h -BN with carbon impurities are investigated by first-principles calculation and the tight-binding model. We show that the coupling between the impurity level and the graphene's Dirac cone sensitively depends on the impurity position, and in particular, it nearly vanishes when the impurity is located right below the center of the six membered ring of graphene. The Bloch phase factor at the Brillouin zone edge plays a decisive role in the cancellation of the hopping integrals. The impurity position dependence on the electronic structures of graphene on h -BN is investigated by the first-principles calculation, and its qualitative feature is well explained by a tight-binding model with graphene and a single impurity site. We also propose a simple one-dimensional chain-impurity model to analytically describe the role of the quantum interference in the position-dependent coupling.
NASA Astrophysics Data System (ADS)
Merker, L.; Costi, T. A.
2012-08-01
We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.
Behavior of some singly ionized, heavy-ion impurities during compression in a theta-pinch plasma
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1975-01-01
The introduction of a small percentage of an impurity gas containing a desired element into a theta-pinch plasma is a standard procedure used to investigate the spectra and atomic processes of the element. This procedure assumes that the mixing ratio of impurity-to-fill gases remains constant during the collapse and heating phase. Spectroscopic investigations of the constant-mixing-ratio assumption for a 2% neon and argon impurity verifies the assumption only for the neon impurity. However, for the 2% argon impurity, only 20 to 25% of the argon is in the high-temperature compressed plasma. It is concluded that the constant-mixing-ratio assumption is not applicable to the argon impurity.
NASA Astrophysics Data System (ADS)
Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku
2013-05-01
The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.
Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films
NASA Astrophysics Data System (ADS)
Whitacre, Jay Fredric
There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base pressure of 1 x 10--6 Torr had grains less than 10 nm in diameter and significant amorphous content Calculated radial distribution functions show a significant increase in average inter-atomic spacing in films grown using higher base pressures and Ar pressures. The amorphous content in the films was determined via comparison between ideal crystalline diffraction patterns and actual data. Thinner films grown at higher Ar pressures had relatively greater amorphous content. Real-time process control using the in-situ diffractometer was also demonstrated. The effects observed are discussed in the context of previous theories and experiments that document room-temperature sputter film growth. The changes in film microstructure observed were impurity mediated. Specifically, oxygen desorbed from the chamber walls during growth were incorporated into the film and subsequently limited grain development and texturing. A second phase consisting of amorphous Ta2O5 formed between the grain nuclei. Adatom kinetics played a role in determining surface morphology: at low Ar pressures (2 mTorr) significant adatom kinetic energies served to flattened the film surface, though impurity levels dominated grain development even in these conditions.
Effects of Convective Solute and Impurity Transport in Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz
1998-01-01
High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.
NASA Astrophysics Data System (ADS)
Bender, G.; Angelo, M.; Bethune, K.; Dorn, S.; Thampan, T.; Rocheleau, R.
An understanding of the potentially serious performance degradation effects that trace level contaminants can cause in proton exchange membrane fuel cells (PEMFCs) is crucial for the successful deployment of PEMFC for commercial applications. An experimental and analytic methodology is described that employs gas chromatography (GC) to accurately determine the concentration of impurity species in the fuel and oxidant streams of a PEMFC. In this paper we further show that the accurate determination of the contaminant concentrations at the anode and cathode inlets and outlets provides a means to quantify reactions of contaminants within the cell and to identify diffusive mass transport across the membrane. High data accuracy down to sub-ppm contaminant levels is required and was achieved by addressing several challenges pertaining to experimental setup and data analysis which are both discussed in detail. The application of the methodology is demonstrated using carbon monoxide and toluene which were injected into the cell at concentrations between 1 and 10 ppm and 20 and 60 ppm, respectively. Both impurities were observed to react in the fuel cell: carbon monoxide to carbon dioxide, and toluene to methylcyclohexane. For both contaminants closure of the molar flow balances to within 3% was achieved even at the low contaminant concentrations. This allowed the extent of both reactions at the applied operating conditions to be quantified. The presented methodology is shown to be a valuable tool for investigating the effects and reactions of trace contaminants in fuel cells and for providing critical insights into the mechanisms responsible for the associated performance degradation.
Material science and solid state physics studies with positive muon spin precession. [fe(a1) alloys
NASA Technical Reports Server (NTRS)
Stronach, C. E.
1979-01-01
The hyperfine field on the muon, B sub hf, at interstitial sites in dilute Fe(Al) alloys was measured for four different concentrations of Al and as a function of temperature by the muon spin rotation method. The magnitude of B sub hf, which is negative, decreases at rates ranging from 0.09 + or - 0.03% per at.% Al at 200 K to an asymptotic limit of 0.35 + or - far above 440 K. This behavior shows that sites near the Al impurity are weakly repulsive to the muon, with an interaction potential of 13 + or - 3 meV. In order to fit the temperature dependence of the hyperfine field, it is necessary to hypothesize the existence of a small concentration of unidentified defects, possibly dislocations, which are attractive to the muon. Although the Al impurity acts as a non-magnetic hole in the Fe lattice, the observed decrease in B sub hf is only 35% of the decrease in the bulk magnetization. It is concluded that B sub hf is determined mainly by the enhanced screening of conduction electrons in Fe and Fe(Al). Since the influence of the Al impurity on the neighboring Fe monents is very small, most of the change in B sub hf is therefore attributed to the increase in conduction electron polarization of the Al impurity.
Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M.J.; Finkenthal, M.; Soukhanovskii, V.
In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less
Prompt triggering of edge localized modes through lithium granule injection on EAST
NASA Astrophysics Data System (ADS)
Lunsford, Robert; Sun, Z.; Hu, J. S.; Xu, W.; Zuo, G. Z.; Gong, X. Z.; Wan, B. N.; Li, J. G.; Huang, M.; Maingi, R.; Diallo, A.; Tritz, K.; the EAST Team
2017-10-01
We report successful triggering of edge localized mode (ELMs) in EAST with Lithium (Li) micropellets, and the observed dependence of ELM triggering efficiency on granule size. ELM control is essential for successful ITER operation throughout the entire campaign, relying on magnetic perturbations for ELM suppression and ELM frequency enhancement via pellet injection. To separate the task of fueling from ELM pacing, we initiate the prompt generation of ELMs via impurity granule injection. Lithium granules ranging in size from 200 - 1000 microns are mechanically injected into upper-single null EAST long pulse H-mode discharges. The injections are monitored for their effect on high Z impurity accumulation and to assess the pressure perturbation required for reliable ELM triggering. We have determined that granules of diameter larger than 600 microns (corresponding to 5.2 x 1018 Li atoms) are successful at triggering ELMs more than 90% of the time. The triggering efficiency drops precipitously to less than 40% as the granule size is reduced to 400 microns (1.5 x 1018 Li atoms), indicating a triggering threshold has been crossed. Using this information an optimal impurity granule size which will regularly trigger a prompt ELM in these EAST discharges is determined. Coupling these results with alternate discharge scenarios on EAST and similar experiments performed on DIII-D provides the possibility of extrapolation to future devices.
Neutron activation analysis traces copper artifacts to geographical point of origin
NASA Technical Reports Server (NTRS)
Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.
1967-01-01
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.
Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.
Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart
2011-02-28
Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.
Impurity-induced moments in underdoped cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, G.; Kilian, R.; Krivenko, S.
1997-11-01
We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potentialmore » approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Yarmohammadi, Mohsen
2016-12-01
Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraga, Carlos G.; Sego, Landon H.; Hoggard, Jamin C.
Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA’s impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2-D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products ofmore » the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA’s useable impurity profile, (2) low selectivity among a CTA’s known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted towards higher volatility impurities are more likely to be altered by volatilization following CTA exposure.« less
Fraga, Carlos G; Sego, Landon H; Hoggard, Jamin C; Acosta, Gabriel A Pérez; Viglino, Emilie A; Wahl, Jon H; Synovec, Robert E
2012-12-28
Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA's impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products of the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA's useable impurity profile, (2) low selectivity among a CTA's known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted toward higher volatility impurities are more likely to be altered by volatilization following CTA exposure. Copyright © 2012 Elsevier B.V. All rights reserved.
Classical confinement and outward convection of impurity ions in the MST RFP
NASA Astrophysics Data System (ADS)
Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Caspary, K. J.; Magee, R. M.; Brower, D. L.; Chapman, B. E.; Craig, D.; Ding, W. X.; Eilerman, S.; Fiksel, G.; Lin, L.; Nornberg, M.; Parke, E.; Reusch, J. A.; Sarff, J. S.
2012-05-01
Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.
Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal
NASA Astrophysics Data System (ADS)
Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.
2007-12-01
The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.
Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.
Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro
2013-10-01
Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of positive ion implantation into antireflection coating of silicon solar cells
NASA Technical Reports Server (NTRS)
Middleton, A. E.; Harpster, J. W.; Collis, W. J.; Kim, C. K.
1971-01-01
The state of technological development of Si solar cells for highest obtained efficiency and radiation resistance is summarized. The various theoretical analyses of Si solar cells are reviewed. It is shown that factors controlling blue response are carrier diffusion length, surface recombination, impurity concentration profile in surface region, high level of surface impurity concentration (degeneracy), reflection coefficient of oxide, and absorption coefficient of Si. The theory of ion implantation of charge into the oxide antireflection coating is developed and side effects are discussed. The experimental investigations were directed at determining whether the blue response of Si solar cells could be improved by phosphorus ion charges introduced into the oxide antireflection coating.
Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan
2009-10-01
Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.
Quantitative analysis of PMR-15 polyimide resin by HPLC
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Lauver, Richard W.
1987-01-01
The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.
NASA Astrophysics Data System (ADS)
Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.
2012-12-01
First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.
Power Radiated from ITER and CIT by Impurities
DOE R&D Accomplishments Database
Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.
1990-07-01
The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi
2016-07-01
The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.
NASA Astrophysics Data System (ADS)
Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.
1997-03-01
We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.
NASA Astrophysics Data System (ADS)
Jefri; Puspitasari, A. D.; Talpaneni, J. S. R.; Tjandrawinata, R. R.
2018-04-01
Trimetazidine dihydrochloride is an anti-ischemic metabolic agent which is used as drug for angina pectoris treatment. The drug substance monograph is available in European Pharmacopoeia and British Pharmacopoeia, while the drug product monograph is not available in any of the pharmacopoeias. During development of trimetazidine dihydrochloride tablet formulation, we found increase of an unspecified impurity during preliminary stability study. The unspecified impurity was identified by high performance liquid chromatography coupled with mass spectrometry (LC-MS) and the molecular weight obtained was matching with the molecular weight of N-formyl trimetazidine (m/z 295). Further experiments were performed to confirm the suspected result by injecting the impurity standard and spiking formic acid into the drug substance. The retention time of N-formyl trimetazidine was similar to the unspecified impurity in drug product. Even spiking of formic acid into drug substance showed that the suspected impurity increased with increasing concentration of formic acid. The proposed mechanism of impurity formation is via amidation of piperazine moiety of trimetazidine by formic acid which present as residual solvent in tablet binder used in the formulation. Subsequently, the impurity in our product was controlled by choosing the primary packaging which could minimize the formation of impurity.
Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST
NASA Astrophysics Data System (ADS)
Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan
2017-10-01
Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.
Device for sampling and enriching impurities in hydrogen comprising hydrogen-permeable membrane
Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon D. H.; Kumar, Romesh
2017-01-31
Provided herein are methods and devices to enrich trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentration of impurities so as to allow the detection of the impurities using commonly-available detection methods.
Liquid sodium dip seal maintenance system
Briggs, Richard L.; Meacham, Sterling A.
1980-01-01
A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.
Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride
NASA Astrophysics Data System (ADS)
Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.
1996-03-01
LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.
A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, S. H., E-mail: shko@nfri.re.kr; Jhang, Hogun; Singh, R.
2015-08-15
We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions ismore » shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.« less
NASA Technical Reports Server (NTRS)
Stecura, Stephan
1994-01-01
The purpose of this study was to determine the experimental parameters under which commercially pure YBa2Cu3O7 (1237) powders would be converted into a single phase (1237) powder only. Carbon (present as carbonate) and impurity phase concentrations in the (1237) powder are very dependent upon the firing temperatures, heat-treating temperatures and times, and atmosphere, while the moisture concentration is not. YBa2Cu3O7 powder with about 0.03 wt/%, carbon, 0.03 wt% moisture, and low impurity phase concentrations was obtained. Moisture and carbon concentrations in heat-treated powders did not increase significantly after 48 and 72 h of exposure to air, respectively, and after 144 h of exposure they were less than 0.26 and 0.08 wt/%, respectively. The (1237) powder first reacts with moisture and then hydroxide reacts with CO2. Firing the as received powders in air led to the decomposition of the superconducting (1237) phase.
NASA Astrophysics Data System (ADS)
O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.
2017-02-01
Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.
Goncharov, P R; Ozaki, T; Sudo, S; Tamura, N; Tolstikhina, I Yu; Sergeev, V Yu
2008-10-01
Measurements of energy- and time-resolved neutral hydrogen and helium fluxes from an impurity pellet ablation cloud, referred to as pellet charge exchange or PCX experiments, can be used to study local fast ion energy distributions in fusion plasmas. The estimation of the local distribution function f(i)(E) of fast ions entering the cloud requires knowledge of both the fraction F(0)(E) of incident ions exiting the cloud as neutral atoms and the attenuation factor A(E,rho) describing the loss of fast atoms in the plasma. Determination of A(E,rho), in turn, requires the total stopping cross section sigma(loss) of neutral atoms in the plasma and the Jacobian reflecting the measurement geometry and the magnetic surface shape. The obtained functions F(0)(E) and A(E,rho) enter multiplicatively into the probability density for escaping neutral particle kinetic energy. A general calculation scheme has been developed and realized as a FORTRAN code, which is to be applied for the calculation of f(i)(E) from PCX experimental results obtained with low-Z impurity pellets.
