Sample records for imrt developing physics

  1. Intensity-modulated radiation therapy: a review with a physics perspective.

    PubMed

    Cho, Byungchul

    2018-03-01

    Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

  2. Book Review:

    NASA Astrophysics Data System (ADS)

    Fallone, B. G.

    2004-01-01

    This book represents the proceedings of the five day programme on IMRT techniques presented at the 2003 American Association of Physicists in Medicine (AAPM) Summer School held in Colorado Springs, Colorado. The book is essentially an overview of IMRT techniques, discussing the history, the mathematical processes involved in the planning stages, the biological indices for evaluations, the off-line and on-line medical imaging that is required, the various IMRT delivery techniques available, positioning and motion verification, shielding and QA issues, and some clinical applications. There is some additional discussion on modulated electron and proton therapy, views on the clinical and financial impact of IMRT, as well as some speculation on the future uses of IMRT. The fact that the book is an `overview' must be emphasized. Medical physicists who are well-read in IMRT, or have implemented IMRT, even partially, may be a little disappointed with the book. Although specific details were purposely omitted, the well-read physicist would have preferred to go right to the `heart of the matter', something this book fails to do. As is typical of many proceedings-type books, there is a certain level of inconsistency of writing styles, as well as some redundancy between the different chapters. It is unfortunate that such a large volume does not have an index to allow a reader to explore a particular subject pertaining to IMRT. The reader would have to guide himself/herself by the table of contents before each chapter which could be a problem if the reader requires some information quickly. It is interesting to note that the book lends itself to a variety of professionals interested in IMRT, including administrators. It may be a source of help for medical physicists who wish to discuss IMRT issues with higher level administration, for example. Some clinical applications are also reviewed. The lack of details concerning the advantages of IMRT with respect to clinical outcome is probably due to the fact that IMRT is a rather new technology, and there is not sufficient data to perform a comprehensive comparison to more conventional techniques. However, even a speculative discussion on the possible theoretical advantages of IMRT at the clinical or radiobiological level would have been interesting. It is unfortunate, but the question as to whether all of this technology is worth the clinical outcome has, unfortunately, not really been addressed. One can, however, appreciate the difficulties by admitting, again, that IMRT is still a rather novel technique and more time is required to consider these issues appropriately. The book is an obvious reference source for all practical aspects of IMRT implementations. In particular, there are some interesting discussions on some of the practical issues concerning the pitfalls in commissioning linacs and optimization systems for IMRT, the practical limitations to optimization, and IMRT QA issues and procedures. These discussions are crucial to the implementation of IMRT. Other discussions refer to patient-positioning issues, and the various techniques, albeit not all fully developed, with which these issues can be addressed. It would be very difficult, if not impossible, at the present time, to develop a `textbook' on IMRT because IMRT is such a novel technique. However, the present book can certainly be an aid to an instructor as it also contains a CD of the chapters in Acrobat format, some chapter figures in colour, and quite an interesting selection of movie clips to supplement one of the chapters. In summary, the book can be considered a worthwhile reference in the fast-changing field of IMRT, and should be part of any medical physics library as supplemental reading material for medical physics graduate students, medical physics residents studying for certification, and practising medical physicists who wish to implement IMRT in the clinic.

  3. The impact of introducing intensity modulated radiotherapy into routine clinical practice.

    PubMed

    Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M

    2005-12-01

    Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.

  4. SU-F-T-296: Modulated Therapy Down Under: A Survey of IMRT & VMAT Physics Practice in Australia and New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, J; School of Physics, University of Sydney; Vial, P

    Purpose: A comprehensive survey of Australasian radiation oncology physics departments was undertaken to capture a snapshot of current usage, commissioning and QA practices for intensity-modulated therapies. Methods: An online survey was developed and advertised to Australian and New Zealand radiation oncology physicists through the local college (ACPSEM) in April 2015. The survey consisted of 147 questions in total, covering IMRT, VMAT and Tomotherapy, and details specific to different treatment planning systems. Questions captured detailed information on equipment, policies and procedures for the commissioning and QA of each treatment technique. Results: 41 partial or complete responses were collected, representing 59 departmentsmore » out of the 78 departments operational. 137 and 84 linacs from these departments were using IMRT and VMAT respectively, from a total 150 linacs. 100% and 78% of respondents were treating with IMRT and VMAT respectively. There are at least 8 different treatment planning systems being used for IMRT or VMAT, and large variations in all aspects of QA policies and procedures. 29 responses indicated 72 methods routinely used for pre-treatment QA, when breaking down by device and analysis type. Similar numbers of departments use field-by-field analysis compared to composite analysis (56% to 44%) while a majority use true gantry angle delivery compared to fixed gantry at 0° (72% to 28%). 19 different implementations of gamma index analysis parameters were reported from 33 responses. A follow-up one-day workshop to highlight the results, discuss the role of QA and share equipment-specific knowledge across users was conducted in November 2015. Conclusion: While IMRT and VMAT are almost universally available in Australasia, large variations in practice indicate a need for national or consensus guidelines.« less

  5. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the therapeutic ratio can be increased over that which can be achieved with conventional selective boosting IMRT using physical dose-volume objectives. In conclusion, a novel risk-adaptive radiotherapy strategy is proposed and promises increased expected local control for locoregionally advanced tumors with equivalent or better normal tissue sparing.

  6. Medical physics practice in the next decade

    PubMed Central

    Paliwal, Bhudatt

    2006-01-01

    Impressive advances in computers and materials science have fueled a broad-based confluence of basic science breakthroughs. These advances are making us reformulate our learning, teaching and credentialing methodologies and research and development frontiers. We are now in the age of molecular medicine. In the entire field of health care, a paradigm shift from population-based solutions to individual specific care is taking place. These trends are reshaping the practice of medical physics. In this short presentation, examples are given to illustrate developments in image-guided intensity-modulated and adaptive helical tomotherapy, enhanced application of intensity modulation radiotherapy (IMRT) using adaptive radiotherapy and conformal avoidance. These advances include improved normal tissue sparing and permit dose reconstruction and verification, thereby allowing significant biologically effective dose escalation and reduced radiation toxicity. The intrinsic capability of helical TomoTherapy for megavoltage CT imaging for IMRT image-guidance is also discussed. Finally developments in motion management are described. PMID:22275799

  7. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  8. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... specialized training in the field of radiation oncology physics, ensures the linear accelerator delivers the precise radiation ... critical normal structures, as well as the patient's health. Typically, patients are scheduled for IMRT sessions five ...

  9. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.

    PubMed

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-03-07

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre of the primary PTV and the approximations present in the dose calculation.

  10. MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, D; Popple, R; Balter, P

    2014-06-15

    A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMATmore » has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.« less

  11. Characterization and clinical evaluation of a novel 2D detector array for conventional and flattening filter free (FFF) IMRT pre-treatment verification.

    PubMed

    Sekar, Yuvaraj; Thoelking, Johannes; Eckl, Miriam; Kalichava, Irakli; Sihono, Dwi Seno Kuncoro; Lohr, Frank; Wenz, Frederik; Wertz, Hansjoerg

    2018-04-01

    The novel MatriXX FFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. The verification of the MatriXX FFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXX FFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. The MatriXX FFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXX FFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ (3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ (3%,3mm) =(99.1±1.1)%). The MatriXX FFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF. Copyright © 2017. Published by Elsevier GmbH.

  12. MO-G-BRE-02: A Survey of IMRT QA Practices for More Than 800 Institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulliam, K; Kerns, J; Howell, R

    Purpose: A wide range of techniques and measurement devices are employed for IMRT QA, causing a large variation of accepted action limits and potential follow up for failing plans. Such procedures are not well established or accepted in the medical physics community. To achieve the goal of proving insight into current IMRT QA practices, we created an electronic IMRT QA survey. The survey was open to a variety of the most common QA devices and assessed the type of comparison to measurement, action limits, delivery methods, and clinical action for failing QA plans. Methods: We conducted an online survey throughmore » the Radiological Physics Center's (RPC) annual survey with the goal of ascertaining elements of routine patient-specific IMRT QA. A total of 874 institutions responded to the survey. The questions ranged from asking for action limits, dosimeter type(s) used, delivery techniques, and actions taken when a plan fails IMRT QA. Results: The most common (52%) planar gamma criteria was 3%/3 mm with a 95% of pixels passing criteria. The most common QA device were diode arrays (48%). The most common first response to a plan failing QA was to re-measure at the same point the point dose (89%), second was to re-measure at a new point (13%), and third was to analyze the plan in relative instead of absolute mode (10%) (Does not add to 100% as not all institutions placed a response for each QA follow-up option). Some institutions, however, claimed that they had never observed a plan failure. Conclusion: The survey provided insights into the way the community currently performs IMRT QA. This information will help in the push to standardize action limits among dosimeters.« less

  13. Incorporating uncertainty and motion in Intensity Modulated Radiation Therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin Charles

    In radiation therapy, one seeks to destroy a tumor while minimizing the damage to surrounding healthy tissue. Intensity Modulated Radiation Therapy (IMRT) uses overlapping beams of x-rays that add up to a high dose within the target and a lower dose in the surrounding healthy tissue. IMRT relies on optimization techniques to create high quality treatments. Unfortunately, the possible conformality is limited by the need to ensure coverage even if there is organ movement or deformation. Currently, margins are added around the tumor to ensure coverage based on an assumed motion range. This approach does not ensure high quality treatments. In the standard IMRT optimization problem, an objective function measures the deviation of the dose from the clinical goals. The optimization then finds the beamlet intensities that minimize the objective function. When modeling uncertainty, the dose delivered from a given set of beamlet intensities is a random variable. Thus the objective function is also a random variable. In our stochastic formulation we minimize the expected value of this objective function. We developed a problem formulation that is both flexible and fast enough for use on real clinical cases. While working on accelerating the stochastic optimization, we developed a technique of voxel sampling. Voxel sampling is a randomized algorithms approach to a steepest descent problem based on estimating the gradient by only calculating the dose to a fraction of the voxels within the patient. When combined with an automatic sampling rate adaptation technique, voxel sampling produced an order of magnitude speed up in IMRT optimization. We also develop extensions of our results to Intensity Modulated Proton Therapy (IMPT). Due to the physics of proton beams the stochastic formulation yields visibly different and better plans than normal optimization. The results of our research have been incorporated into a software package OPT4D, which is an IMRT and IMPT optimization tool that we developed.

  14. On the performances of different IMRT Treatment Planning Systems for selected paediatric cases.

    PubMed

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Asell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-02-15

    To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 +/- 0.15 (Eclipse) to 0.92 +/- 0.18 (Pinnacle(3) with physical optimisation). For target volumes, the score ranged from 0.05 +/- 0.05 (Pinnacle(3) with physical optimisation) to 0.16 +/- 0.07 (Corvus). A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients.

  15. On the performances of different IMRT treatment planning systems for selected paediatric cases

    PubMed Central

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Åsell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-01-01

    Background To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Methods Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. Results For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 ± 0.15 (Eclipse) to 0.92 ± 0.18 (Pinnacle3 with physical optimisation). For target volumes, the score ranged from 0.05 ± 0.05 (Pinnacle3 with physical optimisation) to 0.16 ± 0.07 (Corvus). Conclusion A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients. PMID:17302972

  16. Using gEUD based plan analysis method to evaluate proton vs. photon plans for lung cancer radiation therapy.

    PubMed

    Xiao, Zhiyan; Zou, Wei J; Chen, Ting; Yue, Ning J; Jabbour, Salma K; Parikh, Rahul; Zhang, Miao

    2018-03-01

    The goal of this study was to exam the efficacy of current DVH based clinical guidelines draw from photon experience for lung cancer radiation therapy on proton therapy. Comparison proton plans and IMRT plans were generated for 10 lung patients treated in our proton facility. A gEUD based plan evaluation method was developed for plan evaluation. This evaluation method used normal lung gEUD(a) curve in which the model parameter "a" was sampled from the literature reported value. For all patients, the proton plans delivered lower normal lung V 5 Gy with similar V 20 Gy and similar target coverage. Based on current clinical guidelines, proton plans were ranked superior to IMRT plans for all 10 patients. However, the proton and IMRT normal lung gEUD(a) curves crossed for 8 patients within the tested range of "a", which means there was a possibility that proton plan would be worse than IMRT plan for lung sparing. A concept of deficiency index (DI) was introduced to quantify the probability of proton plans doing worse than IMRT plans. By applying threshold on DI, four patients' proton plan was ranked inferior to the IMRT plan. Meanwhile if a threshold to the location of curve crossing was applied, 6 patients' proton plan was ranked inferior to the IMRT plan. The contradictory ranking results between the current clinical guidelines and the gEUD(a) curve analysis demonstrated there is potential pitfalls by applying photon experience directly to the proton world. A comprehensive plan evaluation based on radio-biological models should be carried out to decide if a lung patient would really be benefit from proton therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  18. SU-E-T-59: A Novel Multi-Beam Dynamic IMRT with Fixed-Jaw Technique for Left Breast Cancer Patients with Regional Lymph Nodes Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Yang, Z; Hu, W

    2015-06-15

    Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used tomore » evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.« less

  19. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a potential to generate high-quality proton beams for cancer treatment. Significant improvement in target dose uniformity and normal tissue sparing as well as in reduction of whole body dose can be achieved by IMPT with appropriate optimization and beam setup.

  20. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    PubMed

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  1. Reducing dose to the lungs through loosing target dose homogeneity requirement for radiotherapy of non small cell lung cancer.

    PubMed

    Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong

    2017-11-01

    It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P < 0.05). There were no significant differences between the two IMRT plans on V25, V30, V40, V50 and mean dose for heart. The maximum doses of cords in two type IMRT plans were nearly the same. IMRT plans with inhomogeneous target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Intensity-modulated radiotherapy for nasopharyngeal carcinoma: Clinical correlation of dose to the pharyngo-esophageal axis and dysphagia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fua, Tsien F.; Corry, June; Milner, Alvin D.

    2007-03-15

    Purpose: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. Methods and Materials: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteralmore » feeding requirements. Results: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. Conclusions: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.« less

  3. Hypothyroidism as a Consequence of Intensity-Modulated Radiotherapy With Concurrent Taxane-Based Chemotherapy for Locally Advanced Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel

    Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less

  4. A method for photon beam Monte Carlo multileaf collimator particle transport

    NASA Astrophysics Data System (ADS)

    Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe

    2002-09-01

    Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.

  5. SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, J Tonigan; Balter, P; Johnson, J

    2015-06-15

    Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and usedmore » for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.« less

  6. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pow, Edmond; Kwong, Dora; McMillan, Anne S.

    2006-11-15

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results:more » Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach.« less

  7. A novel conformity index for intensity modulated radiation therapy plan evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Fion W. K.; Law, Maria Y. Y.; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 999077 Hong Kong

    2012-09-15

    Purpose: Intensity modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers. Manual evaluation of IMRT plans for head-and-neck cancers has been especially challenging necessitating efficient and objective assessment tools. In this work, the authors address this issue by developing a personalized conformity index (CI) for comparison of IMRT plans for head-and-neck cancers and evaluating its plan quality discerning power in comparison with other widely used CIs. Methods: A two-dimensional CI with dose and distance incorporated (CI{sub DD}) was developed using the MATLAB program language, to quantify the planning target volume (PTV) coverage. Valuable information contained in themore » digital imaging and communication in medicine (DICOM) RT objects were harvested for computation of each of the CI{sub DD} components. Apart from the dose penalty factor, a distance-based exponential function was employed by varying the penalty weight associated with the location of cold spots within the PTV. With the goal of deriving a customized penalty factor, the distances between individual pixel and its nearest PTV boundary was found. Using the exponential function, the impact of distance penalty was substantially larger for cold spots closer to the PTV centroid but petered out quickly wherever they were situated in the vicinity of PTV border. In order to evaluate the CI{sub DD} scoring system, three CT image data sets of nasopharyngeal carcinoma (NPC) patients were collected. Ten IMRT plans with degrading qualities were generated from each dataset and were ranked based on CI{sub DD} and other existing indices. The coefficient of variance was calculated for each dataset to compare the degree of variation. Results: The CI{sub DD} scoring system that considered spatial importance of each voxel within the PTV was successfully developed. The results demonstrated that the CI{sub DD} including four discrete factors could provide accurate rankings of plan quality by examining the relative importance of each cold spot within the PTVs. Apart from the dose penalty factor, a distance-based exponential function was employed taking the specific tumor geometry into account. Compared with other commonly used CIs, the CI{sub DD} resulted in the largest coefficient of variance among the ten IMRT plans for each dataset, indicating that its discerning power was the best among the CIs being compared. Conclusions: The CI{sub DD} scoring system was successfully developed to incorporate patient-specific spatial dose information and provide a geometry-based physical index for comparison of IMRT plans for head-and-neck cancers. By taking individual tumor geometry into account, the superiority of CI{sub DD} in plan discerning power was demonstrated. The use of CI{sub DD} could provide an effective means of benchmarking performance, reducing treatment plan variability, and advancing the quality of current IMRT planning.« less

  8. Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.

    PubMed

    Xi, Mian; Lin, Steven H

    2017-07-01

    Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.

  9. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    PubMed

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT.The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  10. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 seriesmore » linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.« less

  11. AAA and AXB algorithms for the treatment of nasopharyngeal carcinoma using IMRT and RapidArc techniques.

    PubMed

    Kamaleldin, Maha; Elsherbini, Nader A; Elshemey, Wael M

    2017-09-27

    The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-D m and AXB-D w ) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D 2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    PubMed

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Deep nets vs expert designed features in medical physics: An IMRT QA case study.

    PubMed

    Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer

    2018-03-30

    The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.

  14. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  15. SU-E-J-125: A Novel IMRT Planning Technique to Spare Sacral Bone Marrow in Pelvic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, S; Bhatia, S; Sun, W

    Purpose: Develop an IMRT planning technique that can preferentially spare sacral bone marrow for pelvic cancer patients. Methods: Six pelvic cancer patients (two each with anal, cervical, and rectal cancer) were enrolled in an IRB approved protocol to obtain FLT PET images at simulation, during, and post chemoradiation therapy. Initially, conventional IMRT plans were created to maintain target coverage and reduce dose to OARs such as bladder, bowel, rectum, and femoral heads. Simulation FLT PET images were used to create IMRT plans to spare bone marrow identified as regions with SUV of 2 or greater (IMRT-BMS) within the pelvic bonesmore » from top of L3 to 5mm below the greater trochanter without compromising PTV coverage or OAR sparing when compared to the initial IMRT plan. IMRT-BMS plans used 8–10 beam angles that surrounded the subject. These plans were used for treatment. Retrospectively, the same simulation FLT PET images were used to create IMRT plans that spared bone marrow located in the sacral pelvic bone region (IMRT-FAN) also without compromising PTV coverage or OAR sparing. IMRT-FAN plans used 16 beam angles every 12° anteriorly from 90° – 270°. Optimization objectives for the sacral bone marrow avoidance region were weighted to reduce ≥V10. Results: IMRT-FAN reduced dose to the sacral bone marrow for all six subjects. The average V5, V10, V20, and V30 differences from the IMRT-BMS plan were −2.2 ± 1.7%, −11.4 ± 3.6%, −17.6 ± 5.1%, and −19.1 ± 8.1% respectively. Average PTV coverage change was 0.5% ± 0.8% from the conventional IMRT plan. Conclusion: An IMRT planning technique that uses beams from the anterior and lateral directions reduced the volume of sacral bone marrow that receives ≤10Gy while maintaining PTV coverage and OAR sparing. Additionally, the volume of sacral bone marrow that received 20 or 30 Gy was also reduced.« less

  16. From analytic inversion to contemporary IMRT optimization: Radiation therapy planning revisited from a mathematical perspective

    PubMed Central

    Censor, Yair; Unkelbach, Jan

    2011-01-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694

  17. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.

    PubMed

    Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A

    2018-04-01

    Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions. © 2018 American Association of Physicists in Medicine.

  18. Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.

    PubMed

    Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao

    2017-05-16

    The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Lin, M; Chen, L

    Purpose: Recent in vitro and in vivo experimental findings provided strong evidence that pulsed low-dose-rate radiotherapy (PLDR) produced equivalent tumor control as conventional radiotherapy with significantly reduced normal tissue toxicities. This work aimed to implement a PLDR clinical protocol for the management of recurrent cancers utilizing IMRT and VMAT. Methods: Our PLDR protocol requires that the daily 2Gy dose be delivered in 0.2Gy×10 pulses with a 3min interval between the pulses. To take advantage of low-dose hyper-radiosensitivity the mean dose to the target is set at 0.2Gy and the maximum dose is limited to 0.4Gy per pulse. Practical planning strategiesmore » were developed for IMRT and VMAT: (1) set 10 ports for IMRT and 10 arcs for VMAT with each angle/arc as a pulse; (2) set the mean dose (0.2Gy) and maximum dose (0.4Gy) to the target per pulse as hard constraints (no constraints to OARs); (3) select optimal port/arc angles to avoid OARs; and (4) use reference structures in or around target/OARs to reduce maximum dose to the target/OARs. IMRT, VMAT and 3DCRT plans were generated for 60 H and N, breast, lung, pancreas and prostate patients and compared. Results: All PLDR treatment plans using IMRT and VMAT met the dosimetry requirements of the PLDR protocol (mean target dose: 0.20Gy±0.01Gy; maximum target dose < 0.4Gy). In comparison with 3DCRT, IMRT and VMAT exhibited improved target dose conformity and OAR dose sparing. A single arc can minimize the difference in the target dose due to multi-angle incidence although the delivery time is longer than 3DCRT and IMRT. Conclusion: IMRT and VMAT are better modalities for PLDR treatment of recurrent cancers with superior target dose conformity and critical structure sparing. The planning strategies/guidelines developed in this work are practical for IMRT/VMAT treatment planning to meet the dosimetry requirements of the PLDR protocol.« less

  20. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer.