Toske, Steven G; McConnell, Jennifer B; Brown, Jaclyn L; Tuten, Jennifer M; Miller, Erin E; Phillips, Monica Z; Vazquez, Etienne R; Lurie, Ira S; Hays, Patrick A; Guest, Elizabeth M
2017-03-01
A trace processing impurity found in certain methamphetamine exhibits was isolated and identified as trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine hydrochloride (1). It was determined that this impurity was produced via reductive amination of trans-4-methyl-5-phenyl-4-penten-2-one (4), which was one of a cluster of related ketones generated during the synthesis of 1-phenyl-2-propanone (P2P) from phenylacetic acid and lead (II) acetate. This two-step sequence resulted in methamphetamine containing elevated levels of 1. In contrast, methamphetamine produced from P2P made by other methods produced insignificant (ultra-trace or undetectable) amounts of 1. These results confirm that 1 is a synthetic marker compound for the phenylacetic acid and lead (II) acetate method. Analytical data for 1 and 4, and a postulated mechanism for the production of 4, are presented. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Wang, Yan-peng; Gong, Qi; Yu, Sheng-rong; Liu, You-yan
2012-04-01
A method for detecting trace impurities in high concentration matrix by ICP-AES based on partial least squares (PLS) was established. The research showed that PLS could effectively correct the interference caused by high level of matrix concentration error and could withstand higher concentrations of matrix than multicomponent spectral fitting (MSF). When the mass ratios of matrix to impurities were from 1 000 : 1 to 20 000 : 1, the recoveries of standard addition were between 95% and 105% by PLS. For the system in which interference effect has nonlinear correlation with the matrix concentrations, the prediction accuracy of normal PLS method was poor, but it can be improved greatly by using LIN-PPLS, which was based on matrix transformation of sample concentration. The contents of Co, Pb and Ga in stream sediment (GBW07312) were detected by MSF, PLS and LIN-PPLS respectively. The results showed that the prediction accuracy of LIN-PPLS was better than PLS, and the prediction accuracy of PLS was better than MSF.
NASA Astrophysics Data System (ADS)
Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.
2018-04-01
Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram
2017-02-01
The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.
Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography
NASA Astrophysics Data System (ADS)
Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé
2014-08-01
Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.
19 CFR 151.46 - Allowance for detectable moisture and impurities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...
19 CFR 151.46 - Allowance for detectable moisture and impurities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 2 2013-04-01 2013-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...
19 CFR 151.46 - Allowance for detectable moisture and impurities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...
19 CFR 151.46 - Allowance for detectable moisture and impurities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...
19 CFR 151.46 - Allowance for detectable moisture and impurities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...
NASA Astrophysics Data System (ADS)
Ohsugi, S.; Tokunaga, Y.; Ishida, K.; Kitaoka, Y.; Azuma, M.; Fujishiro, Y.; Takano, M.
1999-08-01
We report characteristics of impurity-induced staggered polarization (IISP) and antiferromagnetic long-range order (AF-LRO) in the gapped spin-1/2 Heisenberg two-leg ladder compound SrCu2O3 (Sr123). We have carried out comprehensive NMR and NQR investigations on three impurity-doped systems, Sr(Cu1-xMx)2O3 (M=Zn, Ni) with x<=0.02 and Sr1-xLaxCu2O3 with x<=0.03. Either the Zn or Ni impurity that is nonmagnetic depletes a single spin on the ladders, whereas the La impurity is believed to dope electrons onto the ladders. The width of the Lorentzian Cu NMR spectrum increases with the increase in impurity content x and follows the Curie-like temperature (T) dependence as W/T. The W's for the Zn- and Ni-doped samples (M doping) are larger than for the La-doped one (La doping). The NMR spectra were fit by assuming that unpaired spin S0=1/2 induced next to impurity on the rung for the Zn and Ni doping (S0=1/4 for the La doping) creates the staggered spin polarization along the leg, which decreases exponentially from S0. In Sr123, an instantaneous spin-correlation length ξ0 was theoretically predicted as ξ0/a~3-8, where a is the lattice spacing between the Cu sites along the leg. However, a correlation length ξs/a estimated from the IISP along the leg was found to be much longer than ξ0/a in x=0.001 and 0.005. The notable result is that ξs/a that was found to be T independent is scaled to mean distances DAV=1/(2x) between the Zn and Ni impurities and DAV=1/x between the La impurities. When DAV=500 for x=0.001 (Zn doping), ξs/a~50 is estimated. The significantly broadened NQR spectrum has provided unambiguous evidence for the AF-LRO in the Zn and Ni doping (x=0.01 and 0.02). Rather uniform AF moments at the middle Cu sites between the impurities are estimated to be about 0.04μB at 1.4 K along the a axis. By assuming that exponential decay constants of AF moments are equivalent to ξs/a's for the IISP, the size of an AF moment next to the impurity is deduced as SAF~1/4. We propose that these exponential distributions of IISP and AF moments along the two-leg suggest that an interladder interaction is in a weakly coupled quasi-one-dimensional (WC-Q1D) regime. The formula of TN=J0exp(-DAV/(ξs/a)) based on the WC-Q1D model explains TN(exp)=3 K (x=0.01) and 5.8 K (x=0.02) quantitatively and predicts to be as small as TN=0.09 K for x=0.001 using J0=2000 K. On the other hand, there is no evidence of AF-LRO for the La doping (x=0.02 and 0.03) down to 1.4 K, nevertheless their ξs/a's are almost equivalent to those in the Zn and Ni doping (x=0.01 and 0.02). We remark that the Q1D-IISP is dramatically enhanced by the interladder interaction even though so weak, once the impurity breaks up the quantum coherence in the short-range resonating valence bond (RVB) state with the gap. On the one hand, we propose that TN is determined by a strength of the interladder interaction and a size of S0.
Ricinoleic acid as a marker for ergot impurities in rye and rye products.
Franzmann, Carolin; Wächter, Johannes; Dittmer, Natascha; Humpf, Hans-Ulrich
2010-04-14
Ergot alkaloid and ricinoleic acid contents of 63 ergot sclerotia samples from rye throughout Germany of the harvest years 2006-2009 were determined. Alkaloid contents were analyzed by means of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) and ricinoleic acid contents by means of gas chromatography with flame ionization detection (GC-FID). Ergot alkaloid amounts ranged from 0.01 to 0.2 g/100 g of sclerotia with an average amount of 0.08 g/100 g. Ergotamine and ergocristine were identified as lead alkaloids representing 57% (w/w) of the total alkaloid content. The average ricinoleic acid amount in the ergot sclerotia was 10.3 g/100 g. Because of the low variation of ricinoleic acid content in the ergot sclerotia, a new method for the determination of ricinoleic acid in rye products as a marker for ergot contaminations was developed. This method allows the determination of ergot impurities as low as 0.01% (w/w). Furthermore, 29 rye products (flours, bread mix, bread) were investigated for their ricinoleic acid and ergot alkaloid contents.
Phase transition in one Josephson junction with a side-coupled magnetic impurity
NASA Astrophysics Data System (ADS)
Zhi, Li-Ming; Wang, Xiao-Qi; Jiang, Cui; Yi, Guang-Yu; Gong, Wei-Jiang
2018-04-01
This work focuses on one Josephson junction with a side-coupled magnetic impurity. And then, the Josephson phase transition is theoretically investigated, with the help of the exact diagonalization approach. It is found that even in the absence of intradot Coulomb interaction, the magnetic impurity can efficiently induce the phenomenon of Josephson phase transition, which is tightly related to the spin correlation manners (i.e., ferromagnetic or antiferromagnetic) between the impurity and the junction. Moreover, the impurity plays different roles when it couples to the dot and superconductor, respectively. This work can be helpful in describing the influence of one magnetic impurity on the supercurrent through the Josephson junction.
The effect of secondary impurities on solar cell performance
NASA Technical Reports Server (NTRS)
Hill, D. E.; Gutsche, H. W.; Wang, M. S.; Gupta, K. P.; Tucker, W. F.; Dowdy, J. D.; Crepin, R. J.
1976-01-01
Czochralski and float zone sigle crystals of silicon were doped with the primary impurities B or P so that a resistivity of 0.5 ohm cm resulted, and in addition doped with certain secondary impurities including Al, C, Cr, Cu, Fe, Mg, Mn, Na, Ni, O, Ti, V, and Zr. The actual presence of these impurities was confirmed by analysis of the crystals. Solar cell performance was evaluated and found to be degraded most significantly by Ti, V, and Zr and to some extent by most of the secondary impurities considered. These results are of significance to the low cost silicon program, since any such process would have to yield at least tolerable levels of these impurities.
Volatile Impurities in the Plutonium Immobilization Ceramic Wasteform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.D.
1999-10-15
Approximately 18 of the 50 metric tons of plutonium identified for disposition contain significant quantities of impurities. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The impurities associated with the stored plutonium have been identified (CaCl2, MgF2, Pb, etc.). For this study, only volatile species are investigated. The impurities are added individually. Cerium is used as the surrogate for plutonium. Three compositions, including the baseline composition, were used to verify the ability of the ceramic wasteform to accommodate impurities. The criteria for evaluation of the effect of the impurities were the apparent porosity andmore » phase assemblage of sintered pellets.« less
NASA Astrophysics Data System (ADS)
Rai, Buddhi; McGurn, Arthur R.
2015-02-01
Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies. It extends the two guided mode treatment by McGurn [Organ. Electron. 8, 227 (2007), 10.1016/j.orgel.2006.06.008] which was limited to a special case of one of the photonic crystal systems considered here.
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Verma, Sunil; Singh, Yeshpal; Bartwal, K. S.; Tiwari, M. K.; Lodha, G. S.; Bhagavannarayana, G.
2015-08-01
KDP crystal grown using flat-top technique has been characterized using X-ray and optical techniques with the aim of correlating the defects structure and impurity concentration in the crystal with its optical properties. Crystallographic defects were investigated using X-ray topography revealing linear and arc like chains of dislocations and to conclude that defects do not originate from the flat-top part of the crystal. Etching was performed to quantify dislocation defects density. The crystalline perfection of the crystal was found to be high as the FWHM of the rocking curves measured at several locations was consistently low 6-9 arc s. The concentration of Fe metallic impurity quantified using X-ray fluorescence technique was approximately 5 times lower in the flat-top part which falls in pyramidal growth sector as compared to the region near to the seed which lies in prismatic sector. The spectrophotometric characterization for plates cut normal to different crystallographic directions in the flat-top potassium dihydrogen phosphate (FT-KDP) crystal was performed to understand the influence of metallic impurity distribution and growth sectors on the optical transmittance. The transmittance of the FT-KDP crystal at 1064 nm and its higher harmonics (2nd, 3rd, 4th and 5th) was determined from the measured spectra and the lower transmission in the UV region was attributed to increased absorption by Fe metallic impurity at these wavelengths. The results are in agreement with the results obtained using X-ray fluorescence and X-ray topography. Birefringence and Mach-Zehnder interferometry show that except for the region near to the seed crystal the optical homogeneity of the entire crystal was good. The laser-induced damage threshold (LDT) values are in the range 2.4-3.9 GW/cm2. The LDT of the plate taken from the flat-top region is higher than that from the bottom of the crystal, indicating that the flat-top technique has good optical quality and is comparable to those reported using rapid growth technique. The results indicate that the structural defects, crystalline quality and impurity concentration have a correlation with the optical properties of the FT-KDP crystal.
Nattrass, C.; Horwell, Claire J.; Damby, David; Brown, David; Stone, Vicki
2017-01-01
BackgroundExposure to crystalline silica (SiO2), in the form of quartz, tridymite or cristobalite, can cause respiratory diseases, such as silicosis. However, the observed toxicity and pathogenicity of crystalline silica is highly variable. This has been attributed to a number of inherent and external factors, including the presence of impurities. In cristobalite-rich dusts, substitutions of aluminium (Al) for silicon (Si) in the cristobalite structure, and impurities occluding the silica surface, have been hypothesised to decrease its toxicity. This hypothesis is tested here through the characterisation and in vitro toxicological study of synthesised cristobalite with incremental amounts of Al and sodium (Na) dopants. MethodsSamples of synthetic cristobalite with incremental amounts of Al and Na impurities, and tridymite, were produced through heating of a silica sol-gel. Samples were characterised for mineralogy, cristobalite purity and abundance, particle size, surface area and surface charge. In vitro assays assessed the ability of the samples to induce cytotoxicity and TNF-α production in J774 macrophages, and haemolysis of red blood cells. ResultsAl-only doped or Al+Na co-doped cristobalite contained between 1 and 4 oxide wt% Al and Na within its structure. Co-doped samples also contained Al- and Na-rich phases, such as albite. Doping reduced cytotoxicity to J774 macrophages and haemolytic capacity compared to non-doped samples. Al-only doping was more effective at decreasing cristobalite reactivity than Al+Na co-doping. The reduction in the reactivity of cristobalite is attributed to both structural impurities and a lower abundance of crystalline silica in doped samples. Neither non-doped nor doped crystalline silica induced production of the pro-inflammatory cytokine TNF-α in J774 macrophages. ConclusionsImpurities can reduce the toxic potential of cristobalite and may help explain the low reactivity of some cristobalite-rich dusts. Whilst further work is required to determine if these effects translate to altered pathogenesis, the results have potential implications for the regulation of crystalline silica exposures.