    PubMed

    Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko

    2005-12-01

    To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.

  1. Optimal Normal Tissue Sparing in Craniospinal Axis Irradiation Using IMRT With Daily Intrafractionally Modulated Junction(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van

    2011-12-01

    Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques.more » Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.« less

  2. Socioeconomic status and quality of life in patients with locally advanced head and neck cancer.

    PubMed

    Tribius, S; Meyer, M S; Pflug, C; Hanken, H; Busch, C-J; Krüll, A; Petersen, C; Bergelt, C

    2018-05-07

    Socioeconomic aspects play an important role in health care. Patients with locally advanced head and neck cancer (LAHNC) experience detrimental effects on their quality of life (QoL). This prospective study examines QoL differences between patients with different socioeconomic status (SES) after intensity-modulated radiation therapy (IMRT). In all, 161 patients were questioned at the end of IMRT and at 12 and 24 months follow-up using the questionnaires of the European Organization for Research and Treatment of Cancer (EORTC) QLQ-30 and QLQ-HN35. Patients' QoL 2 years after IMRT was compared to a population reference sample and QoL of patients from lower, middle, and higher social class 2 years after IMRT was analyzed by ANCOVA using baseline QoL (end of radiation treatment) as a covariate. Patients with high SES report worse QoL at the end of IMRT in the domains global health status (-15.2; p = 0.005), role function (-23.8; p = 0.002), and social function (-19.4; p = 0.023) compared to patients with middle and low SES. QoL improved during the first 12 and 24 months. However, 2 years after IMRT, middle and low SES patients report lower QoL in the domains global health status, physical function, and role function, and report a higher general (fatigue, pain, dyspnea) and head and neck cancer-specific symptom burden (pain, swallowing, senses, speech, social eating, opening mouth, and felt ill) than patients with high SES. After IMRT for LAHNC, patients with high SES report worse QoL compared to patients with middle or low SES. There is a marked improvement within the first 24 months in many domains. However, the magnitude of improvement in patients with middle or low SES is significantly smaller compared to patients with high SES.

  3. SU-G-TeP4-02: A Method for Evaluating the Direct Impact of Failed IMRT QAs On Patient Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneser, S; Butkus, M

    Purpose: We developed a method to calculate patient doses corresponding to IMRT QA measurements in order to determine and assess the actual dose delivered for plans with failed (or borderline) IMRT QA. This work demonstrates the feasibility of automatically computing delivered patient dose from portal dosimetry measurements in the Varian TPS system, which would provide a valuable and clinically viable IMRT QA tool for physicists and physicians. Methods: IMRT QA fluences were measured using portal dosimetry, processed using in-house matlab software, and imported back into Eclipse to calculate dose on the planning CT. To validate the proposed workflow, the Eclipsemore » calculated portal dose for a 5-field sliding window prostate boost plan was processed as described above. The resulting dose was compared to the planned dose and found to be within 0.5 Gy. Two IMRT QA results for the prostate boost plan (one that failed and one that passed) were processed and the resulting patient doses were evaluated. Results: The max dose difference between IMRT QA #1 and the original planned and approved dose is 4.5 Gy, while the difference between the planned and IMRT QA #2 dose is 4.0 Gy. The inferior portion of the PTV is slightly underdosed in both plans, and the superior portion is slightly overdosed. The patient dose resulting from IMRT QA #1 and #2 differs by only 0.5 Gy. With this new information, it may be argued that the evaluated plan alteration to obtain passing gamma analysis produced clinically irrelevant differences. Conclusion: Evaluation of the delivered QA dose on the planning CT provides valuable information about the clinical relevance of failed or borderline IMRT QAs. This particular workflow demonstrates the feasibility of pushing the measured IMRT QA portal dosimetry results directly back onto the patient planning CT within the Varian system.« less

  4. A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment

    PubMed Central

    QUAN, ENZHUO M.; LI, XIAOQIANG; LI, YUPENG; WANG, XIAOCHUN; KUDCHADKER, RAJAT J.; JOHNSON, JENNIFER L.; KUBAN, DEBORAH A.; LEE, ANDREW K.; ZHANG, XIAODONG

    2013-01-01

    Purpose We performed a comprehensive comparative study of the plan quality between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of prostate cancer. Methods and Materials Eleven patients with prostate cancer treated at our institution were randomly selected for this study. For each patient, a VMAT plan and a series of IMRT plans using an increasing number of beams (8, 12, 16, 20, and 24 beams) were examined. All plans were generated using our in-house-developed automatic inverse planning (AIP) algorithm. An existing 8-beam clinical IMRT plan, which was used to treat the patient, was used as the reference plan. For each patient, all AIP-generated plans were optimized to achieve the same level of planning target volume (PTV) coverage as the reference plan. Plan quality was evaluated by measuring mean dose to and dose-volume statistics of the organs-at-risk, especially the rectum, from each type of plan. Results For the same PTV coverage, the AIP-generated VMAT plans had significantly better plan quality in terms of rectum sparing than the 8-beam clinical and AIP-generated IMRT plans (p < 0.0001). However, the differences between the IMRT and VMAT plans in all the dosimetric indices decreased as the number of beams used in IMRT increased. IMRT plan quality was similar or superior to that of VMAT when the number of beams in IMRT was increased to a certain number, which ranged from 12 to 24 for the set of patients studied. The superior VMAT plan quality resulted in approximately 30% more monitor units than the 8-beam IMRT plans, but the delivery time was still less than 3 minutes. Conclusions Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating prostate cancer. PMID:22704703

  5. Novel, full 3D scintillation dosimetry using a static plenoptic camera.

    PubMed

    Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis

    2014-08-01

    Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm(3) EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle(3) was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions.

  6. Novel, full 3D scintillation dosimetry using a static plenoptic camera

    PubMed Central

    Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis

    2014-01-01

    Purpose: Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm3 EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. Results: The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle3 was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Conclusions: Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions. PMID:25086549

  7. Dependence of Achievable Plan Quality on Treatment Technique and Planning Goal Refinement: A Head-and-Neck Intensity Modulated Radiation Therapy Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.

    2015-03-15

    Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less

  8. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    PubMed

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less

  10. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.

  11. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less

  12. IMRT delivers lower radiation doses to dental structures than 3DRT in head and neck cancer patients.

    PubMed

    Fregnani, Eduardo Rodrigues; Parahyba, Cláudia Joffily; Morais-Faria, Karina; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Mendes; de Moraes, Fábio Yone; da Conceição Vasconcelos, Karina Gondim Moutinho; Menegussi, Gisela; Santos-Silva, Alan Roger; Brandão, Thais B

    2016-09-07

    Radiotherapy (RT) is frequently used in the treatment of head and neck cancer, but different side-effects are frequently reported, including a higher frequency of radiation-related caries, what may be consequence of direct radiation to dental tissue. The intensity-modulated radiotherapy (IMRT) was developed to improve tumor control and decrease patient's morbidity by delivering radiation beams only to tumor shapes and sparing normal tissue. However, teeth are usually not included in IMRT plannings and the real efficacy of IMRT in the dental context has not been addressed. Therefore, the aim of this study is to assess whether IMRT delivers lower radiation doses to dental structures than conformal 3D radiotherapy (3DRT). Radiation dose delivery to dental structures of 80 patients treated for head and neck cancers (oral cavity, tongue, nasopharynx and oropharynx) with IMRT (40 patients) and 3DRT (40 patients) were assessed by individually contouring tooth crowns on patients' treatment plans. Clinicopathological data were retrieved from patients' medical files. The average dose of radiation to teeth delivered by IMRT was significantly lower than with 3DRT (p = 0.007); however, only patients affected by nasopharynx and oral cavity cancers demonstrated significantly lower doses with IMRT (p = 0.012 and p = 0.011, respectively). Molars received more radiation with both 3DRT and IMRT, but the latter delivered significantly lower radiation in this group of teeth (p < 0.001), whereas no significant difference was found for the other dental groups. Maxillary teeth received lower doses than mandibular teeth, but only IMRT delivered significantly lower doses (p = 0.011 and p = 0.003). Ipsilateral teeth received higher doses than contralateral teeth with both techniques and IMRT delivered significantly lower radiation than 3DRT for contralateral dental structures (p < 0.001). IMRT delivered lower radiation doses to teeth than 3DRT, but only for some groups of patients and teeth, suggesting that this decrease was more likely due to the protection of other high risk organs, and was not enough to remove teeth from the zone of high risk for radiogenic disturbance (>30Gy).

  13. Efficiency gains for spinal radiosurgery using multicriteria optimization intensity modulated radiation therapy guided volumetric modulated arc therapy planning.

    PubMed

    Chen, Huixiao; Winey, Brian A; Daartz, Juliane; Oh, Kevin S; Shin, John H; Gierga, David P

    2015-01-01

    To evaluate plan quality and delivery efficiency gains of volumetric modulated arc therapy (VMAT) versus a multicriteria optimization-based intensity modulated radiation therapy (MCO-IMRT) for stereotactic radiosurgery of spinal metastases. MCO-IMRT plans (RayStation V2.5; RaySearch Laboratories, Stockholm, Sweden) of 10 spinal radiosurgery cases using 7-9 beams were developed for clinical delivery, and patients were replanned using VMAT with partial arcs. The prescribed dose was 18 Gy, and target coverage was maximized such that the maximum dose to the planning organ-at-risk volume (PRV) of the spinal cord was 10 or 12 Gy. Dose-volume histogram (DVH) constraints from the clinically acceptable MCO-IMRT plans were utilized for VMAT optimization. Plan quality and delivery efficiency with and without collimator rotation for MCO-IMRT and VMAT were compared and analyzed based upon DVH, planning target volume coverage, homogeneity index, conformity number, cord PRV sparing, total monitor units (MU), and delivery time. The VMAT plans were capable of matching most DVH constraints from the MCO-IMRT plans. The ranges of MU were 4808-7193 for MCO-IMRT without collimator rotation, 3509-5907 for MCO-IMRT with collimator rotation, 4444-7309 for VMAT without collimator rotation, and 3277-5643 for VMAT with collimator of 90 degrees. The MU for the VMAT plans were similar to their corresponding MCO-IMRT plans, depending upon the complexity of the target and PRV geometries, but had a larger range. The delivery times of the MCO-IMRT and VMAT plans, both with collimator rotation, were 18.3 ± 2.5 minutes and 14.2 ± 2.0 minutes, respectively (P < .05). The MCO-IMRT and VMAT can create clinically acceptable plans for spinal radiosurgery. The MU for MCO-IMRT and VMAT can be reduced significantly by utilizing a collimator rotation following the orientation of the spinal cord. Plan quality for VMAT is similar to MCO-IMRT, with similar MU for both modalities. Delivery times can be reduced by nominally 25% with VMAT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  14. In vivo prostate IMRT dosimetry with MOSFET detectors using brass buildup caps

    PubMed Central

    Varadhan, Raj; Miller, John; Garrity, Brenden; Weber, Michael

    2006-01-01

    The feasibility of using dual bias metal oxide semiconductor field effect transistor (MOSFET) detectors with the new hemispherical brass buildup cap for in vivo dose measurements in prostate intensity‐modulated radiotherapy (IMRT) treatments was investigated and achieved. In this work, MOSFET detectors with brass buildup caps placed on the patient's skin surface on the central axis of the individual IMRT beams are used to determine the maximum entrance dose (Dmax) from the prostate IMRT fields. A general formalism with various correction factors taken into account to predict Dmax entrance dose for the IMRT fields with MOSFETs was developed and compared against predicted dose from the treatment‐planning system (TPS). We achieved an overall accuracy of better than ±5% on all measured fields for both 6‐MV and 10‐MV beams when compared to predicted doses from the Philips Pinnacle 3 and CMS XiO TPSs, respectively. We also estimate the total uncertainty in estimation of MOSFET dose in the high‐sensitivity mode for IMRT therapy to be 4.6%. PACS numbers: 87.53Xd, 87.56Fc PMID:17533354

  15. Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer.

    PubMed

    Wang, Shu-Lian; Liao, Zhongxing; Liu, Helen; Ajani, Jaffer; Swisher, Stephen; Cox, James D; Komaki, Ritsuko

    2006-09-14

    To evaluate the dosimetry, efficacy and toxicity of intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with locally advanced cervical and upper thoracic esophageal cancer. A retrospective study was performed on 7 patients who were definitively treated with IMRT and concurrent chemotherapy. Patients who did not receive IMRT radiation and concurrent chemotherapy were not included in this analysis. IMRT plans were evaluated to assess the tumor coverage and normal tissue avoidance. Treatment response was evaluated and toxicities were assessed. Five- to nine-beam IMRT were used to deliver a total dose of 59.4-66 Gy (median: 64.8 Gy) to the primary tumor with 6-MV photons. The minimum dose received by the planning tumor volume (PTV) of the gross tumor volume boost was 91.2%-98.2% of the prescription dose (standard deviation [SD]: 3.7%-5.7%). The minimum dose received by the PTV of the clinical tumor volume was 93.8%-104.8% (SD: 4.3%-11.1%) of the prescribed dose. With a median follow-up of 15 mo (range: 3-21 mo), all 6 evaluable patients achieved complete response. Of them, 2 developed local recurrences and 2 had distant metastases, 3 survived with no evidence of disease. After treatment, 2 patients developed esophageal stricture requiring frequent dilation and 1 patient developed tracheal-esophageal fistula. Concurrent IMRT and chemotherapy resulted in an excellent early response in patients with locally advanced cervical and upper thoracic esophageal cancer. However, local and distant recurrence and toxicity remain to be a problem. Innovative approaches are needed to improve the outcome.

  16. Intensity-modulated radiotherapy in the standard management of head and neck cancer: promises and pitfalls.

    PubMed

    Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R

    2006-06-10

    The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.

  17. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    PubMed

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  18. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  19. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation wasmore » 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.« less

  20. IMRT for Image-Guided Single Vocal Cord Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less

  1. Automated IMRT planning with regional optimization using planning scripts

    PubMed Central

    Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.

    2013-01-01

    Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393

  2. SU-F-T-380: Comparing the Effect of Respiration On Dose Distribution Between Conventional Tangent Pair and IMRT Techniques for Adjuvant Radiotherapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Ramaseshan, R

    2016-06-15

    Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopan, O; Yang, F; Ford, E

    Purpose: The physics plan check verifies various aspects of a treatment plan after dosimetrists have finished creating the plan. Some errors in the plan which are caught by the physics check could be caught earlier in the departmental workflow. The purpose of this project was to evaluate a plan checking script that can be run within the treatment planning system (TPS) by the dosimetrists prior to plan approval and export to the record and verify system. Methods: A script was created in the Pinnacle TPS to automatically check 15 aspects of a plan for clinical practice conformity. The script outputsmore » a list of checks which the plan has passed and a list of checks which the plan has failed so that appropriate adjustments can be made. For this study, the script was run on a total of 108 plans: IMRT (46/108), VMAT (35/108) and SBRT (27/108). Results: Of the plans checked by the script, 77/108 (71%) failed at least one of the fifteen checks. IMRT plans resulted in more failed checks (91%) than VMAT (51%) or SBRT (63%), due to the high failure rate of an IMRT-specific check, which checks that no IMRT segment < 5 MU. The dose grid size and couch removal checks caught errors in 10% and 14% of all plans – errors that ultimately may have resulted in harm to the patient. Conclusion: Approximately three-fourths of the plans being examined contain errors that could be caught by dosimetrists running an automated script embedded in the TPS. The results of this study will improve the departmental workflow by cutting down on the number of plans that, due to these types of errors, necessitate re-planning and re-approval of plans, increase dosimetrist and physician workload and, in urgent cases, inconvenience patients by causing treatment delays.« less

  4. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less

  5. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    PubMed

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  6. Assessment of multi-criteria optimization (MCO) for volumetric modulated arc therapy (VMAT) in hippocampal avoidance whole brain radiation therapy (HA-WBRT).

    PubMed

    Zieminski, Stephen; Khandekar, Melin; Wang, Yi

    2018-03-01

    This study compared the dosimetric performance of (a) volumetric modulated arc therapy (VMAT) with standard optimization (STD) and (b) multi-criteria optimization (MCO) to (c) intensity modulated radiation therapy (IMRT) with MCO for hippocampal avoidance whole brain radiation therapy (HA-WBRT) in RayStation treatment planning system (TPS). Ten HA-WBRT patients previously treated with MCO-IMRT or MCO-VMAT on an Elekta Infinity accelerator with Agility multileaf collimators (5-mm leaves) were re-planned for the other two modalities. All patients received 30 Gy in 15 fractions to the planning target volume (PTV), namely, PTV30 expanded with a 2-mm margin from the whole brain excluding hippocampus with margin. The patients all had metastatic lesions (up to 12) of variable sizes and proximity to the hippocampus, treated with an additional 7.5 Gy from a simultaneous integrated boost (SIB) to PTV37.5. The IMRT plans used eight to eleven non-coplanar fields, whereas the VMAT plans used two coplanar full arcs and a vertex half arc. The averaged target coverage, dose to organs-at-risk (OARs) and monitor unit provided by the three modalities were compared, and a Wilcoxon signed-rank test was performed. MCO-VMAT provided statistically significant reduction of D100 of hippocampus compared to STD-VMAT, and Dmax of cochleas compared to MCO-IMRT. With statistical significance, MCO-VMAT improved V30 of PTV30 by 14.2% and 4.8%, respectively, compared to MCO-IMRT and STD-VMAT. It also raised D95 of PTV37.5 by 0.4 Gy compared to both MCO-IMRT and STD-VMAT. Improved plan quality parameters such as a decrease in overall plan Dmax and total monitor units (MU) were also observed for MCO-VMAT. MCO-VMAT is found to be the optimal modality for HA-WBRT in terms of PTV coverage, OAR sparing and delivery efficiency, compared to MCO-IMRT or STD-VMAT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience.

    PubMed

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael

    2007-08-21

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach. The physical effects modelled in the dose calculation software MUV allow accurate dose calculations in individual verification points. Independent calculations may be used to replace experimental dose verification once the IMRT programme is mature.

  8. WE-E-213AB-01: Medical Physics Challenges for Implementation of New Technologies in External Beam Radiotherapy.

    PubMed

    Boiras, C; Bourland, J; Gonzalez, L Brualla; Bulychkin, P; Ford, E; Kazantsev, P; Krylova, T; Medina, A Lopez; Prusova, M; Romanov, D; Ferrando, J Rosello; Willoughby, T; Yan, D; Yu, C; Zvereva, A

    2012-06-01

    The AAPM has signed two formal Educational Exchange Agreements with the Spanish (SEFM) and the Russian (AMPR) medical physics societies. While the primary purpose of the Agreements is to provide educational opportunities for young medical physicists, the Agreements also contemplate holding joint sessions at scientific congresses. The purpose of this professional AAPM/SEFM/AMPR Joint Symposium is to explore the challenges that medical physicists in the three countries face when new external beam radiotherapy technologies are introduced in their facilities and to suggest potential solutions to limitations in testing equipment and lack of familiarity with protocols. Speakers from the three societies will present reviews of the technical aspects of IMRT, Arc EVIRT (IMAT/VMAT/Rapid Arc), SRS/SRBT, and IGRT/Adaptive radiotherapy, and will describe the status of these technologies in their countries, including the challenges found in tasks such as developing anatomical and biological dose optimization techniques and implementing QA management, risk assessment and patient safety programs. The SEFM will offer AAPM and AMPR members the possibility to participate in collaborative proposals for future research bids in UE and USA based on an ongoing Spanish project for adaptive radiotherapy using functional imaging. A targeted discussion will debate three propositions: the cost/benefit ratio of IGRT, whether IMRT requires IGRT, and the use of non-ionizing radiation technologies for realtime monitoring of prostate IGRT. For these debates, each society has designated one speaker to present and defend either "For" or "Against" the proposition, followed by discussion by all participants. The Symposium presentations and the country-tailored recommendations drawn will be made available to each society for inclusion in their websites. The WGNIMP, the AAPM Work Group charged with executing the AAPM/SEFM and AAPM/AMPR Agreements, will follow up on the commitments made by the AAPM.Di Yan's research on adaptive radiotherapy has been financially supported by: 1) NIH Research Grants, 2) Elekta Research Grants 3) Philips Research GrantConflicts of interest for Cedric X Yu: 1) Board Member of Prowess, Inc., 2) Shareholder of Xcision Medical Systems, LLC, 3) Inventor on patents licensed by Varian Medical Systems, Inc. 1. Describe fundamental aspects for four advanced radiotherapy techniques: IMRT, IGRT, SBRT, and adaptive radiotherapy. 2. Review technical and professional challenges for implementation of advanced techniques as a function of resources and capabilities available within each scientific society: AAPM, SEFM, and AMPR. 3. Discuss and plan a proposal for an international trial on IMRT/IGRT based on functional imaging. 4. Debate important implementation aspects of IMRT and IGRT according to country-specific resources. © 2012 American Association of Physicists in Medicine.