Genotoxicity of 2-bromo-3′-chloropropiophenone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fanxue; Yan, Jian; Li, Yan
2013-07-15
Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxicmore » impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of mutations, micronuclei and hypodiploids. • It induced ROS and addition of NAC blocked the genotoxicity of BCP. • Its genotoxic action is possibly mediated via generation of reactive metabolites.« less
NASA Astrophysics Data System (ADS)
Rizzolo, Michael
As copper interconnects have scaled to ever smaller dimensions on semiconductor devices, the microstructure has become increasingly detrimental for performance and reliability. Small grains persist in interconnects despite annealing at high temperatures, leading to higher line resistance and more frequent electromigration-induced failures. Conventionally, it was believed that impurities from the electrodeposition pinned grain growth, but limitations in analytical techniques meant the effect was inferred rather than observed. Recent advances in analytical techniques, however, have enabled this work to quantify impurity content, location, and diffusion in relation to microstructural changes in electroplated copper. Surface segregation of impurities during the initial burst of grain growth was investigated. After no surface segregation was observed, a microfluidic plating cell was constructed to plate multilayer films with regions of intentionally high and low impurity concentrations to determine if grain growth could be pinned by the presence of impurities; it was not. An alternate mechanism for grain boundary pinning based on the texture of the seed layer is proposed, supported by time-resolved transmission electron microscopy and transmission electron backscatter diffraction data. The suggested model posits that the seed in narrow features has no preferred orientation, which results in rapid nucleation of subsurface grains in trench regions prior to recrystallization from the overburden down. These rapidly growing grains are able to block off several trenches from the larger overburden grains, inhibiting grain growth in narrow features. With this knowledge in hand, metallic capping layers were employed to address the problematic microstructure in 70nm lines. The capping layers (chromium, nickel, zinc, and tin) were plated on the copper overburden prior to annealing to manipulate the stress gradient and microstructural development during annealing. It appeared that regardless of as-plated stress, nickel capping altered the recrystallized texture of the copper over patterned features. The nickel capping also caused a 2x increase in the number of advantageous 'bamboo' grains that span the entire trench, which effectively block electromigration pathways. These data provides a more fundamental understanding of manipulating the microstructure in copper interconnects using pre-anneal capping layers, and demonstrates a strategy to improve the microstructure beyond the capabilities of simple annealing.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less
Electrical conductivity enhancement by boron-doping in diamond using first principle calculations
NASA Astrophysics Data System (ADS)
Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan
2015-04-01
Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
NASA Astrophysics Data System (ADS)
Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.
2018-01-01
Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.
1982-01-01
The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.
Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator
NASA Astrophysics Data System (ADS)
Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.
2017-10-01
Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.
Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.
2000-01-01
While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.
19 CFR 158.13 - Allowance for moisture and impurities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and impurities...
19 CFR 158.13 - Allowance for moisture and impurities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and impurities...
19 CFR 158.13 - Allowance for moisture and impurities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and impurities...
19 CFR 158.13 - Allowance for moisture and impurities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and impurities...
19 CFR 158.13 - Allowance for moisture and impurities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 2 2013-04-01 2013-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and impurities...
Process of electrolysis and fractional crystallization for aluminum purification
Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.
1983-10-25
A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.
Process of electrolysis and fractional crystallization for aluminum purification
Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman
1983-10-25
A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.
Effect of Feedstock and Catalyst Impurities on the Methanol‐to‐Olefin Reaction over H‐SAPO‐34
Vogt, Charlotte; Ruiz‐Martínez, Javier
2016-01-01
Abstract Operando UV/Vis spectroscopy with on‐line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H‐SAPO‐34 as a methanol‐to‐olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as “seeds” for coke formation only. PMID:28163792
NASA Astrophysics Data System (ADS)
Ardila, L. A. Peña; Giorgini, S.
2015-09-01
We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.
Collision of impurities with Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.
2018-04-01
Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.
NASA Astrophysics Data System (ADS)
Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo
2017-04-01
The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.
Ragab, Marwa A A; El-Kimary, Eman I
2017-05-12
A stereoselective high performance liquid chromatographic method with diode array detection (HPLC-DAD) was introduced for S-naproxen and esomeprazole determination in tablets. The separation was achieved on a Kromasil Cellucoat chiral column using a mobile phase consisting of hexane: isopropanol: trifluoroacetic acid (TFA) (90:9.9:0.1 v/v/v). The proposed system was found to be suitable for the enantioseparation of naproxen and omeprazole biologically active isomers. After optimization of the chromatographic conditions, resolution values of 3.84 and 2.17 could be obtained for naproxen and omeprazole isomers, respectively. The method was fully validated for the determination of S-isomers of each drug in their dosage form. Also, the enentiomeric purity was determined in commercial tablet containing S-naproxen and esomeprazole. The enantiomeric purity was calculated for each drug and the chiral impurities (R-isomers) could be determined at 1% level. The method was validated and good results with respect to linearity, precision, accuracy, selectivity and robustness were obtained. The limits of detection (LOD) and quantification (LOQ) were 2.00, 6.50 and 0.10, 0.35μgmL -1 for S-naproxen and esomeprazole, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetic field effects on the local electronic structure near a single impurity in Graphene
NASA Astrophysics Data System (ADS)
Yang, Ling; Zhu, Jian-Xin; Tsai, Shan-Wen
2011-03-01
Impurities in graphene can have a significant effect on the local electronic structure of graphene when the Fermi level is near the Dirac point. We study the problem of an isolated impurity in a single layer graphene in the presence of a perpendicular magnetic field. We use a linearization approximation for the energy dispersion and employ a T-matrix formalism to calculate the Green's function. We investigate the effect of an external magnetic field on the Friedel oscillations and impurity-induced resonant states. Different types of impurities, such as vacancies, substitutional impurities, and adatoms, are also considered. LY and SWT acknowledge financial support from NSF(DMR-0847801)and from the UC Lab Fees Research Program.
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.
Mateo, David; Eloranta, Jussi; Williams, Gary A
2015-02-14
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He
NASA Astrophysics Data System (ADS)
Mateo, David; Eloranta, Jussi; Williams, Gary A.
2015-02-01
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 + , He* (3S), He2∗ (3Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*.
Poloidal velocity of impurity ions in neoclassical theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S. K.; Chan, V. S.; Solomon, W. M.
A formula for the poloidal velocity of impurity ions in a two-species plasma is derived from neoclassical theory in the banana regime, with corrections from the boundary layer separating the trapped and transiting ions. The formula is applicable to plasmas with toroidal rotations that can approach the thermal speeds of the ions. Using the formula to determine the poloidal velocity of C{sup +6} ions in a recently reported experiment [W. M. Solomon et al., Phys. Plasmas 13, 056116 (2006)] leads to agreement in the direction of the central region when it is otherwise from theories without strong toroidal rotations. Comparisonsmore » among these theories are made, demonstrating the degree of uncertainty of theoretical predictions.« less
Investigation of new semiinsulating behavior of III-V compounds
NASA Technical Reports Server (NTRS)
Lagowski, Jacek
1990-01-01
The investigation of defect interactions and properties related to semiinsulating behavior of III-V semiconductors resulted in about twenty original publications, six doctoral thesis, one masters thesis and numerous conference presentations. The studies of new compensation mechanisms involving transition metal impurities have defined direct effects associated with deep donor/acceptor levels acting as compensating centers. Electrical and optical properties of vanadium and titanium levels were determined in GaAs, InP and also in ternary compounds InGaAs. The experimental data provided basis for the verification of chemical trends and the VRBE method. They also defined compositional range for III-V mixed crystals whereby semiinsulating behavior can be achieved using transition elements deep levels and a suitable codoping with shallow donor/acceptor impurities.
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Putnam, D. F.
1977-01-01
The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.
Malavaki, Christina J; Asimakopoulou, Athanasia P; Lamari, Fotini N; Theocharis, Achilleas D; Tzanakakis, George N; Karamanos, Nikos K
2008-03-01
Exogenous administration of chondroitin sulfate (CS) is widely practiced for the treatment of osteoarthritis, although the efficacy of this treatment has not been completely established by clinical studies. A reason for the inconsistency of the results may be the quality of the CS preparations, which are commercially available as dietary supplements. In this article, we describe the development of a new method of capillary electrophoresis (CE) for the quantification of CS concentrations, screening for other glycosaminoglycan or DNA impurities and determination of hyaluronan impurities in CS raw materials, tablets, hard capsules, and liquid formulations. Analysis is performed within 12 min in bare fused silica capillaries using reversed polarity and an operating phosphate buffer of low pH. The method has high sensitivity (lower limit of quantitation [LLOQ] values of 30.0 microg/ml for CS and 5.0 microg/ml for hyaluronan), high precision, and accuracy. Analysis of 11 commercially available products showed the presence of hyaluronan impurities in most of them (up to 1.5%). CE analysis of the samples after treatment with chondroitinase ABC and ACII, which depolymerize the chains to unsaturated disaccharides, with a previously described method (Karamanos et al., J. Chromatogr. A 696 (1995) 295-305) confirmed the results of hyaluronan determination and showed that the structural characteristics (i.e., disaccharide composition) of CS are very different, showing the different species or tissue origin and possibly affecting the therapeutic outcome.
Physics Of Variable-Polarity Plasma Arc Welding
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.; Nunes, Arthur C., Jr.
1990-01-01
Report describes experimental study of some of the physical and chemical effects that occur during variable-polarity plasma arc (VPPA) keyhole welding of 2219 aluminum alloy. Comprised three major programs: (1) determination of effects of chemical additions (i.e., impurities) on structure and shape of bead and keyhole; (2) determination of flow in regions surrounding keyhole; (3) development of analog used easily to study flow in keyhole region.
Magnetic phase investigations on fluorine (F) doped LiFePO4
NASA Astrophysics Data System (ADS)
Radhamani, A. V.
2018-03-01
LiFePO4 (LFP) is a very promising cathode material for Li-ion batteries due to its high thermal stability, less toxicity and high theoretical capacity (170 mAh g-1). Anion doping, especially fluorine (F) at the oxygen site is one way to improve the low electronic conductivity of the material. In this line, fluorine doped LFP was prepared at different fluorine concentrations (1 to 40 mol%) to study the structural, spectroscopic and magnetic properties in view of the material property optimization for battery applications. The investigation of the magnetic properties was found to be successful for the determination of small amounts of magnetic impurities which were not noticeably observed from structural characterizations. Determination of conducting magnetic impurities has its own relevance in the current scenario of Li-ion based battery applications. Systematic characterization studies along with the implications of magnetic phases on the material activity of fluorine doped LiFePO4 nanoparticles will be discussed in detail.
Stiffness-constant variation in nickel-based alloys: Experiment and theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennion, M.; Hennion, B.
1979-01-01
Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond tomore » previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors.« less
Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying
2017-07-01
The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.
Neoclassical poloidal and toroidal rotation in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.B.; Diamond, P.H.; Groebner, R.J.
1991-08-01
Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less
Monte Carlo method for magnetic impurities in metals
NASA Technical Reports Server (NTRS)
Hirsch, J. E.; Fye, R. M.
1986-01-01
The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.
Impurity effects on ionic-liquid-based supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong
2017-02-01
Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.
Explanation of the conductivity minimum in tin- and tellurium-doped bismuth
NASA Astrophysics Data System (ADS)
Roy, Arpita; Banerjee, Dipali; Bhattacharya, Ramendranarayan
1995-01-01
The presence of a minimum observed in the variation of conductivity of bismuth with impurity concentrations at a constant temperature (4.2 K) has remained unexplained for a long time. An attempt to explain this anomalous behavior is reported here. In order to do so, a calculation has been made to find the change in the number of free carriers in bismuth with the addition of impurities (donors or acceptors). The calculation has been made using simple parabolic bands. It is known that when tin or tellurium atoms are added as impurities to bismuth all of the atoms are ionized. It has been found here that the number of free carriers initially shows a slow rate of decrease (for donors) or a slow rate of increase (for acceptors) as the impurity concentration is increased, as long as the impurity concentration is small, i.e., as long as the shift of the Fermi level is small. For a higher impurity concentration the number of carriers increases at a rate equal to that of the impurity concentration. This finding, combined with the scattering by impurity ions, could explain the anomalous behavior satisfactorily.
Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S.; Desai, Dhruv K.; Rodgers, Griffin F.; Bradley, Aaron J.; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F.
2015-01-01
Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene’s charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene’s electronic properties.1-8 Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge2 and/or molecular5 states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies.2-5 These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961
Impurity Induced Phase Competition and Supersolidity
NASA Astrophysics Data System (ADS)
Karmakar, Madhuparna; Ganesh, R.
2017-12-01
Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.
NASA Astrophysics Data System (ADS)
Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou
2018-04-01
The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.
NASA Astrophysics Data System (ADS)
Lim, Jae-Won; Mimura, Kouji; Isshiki, Minoru
2004-12-01
Glow discharge mass spectrometry (GDMS) was used to analyze a Ta target and Ta films for trace impurities. The Ta films were deposited on Si (100) substrate at substrate bias voltages of 0 V and -125 V using a non-mass separated ion beam deposition system. Although both Ta films were contaminated by impurities during the deposition, the Ta film deposited at a substrate bias voltage of -125 V showed lower impurity content than the Ta film deposited without the substrate bias voltage, which means that applying a negative bias voltage to the substrate decreased the total concentration of impurities. Furthermore, the concentration change of individual impurities in the Ta film is related to their ionization ratio in the argon discharge plasma. Considering the effect of the ionization potential of an individual impurity on the ionization ratio, purification by applying a negative bias voltage to the substrate results from Penning ionization and an ionization mechanism proposed in this study, as well as from the difference between the kinetic energies of Ta neutral atoms and Ta+ ions accelerated toward the substrate with/without a negative substrate bias voltage.
Scattering of waves by impurities in precompressed granular chains.
Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu
2016-05-01
We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.
Impurity-induced deep centers in Tl 6SI 4
Shi, Hongliang; Lin, Wenwen; Kanatzidis, Mercouri G.; ...
2017-04-13
Tl 6SI 4 is a promising material for room-temperature semiconductor radiation detection applications. The history of the development of semiconductor radiation detection materials has demonstrated that impurities strongly affect the carrier transport and that material purification is a critically important step in improving the carrier transport and thereby the detector performance. Here, we report combined experimental and theoretical studies of impurities in Tl 6SI 4. Impurity concentrations in Tl 6SI 4 were analyzed by glow discharge mass spectrometry. Purification of the raw material by multi-pass vertical narrow zone refining was found to be effective in reducing the concentrations of mostmore » impurities. Density functional theory calculations were also performed to study the trapping levels introduced by the main impurities detected in experiments. We show that, among dozens of detected impurities, most are either electrically inactive or shallow. In the purified Tl 6SI 4 sample, only Bi has a significant concentration (0.2 ppm wt) and introduces deep electron trapping levels in the band gap. Lastly, improvement of the purification processes is expected to further reduce the impurity concentrations and their impact on carrier transport in Tl 6SI 4, leading to improved detector performance.« less
Effect of HEH[EHP] impurities on the ALSEP solvent extraction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holfeltz, Vanessa E.; Campbell, Emily L.; Peterman, Dean R.