  9. SU-E-T-63: Carotid Sparing Tomohelical Three Dimensional Conformal Radiotherapy for T1N0 Glottic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, C; Ju, S; Ahn, Y

    2014-06-01

    Purpose: We investigated the dosimetric benefit and treatment efficiency of carotid-sparing TomoHelical (TH) three-dimensional conformal radiotherapy (3DCRT) for early glottic cancer. Methods: Computed tomography (CT) simulation was performed for 10 patients with early-stage (T1N0M0) glottic squamous cell carcinoma. The clinical target volume, planning target volume (PTV), carotid artery (CA), and spinal cord (SP) were delineated for each CT data set. Two-field 3DCRT (2F-3DCRT), three-field intensity-modulated radiation therapy (IMRT) (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated, with a total prescribed dose of 67.5 Gy in 30 fractions to the PTV for each patient. In order to evaluate plan quality, dosimetricmore » characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the PTV, V35, V50, and V63 for the CAs and in terms of the maximum dose for the SP. Additionally, treatment planning and delivery times were compared to evaluate treatment efficiency. Results: The CIs for 3F-IMRT (0.650±0.05), TH-IMRT (0.643±0.03), and TH-3DCRT (0.631±0.03) were much better than that for 2F-3DCRT (0.318±0.03). The HIs for TH-IMRT (1.053±0.01) and TH-3DCRT (1.055±0.01) were slightly better than those for 2F-3DCRT (1.062±0.01) and 3F-IMRT (1.091±0.007). 2F-3DCRT showed poor CA sparing in terms of the V35, V50, and V63 compared to 3F-IMRT, TH-IMRT, and TH-3DCRT (p<0.05), whereas there was no significant dose difference between 3F-IMRT, TH-IMRT, and TH-3DCRT (p>0.05). The maximum dose to the SP with all plans was below 45 Gy. The treatment planning times for 2F-3DCRT (5.9±0.66 min) and TH-3DCRT (7.32±0.94 min) were much lower than those for 3F-IMRT (45.51±2.76 min) and TH-IMRT (35.58±4.41 min), whereas the delivery times with all plans was below 3 minutes. Conclusion: TH-3DCRT showed excellent carotid sparing capability, comparable to that with TH-IMRT, with high treatment efficiency and short planning and treatment times, comparable to those for 2F-3DCRT, while maintaining good PTV coverage. This work was supported by the Technology Innovation Program, 10040362, Development of an integrated management solution for radiation therapy funded by the Ministry of Knowledge Economy (MKE, Korea)« less

  10. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost–IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate

    PubMed Central

    Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.

    2012-01-01

    Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659

  11. Development of a four-axis moving phantom for patient-specific QA of surrogate signal-based tracking IMRT.

    PubMed

    Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2016-12-01

    The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral direction, -0.1 ± 0.2 mm for the superior-inferior direction, and -0.1 ± 0.1 mm for the anterior-posterior direction. The dosimetric accuracy showed significant improvements, of 92.9% ± 4.0% with tracking versus 69.8% ± 7.4% without tracking, in the passing rates of γ with the criterion of 3%/1 mm (p < 0.001). Although the dosimetric accuracy of IMRT without tracking showed a significant negative correlation with the 3D motion range of the target (r = - 0.59, p < 0.05), there was no significant correlation for DTT-IMRT (r = 0.03, p = 0.464). The developed four-axis moving phantom had sufficient accuracy to reproduce patient respiratory motions, allowing patient-specific QA of the surrogate signal-based DTT-IMRT under realistic conditions. Although IMRT without tracking decreased the dosimetric accuracy as the target motion increased, the DTT-IMRT achieved high dosimetric accuracy.

  12. Management of three-dimensional intrafraction motion through real-time DMLC tracking.

    PubMed

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-05-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.

  13. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    PubMed

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  14. Dosimetric comparison of three intensity-modulated radiation therapies for left breast cancer after breast-conserving surgery.

    PubMed

    Zhang, Huai-Wen; Hu, Bo; Xie, Chen; Wang, Yun-Lai

    2018-05-01

    This study aimed to evaluate dosimetric differences of intensity-modulated radiation therapy (IMRT) in target and normal tissues after breast-conserving surgery. IMRT five-field plan I, IMRT six-field plan II, and field-in-field-direct machine parameter optimization-IMRT plan III were designed for each of the 50 patients. One-way analysis of variance was performed to compare differences, and P < 0.05 was considered statistically significant. Homogeneity index of plan III is lower than those of plans I and II. No difference was identified in conformity index of targets. Plan I exhibited difference in mean dose (D mean ) for the heart (P < 0.05). Plan I featured smaller irradiation dose volumes in V 5 , V 20 (P < 0.05) of the left lung than II. Plan I exhibited significantly higher V 5 in the right lung than plans II and III (P < 0.05). Under plan I, irradiation dose at V 5 in the right breast is higher than that in plans II and III. Patients in plan III presented less total monitor unit and total treatment time than those in plans I and II (P < 0.05). IMRT six-field plans II, and field-in-field-direct machine parameter optimization-IMRT plans III can reduce doses and volumes to the lungs and heart better while maintaining satisfying conformity index and homogeneity index of target. Nevertheless, plan II neglects target movements caused by respiration. In the same manner, plan III can substantially reduce MU and shorten patient treatment time. Therefore, plan III, which considers target movement caused by respiration, is a more practical radiation mode. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer.

    PubMed

    Abo-Madyan, Yasser; Aziz, Muhammad Hammad; Aly, Moamen M O M; Schneider, Frank; Sperk, Elena; Clausen, Sven; Giordano, Frank A; Herskind, Carsten; Steil, Volker; Wenz, Frederik; Glatting, Gerhard

    2014-03-01

    Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less

  17. A calibration method for patient specific IMRT QA using a single therapy verification film

    PubMed Central

    Shukla, Arvind Kumar; Oinam, Arun S.; Kumar, Sanjeev; Sandhu, I.S.; Sharma, S.C.

    2013-01-01

    Aim The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance. Background Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification. Materials and methods A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution. Results Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria. Conclusion The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification. PMID:24416558

  18. Intensity-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Patients Treated With Androgen Deprivation Therapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Navesh K.; Li Tianyu; Chen, David Y.

    Purpose: Androgen deprivation therapy (AD) has been shown to increase late Grade 2 or greater rectal toxicity when used concurrently with three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) has the potential to reduce toxicity by limiting the radiation dose received by the bowel and bladder. The present study compared the genitourinary and gastrointestinal (GI) toxicity in men treated with 3D-CRT+AD vs. IMRT+AD. Methods and Materials: Between July 1992 and July 2004, 293 men underwent 3D-CRT (n = 170) or IMRT (n = 123) with concurrent AD (<6 months, n = 123; {>=}6 months, n = 170). The median radiation dosemore » was 76 Gy for 3D-CRT (International Commission on Radiation Units and Measurements) and 76 Gy for IMRT (95% to the planning target volume). Toxicity was assessed by a patient symptom questionnaire that was completed at each visit and recorded using a Fox Chase Modified Late Effects Normal Tissue Task radiation morbidity scale. Results: The mean follow-up was 86 months (standard deviation, 29.3) for the 3D-CRT group and 40 months (standard deviation, 9.7) for the IMRT group. Acute GI toxicity (odds ratio, 4; 95% confidence interval, 1.6-11.7; p = .005) was significantly greater with 3D-CRT than with IMRT and was independent of the AD duration (i.e., <6 vs. {>=}6 months). The interval to the development of late GI toxicity was significantly longer in the IMRT group. The 5-year Kaplan-Meier estimate for Grade 2 or greater GI toxicity was 20% for 3D-CRT and 8% for IMRT (p = .01). On multivariate analysis, Grade 2 or greater late GI toxicity (hazard ratio, 2.1; 95% confidence interval, 1.1-4.3; p = .04) was more prevalent in the 3D-CRT patients. Conclusion: Compared with 3D-CRT, IMRT significantly decreased the acute and late GI toxicity in patients treated with AD.« less

  19. Initial Results from the Royal College of Radiologists' UK National Audit of Anal Cancer Radiotherapy 2015.

    PubMed

    Muirhead, R; Drinkwater, K; O'Cathail, S M; Adams, R; Glynne-Jones, R; Harrison, M; Hawkins, M A; Sebag-Montefiore, D; Gilbert, D C

    2017-03-01

    UK guidance was recently developed for the treatment of anal cancer using intensity-modulated radiotherapy (IMRT). We audited the current use of radiotherapy in UK cancer centres for the treatment of anal cancer against such guidance. We describe the acute toxicity of IMRT in comparison with patient population in the audit treated with two-phase conformal radiotherapy and the previous published data from two-phase conformal radiotherapy, in the UK ACT2 trial. A Royal College of Radiologists' prospective national audit of patients treated with radiotherapy in UK cancer centres was carried out over a 6 month period between February and July 2015. Two hundred and forty-two cases were received from 40/56 cancer centres (71%). In total, 231 (95%) underwent full dose radiotherapy with prophylactic nodal irradiation. Of these, 180 (78%) received IMRT or equivalent, 52 (22%) two-phase conformal (ACT2) technique. The number of interruptions in radiotherapy treatment in the ACT2 trial was 15%. Interruptions were noted in 7% (95% confidence interval 0-14%) of courses receiving two-phase conformal and 4% (95% confidence interval 1-7%) of those receiving IMRT. The percentage of patients completing the planned radiotherapy dose, irrelevant of gaps, was 90% (95% confidence interval 82-98%) and 96% (95% confidence interval 93-99%), in two-phase conformal and IMRT respectively. The toxicity reported in the ACT2 trial, in patients receiving two-phase conformal in the audit and in patients receiving IMRT in the audit was: any toxic effect 71%, 54%, 48%, non-haematological 62%, 49%, 40% and haematological 26%, 13%, 18%, respectively. IMRT implementation for anal cancer is well underway in the UK with most patients receiving IMRT delivery, although its usage is not yet universal. This audit confirms that IMRT results in reduced acute toxicity and minimised treatment interruptions in comparison with previous two-phase conformal techniques. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer

    PubMed Central

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-01-01

    Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity. PMID:28767597

  1. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer: A systematic review and meta-analysis.

    PubMed

    Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei

    2017-08-01

    Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.

  2. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  3. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be done to correlate the clinical significance of these findings.« less

  4. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  5. A randomized phase II/III study of adverse events between sequential (SEQ) versus simultaneous integrated boost (SIB) intensity modulated radiation therapy (IMRT) in nasopharyngeal carcinoma; preliminary result on acute adverse events.

    PubMed

    Songthong, Anussara P; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit

    2015-08-08

    To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2 Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2 Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12 Gy and 1.7 Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3-5 acute toxicities were mucositis (15.4% vs 13.6%, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6% vs 9.1%, p = 1.000) and xerostomia (9.6% vs 7.6%, p = 0.748). During the adjuvant chemotherapy period, 25.6% and 32.7% experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8% and 95.5% in SEQ-IMRT and 98% and 90.2% in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising.