In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalentmore » minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.« less
NASA Astrophysics Data System (ADS)
Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.
2000-10-01
A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.
NASA Astrophysics Data System (ADS)
Kim, Kyuho; Kwon, Jae-Min; Chang, C. S.; Seo, Janghoon; Ku, S.; Choe, W.
2017-06-01
Flux-driven full-f gyrokinetic simulations are performed to study carbon impurity effects on the ion temperature gradient (ITG) turbulence and ion thermal transport in a toroidal geometry. Employing the full-f gyrokinetic code XGC1, both main ions and impurities are evolved self-consistently including turbulence and neoclassical physics. It is found that the carbon impurity profile self-organizes to form an inwardly peaked density profile, which weakens the ITG instabilities and reduces the overall fluctuations and ion thermal transport. A stronger reduction appears in the low frequency components of the fluctuations. The global structure of E × B flow also changes, resulting in the reduction of global avalanche like transport events in the impure plasma. Detailed properties of impurity transport are also studied, and it is revealed that both the inward neoclassical pinch and the outward turbulent transport are equally important in the formation of the steady state impurity profile.
Structural elucidation of potential impurities in Azilsartan bulk drug by HPLC.
Zhou, Wentao; Zhou, Yuxia; Sun, Lili; Zou, Qiaogen; Wei, Ping; Ouyang, Pingkai
2014-01-01
During the synthesis of Azilsartan (AZS), it was speculated that 15 potential impurities would arise. This study investigated the possible mechanism for the formation of 14 of them, and their structures were characterized and confirmed by IR, NMR, and MS techniques. In addition, an efficient chromatographic method was developed to separate and quantify these impurities, using an Inertsil ODS-3 column (250 x 4.6 mm, 5 pm) in gradient mode with a mixture of acetonitrile and the potassium dihydrogen orthophosphate buffer (10 mM, pH adjusted to 3.0 with phosphoric acid). The HPLC method was validated for specificity, precision, accuracy, and sensitivity. LOQ of impurities were in the range of 1.04-2.20 ng. Correlation coefficient values of linearity were >0.9996 for AZS and its impurities. The mean recoveries of all impurities in AZS were between 93.0 and 109.7%. Thus, the validated HPLC method is suitable for the separation and quantification of all potential impurities in AZS.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzo, V. A.
Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localizedmore » gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.« less
Quirk, Emma; Doggett, Adrian; Bretnall, Alison
2014-08-05
Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA. Copyright © 2014 Elsevier B.V. All rights reserved.
Methods for purifying carbon materials
Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA
2009-05-26
Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.
HPLC-MS Examination of Impurities in Pentaerythritol Tetranitrate
NASA Astrophysics Data System (ADS)
Brown, Geoffrey W.; Giambra, Anna M.
2014-04-01
Pentaerythritol tetranitrate (PETN) has trace homolog impurities that can be detected by high-performance liquid chromatography-mass spectrometry. Consideration of observed impurity masses and candidate structures based on known pentaerythritol impurities allows identification of 22 compounds in the data. These are all consistent with either fully nitrated homologs or derivatives substituted with methyl, methoxy, or hydroxyl groups in place of a nitric ester. Examining relative impurity concentrations in three starting batches of PETN and six subsequently processed batches shows that it is possible to use relative concentration profiles as a fingerprint to differentiate batches and follow them through recrystallization steps.
Batch methods for enriching trace impurities in hydrogen gas for their further analysis
Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.
2014-07-15
Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.
Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas
NASA Astrophysics Data System (ADS)
Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.
2016-04-01
The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (<0 ), opposite to the case of ion temperature gradient (ITG) driven modes. Detailed analyses of the isotope mass dependence for TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results with experimental observations are discussed.
Lee, Hun Joo; Han, Eunyoung; Lee, Jaesin; Chung, Heesun; Min, Sung-Gi
2016-11-01
The aim of this study is to improve resolution of impurity peaks using a newly devised normalization algorithm for multi-internal standards (ISs) and to describe a visual peak selection system (VPSS) for efficient support of impurity profiling. Drug trafficking routes, location of manufacture, or synthetic route can be identified from impurities in seized drugs. In the analysis of impurities, different chromatogram profiles are obtained from gas chromatography and used to examine similarities between drug samples. The data processing method using relative retention time (RRT) calculated by a single internal standard is not preferred when many internal standards are used and many chromatographic peaks present because of the risk of overlapping between peaks and difficulty in classifying impurities. In this study, impurities in methamphetamine (MA) were extracted by liquid-liquid extraction (LLE) method using ethylacetate containing 4 internal standards and analyzed by gas chromatography-flame ionization detection (GC-FID). The newly developed VPSS consists of an input module, a conversion module, and a detection module. The input module imports chromatograms collected from GC and performs preprocessing, which is converted with a normalization algorithm in the conversion module, and finally the detection module detects the impurities in MA samples using a visualized zoning user interface. The normalization algorithm in the conversion module was used to convert the raw data from GC-FID. The VPSS with the built-in normalization algorithm can effectively detect different impurities in samples even in complex matrices and has high resolution keeping the time sequence of chromatographic peaks the same as that of the RRT method. The system can widen a full range of chromatograms so that the peaks of impurities were better aligned for easy separation and classification. The resolution, accuracy, and speed of impurity profiling showed remarkable improvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hoggard, Jamin C; Wahl, Jon H; Synovec, Robert E; Mong, Gary M; Fraga, Carlos G
2010-01-15
In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.
The objective of the present study is to determine the concentrations and compositions of polybrominated biphenyls (PBBs), polybrominated dibenzo-p-dioxins (PBDDs), and polybrominated dibenzofurans (PBDFs) as contaminants in the commercial polybrominated diphenylether (PBDE) mixt...
NASA Astrophysics Data System (ADS)
Cook, Joseph M.; Hodson, Andrew J.; Gardner, Alex S.; Flanner, Mark; Tedstone, Andrew J.; Williamson, Christopher; Irvine-Fynn, Tristram D. L.; Nilsson, Johan; Bryant, Robert; Tranter, Martyn
2017-11-01
The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo
) and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1) ambiguity in terminology, (2) characterising snow or ice optical properties, (3) characterising solar irradiance, (4) determining optical properties of cells, (5) measuring biomass, (6) characterising vertical distribution of cells, (7) characterising abiotic impurities, (8) surface anisotropy, (9) measuring indirect albedo feedbacks, and (10) measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of radiative transfer and albedo that could support future experimental design.
Characterization of zinc selenide single crystals
NASA Technical Reports Server (NTRS)
Gerhardt, Rosario A.
1996-01-01
ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their composition through their cross-section as the horizontally grown samples.
[Impurity removal technology of Tongan injection in liquid preparation process].
Yang, Xu-fang; Wang, Xiu-hai; Bai, Wei-rong; Kang, Xiao-dong; Liu, Jun-chao; Wu, Yun; Xiao, Wei
2015-08-01
In order to effectively remove the invalid impurities in Tongan injection, optimize the optimal parameters of the impurity removal technology of liquid mixing process, in this paper, taking Tongan injection as the research object, with the contents of celandine alkali, and sinomenine, solids reduction efficiency, and related substances inspection as the evaluation indexes, the removal of impurities and related substances by the combined process of refrigeration, coction and activated carbon adsorption were investigated, the feasibility of the impurity removal method was definited and the process parameters were optimized. The optimized process parameters were as follows: refrigerated for 36 h, boiled for 15 min, activated carbon dosage of 0.3%, temperature 100 degrees C, adsorption time 10 min. It can effectively remove the tannin, and other impurities, thus ensure the quality and safety of products.
Chen, Zhen-Zhen; Zhang, Dou-Sheng; Wang, Nan; Feng, Fang; Hu, Chang-Qin
2012-04-01
A novel qualitative analytical method by using two-dimensional chromatographic correlation spectroscopy techniques for recognizing impurity peaks of HPLC methods of quality control and LC-MS chromatographic system was established. The structures of major degradation products of ceftizoxime and cefdinir were identified by LC-MS and MassWorks application; the standard chromatographic and spectral data of the degradation impurities were obtained by high-performance liquid chromatography with diode array detection. The impurity peaks of two-dimensional chromatography were matched by comparison of spectra and calculating correlation coefficients. Peaks in chromatography can be identified accurately and rapidly in different chromatographic systems such as column and mobile phase changed. The method provides a new way and thought to identify the peaks in quality control of impurities without reference impurity substances.
Harmful situations, impure people: an attribution asymmetry across moral domains.
Chakroff, Alek; Young, Liane
2015-03-01
People make inferences about the actions of others, assessing whether an act is best explained by person-based versus situation-based accounts. Here we examine people's explanations for norm violations in different domains: harmful acts (e.g., assault) and impure acts (e.g., incest). Across four studies, we find evidence for an attribution asymmetry: people endorse more person-based attributions for impure versus harmful acts. This attribution asymmetry is partly explained by the abnormality of impure versus harmful acts, but not by differences in the moral wrongness or the statistical frequency of these acts. Finally, this asymmetry persists even when the situational factors that lead an agent to act impurely are stipulated. These results suggest that, relative to harmful acts, impure acts are linked to person-based attributions. Copyright © 2014 Elsevier B.V. All rights reserved.
Impact of iron-site defects on superconductivity in LiFeAs
Chi, Shun; Aluru, Ramakrishna; Singh, Udai Raj; ...
2016-10-19
In conventional s -wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s ± order parameter they can occur for both magnetic and nonmagnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. We present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. A detailed comparison of tunneling spectra measured on impurities with spin-fluctuation theory reveals a continuous evolution from negligible impurity-bound-state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. Furthermore, all bound states for these intermediate strengthmore » potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multiorbital physics.« less
Information scrambling at an impurity quantum critical point
NASA Astrophysics Data System (ADS)
Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu
2017-10-01
The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).
Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.
Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M
2015-10-16
We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.
Molybdenum emission from impurity-induced m= 1 snake-modes on the Alcator C-Mod tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Aparicio, L.; MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139; Bitter, M.
2012-10-15
A suite of novel high-resolution spectroscopic imaging diagnostics has facilitated the identification and localization of molybdenum impurities as the main species during the formation and lifetime of m= 1 impurity-induced snake-modes on Alcator C-Mod. Such measurements made it possible to infer, for the first time, the perturbed radiated power density profiles from which the impurity density can be deduced.
Recent trends in the impurity profile of pharmaceuticals
Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin
2010-01-01
Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862
Impurity effects on ionic-liquid-based supercapacitors
Liu, Kun; Lian, Cheng; Henderson, Douglas; ...
2016-12-27
Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less
Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuks, D.; Komisarchik, G.; Kaller, M.
2016-08-15
Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shownmore » also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.« less
Numerical Characterization of Wall Recycling Conditions of the HIDRA Stellarator using EMC3-EIRENE
NASA Astrophysics Data System (ADS)
Marcinko, Steven; Curreli, Davide
2015-11-01
The wall recycling conditions created by energetic bombardment of plasma-facing components (PFCs) are of critical importance to determining the plasma and impurity profile in the edge region of a magnetically confined plasma. In this work a pre-online numerical characterization of the edge plasma in HIDRA has been carried out. HIDRA is the former WEGA experiment, now relocated to the University of Illinois at Urbana-Champaign. Numerical simulations of the HIDRA edge environment are performed utilizing the 3D edge plasma and neutral transport code EMC3-EIRENE [Y. Feng J. Nucl. Mater 241-243, 930 (1997)]. In our analysis, emphasis is placed on the influence of the neutrals and the impurities on edge plasma profiles and thus on energy and particle fluxes impingent onto PFCs. We examine the effect of different wall types, comparing high recycling conditions to situations of low recycling. The effect of intrinsic impurity screening is also taken into account under the expected HIDRA operating regimes. We report the calculated particle confinement time and fluid moments of both plasma and neutrals at the low recycling regimes expected with lithium-based PFCs, and compare them with the high recycling regimes found with conventional metal-based PFCs.
Segregation of impurities at γ' (L12) / γ (fcc) interfaces in a Ni-based superalloy
NASA Astrophysics Data System (ADS)
Tafen, De Nyago; Gao, Michael
2011-03-01
One of the most technologically advanced energy conversion devices is the gas turbine used in aerospace jet engines and gas- fired land-based turbines for electricity generation, fabricated from Ni-based superalloys. However, these materials lack of long- term mechanical and microstructure stability, which is largely due to an excessive coarsening of γ ' that can cause substantial loss of creep resistance and mechanical instability at high temperatures. Theoretical prediction of the creep rate of these important compounds is very imperative, but yet is extremely challenging. Interfacial energy is one of the most important factors that control the coarsening kinetics of these important phases. It indirectly determines the creep resistance of the alloy through the coarsening rate of the strengthening precipitate phase. In this talk, we will present the results of various γ ' / γ interfaces of a Ni-based superalloy obtained using DFT calculations. Then, we will discuss the segregation of impurities at these interfaces. Minor alloying elements in superalloys can alter the interfacial energy between γ and γ ' , and change the strength behavior of the alloy. Alloying elements or impurity species can segregate to interfaces. A favorable segregation would result in enhancing the interfacial cohesion and thus lower the energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskey, S. R.; Grierson, B. A.; Stagner, L.
Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less
Electrochemical Behaviour and Electrorefining of Cobalt in NaCl-KCl-K2TiF6 Melt
NASA Astrophysics Data System (ADS)
Kuznetsov, Sergey A.; Kazakova, Olga S.; Makarova, Olga V.
2009-08-01
The electrorefining of cobalt in NaCl-KCl-K2TiF6 (20 wt%) melt has been investigated. It was shown that complexes of Ti(III) and Co(II) appeared in the melt due to the reaction 2Ti(IV) + Co → 2Ti(III) + Co(II) and this reaction was entirely shifted to the right hand side. On the base of linear sweep voltammetry diagnostic criteria it was found that the discharge of Co(II) to Co metal is controlled by diffusion. The limiting current density of discharge Co(II) to metal in NaCl-KCl-K2TiF6 (20 wt%) melt was determined by steady-state voltammetry. The electrorefining of cobalt was carried out in hermetic electrolyser under argon atmosphere. Initial cathodic current density was changed from 0.2 Acm-2 up to 0.7 Acm-2, the electrolysis temperature varied within 973 - 1123 K. Behaviour of impurities during cobalt electrorefining was discussed. It was shown that electrorefining led to the elimination of most of the interstitial impurities (H2, N2, O2, C), with the result that the remaining impurity levels below 10 ppm impart high ductility to cobalt.
NASA Astrophysics Data System (ADS)
Wertgeim, Igor I.
2018-02-01
We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.
Preparation and characterization of 3,5-dinitro-1H-1,2,4-triazole.
Haiges, R; Bélanger-Chabot, G; Kaplan, S M; Christe, K O
2015-04-28
Neat 3,5-dinitro-1H-1,2,4-triazole was obtained in quantitative yield from potassium 3,5-dinitro-1,2,4-triazolate and sulfuric acid. The compound was purified by sublimation in vacuo at 110 °C. Pure HDNT is a hygroscopic white solid that is impact and friction sensitive and decomposes explosively upon heating to 170 °C. However, the presence of impurities might lower the decomposition temperature and increase the sensitivity of the material. Potassium 3,5-dinitro-1,2,4-triazolate was prepared from commercially available 3,5-diamino-4H-1,2,4-triazole with sodium nitrite and sulfuric acid. The synthesis of HDNT from 2-cyanoguanidine and hydrazine hydrate without isolation and purification of the 3,5-diamino-4H-1,2,4-triazole intermediate can result in the formation of azidotriazole impurities. A triclinic and a monoclinic polymorph of 3,5-dinitro-1H-1,2,4-triazole were found by X-ray structure determination. In addition, the crystal structure of the hydrate (HDNT)3·4H2O, as well as those of several HDNT impurities and decomposition products were obtained.
Alvarez-Fernández, Ana; Cremonini, Mauro A; Sierra, Miguel A; Placucci, Giuseppe; Lucena, Juan J
2002-01-16
Iron chelates derived from ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA), ethylenediaminedi(o-hydroxy-p-methylphenylacetic) acid (EDDHMA), ethylenediaminedi(2-hydroxy-5-sulfophenylacetic) acid (EDDHSA), and ethylenediaminedi(5-carboxy-2-hydroxyphenylacetic) acid (EDDCHA) are remarkably efficient in correcting iron chlorosis in plants growing in alkaline soils. This work reports the determination of impurities in commercial samples of fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+). The active components (EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+)) were separated easily from other compounds present in the fertilizers by HPLC. Comparison of the retention times and the UV-visible spectra of the peaks obtained from commercial EDDHSA/Fe(3+) and EDDCHA/Fe(3+) samples with those of standard solutions showed that unreacted starting materials (p-hydroxybenzenesulfonic acid and p-hydroxybenzoic acid, respectively) were always present in the commercial products. 1D and 2D NMR experiments showed that commercial fertilizers based on EDDHMA/Fe(3+) contained impurities having structures tentatively assigned to iron chelates of two isomers of EDDHMA. These findings suggest that current production processes of iron chelates used in agriculture need to be improved.
Cooke, D. Wayne; Jahan, Muhammad S.
1989-01-01
Detection of surface impurity phases in high-temperature superconducting materials. Thermally stimulated luminescence has been found to occur in insulating impurity phases which commonly exist in high-temperature superconducting materials. The present invention is sensitive to impurity phases occurring at a level of less than 1% with a probe depth of about 1 .mu.m which is the region of interest for many superconductivity applications. Spectroscopic and spatial resolution of the emitted light from a sample permits identification and location of the impurity species. Absence of luminescence, and thus of insulating phases, can be correlated with low values of rf surface resistance.
Thermoelectric current in topological insulator nanowires with impurities.
Erlingsson, Sigurdur I; Bardarson, Jens H; Manolescu, Andrei
2018-01-01
In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias. For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the size of the thermoelectric current. We consider both scalar and magnetic impurities and show that their influence on the current are quite similar, although the magnetic impurities seem to be more effective in reducing the effect. For moderate impurity concentration the sign reversal persists.
Kinetics of the cellular decomposition of supersaturated solid solutions
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Naumuk, A. Yu.
2014-09-01
A consistent description of the kinetics of the cellular decomposition of supersaturated solid solutions with the development of a spatially periodic structure of lamellar (platelike) type, which consists of alternating phases of precipitates on the basis of the impurity component and depleted initial solid solution, is given. One of the equations, which determines the relationship between the parameters that describe the process of decomposition, has been obtained from a comparison of two approaches in order to determine the rate of change in the free energy of the system. The other kinetic parameters can be described with the use of a variational method, namely, by the maximum velocity of motion of the decomposition boundary at a given temperature. It is shown that the mutual directions of growth of the lamellae of different phases are determined by the minimum value of the interphase surface energy. To determine the parameters of the decomposition, a simple thermodynamic model of states with a parabolic dependence of the free energy on the concentrations has been used. As a result, expressions that describe the decomposition rate, interlamellar distance, and the concentration of impurities in the phase that remain after the decomposition have been derived. This concentration proves to be equal to the half-sum of the initial concentration and the equilibrium concentration corresponding to the decomposition temperature.
Electromigration process for the purification of molten silicon during crystal growth
Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.
1982-01-01
A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.
Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.
Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M
2015-03-01
This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Single- or multi-flavor Kondo effect in graphene
NASA Astrophysics Data System (ADS)
Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal
2010-06-01
Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.
Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak
NASA Astrophysics Data System (ADS)
Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team
2018-01-01
The transient perturbation method with metallic impurities such as iron (Fe, Z = 26) and copper (Cu, Z = 29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.
ERIC Educational Resources Information Center
Ondrus, Martin G.; And Others
1983-01-01
Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…
76 FR 61668 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... electron-beam induced signals such as characteristic x-ray analysis, electron beam induced current... semiconductor materials, metals, ceramics, and biological tissues, to determine the influence of impurities on... transformation of metals, and the study of other phenomena. Justification for Duty- Free Entry: There are no...
76 FR 69662 - Methacrylic Polymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnier, P.
1960-06-01
A technique which determines some important elements in the structure of graphite, osme dislocation lines, the presence of some dense impurities, and the local decreases in density, which develop in the course of oxidation, is described. (P.C.H.)
NASA Astrophysics Data System (ADS)
Pereira, Sergio Manuel de Sousa
Esta tese apresenta os resultados de uma investigacao experimental em filmes epitaxiais emissores de luz baseados em InxGa1-xN. O InxGa1-xN e uma liga semicondutora ternaria do grupo III-N muito utilizada como camada activa numa gama de dispositivos optoelectronicos em desenvolvimento, incluindo diodos emissores de luz (LEDs) e diodos laser (LDs), para operacao na regiao do visivel e ultravioleta do espectro electromagnetico. Neste estudo, caracterizam-se as propriedade opticas e estruturais de camadas simples e pocos quânticos multiplos (Multiple Quantum Wells, MQWs) de InxGa1-xN/GaN, com enfase nas suas propriedades fisicas fundamentais. O objectivo central do trabalho prende-se com a compreensao mais profunda dos processos fisicos que estao por tras das suas propriedades opticas, preenchendo o fosso existente entre aplicacoes tecnologicas e o conhecimento cientifico. Nomeadamente, a tese aborda os problemas da medicao da fraccao de InN (x) em multicamadas ultrafinas sujeitas a tensoes, a influencia da composicao e das tensoes microscopicas nas propriedades opticas e estruturais. A questao relativa a segregacao de fases em multicamadas de InxGa1-xN/GaN e tambem discutida a luz dos resultados obtidos. A metodologia seguida assenta na integracao de resultados obtidos por tecnicas complementares atraves de uma analise sistematica e multidisciplinar. Esta abordagem passa pela combinacao de: 1) Crescimento de amostras por deposicao epitaxial em fase de vapor organometalico (MOVPE) com caracteristicas especificas de forma a tentar isolar parâmetros estruturais, tais como espessura e composicao; 2) Caracterizacao nanoestrutural por microscopia de forca atomica (AFM), microscopica electronica de varrimento (SEM), difraccao de raios-X e retro-dispersao de Rutherford (RBS); 3) Caracterizacao optica a escalas complementares por: espectroscopia de absorcao optica (OA), fotoluminescencia (PL), catodoluminescencia (CL) e microscopia confocal (CM) com analise espectral. Com base nos resultados obtidos, a tese propoe modelos de interpretacao para as propriedades estruturais e opticas, dando enfase as suas correlacoes. Em particular, estabelece-se a necessidade de considerar fenomenos relacionados com tensoes microscopicas na interpretacao dos resultados experimentais. Com este trabalho fica clara a necessidade de um conhecimento detalhado das caracteristicas nanoestruturais para interpretar as propriedades opticas das ligas de InxGa1-xN. None
Control of impurities in toroidal plasma devices
Ohkawa, Tihiro
1980-01-01
A method and apparatus for plasma impurity control in closed flux plasma systems such as Tokamak reactors is disclosed. Local axisymmetrical injection of hydrogen gas is employed to reverse the normally inward flow of impurities into the plasma.
Studies of Atomic Free Radicals Stored in a Cryogenic Environment
NASA Technical Reports Server (NTRS)
Lee, David M.; Hubbard, Dorthy (Technical Monitor); Alexander, Glen (Technical Monitor)
2003-01-01
Impurity-Helium Solids are porous gel-like solids consisting of impurity atoms and molecules surrounded by thin layers of solid helium. They provide an ideal medium for matrix isolation of free radicals to prevent recombination and store chemical energy. In this work electron spin resonance, nuclear magnetic resonance, X-ray diffraction, and ultrasound techniques have all been employed to study the properties of these substances. Detailed studies via electron spin resonance of exchange tunneling chemical reactions involving hydrogen and deuterium molecular and atomic impurities in these solids have been performed and compared with theory. Concentrations of hydrogen approaching the quantum solid criterion have been produced. Structured studies involving X ray diffraction, ultrasound, and electron spin resonance have shown that the impurities in impurity helium solids are predominantly contained in impurity clusters, with each cluster being surrounded by thin layers of solid helium.
Method and apparatus for measuring purity of noble gases
Austin, Robert
2008-04-01
A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.
In-situ observation of impurity diffusion boundary layer in silicon Czochralski growth
NASA Astrophysics Data System (ADS)
Kakimoto, Koichi; Eguchi, Minoru; Watanabe, Hisao; Hibiya, Taketoshi
1990-01-01
In-situ observation of the impurity diffusion boundary layer during single crystal growth of indium-doped silicon was carried out by X-ray radiography. The difference in the transmitted X-ray image compared with molten silicon just beneath the crystal-melt interface was attributed to the concentration of indium impurities having a larger absorption coefficient. The intensity profile of the transmitted X-ray can be reproduced by a transmittance calculation that considers the meniscus shape and impurity distribution. The impurity distribution profile near the crystal-melt interface was estimated using the Burton-Prim-Slichter (BPS) equation. The observed impurity diffusion boundary layer thickness was about 0.5 mm. It was found that the boundary layer thickness was not constant in the radial direction, which cannot be explained by the BPS theory, since it is based on a one-dimensional calculation.
Ginosar, Daniel M.; Wendt, Daniel S.
2012-11-13
A method of removing a polar solvent from a fluid volume contaminated with at least one polar impurity, such as a free fatty acid, is provided. The method comprises providing a fluid volume that includes at least one polar impurity dissolved in at least one solvent. The fluid volume is contacted with an expanding gas to remove the at least one solvent. The expanding gas may be dissolved into the at least one solvent in the fluid volume to form a gas-expanded solvent. The immiscibility of the polar impurities in the gas-expanded solvent enables separation of the polar impurities from the gas-expanded solvent. After separation of the polar impurities, at least one of the temperature and pressure may be reduced to separate the solvent from the expanding gas such that the clean solvent may be reused.
The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
2000-01-01
Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been re-examined for up to 20 impurity elements in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, Rene'142, and Rene'N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. No single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.
Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors
Lian, Cheng; Liu, Kun; Liu, Honglai; ...
2017-06-08
Room-temperature ionic liquids (RTILs) have been widely used as electrolytes to enhance the capacitive performance of electrochemical capacitors also known as supercapacitors. Whereas impurities are ubiquitous in RTILs (e.g., water, alkali salts, and organic solvents), little is known about their influences on the electrochemical behavior of electrochemical devices. In this work, we investigate different impurities in RTILs within the micropores of carbon electrodes via the classical density functional theory (CDFT). We find that under certain conditions impurities can significantly change the charging behavior of electric double layers and the shape of differential capacitance curves even at very low concentrations. Moremore » interestingly, an impurity with a strong affinity to the nanopore can increase the energy density beyond a critical charging potential. As a result, our theoretical predictions provide further understanding of how impurity in RTILs affects the performance of supercapacitors.« less
Presence, segregation and reactivity of H, C and N dissolved in some refractory oxides
NASA Technical Reports Server (NTRS)
Freund, F.
1986-01-01
The sources of impurities, particularly carbon, in high melting oxides and silicates are discussed, along with detection and quantification methods. The impurities are important for their effects on bulk material properties through the media of, e.g., surface or grain boundary characteristics. The impurities are usually encountered by the contact of the oxide (refractory) material with volatiles such as H2O and CO2, which become incorporated in the material and form anion complexes with oxygen acting as a covalent bonded ligand. The specific processes undergone by MgO in assimilating C impurities are delineated, using data obtained with X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry and nuclear reaction profiling. Finally, maintenance of a supersaturated solid solution with C impurities by space charge control is described as a means of offset impurity effects.
Interpretation of plasma impurity deposition probes. Analytic approximation
NASA Astrophysics Data System (ADS)
Stangeby, P. C.
1987-10-01
Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.
Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.
Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam
2014-07-11
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
NASA Astrophysics Data System (ADS)
Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos
2017-05-01
Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.
Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
NASA Astrophysics Data System (ADS)
Newton, S. L.; Helander, P.; Mollén, A.; Smith, H. M.
2017-10-01
The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.
Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei
2018-03-01
Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon
NASA Astrophysics Data System (ADS)
Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter
2015-09-01
The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.
Advanced industrial fluorescence metrology used for qualification of high quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker
2003-11-01
Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.