  6. WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, M.

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

  7. WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddar, S.

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

  8. WE-AB-BRB-01: Memorial Introduction; Storage Phosphor Panels for Radiation Therapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

  9. WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogue, B.

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, M; Schmidt, M; Knutson, N

    Purpose: Physics second-checks for external beam radiation therapy are performed, in-part, to verify that the machine parameters in the Record-and-Verify (R&V) system that will ultimately be sent to the LINAC exactly match the values initially calculated by the Treatment Planning System (TPS). While performing the second-check, a large portion of the physicists’ time is spent navigating and arranging display windows to locate and compare the relevant numerical values (MLC position, collimator rotation, field size, MU, etc.). Here, we describe the development of a software tool that guides the physicist by aggregating and succinctly displaying machine parameter data relevant to themore » physics second-check process. Methods: A data retrieval software tool was developed using Python to aggregate data and generate a list of machine parameters that are commonly verified during the physics second-check process. This software tool imported values from (i) the TPS RT Plan DICOM file and (ii) the MOSAIQ (R&V) Structured Query Language (SQL) database. The machine parameters aggregated for this study included: MLC positions, X&Y jaw positions, collimator rotation, gantry rotation, MU, dose rate, wedges and accessories, cumulative dose, energy, machine name, couch angle, and more. Results: A GUI interface was developed to generate a side-by-side display of the aggregated machine parameter values for each field, and presented to the physicist for direct visual comparison. This software tool was tested for 3D conformal, static IMRT, sliding window IMRT, and VMAT treatment plans. Conclusion: This software tool facilitated the data collection process needed in order for the physicist to conduct a second-check, thus yielding an optimized second-check workflow that was both more user friendly and time-efficient. Utilizing this software tool, the physicist was able to spend less time searching through the TPS PDF plan document and the R&V system and focus the second-check efforts on assessing the patient-specific plan-quality.« less

  12. A grid to facilitate physics staffing justification.

    PubMed

    Klein, Eric E

    2009-12-03

    Justification of clinical physics staffing levels is difficult due to the lack of direction as how to equate clinical needs with the staffing levels and competency required. When a physicist negotiates staffing requests to administration, she/he often refers to American College of Radiology staffing level suggestions, and resources such as the Abt studies. This approach is often met with questions as to how to fairly derive the time it takes to perform tasks. The result is often insufficient and/or inexperienced staff handling complex and cumbersome tasks. We undertook development of a staffing justification grid to equate the clinical needs to the quantity and quality of staffing required. The first step is using the Abt study, customized to the clinical setting, to derive time per task multiplied by the anticipated number of such tasks. Inclusion of vacation, meeting, and developmental time may be incorporated along with allocated time for education and administration. This is followed by mapping the tasks to the level of competency/experience needed. For example, in an academic setting the faculty appointment levels correlate with experience. Non-staff personnel, such as IMRT QA technicians or clerical staff, should also be part of the equation. By using the staffing justification grid, we derived strong documentation to justify a substantial budget increase. The grid also proved useful when our clinical demands changed. Justification for physics staffing can be significantly strengthened with a properly developed data-based time and work analysis. A staffing grid is presented, along with a development methodology that facilitated our justification. Though our grid is for a large academic facility, the methodology can be extended to a non-academic setting, and to a smaller scale. This grid method not only equates the clinical needs with the quantity of staffing, but can also help generate the personnel budget, based on the type of staff and personnel required. The grid is easily adaptable when changes to the clinical environment change, such as an increase in IMRT or IGRT applications.

  13. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda

    2010-10-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less

  14. A quality control method for intensity-modulated radiation therapy planning based on generalized equivalent uniform dose.

    PubMed

    Pang, Haowen; Sun, Xiaoyang; Yang, Bo; Wu, Jingbo

    2018-05-01

    To ensure good quality intensity-modulated radiation therapy (IMRT) planning, we proposed the use of a quality control method based on generalized equivalent uniform dose (gEUD) that predicts absorbed radiation doses in organs at risk (OAR). We conducted a retrospective analysis of patients who underwent IMRT for the treatment of cervical carcinoma, nasopharyngeal carcinoma (NPC), or non-small cell lung cancer (NSCLC). IMRT plans were randomly divided into data acquisition and data verification groups. OAR in the data acquisition group for cervical carcinoma and NPC were further classified as sub-organs at risk (sOAR). The normalized volume of sOAR and normalized gEUD (a = 1) were analyzed using multiple linear regression to establish a fitting formula. For NSCLC, the normalized intersection volume of the planning target volume (PTV) and lung, the maximum diameter of the PTV (left-right, anterior-posterior, and superior-inferior), and the normalized gEUD (a = 1) were analyzed using multiple linear regression to establish a fitting formula for the lung gEUD (a = 1). The r-squared and P values indicated that the fitting formula was a good fit. In the data verification group, IMRT plans verified the accuracy of the fitting formula, and compared the gEUD (a = 1) for each OAR between the subjective method and the gEUD-based method. In conclusion, the gEUD-based method can be used effectively for quality control and can reduce the influence of subjective factors on IMRT planning optimization. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pair, Matthew L.; Du, Weiliang; Rojas, Hector D.

    Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclearmore » when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1 cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.« less

  16. Prone breast forward intensity-modulated radiotherapy for Asian women with early left breast cancer: factors for cardiac sparing and clinical outcomes

    PubMed Central

    Chen, Jenny Ling-Yu; Cheng, Jason Chia-Hsien; Kuo, Sung-Hsin; Chan, Hsing-Min; Huang, Yu-Sen; Chen, Yu-Hsuan

    2013-01-01

    Since December 2009, after breast-conserving surgery for Stage 0–I cancer of the left breast, 21 women with relatively pendulous breasts underwent computed tomography prone and supine simulations. The adjuvant radiotherapy was 50 Gy in 25 fractions to the left breast alone. Four plans—conventional wedged tangents and forward intensity-modulated radiotherapy (fIMRT) in supine and prone positions—were generated. fIMRT generated better homogeneity in both positions. Prone position centralized the breast tissue by gravity and also shortened the breast width which led to better conformity in both planning techniques. Prone fIMRT significantly reduced doses to left lung, Level I and Level II axilla. The mean cardiac doses did not differ between positions. Among the four plans, prone fIMRT produced the best target dosimetry and normal organ sparing. In subgroup analysis, patients with absolute breast depth > 7 cm in the prone position or breast depth difference > 3 cm between positions had significant cardiac sparing with prone fIMRT. Sixteen patients with significant cardiac sparing in prone position were treated using prone fIMRT and the others using supine fIMRT. All patients received a supine electron tumor bed boost of 10 Gy in 5 fractions. No patients developed Grade 2 or worse acute or late toxicities. There was no difference in the number of segments or beams, monitor units, treatment time, or positioning reproducibility between prone and supine positions. At a median follow-up time of 26.8 months, no locoregional or distant recurrence or death was noted. PMID:23504450

  17. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine.

    PubMed

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, - 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3mm criteria. The mean and standard deviation of pixels passing gamma tolerance for XiO-generated IMRT plans was 96.1 ± 1.3, 96.6 ± 1.2, and 96.0 ± 1.5 in axial, coronal, and sagittal planes respectively. Corresponding results for Pinnacle-generated IMRT plans were 97.1 ± 1.5, 96.4 ± 1.2, and 96.5 ± 1.3 in axial, coronal, and sagittal planes respectively. © 2013 American Association of Medical Dosimetrists.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V; Nguyen, D; Tran, A

    Purpose: To develop and clinically implement 4π radiotherapy, an inverse optimization platform that maximally utilizes non-coplanar intensity modulated radiotherapy (IMRT) beams to significantly improve critical organ sparing. Methods: A 3D scanner was used to digitize the human and phantom subject surfaces, which were positioned in the computer assisted design (CAD) model of a TrueBeam machine to create a virtual geometrical model, based on which, the feasible beam space was calculated for different tumor locations. Beamlets were computed for all feasible beams using convolution/superposition. A column generation algorithm was employed to optimize patient specific beam orientations and fluence maps. Optimal routingmore » through all selected beams were calculated by a level set method. The resultant plans were converted to XML files and delivered to phantoms in the TrueBeam developer mode. Finally, 4π plans were recomputed in Eclipse and manually delivered to recurrent GBM patients. Results: Compared to IMRT utilizing manually selected beams and volumetric modulated arc therapy plans, markedly improved dosimetry was observed using 4π for the brain, head and neck, liver, lung, and prostate patients. The improvements were due to significantly improved conformality and reduced high dose spillage to organs mediolateral to the PTV. The virtual geometrical model was experimentally validated. Safety margins with 99.9% confidence in collision avoidance were included to the model based model accuracy estimates determined via 300 physical machine to phantom distance measurements. Automated delivery in the developer mode was completed in 10 minutes and collision free. Manual 4 π treatment on the GBM cases resulted in significant brainstem sparing and took 35–45 minutes including multiple images, which showed submillimeter cranial intrafractional motion. Conclusion: The mathematical modeling utilized in 4π is accurate to create and guide highly complex non-coplanar IMRT treatments that consistently and significantly outperform human-operator-created plans. Deliverability of such plans is clinically demonstrated. This work is funded by Varian Medical Systems and the NSF Graduate Research Fellowship DGE-1144087.« less

  19. Compensators: An alternative IMRT delivery technique

    PubMed Central

    Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.

    2004-01-01

    Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937

  20. Anterior Myocardial Territory May Replace the Heart as Organ at Risk in Intensity-Modulated Radiotherapy for Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Wenyong; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan; Liu Dong

    Purpose: We investigated whether the heart could be replaced by the anterior myocardial territory (AMT) as the organ at risk (OAR) in intensity-modulated radiotherapy (IMRT) of the breast for patients with left-sided breast cancer. Methods and Materials: Twenty-three patients with left-sided breast cancer who received postoperative radiation after breast-conserving surgery were studied. For each patient, we generated five IMRT plans including heart (H), left ventricle (LV), AMT, LV+AMT, and H+LV as the primary OARs, respectively, except both lungs and right breast, which corresponded to IMRT(H), IMRT(LV), IMRT(AMT), IMRT(LV+AMT), and IMRT(H+LV). For the planning target volumes and OARs, the parameters ofmore » dose-volume histograms were compared. Results: The homogeneity index, conformity index, and coverage index were not compromised significantly in IMRT(AMT), IMRT(LV) and IMRT(LV+ AMT), respectively, when compared with IMRT(H). The mean dose to the heart, LV, and AMT decreased 5.3-21.5% (p < 0.05), 19.9-29.5% (p < 0.05), and 13.3-24.5% (p < 0.05), respectively. Similarly, the low (e.g., V5%), middle (e.g., V20%), and high (e.g., V30%) dose-volume of the heart, LV, and AMT decreased with different levels. The mean dose and V10% of the right lung increased by 9.2% (p < 0.05) and 27.6% (p < 0.05), respectively, in IMRT(LV), and the mean dose and V5% of the right breast decreased significantly in IMRT(AMT) and IMRT(LV+AMT). IMRT(AMT) was the preferred plan and was then compared with IMRT(H+LV); the majority of dose-volume histogram parameters of OARs including the heart, LV, AMT, both lungs, and the right breast were not statistically different. However, the low dose-volume of LV increased and the middle dose-volume decreased significantly (p < 0.05) in IMRT(AMT). Also, those of the right lung (V10%, V15%) and right breast (V5%, V10%) decreased significantly (p < 0.05). Conclusions: The AMT may replace the heart as the OAR in left-sided breast IMRT after breast-conserving surgery to decrease the radiation dose to the heart.« less

  1. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Elyn H.; Mougalian, Sarah S.; Yale Cancer Center, New Haven, Connecticut

    Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base frommore » 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, H; Cebe, M; Mabhouti, H

    Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less

  4. SU-F-T-106: A Dosimetric Study of Intensity Modulated Radiation Therapy to Decrease Radiation Dose to the Thoracic Vertebral Bodies in Patients Receiving Concurrent Chemoradiation for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiCostanzo, Dominic; Barney, Christian L.; Bazan, Jose G.