U-series dating of impure carbonates: An isochron technique using total-sample dissolution
Bischoff, J.L.; Fitzpatrick, J.A.
1991-01-01
U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. We propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate in commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only. ?? 1991.
TEM and SEM (EBIC) investigations of silicon bicrystals
NASA Technical Reports Server (NTRS)
Gleichmann, R.; Ast, D. G.
1983-01-01
The electrical and structural properties of low and medium angle tilt grain boundaries in silicon bicrystals were studied in order to obtain insight into the mechanisms determining the recombination activity. The electrical behavior of these grain boundaries was studied with the EBIC technique. Schottky barriers rather than p-n junctions were used to avoid annealing induced changes of the structure and impurity content of the as-grown crystals. Transmission electron spectroscopy reveals that the 20 deg boundary is straight, homogeneous, and free of extrinsic dislocations. It is concluded that, in the samples studied, the electrical effect of grain boundaries appears to be independent of the boundary misorientation. The dominant influence appears to be impurity segregation effects to the boundary. Cleaner bicrystals are required to study intrinsic differences in the electrical activity of the two boundaries.
Plasma chemistry study of PLAD processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer
2012-11-06
Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{submore » 4} and GeH{sub 4} are studied and demonstrated.« less
Loganathan, G; Dawra, R K; Pugazhenthi, S; Wiseman, A C; Sanders, M A; Saluja, A K; Sutherland, D E R; Hering, B J; Balamurugan, A N
2010-01-01
Exocrine tissue is commonly cotransplanted with islets in autografting and allotransplantation of impure preparations. Proteases and insulin are released by acinar cells and islets, respectively, during pretransplantation culture and also systemically after transplantation. We hypothesized that released proteases could cleave insulin molecules and that addition of alpha-1 antitrypsin (A1AT) to impure islet cultures would block this cleavage, improving islet recovery and function. Trypsin, chymotrypsin, and elastase (TCE) activity and insulin levels were measured in culture supernates of pure (n = 5) and impure (n = 5) islet fractions, which were isolated from deceased donors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect insulin after incubation with proteases. We assessed the effects of A1AT supplementation (0.5 mg/mL; n = 4] on TCE activity, insulin levels, culture recovery, and islet quality. The ultrastructure of islets exposed to TCE versus control medium was examined using electron microscopy (EM). Protease (TCE) activity in culture supernatants was indirectly proportional to the percentage purity of islets: pure, impure, or highly impure. Increasingly lower levels of insulin were detected in culture supernatants when higher protease activity levels were present. Insulin levels measured from supernatants of impure and highly impure islet preparations were 61 +/- 23.7% and 34 +/- 33% of that in pure preparations, respectively. Incubation with commercially available proteases (TCE) or exocrine acinar cell supernatant cleaved insulin molecules as assessed using SDS-PAGE. Addition of A1AT to impure islet preparations reduced protease activity and restored normal insulin levels as detected using enzyme-linked immunosorbent assay (ELISA) and SDS-PAGE of culture supernates. A1AT improved insulin levels to 98% +/- 1.3% in impure and 78% +/- 34.2% in highly impure fractions compared with pure islet fractions. A1AT supplementation improved postculture recovery of islets in impure preparations compared with nontreated controls (72% +/- 9% vs 47% +/- 15%). Islet viability as measured using membrane integrity assays was similar in both the control (98% +/- 2%) and the A1AT-treated groups (99% +/- 1%). EM results revealed a reduction or absence of secretory granules after exposure to proteases (TCE). Culture of impure human islet fractions in the presence of A1AT prevented insulin cleavage and improved islet recovery. A1AT supplementation of islet culture media, therefore, may increase the proportion of human islet products that meet release criteria for transplantation. Copyright 2010 Elsevier Inc. All rights reserved.
On the radiative effects of light-absorbing impurities on snowpack evolution
NASA Astrophysics Data System (ADS)
Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.
2017-12-01
The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.
Impurities in radioactive preparations (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeppe, P.
1963-01-01
An account is given of some cases of radioactive impurities in radioactive preparations. The possibility that such impurities may be due to long-lived radionuclides must be considered in clinical applications and particularly in dealing with residues and containers (glass-ampulla).
Ruhoff, J.R.; Winters, C.E.
1957-11-12
A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.
Siva Lakshmi Devi, A; Srinivasa Rao, Y; Suresh, Y; Yogeswar Reddy, M; Jyothi, G; Rajababu, B; Prasad, V S R; Umamaheswar Rao, V
2007-05-01
We report the complete (1)H and (13)C NMR assignment of impurities of six Lopinavir (2S)-N-[(2S, 4S, 5S)-5-{[2-(2,6-dimethylphenoxy)acetyl]amino}-4-hydroxy-1,6-diphenyl hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butan- amide. Two of the impurities are regioisomers and GCOSY used to differentiate the two structures. The spectral assignments for all six impurities were achieved by concerted application of one and two-dimensional NMR techniques ((1)H NMR, (13)C NMR, DEPT, GCOSY, GHSQC and GHMBC). Copyright (c) 2007 John Wiley & Sons, Ltd.
Wilcox, Russel B [El Cerrito, CA; Page, Ralph H [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Feit, Michael D [Livermore, CA; Payne, Stephen A [Castro Valley, CA
2003-05-27
The invention is a ribbon of an optical material with a plurality of cores that run along its length. The plurality of cores includes lasing impurity doped cores in an alternating spaced arrangement with index-modifying impurity doped cores. The ribbon comprises an index of refraction that is substantially equal to or greater than the indices of refraction of said array of lasing impurity doped cores. Index-increasing impurity doped cores promote antiguiding and leaky modes which provide more robust single "supermode" operation.
Synthesis and Characterization of Compounds Related to Lisinopril
Raghava Reddy, Ambati V.; Garaga, Srinivas; Takshinamoorthy, Chandiran; Naidu, Andra; Dandala, Ramesh
2016-01-01
Lisinopril is a drug of the angiotensin-converting enzyme (ACE) inhibitor class that is primarily used in the treatment of hypertension. During the scale-up of the lisinopril process, one unknown impurity was observed and is identified. The present work describes the origin, synthesis, characterization, and control of this impurity. This paper also describes the synthesis and characterization of three other impurities listed in the European Pharmacopoeia 8.4 (Impurity C, D, and F). PMID:27222603
Direct Visualization of an Impurity Depletion Zone
NASA Technical Reports Server (NTRS)
Chernov, Alex A.; Garcia-Ruiz, Juan Ma; Thomas, Bill R.
2000-01-01
When a crystal incorporates more impurity per unit of its volume than the impurity concentration in solution, the solution in vicinity of the growing crystal is depleted with respect to the impurity I,2. With a stagnant solution, e. g. in microgravity or gels, an impurity depletion zone expands as the crystal grows and results in greater purity in most of the outer portion of the crystal than in the core. Crystallization in gel provides an opportunity to mimic microgravity conditions and visualize the impurity depletion zone. Colorless, transparent apoferritin (M congruent to 450 KDa) crystals were grown in the presence of red holoferritin dimer as a microheterogeneous impurity (M congruent to 900 KDa) within agarose gel by counterdiffusion with Cd(2+) precipitant. Preferential trapping of dimers, (distribution coefficient K = 4 (exp 1,2)) results in weaker red color around the crystals grown in the left tube in the figure as compared to the control middle tube without crystals. The left and the middle tubes contain colored ferritin dimers, the right tube contains colored trimers. The meniscus in the left tube separate gel (below) and liquid solution containing Cd(2+) (above). Similar solutions, though without precipitants, were present on top of the middle and right tube allowing diffusion of dimers and trimers. The area of weaker color intensity around crystals directly demonstrates overlapped impurity depletion zones.
Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.
2015-06-15
We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface mightmore » produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.« less
Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid
NASA Astrophysics Data System (ADS)
Lychkovskiy, O.
2015-04-01
We study the dynamics of a mobile impurity in a quantum fluid at zero temperature. Two related settings are considered. In the first setting, the impurity is injected in the fluid with some initial velocity v0, and we are interested in its velocity at infinite time, v∞. We derive a rigorous upper bound on | v0-v∞| for initial velocities smaller than the generalized critical velocity. In the limit of vanishing impurity-fluid coupling, this bound amounts to v∞=v0 , which can be regarded as a rigorous proof of the Landau criterion of superfluidity. In the case of a finite coupling, the velocity of the impurity can drop, but not to zero; the bound quantifies the maximal possible drop. In the second setting, a small constant force is exerted upon the impurity. We argue that two distinct dynamical regimes exist—backscattering oscillations of the impurity velocity and saturation of the velocity without oscillations. For fluids with vc L=vs (where vc L and vs are the Landau critical velocity and sound velocity, respectively), the latter regime is realized. For fluids with vc L
Retention and diffusion of H, He, O, C impurities in Be
NASA Astrophysics Data System (ADS)
Zhang, Pengbo; Zhao, Jijun; Wen, Bin
2012-04-01
We report the energetics and diffusion behavior of H, He, O, and C impurities in beryllium as fusion materials from first-principles calculations. Among the six interstitial sites in Be, the basal tetrahedral one is most stable for H, He, O, while C prefers to occupy an octahedral site. Solution of O impurity in Be is an exothermic process with solution energy of -2.37 eV, whereas solution of H, C and He is an endothermic process (solution energy: 1.55 eV, 2.46 eV, and 5.70 eV, respectively). Overall speaking, these impurities prefer to diffuse along longer paths. The H and O impurities share the same out-of-plane diffusion path via basal tetrahedral sites, while the He and C impurities in Be mainly diffuse via basal tetrahedral and octahedral sites along the (0 0 1) plane. Diffusion of He in Be is easiest with a lowest barrier of 0.14 eV; whereas H diffusion in Be is also rather fast with migration energies of 0.4 eV. On the contrary, diffusion of C and O impurities is more difficult because of strong bonding with lattice atoms and high energy barriers of 0.42 and 1.63 eV, respectively. Our theoretical results provide the fundamental parameters for understanding the impurity aggregation and bubble formation in early stage of irradiation damage.
NASA Astrophysics Data System (ADS)
Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-10-01
We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.
Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; McCormick, R.; Luecke, J.
2011-06-01
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts.more » The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.« less
Li, Juan; Jiang, Yue; Fan, Qi; Chen, Yang; Wu, Ruanqi
2014-05-05
This paper establishes a high-throughput and high selective method to determine the impurity named oxidized glutathione (GSSG) and radial tensile strength (RTS) of reduced glutathione (GSH) tablets based on near infrared (NIR) spectroscopy and partial least squares (PLS). In order to build and evaluate the calibration models, the NIR diffuse reflectance spectra (DRS) and transmittance spectra (TS) for 330 GSH tablets were accurately measured by using the optimized parameter values. For analyzing GSSG or RTS of GSH tablets, the NIR-DRS or NIR-TS were selected, subdivided reasonably into calibration and prediction sets, and processed appropriately with chemometric techniques. After selecting spectral sub-ranges and neglecting spectrum outliers, the PLS calibration models were built and the factor numbers were optimized. Then, the PLS models were evaluated by the root mean square errors of calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP), and by the correlation coefficients of calibration (R(c)) and prediction (R(p)). The results indicate that the proposed models have good performances. It is thus clear that the NIR-PLS can simultaneously, selectively, nondestructively and rapidly analyze the GSSG and RTS of GSH tablets, although the contents of GSSG impurity were quite low while those of GSH active pharmaceutical ingredient (API) quite high. This strategy can be an important complement to the common NIR methods used in the on-line analysis of API in pharmaceutical preparations. And this work expands the NIR applications in the high-throughput and extraordinarily selective analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of Celestial Solid Analogs
NASA Technical Reports Server (NTRS)
Sievers, A. J.
2003-01-01
Our far infrared studies of both hydrophobic and hydrophilic aerogel grains have demonstrated that the mm and sub-mm wave absorption produced by the fundamental two level systems (TLS) mechanism represents a more significant contribution for these open grain structures than for bulk amorphous silicate grains. We found that the region with the anomalous temperature dependence of the spectral index due to the TLS excitations can extend in a fluffy material up to 80 per cm, which is well beyond its typical upper limit for bulk glasses. Currently there is no theoretical explanation for this surprising result. The effects of reduced dimensionality on the optical properties of carbonaceous grains have been studied with a systematic investigation of carbon aerogels. This spectroscopic approach has permitted a more reliable determination of the single grain mass normalized absorption coefficient based on the experimentally determined characteristics of the fluffy material rather than on first principles calculations involving the bulk properties of the substance. Our finding is that the electrical connectivity of the material is the main factor affecting its far infrared absorption coefficient. Another one of the main constituents of the interstellar dust, amorphous ice, has been investigated in the mm-wave region both in the high (HDA) and low (LDA) density amorphous phases and as a function of impurities. We found that doping either phase with ionic (LiCl) or molecular (methanol) impurities decreases the difference in the mm-wave absorption coefficient between the HDA and LDA ice phases so that the HDA spectrum can be used as an analog for impure ice absorption in the far infrared spectral region.
Menoutis, James; Parisi, Angela; Verma, Natasha
2018-04-15
In efforts to control the potential presence of heavy metals in pharmaceuticals, the United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and guidelines for their control. The new requirements and guidelines establish specific daily exposures (PDE) for 24 heavy metals/elemental impurities (EI) based upon their toxicological properties. USP General Chapter 〈233〉 provides a general reference procedure for preparing pharmaceutical samples for analysis employing microwave assisted digestion (MWAD). It also provides two Compendial Procedures, Procedure 1 employing ICP-AES, and Procedure 2 employing ICP-MS. Given the extremely low detection limits afforded by ICP-MS, much work has been done in developing and evaluating analytical methods to support the analysis of elemental impurities in finished pharmaceutical products, active pharmaceutical ingredients, and excipients by this analytical technique. In this study, we have evaluated the use of axial ICP-AES. This employs ultrasonic nebulization (UN) for the determination of Class 1 and 2 EI, instead of traditional pneumatic nebulization. The study also employed closed vessel MWAD to prepare samples for analysis. Limits of quantitation were element specific and significantly lower than the PDEs for oral drugs. Spike recoveries for the elements studied ranged between 89.3% and 109.25%, except for Os, which was subject to OsO4 formation during MWAD. The use of axial ICP-AES UN provides an alternative to ICP-MS in the analysis of EI requiring low detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Cross, Kevin P.
Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describemore » the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.« less
Surface property detection apparatus and method
Martens, J.S.; Ginley, D.S.; Hietala, V.M.; Sorensen, N.R.
1995-08-08
Apparatus and method for detecting, determining, and imaging surface resistance corrosion, thin film growth, and oxide formation on the surface of conductors or other electrical surface modification. The invention comprises a modified confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor, conductor, dielectric, or semiconductor. 4 figs.
Impurity profiling of trinitrotoluene using vacuum-outlet gas chromatography-mass spectrometry.
Brust, Hanneke; Willemse, Sander; Zeng, Tuoyu; van Asten, Arian; Koeberg, Mattijs; van der Heijden, Antoine; Bolck, Annabel; Schoenmakers, Peter
2014-12-29
In this work, a reliable and robust vacuum-outlet gas chromatography-mass spectrometry (GC-MS) method is introduced for the identification and quantification of impurities in trinitrotoluene (TNT). Vacuum-outlet GC-MS allows for short analysis times; the analysis of impurities in TNT was performed in 4min. This study shows that impurity profiling of TNT can be used to investigate relations between TNT samples encountered in forensic casework. A wide variety of TNT samples were analyzed with the developed method. Dinitrobenzene, dinitrotoluene, trinitrotoluene and amino-dinitrotoluene isomers were detected at very low levels (<1wt.%) by applying the MS in selected-ion monitoring (SIM) mode. Limits of detection ranged from 6ng/mL for 2,6-dinitrotoluene to 43ng/mL for 4-amino-2,6-dinitrotoluene. Major impurities in TNT were 2,4-dinitrotoluene and 2,3,4-trinitrotoluene. Impurity profiles based on seven compounds showed to be useful to TNT samples from different sources. Statistical analysis of these impurity profiles using likelihood ratios demonstrated the potential to investigate whether two questioned TNT samples encountered in forensic casework are from the same source. Copyright © 2014 Elsevier B.V. All rights reserved.
Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo
Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal havingmore » 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)« less
Control of edge localized modes by pedestal deposited impurity in the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Zhang, Y. P.; Mazon, D.; Zou, X. L.; Zhong, W. L.; Gao, J. M.; Zhang, K.; Sun, P.; Dong, C. F.; Cui, Z. Y.; Liu, Yi; Shi, Z. B.; Yu, D. L.; Cheng, J.; Jiang, M.; Xu, J. Q.; Isobe, M.; Xiao, G. L.; Chen, W.; Song, S. D.; Bai, X. Y.; Zhang, P. F.; Yuan, G. L.; Ji, X. Q.; Li, Y. G.; Zhou, Y.; Delpech, L.; Ekedahl, A.; Giruzzi, G.; Hoang, T.; Peysson, Y.; Song, X. M.; Song, X. Y.; Li, X.; Ding, X. T.; Dong, J. Q.; Yang, Q. W.; Xu, M.; Duan, X. R.; Liu, Y.; the HL-2A Team
2018-04-01
Effect of the pedestal deposited impurity on the edge-localized mode (ELM) behaviour has been observed and intensively investigated in the HL-2A tokamak. Impurities have been externally seeded by a newly developed laser blow-off (LBO) system. Both mitigation and suppression of ELMs have been realized by LBO-seeded impurity. Measurements have shown that the LBO-seeded impurity particles are mainly deposited in the pedestal region. During the ELM mitigation phase, the pedestal density fluctuation is significantly increased, indicating that the ELM mitigation may be achieved by the enhancement of the pedestal transport. The transition from ELM mitigation to ELM suppression was triggered when the number of the LBO-seeded impurity exceeds a threshold value. During the ELM suppression phase, a harmonic coherent mode (HCM) is excited by the LBO-seeded impurity, and the pedestal density fluctuation is significantly decreased, the electron density is continuously increased, implying that HCM may reduce the pedestal turbulence, suppress ELMs, increase the pedestal pressure, thus extending the Peeling-Ballooning instability limit. It has been found that the occurance of the ELM mitigation and ELM suppression closely depends on the LBO laser spot diameter.
Characterization and Mitigation of ICRF Antenna - Plasma Edge Interaction
NASA Astrophysics Data System (ADS)
Hong, Rongjie; Tynan, George; Wukitch, Steve; Lin, Yijun; Terry, Jim; Chilenski, M.; Golfinopoulos, T.; Hubbard, A.; Mumgaard, R. T.; Perkins, R.; Reinke, M. L.; Alcator C-Mod Team
2017-10-01
Recent experiments reveal that RF-induced potentials (VRF) in the SOL and impurity source at the antenna can be reduced to background levels via optimizing the power ratio between the inner and outer current straps, Pcent /Pout . Experiments indicate the antenna impurity source reduction for the field aligned antenna is due to geometrical alignment rather than electrical symmetry. Additional experiments performed without an optimized Pcent /Pout showed that VRF and the associated convection cells do not influence the impurity penetration or core impurity confinement. These results suggest the core impurity contamination associated with ICRF heating is dominated by an increased impurity source rather than a change in impurity transport. Further, the convective cell strength was expected to scale inversely with B-field. The observed poloidal velocity (measure of convective cell strength), however, decreased less than expected. In addition, the measured maximum VRF increased and penetrated farther into the SOL at higher B-field and plasma current. Results also suggest VRF is strongly influenced by the SOL plasma parameters rather than by RF parameters. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and DE-SC 0010720.
Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A
2006-01-01
The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and rare earth elements). These calibration curves have been used to measure impurities in a number of uranium samples. The results from the TOF-ICP-MS will be compared with other mass spectrometric methods.« less
Role of impurities in determining the exciton diffusion length in organic semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, Ian J.; Holmes, Russell J.; Blaylock, D. Wayne
2016-04-18
The design and performance of organic photovoltaic cells is dictated, in part, by the magnitude of the exciton diffusion length (L{sub D}). Despite the importance of this parameter, there have been few investigations connecting L{sub D} and materials purity. Here, we investigate L{sub D} for the organic small molecule N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine as native impurities are systematically removed from the material. Thin films deposited from the as-synthesized material yield a value for L{sub D}, as measured by photoluminescence quenching, of (3.9 ± 0.5) nm with a corresponding photoluminescence efficiency (η{sub PL}) of (25 ± 1)% and thin film purity of (97.1 ± 1.2)%, measured by high performance liquid chromatography.more » After purification by thermal gradient sublimation, the value of L{sub D} is increased to (4.7 ± 0.5) nm with a corresponding η{sub PL} of (33 ± 1)% and purity of (98.3 ± 0.8)%. Interestingly, a similar behavior is also observed as a function of the deposition boat temperature. Films deposited from the purified material at a high temperature give L{sub D} = (5.3 ± 0.8) nm with η{sub PL} = (37 ± 1)% for films with a purity of (99.0 ± 0.3)% purity. Using a model of diffusion by Förster energy transfer, the variation of L{sub D} with purity is predicted as a function of η{sub PL} and is in good agreement with measurements. The removal of impurities acts to decrease the non-radiative exciton decay rate and increase the radiative decay rate, leading to increases in both the diffusivity and exciton lifetime. The results of this work highlight the role of impurities in determining L{sub D}, while also providing insight into the degree of materials purification necessary to achieve optimized exciton transport.« less
Luo, Zhiqiang; Deng, Zhongqing; Liu, Yang; Wang, Guopeng; Yang, Wenning; Hou, Chengbo; Tang, Minming; Yang, Ruirui; Zhou, Huaming
2015-07-01
Ezetimibe is a novel lipid-lowering agent that inhibits intestinal absorption of dietary and biliary cholesterol. In the present work, a simple, sensitive and reproducible gradient reverse phase high performance liquid chromatographic (RP-HPLC) method for separation and determination of the related substances of ezetimibe was developed and validated. Eleven potential process-related impurities (starting materials, (3S,4S,3'S)-isomer, degradants and byproducts) were identified in the crude samples. Tentative structures for all the impurities were assigned primarily based on comparison of their retention time and mass spectrometric data with that of available standards and references. This method can be applied to routine analysis in quality control of both bulk drugs and commercial tablets. Separation of all these compounds was performed on a Phenomenex Luna Phenyl-Hexyl (100mm×4.6mm, 5μm) analytical column. The mobile phase-A consists of acetonitrile-water (pH adjusted to 4.0 with phosphoric acid)-methanol at 15:75:10 (v/v/v), and mobile phase-B contains acetonitrile. The eluted compounds were monitored at 210nm. Ezetimibe was subjected to hydrolytic, acid, base, oxidative, photolytic and thermal stress conditions as per ICH serves to generate degradation products that can be used as a worst case to assess the analytical method performance. The drug showed extensive degradation in thermal, acid, oxidative, base and hydrolytic stress conditions, while it was stable to photolytic degradation conditions. The main degradation product formed under thermal, acid, oxidative, base and hydrolytic stress conditions corresponding to (2R,3R,6S)-N, 6-bis(4-fluorophenyl)-2-(4-hydroxyphenyl)-oxane-3-carboxamide (Ezetimibe tetrahydropyran impurity) was characterized by LC-MS/MS analysis. The degradation products were well resolved from the main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. Copyright © 2015 Elsevier B.V. All rights reserved.
Yalçin, Güler; Yüktaş, Nüray
2006-10-11
A quantification method was developed for the two basic impurities, one of which is also a metabolite, of Nicergoline (NIC), by using reversed-phase high performance liquid chromatography (RP-HPLC) and diode array detector (DAD). One of these compounds,10-methoxy-6-methylergoline-8beta-methanol-5-bromo-3-pyridinecarboxylate (1-DN) is the metabolite as well as the impurity whereas, the other 10-methoxy-1,6-dimethylergoline-8beta-methanol-5-chloro-3-pyridinecarboxylate (5-CN) is only an impurity. The chromatographic column was Phenomenex, Luna, 5 microm, C18 (2), 250 mm x 4.6 mm. Mobile phase was 0.1 M ammonium acetate (NH4Ac) solution containing 4 mM 1-octanesulfonicacid sodium salt (OSASS) and 6 mM tetrabutylammonium hydrogen sulphate (TBAHS) (pH: 5.9)/acetonitrile (ACN) (62:38) for 1-DN and (64:36) for 5-CN. Flow rate was 1.0 mL min-1. The diode array detector was operated at 285 nm, band width: 4 nm. Linearity was obtained in the concentration range of 0.032 x 10-5 to 3.828 x 10-5 M, y = 116.88x + 0.2773 (r2 = 0.99989); the limit of detection (LOD) and limit of quantification (LOQ) were determined as 0.012 x 10-5 and 0.041 x 10-5 M for 1-DN, respectively. Linearity was obtained in the concentration range of 0.034 x 10-5 to 4.092 x 10-5 M, y = 104.24x + 0.7486 (r2 = 0.99996); (LOD) and (LOQ) were determined as 0.014 x 10-5 and 0.046 x 10-5 M for 5-CN, respectively. The recovery was 100.65% for 1-DN and 100.32% for 5-CN. The amount of 1-DN in 30 mg NIC was found as 209.65 microg (0.70%) and the amount of 5-CN in 30 mg NIC was found as 27.62 microg (0.09%).
Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors
NASA Astrophysics Data System (ADS)
Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad
2018-06-01
Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.
Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient
NASA Technical Reports Server (NTRS)
Thomas, B. R.; Chernov, A. A.
2000-01-01
Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.
Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits
NASA Astrophysics Data System (ADS)
Yang, Deren; Chen, Jiahe; Ma, Xiangyang; Que, Duanlin
2009-01-01
Impurities in Czochralski silicon (Cz-Si) used for ultra large-scaled-integrated (ULSI) circuits have been believed to deteriorate the performance of devices. In this paper, a review of the recent processes from our investigation on internal gettering in Cz-Si wafers which were doped with nitrogen, germanium and/or high content of carbon is presented. It has been suggested that those impurities enhance oxygen precipitation, and create both denser bulk microdefects and enough denuded zone with the desirable width, which is benefit of the internal gettering of metal contamination. Based on the experimental facts, a potential mechanism of impurity doping on the internal gettering structure is interpreted and, a new concept of 'impurity engineering' for Cz-Si used for ULSI is proposed.
NASA Astrophysics Data System (ADS)
Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.
2000-01-01
Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.
Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S
2008-10-03
We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.
Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.;
2001-01-01
Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.
Transport Simulations of DIII-D Discharges with Impurity Injection
NASA Astrophysics Data System (ADS)
Mandrekas, J.; Stacey, W. M.; Murakami, M.
2001-10-01
Several recent DIII-D discharges with external impurity injection into L-mode plasmas are analyzed with a coupled main plasma and multi-charge state 1frac 12-D impurity transport code. These discharges exhibit various degrees of confinement improvement, which has been attributed to the synergistic effects of impurity induced enhancement of the E×B shearing rate and reduction of the drift wave turbulence growth rate (M. Murakami, et. al., Nucl. Fusion 41) (2001) 317.. Impurity transport is described by empirical and neoclassical transport models. Both the standard neoclassical theory as well as an enhanced theory which takes into account the effects of external momentum input and radial momentum transport (W.M. Stacey, Phys. Plasmas 8) (2001) 158. have been considered.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Innovative sludge pretreatment technology for impurity separation using micromesh.
Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao
2018-05-23
In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2 min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.
Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J
2017-09-05
For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes
Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya
2016-01-01
We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility. PMID:27958304
Impurity transport in enhanced confinement regimes in RFX-mod Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Carraro, Lorella; Menmuir, Sheena; Fassina, Alessandro
2010-11-01
The results of impurity transport studies in RFX-mod enhanced confinement quasi-single helicity (QSH) and single helical axis (SHAx) regimes are presented and discussed. The impurity diffusion coefficient and pinch velocity are obtained through comparing experimental emission pattern (line emission and SXR time evolutions, SXR profiles) with the results of a 1-D impurity transport code. Previous analysis [S. Menmuir et al. to be published in Plasma Phys. Contr. Fus.] of impurity transport in RFX-mod standard discharges showed that the impurity pinch velocity, always directed outwards, features a barrier with high values around r/a = 0.8, where the diffusion coefficient decreases by one order of magnitude. In the QSH regime, the transition region in D and v is more internal and the barrier in velocity is wider and stronger. New results have been obtained in experiments with Ni laser blow-off (LBO) injection in high current discharges (Ip>1.5 MA) with long lasting QSH, to better characterize the Ni behavior inside the helical magnetic topology.