    Purpose: Recent clinical studies have shown a correlation between radiation dose to the thoracic vertebral bodies (TVB) and the development of hematologic toxicity (HT) in patients receiving chemoradiation (CRT) for lung cancer (LuCa). The feasibility of a bone-marrow sparing (BMS) approach in this group of patients is unknown. We hypothesized that radiation dose to the TVB can be reduced with an intensity modulated radiation therapy(IMRT)/volumetric modulated arc radiotherapy(VMAT) without affecting plan quality. Methods: We identified LuCa cases treated with curative intent CRT using IMRT/VMAT from 4/2009 to 2/2015. The TVBs from T1–T10 were retrospectively contoured. No constraints were placed onmore » the TVB structure initially. A subset were re-planned with BMS-IMRT/VMAT with an objective or reducing the mean TVB dose to <23 Gy. The following data were collected on the initial and BMS plans: mean dose to planning target volume (PTV), lungs-PTV, esophagus, heart; lung V20; cord max dose. Pairwise comparisons were performed using the signed rank test. Results: 94 cases received CRT with IMRT/VMAT. We selected 11 cases (7 IMRT, 4 VMAT) with a range of initial mean TVB doses (median 35.7 Gy, range 18.9–41.4 Gy). Median prescription dose was 60 Gy. BMS-IMRT/VMAT significantly reduced the mean TVB dose by a median of 10.2 Gy (range, 1.0–16.7 Gy, p=0.001) and reduced the cord max dose by 2.9 Gy (p=0.014). BMS-IMRT/VMAT had no impact on lung mean (median +17 cGy, p=0.700), lung V20 (median +0.5%, p=0.898), esophagus mean (median +13 cGy, p=1.000) or heart mean (median +16 cGy, p=0.365). PTV-mean dose was not affected by BMS-IMRT/VMAT (median +13 cGy, p=0.653). Conclusion: BMS-IMRT/VMAT was able to significantly reduce radiation dose to the TVB without compromising plan quality. Prospective evaluation of BMS-IMRT/VMAT in patients receiving CRT for LuCa is warranted to determine if this approach results in clinically significant reductions in HT.« less

  5. Rational use of intensity-modulated radiation therapy: the importance of clinical outcome.

    PubMed

    De Neve, Wilfried; De Gersem, Werner; Madani, Indira

    2012-01-01

    During the last 2 decades, intensity-modulated radiation therapy (IMRT) became a standard technique despite its drawbacks of volume delineation, planning, robustness of delivery, challenging quality assurance, and cost as compared with non-IMRT. The theoretic advantages of IMRT dose distributions are generally accepted, but the clinical advantages remain debatable because of the lack of clinical assessment of the effort that is required to overshadow the disadvantages. Rational IMRT use requires a positive advantage/drawback balance. Only 5 randomized clinical trials (RCTs), 3 in the breast and 2 in the head and neck, which compare IMRT with non-IMRT (2-dimensional technique in four fifths of the trials), have been published (as of March 2011), and all had toxicity as the primary endpoint. More than 50 clinical trials compared results of IMRT-treated patients with a non-IMRT group, mostly historical controls. RCTs systematically showed a lower toxicity in IMRT-treated patients, and the non-RCTs confirmed these findings. Toxicity reduction, counterbalancing the drawbacks of IMRT, was convincing for breast and head and neck IMRT. For other tumor sites, the arguments favoring IMRT are weaker because of the inability to control bias outside the randomized setting. For anticancer efficacy endpoints, like survival, disease-specific survival, or locoregional control, the balance between advantages and drawbacks is fraught with uncertainties because of the absence of robust clinical data. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. TH-EF-204-04: Experience of IMRT and Other Conformal Techniques in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylova, T.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  7. Comparison and Limitations of DVH-Based NTCP Models Derived From 3D-CRT and IMRT Data for Prediction of Gastrointestinal Toxicities in Prostate Cancer Patients by Using Propensity Score Matched Pair Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troeller, Almut; Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich; Yan, Di, E-mail: dyan@beaumont.edu

    2015-02-01

    Purpose: This study compared normal tissue complication probability (NTCP) modeling of chronic gastrointestinal toxicities following prostate cancer treatment for 2 treatment modalities. Possible factors causing discrepancies in optimal NTCP model parameters between 3-dimensional conformal radiation therapy (3D-CRT) and intensity modulated RT (IMRT) were analyzed and discussed, including the impact of patient characteristics, image guidance, toxicity scoring bias, and NTCP model limitations. Methods and Materials: Rectal wall dose-volume histograms of 1115 patients treated for prostate cancer under an adaptive radiation therapy protocol were used to model gastrointestinal toxicity grade ≥2 (according to Common Terminology Criteria for Adverse Events). A total ofmore » 457 patients were treated with 3D-CRT and 658 with IMRT. 3D-CRT patients were matched to IMRT patients based on various patient characteristics, using a propensity score–based algorithm. Parameters of the Lyman equivalent uniform dose and cut-off dose logistic regression NTCP models were estimated for the 2 matched treatment modalities and the combined group. Results: After they were matched, the 3D-CRT and IMRT groups contained 275 and 550 patients with a large discrepancy of 28.7% versus 7.8% toxicities, respectively (P<.001). For both NTCP models, optimal parameters found for the 3D-CRT groups did not fit the IMRT patients well and vice versa. Models developed for the combined data overestimated NTCP for the IMRT patients and underestimated NTCP for the 3D-CRT group. Conclusions: Our analysis did not reveal a single definitive cause for discrepancies of model parameters between 3D-CRT and IMRT. Patient characteristics and bias in toxicity scoring, as well as image guidance alone, are unlikely causes of the large discrepancy of toxicities. Whether the cause was inherent to the specific NTCP models used in this study needs to be verified by future investigations. Because IMRT is increasingly used clinically, it is important that appropriate NTCP model parameters are determined for this treatment modality.« less

  8. Comparison and limitations of DVH-based NTCP models derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate cancer patients by using propensity score matched pair analysis.

    PubMed

    Troeller, Almut; Yan, Di; Marina, Ovidiu; Schulze, Derek; Alber, Markus; Parodi, Katia; Belka, Claus; Söhn, Matthias

    2015-02-01

    This study compared normal tissue complication probability (NTCP) modeling of chronic gastrointestinal toxicities following prostate cancer treatment for 2 treatment modalities. Possible factors causing discrepancies in optimal NTCP model parameters between 3-dimensional conformal radiation therapy (3D-CRT) and intensity modulated RT (IMRT) were analyzed and discussed, including the impact of patient characteristics, image guidance, toxicity scoring bias, and NTCP model limitations. Rectal wall dose-volume histograms of 1115 patients treated for prostate cancer under an adaptive radiation therapy protocol were used to model gastrointestinal toxicity grade ≥2 (according to Common Terminology Criteria for Adverse Events). A total of 457 patients were treated with 3D-CRT and 658 with IMRT. 3D-CRT patients were matched to IMRT patients based on various patient characteristics, using a propensity score-based algorithm. Parameters of the Lyman equivalent uniform dose and cut-off dose logistic regression NTCP models were estimated for the 2 matched treatment modalities and the combined group. After they were matched, the 3D-CRT and IMRT groups contained 275 and 550 patients with a large discrepancy of 28.7% versus 7.8% toxicities, respectively (P<.001). For both NTCP models, optimal parameters found for the 3D-CRT groups did not fit the IMRT patients well and vice versa. Models developed for the combined data overestimated NTCP for the IMRT patients and underestimated NTCP for the 3D-CRT group. Our analysis did not reveal a single definitive cause for discrepancies of model parameters between 3D-CRT and IMRT. Patient characteristics and bias in toxicity scoring, as well as image guidance alone, are unlikely causes of the large discrepancy of toxicities. Whether the cause was inherent to the specific NTCP models used in this study needs to be verified by future investigations. Because IMRT is increasingly used clinically, it is important that appropriate NTCP model parameters are determined for this treatment modality. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Emma B.; Kocak-Uzel, Esengul; Department of Radiation Therapy, Beykent University, Istanbul

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012.more » Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to those treated with IMRT.« less

  10. Integral radiation dose to normal structures with conformal external beam radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Hidefumi; Westerly, David Clark; Mackie, Thomas Rockwell

    2006-03-01

    Background: This study was designed to evaluate the integral dose (ID) received by normal tissue from intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-five radiation treatment plans including IMRT using a conventional linac with both 6 MV (6MV-IMRT) and 20 MV (20MV-IMRT), as well as three-dimensional conformal radiotherapy (3DCRT) using 6 MV (6MV-3DCRT) and 20 MV (20MV-3DCRT) and IMRT using tomotherapy (6MV) (Tomo-IMRT), were created for 5 patients with localized prostate cancer. The ID (mean dose x tissue volume) received by normal tissue (NTID) was calculated from dose-volume histograms. Results: The 6MV-IMRT resulted in 5.0% lower NTID thanmore » 6MV-3DCRT; 20 MV beam plans resulted in 7.7%-11.2% lower NTID than 6MV-3DCRT. Tomo-IMRT NTID was comparable to 6MV-IMRT. Compared with 6MV-3DCRT, 6MV-IMRT reduced IDs to the rectal wall and penile bulb by 6.1% and 2.7%, respectively. Tomo-IMRT further reduced these IDs by 11.9% and 16.5%, respectively. The 20 MV did not reduce IDs to those structures. Conclusions: The difference in NTID between 3DCRT and IMRT is small. The 20 MV plans somewhat reduced NTID compared with 6 MV plans. The advantage of tomotherapy over conventional IMRT and 3DCRT for localized prostate cancer was demonstrated in regard to dose sparing of rectal wall and penile bulb while slightly decreasing NTID as compared with 6MV-3DCRT.« less

  11. Letter to the Editor on 'Single-Arc IMRT?'.

    PubMed

    Otto, Karl

    2009-04-21

    In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).