Dynamics of Fermionic Impurity in One Dimension
NASA Astrophysics Data System (ADS)
Guan, Huijie; Andrei, Natan
2014-03-01
We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.
NASA Astrophysics Data System (ADS)
Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.; Pimpinelli, A.; Einstein, T. L.
2011-01-01
In an accompanying article we showed that surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN) to Cu adatom and the diffusion barrier (Ed) of the impurity atom on Cu(0 0 1). Based on these two energy parameters, ENN and Ed, we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ⩽ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.
Effect Of Impurity On Cu Electromigration
NASA Astrophysics Data System (ADS)
Hu, C.-K.; Angyal, M.; Baker, B. C.; Bonilla, G.; Cabral, C.; Canaperi, D. F.; Choi, S.; Clevenger, L.; Edelstein, D.; Gignac, L.; Huang, E.; Kelly, J.; Kim, B. Y.; Kyei-Fordjour, V.; Manikonda, S. L.; Maniscalco, J.; Mittal, S.; Nogami, T.; Parks, C.; Rosenberg, R.; Simon, A.; Xu, Y.; Vo, T. A.; Witt, C.
2010-11-01
The impact of the existence of Cu grain boundaries on the degradation of Cu interconnect lifetime at the 45 nm technology node and beyond has suggested that improved electromigra-tion in Cu grain boundaries has become increasingly important. In this paper, solute effects of non-metallic (C, Cl, O and S) and metallic (Al, Co, In, Mg, Sn, and Ti) impurities on Cu elec-tromigration were investigated. The Cu alloy interconnects were fabricated by adjusting Cu electroplating solutions or by depositing a Cu alloy seed, a thin film layer of impurity, an alloy liner, or a metal cap. A large variation of Cu grain structure in the samples was achieved by adjusting the wafer fabrication process steps. The non-metallic impurities were found to be less than 0.1% in the electroplated Cu with no effect on Cu electromigration lifetimes. Most of the metallic impurities reduced Cu interface and grain boundary mass flows and enhanced Cu lifetime, but Al, Co, and Mg impurities did not mitigate Cu grain boundary diffusion.
NASA Astrophysics Data System (ADS)
Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Liu, Z. S.; Le, L. C.; Li, X. J.; He, X. G.; Liu, J. P.; Zhang, S. M.; Wang, H.; Zhu, J. J.; Yang, H.
2014-04-01
The influence of unintentionally doped carbon impurities on electrical resistivity and yellow luminescence (YL) of low-temperature (LT) grown Mg doped GaN films is investigated. It is found that the resistivity of Mg doped GaN films are closely related to the residual carbon impurity concentration, which may be attributed to the compensation effect of carbon impurities. The carbon impurity may preferentially form deep donor complex CN-ON resulting from its relatively low formation energy. This complex is an effective compensate center for MgGa acceptors as well as inducing YL in photoluminescence spectra. Thus, the low resistivity LT grown p-type GaN films can be obtained only when the residual carbon impurity concentration is sufficiently low, which can explain why LT P-GaN films with lower resistivity were obtained more easily when relatively higher pressure, temperature, or NH3/TMGa flow rate ratio were used in the LT grown Mg doped GaN films reported in earlier reports.
Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya
2016-12-01
We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r
2010-01-15
A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less
2013-08-15
DR. BINAYAK PANDA LOADS A SAMPLE IN THE IMS-6F SECONDARY ION MASS SPECTROSCOPE’S ULTRA HIGH VACUUM CHAMBER. IT IS CAPABLE OF ANALYZING VERY LIGHT ELEMENTS SUCH AS HYDROGEN AND LITHIUM IN ALLOYS. IT CAN ALSO ANALYZE VERY SMALL QUANTITIES OF IMPURITIES IN MATERIALS AT PARTS PER MILLION LEVELS, AND DETERMINE ISOTOPE RATIOS OF ELEMENTS, ALL IN SOLID SAMPLES.
75 FR 44917 - Castor Oil, Ethoxylated, Dioleate; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in...
77 FR 30407 - 1,2-Ethanediamine, N
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... environment. 2. The polymer does contain as an integral part of its composition the atomic elements carbon... impurities, any element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The polymer is neither...
78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... integral part of its composition, the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
Electrical resistivity of liquid iron with high concentration of light element impurities
NASA Astrophysics Data System (ADS)
Wagle, F.; Steinle-Neumann, G.
2017-12-01
The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.
A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range
NASA Astrophysics Data System (ADS)
Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun
2018-04-01
The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.
Mufusama, Jean-Pierre; Hoellein, Ludwig; Feineis, Doris; Holzgrabe, Ulrike; Bringmann, Gerhard
2018-05-29
A simple and robust CZE method was developed for the separation and quantification of the antimalarial compound amodiaquine as well as three of its synthetic impurities at a concentration equal to or lower than 0.5%. For capillary electrophoresis, a fused-silica capillary, a background electrolyte of 100 mM sodium phosphate buffer at a pH value of 6.2, a voltage of +20 kV, and a detection wavelength of 220 nm were used, allowing the determination of the analytes within 20 minutes. The method was validated according to the guideline Q2(R1) of the International Council for Harmonization with respect to linearity, precision, accuracy, limit of detection and limit of quantification, and was successfully applied to evaluate the quality of drug samples collected in the Democratic Republic of the Congo. Quantitative analysis results obtained by the CZE method were compared to those obtained with the contemporary HPLC method described in The International Pharmacopoeia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Nag, Tanay; Rajak, Atanu
2018-04-01
We investigate the effect of a time-reversal-breaking impurity term (of strength λ_{d}) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p-wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λ_{d} and eventually saturates with an exponential damping factor [∼exp(-λ_{d})] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λ_{d} for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λ_{d} and finally, for higher values of λ_{d}, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.
NASA Astrophysics Data System (ADS)
Nag, Tanay; Rajak, Atanu
2018-04-01
We investigate the effect of a time-reversal-breaking impurity term (of strength λd) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p -wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λd and eventually saturates with an exponential damping factor [˜exp(-λd) ] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λd for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λd and finally, for higher values of λd, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.
Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap
NASA Astrophysics Data System (ADS)
Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.
2015-05-01
The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.
Paramagnetic Attraction of Impurity-Helium Solids
NASA Technical Reports Server (NTRS)
Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.
2003-01-01
Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.
A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges
DOE R&D Accomplishments Database
Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.
1987-02-01
Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.
Previous studies have found the significant role of impurities (i.e., silicon, phosphorus) in the aggregation and sedimentation of TiO2 nanoparticles in water environment. However, it is not understood whether dissolution of the impurities potentially impacts the environment or t...
Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction
NASA Astrophysics Data System (ADS)
Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi
2016-11-01
The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
Creation of Rydberg Polarons in a Bose Gas
NASA Astrophysics Data System (ADS)
Camargo, F.; Schmidt, R.; Whalen, J. D.; Ding, R.; Woehl, G.; Yoshida, S.; Burgdörfer, J.; Dunning, F. B.; Sadeghpour, H. R.; Demler, E.; Killian, T. C.
2018-02-01
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p -wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n . Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.
Low-energy Model for Strongly Correlated Oxides
NASA Astrophysics Data System (ADS)
Liu, Shiu
We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter. Previous theoretical T-matrix and quantum Monte Carlo (QMC) studies, which include only the dilution effect of impurities, show a large discrepancy with experimental neutron scattering and nuclear quadrupole resonance (NQR) data in the doping dependence of the staggered magnetization at low doping. We demonstrate that this discrepancy is eliminated by including zinc orbitals in the three-band Hubbard model and by including impurity-induced frustrations into the effective spin model with realistic CuO2 parameters. Recent experimental study shows a significantly stronger suppression of spin stiffness in the case of Zn-doped La2CuO4 compared to the Mg-doped case and thus gives a strong support to our theory. Different site-diluting dopants with different electron configurations affect the magnetism of the whole system differently. We argue that the available impurity orbitals are crucial in deriving theoretical models for the site-diluted systems and the proposed impurity-induced frustrations should be important in other strongly correlated oxides and charge-transfer insulators.
The impurity of radioiodinated triolein
Kennedy, J. A.; Kinloch, J. D.
1964-01-01
Commercially supplied radioiodinated triolein has been shown by thin-layer chromatography and silicic acid column chromatography to contain impurities, consisting mainly of diglycerides and monoglycerides, but also a small amount of free fatty acid. The effect of these impurities on the radioiodinated triolein absorption test requires further investigation. Images PMID:14149942
First-Principles Study of Impurities in TlBr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Mao-Hua
2012-01-01
TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.
First-principles study of impurities in TlBr
NASA Astrophysics Data System (ADS)
Du, Mao-Hua
2012-04-01
TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.
Extraction process for removing metallic impurities from alkalide metals
Royer, L.T.
1987-03-20
A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.
Classical impurity ion confinement in a toroidal magnetized fusion plasma.
Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S
2012-03-23
High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.
Transient snakes in an ohmic plasma associated with a minor disruption in the HT-7 tokamak
NASA Astrophysics Data System (ADS)
Mao, Songtao; Xu, Liqing; Hu, Liqun; Chen, Kaiyun
2014-05-01
A transient burst (ms, an order of the fast-particle slowdown timescale) of a spontaneous snake is observed for the first time in a HT-7 heavy impurity ohmic plasma. The features of the low-Z impurity snake are presented. The flatten electron profile due to the heavy impurity reveals the formation of a large magnetic island. The foot of the impurity accumulation is consistent with the location of the transient snake. The strong frequency-chirping behaviors and the spatial structures of the snake are also presented.
Wu, Amanda S.; Brown, Donald W.; Clausen, Bjørn; ...
2017-03-01
Uranium-niobium alloys can exist with significantly different microstructures and mechanical properties, heavily influenced by thermomechanical processing history and impurities. In this study, the influence of Ti and other impurities is studied on uranium-14 at.% niobium additively manufactured using laser powder bed fusion. In two different metallic impurity levels were investigated and a Nb equivalent (Nbeq) composition is defined to represent the impurities. Furthermore, in-situ neutron diffraction during compression loading shows that increased Nbeq promotes the formation of γ°-tetragonal phase at the expense of α''-monoclinic phase, resulting in 2 × higher yield strength than water quenched α'' and a strain inducedmore » transformation to α'' with superelastic strains to 4.5%.« less
NASA Astrophysics Data System (ADS)
Yilmaz, S.; Kirak, M.
2018-05-01
In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.
Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma
Belli, Emily A.; Candy, Jefferey M.; Angioni, C.
2014-11-07
In this paper, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch-Schl¨uter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impuritymore » Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number.« less
Perpetual motion of a mobile impurity in a one-dimensional quantum gas
NASA Astrophysics Data System (ADS)
Lychkovskiy, O.
2014-03-01
Consider an impurity particle injected in a degenerate one-dimensional gas of noninteracting fermions (or, equivalently, Tonks-Girardeau bosons) with some initial momentum p0. We examine the infinite-time value of the momentum of the impurity, p∞, as a function of p0. A lower bound on |p∞(p0)| is derived under fairly general conditions. The derivation, based on the existence of the lower edge of the spectrum of the host gas, does not resort to any approximations. The existence of such bound implies the perpetual motion of the impurity in a one-dimensional gas of noninteracting fermions or Tonks-Girardeau bosons at zero temperature. The bound admits an especially simple and useful form when the interaction between the impurity and host particles is everywhere repulsive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Amanda S.; Brown, Donald W.; Clausen, Bjørn
Uranium-niobium alloys can exist with significantly different microstructures and mechanical properties, heavily influenced by thermomechanical processing history and impurities. In this study, the influence of Ti and other impurities is studied on uranium-14 at.% niobium additively manufactured using laser powder bed fusion. In two different metallic impurity levels were investigated and a Nb equivalent (Nbeq) composition is defined to represent the impurities. Furthermore, in-situ neutron diffraction during compression loading shows that increased Nbeq promotes the formation of γ°-tetragonal phase at the expense of α''-monoclinic phase, resulting in 2 × higher yield strength than water quenched α'' and a strain inducedmore » transformation to α'' with superelastic strains to 4.5%.« less
Semiconducting behavior of substitutionally doped bilayer graphene
NASA Astrophysics Data System (ADS)
Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek
2018-02-01
In the framework of the Green's functions approach, random tight-binding model and using the coherent potential approximation, electronic characteristics of the bilayer graphene are investigated by exploring various forms of substitutional doping of a single or both layers of the system by either boron and (or) nitrogen atoms. The results for displacement of the Fermi level resemble the behavior of acceptor or donor doping in a conventional semiconductor, dependent on the impurity type and concentration. The particular pattern of doping of just one layer with one impurity type is most efficient for opening a gap within the energy bands which could be tuned directly by impurity concentration. Doping both layers at the same time, each with one impurity type, leads to an anomaly whereby the gap decreases with increasing impurity concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Chengkang; Wang Shaojie; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031
2007-11-15
The expression for the poloidal rotation velocity of the primary ions that is caused by the parallel inductive electric field in tokamaks and valid in all collisionality regimes is derived via the Hirshman-Sigmar moment approach. Also the expression of the collisional impurity ions poloidal rotation velocity that is caused by the parallel inductive electric field in tokamaks is derived. The poloidal rotation velocities of the primary ions and the impurity ions are sensitive to the primary ion collisionality parameter and the impurity strength parameter. The poloidal rotation velocities of the primary ions and the impurity ions decrease with the primarymore » ion collisionality parameter and decrease with the impurity strength parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo
Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less
Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo; ...
2016-11-10
Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less
Poloidal asymmetries in edge transport barriersa)
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.
2015-05-01
Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.
NASA Astrophysics Data System (ADS)
Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.
2017-07-01
We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.