  12. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    PubMed

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  13. SU-F-T-295: MLCs Performance and Patient-Specific IMRT QA Using Log File Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, A; American University of Biuret Medical Center, Biuret; Maalej, N

    2016-06-15

    Purpose: To analyze the performance of the multi-leaf collimators (MLCs) from the log files recorded during the intensity modulated radiotherapy (IMRT) treatment and to construct the relative fluence maps and do the gamma analysis to compare the planned and executed MLCs movement. Methods: We developed a program to extract and analyze the data from dynamic log files (dynalog files) generated from sliding window IMRT delivery treatments. The program extracts the planned and executed (actual or delivered) MLCs movement, calculates and compares the relative planned and executed fluences. The fluence maps were used to perform the gamma analysis (with 3% dosemore » difference and 3 mm distance to agreement) for 3 IMR patients. We compared our gamma analysis results with those obtained from portal dose image prediction (PDIP) algorithm performed using the EPID. Results: For 3 different IMRT patient treatments, the maximum difference between the planned and the executed MCLs positions was 1.2 mm. The gamma analysis results of the planned and delivered fluences were in good agreement with the gamma analysis from portal dosimetry. The maximum difference for number of pixels passing the gamma criteria (3%/3mm) was 0.19% with respect to portal dosimetry results. Conclusion: MLC log files can be used to verify the performance of the MLCs. Patientspecific IMRT QA based on MLC movement log files gives similar results to EPID dosimetry results. This promising method for patient-specific IMRT QA is fast, does not require dose measurements in a phantom, can be done before the treatment and for every fraction, and significantly reduces the IMRT workload. The author would like to thank King Fahd University of petroleum and Minerals for the support.« less

  14. Total Mucosal Irradiation with Intensity-modulated Radiotherapy in Patients with Head and Neck Carcinoma of Unknown Primary: A Pooled Analysis of Two Prospective Studies.

    PubMed

    Richards, T M; Bhide, S A; Miah, A B; Del Rosario, L; Bodla, S; Thway, K; Gujral, D M; Rooney, K P; Schick, U; McGovern, T; Grove, L; Newbold, K L; Harrington, K J; Nutting, C M

    2016-09-01

    To determine the clinical outcomes of an intensity-modulated radiotherapy technique for total mucosal irradiation (TM-IMRT) in patients with head and neck carcinoma of unknown primary (HNCUP). A single-centre prospective phase II trial design was used in two sequential studies to evaluate TM-IMRT for HNCUP. Patients were investigated for primary tumour site using examination under anaesthetic and biopsies, computed tomography ± magnetic resonance imaging (MRI) or 18-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT). Patients received IMRT to the potential primary tumour sites and elective cervical nodes. Concomitant chemotherapy was used in patients who received primary radiotherapy or those with nodal extracapsular extension. Thirty-six patients with HNCUP were recruited; 72% male. Twenty-five patients (69.4%) had p16-positive disease. Two year mucosal and local nodal control rates were 97.1% (95% confidence interval 91.4-100) and 89.8% (78.4-100), respectively. One mucosal primary was detected 7.3 months after TM-IMRT and three patients died from recurrent/metastatic squamous cell carcinoma of the head and neck. Twelve patients (33%) developed grade 3 (Late Effects in Normal Tissue-Subjective, Objective, Management and Analytical; LENT-SOMA) dysphagia with a 1 year enteric tube feeding rate of 2.7%. The high-grade subjective xerostomia rate (LENT-SOMA) at 24 months after IMRT was 15%. At a median follow-up of 36.1 months, the use of TM-IMRT was associated with good local control. Toxicity was comparable with previously reported TM-IMRT regimens encompassing similar mucosal volumes. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors

    NASA Astrophysics Data System (ADS)

    Moteabbed, Maryam; Yock, Torunn I.; Paganetti, Harald

    2014-06-01

    The incidence of second malignant tumors is a clinically observed adverse late effect of radiation therapy, especially in organs close to the treatment site, receiving medium to high doses (>2.5 Gy). For pediatric patients, choosing the least toxic radiation modality is of utmost importance, due to their high radiosensitivity and small size. This study aims to evaluate the risk of second cancer incidence in the vicinity of the primary radiation field, for pediatric patients with brain/head and neck tumors and compare four treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). For a cohort of six pediatric patients originally treated with PPT, additional PBS, IMRT and VMAT plans were created. Dose distributions from these plans were used to calculate the excess absolute risk (EAR) and lifetime attributable risk (LAR) for developing a second tumor in soft tissue and skull. A widely used risk assessment formalism was employed and compared with a linear model based on recent clinical findings. In general, LAR was found to range between 0.01%-2.8% for PPT/PBS and 0.04%-4.9% for IMRT/VMAT. PBS was associated with the lowest risk for most patients using carcinoma and sarcoma models, whereas IMRT and VMAT risks were comparable and the highest among all modalities. The LAR for IMRT/VMAT relative to PPT ranged from 1.3-4.6 for soft tissue and from 3.5-9.5 for skull. Larger absolute LAR was observed for younger patients and using linear risk models. The number of fields used in proton therapy and IMRT had minimal effect on the risk. When planning treatments and deciding on the treatment modality, the probability of second cancer incidence should be carefully examined and weighed against the possibility of developing acute side effects for each patient individually.

  16. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less

  17. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study.

    PubMed

    Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria

    2017-03-01

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  18. Statistical process control analysis for patient-specific IMRT and VMAT QA.

    PubMed

    Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd

    2013-05-01

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.

  19. Dosimetric comparison of normal structures associated with accelerated partial breast irradiation and whole breast irradiation delivered by intensity modulated radiotherapy for early breast cancer after breast conserving surgery.

    PubMed

    Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X

    2014-01-01

    To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.

  20. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields and step-and-shoot intensity levels). Simulated random and systematic errors in the pO2-related images reduced the TCP for the non-uniform dose prescription. In conclusion, improved tumour control of hypoxic tumours by dose redistribution may be expected following hypoxia imaging, tumour control predictions, inverse treatment planning and IMRT.

  1. Helical tomotherapy to LINAC plan conversion utilizing RayStation Fallback planning.

    PubMed

    Zhang, Xin; Penagaricano, Jose; Narayanasamy, Ganesh; Corry, Peter; Liu, TianXiao; Sanjay, Maraboyina; Paudel, Nava; Morrill, Steven

    2017-01-01

    RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module. About 30 patients, 10 with lung cancer, 10 with head and neck (HN) cancer, and 10 with prostate cancer, who were treated with HT, were included in this study. Intensity-modulated radiotherapy Fallback plans (FB-IMRT) were generated for all patients, and three-dimensional conformal radiotherapy Fallback plans (FB-3D) were only generated for lung cancer patients. Dosimetric comparison study evaluated FB plans based on dose coverage to 95% of the PTV volume (R 95 ), PTV mean dose (D mean ), Paddick's conformity index (CI), and dose homogeneity index (HI). The evaluation results showed that all IMRT plans were statistically comparable between HT and FB-IMRT plans except that PTV HI was worse in prostate, and PTV R 95 and HI were worse in HN multitarget plans for FB-IMRT plans. For 3D lung cancer plans, only the PTV R 95 was statistically comparable between HT and FB-3D plans, PTV D mean was higher, and CI and HI were worse compared to HT plans. The FB plans using a TrueBeam linear accelerator generally offer better OAR sparing compared to HT plans for all the patients. In this study, all cases of FB-IMRT plans and 9/10 cases of FB-3D plans were clinically acceptable without further modification and optimization once the FB plans were generated. However, the statistical differences between HT and FB-IMRT/3D plans might not be of any clinically significant. One FB-3D plan failed to simulate the original plan without further optimization. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. TH-A-9A-02: BEST IN PHYSICS (THERAPY) - 4D IMRT Planning Using Highly- Parallelizable Particle Swarm Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modiri, A; Gu, X; Sawant, A

    2014-06-15

    Purpose: We present a particle swarm optimization (PSO)-based 4D IMRT planning technique designed for dynamic MLC tracking delivery to lung tumors. The key idea is to utilize the temporal dimension as an additional degree of freedom rather than a constraint in order to achieve improved sparing of organs at risk (OARs). Methods: The target and normal structures were manually contoured on each of the ten phases of a 4DCT scan acquired from a lung SBRT patient who exhibited 1.5cm tumor motion despite the use of abdominal compression. Corresponding ten IMRT plans were generated using the Eclipse treatment planning system. Thesemore » plans served as initial guess solutions for the PSO algorithm. Fluence weights were optimized over the entire solution space i.e., 10 phases × 12 beams × 166 control points. The size of the solution space motivated our choice of PSO, which is a highly parallelizable stochastic global optimization technique that is well-suited for such large problems. A summed fluence map was created using an in-house B-spline deformable image registration. Each plan was compared with a corresponding, internal target volume (ITV)-based IMRT plan. Results: The PSO 4D IMRT plan yielded comparable PTV coverage and significantly higher dose—sparing for parallel and serial OARs compared to the ITV-based plan. The dose-sparing achieved via PSO-4DIMRT was: lung Dmean = 28%; lung V20 = 90%; spinal cord Dmax = 23%; esophagus Dmax = 31%; heart Dmax = 51%; heart Dmean = 64%. Conclusion: Truly 4D IMRT that uses the temporal dimension as an additional degree of freedom can achieve significant dose sparing of serial and parallel OARs. Given the large solution space, PSO represents an attractive, parallelizable tool to achieve globally optimal solutions for such problems. This work was supported through funding from the National Institutes of Health and Varian Medical Systems. Amit Sawant has research funding from Varian Medical Systems, VisionRT Ltd. and Elekta.« less

  3. Clinical outcome of extended-field irradiation vs. pelvic irradiation using intensity-modulated radiotherapy for cervical cancer.

    PubMed

    Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming

    2017-12-01

    The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (P<0.001). The median follow-up time was 29.5 months. The 3-year overall survival (OS) rates of EF-IMRT and pelvic IMRT were 79.4 and 82.3% (P=0.45), respectively, and the 3-year disease-free survival (DFS) rates of EF-IMRT and pelvic IMRT were 61.0 and 73.7% (P=0.55), respectively. Cox's regression analysis revealed that EF irradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range.

  4. Clinical outcome of extended-field irradiation vs. pelvic irradiation using intensity-modulated radiotherapy for cervical cancer

    PubMed Central

    Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming

    2017-01-01

    The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (P<0.001). The median follow-up time was 29.5 months. The 3-year overall survival (OS) rates of EF-IMRT and pelvic IMRT were 79.4 and 82.3% (P=0.45), respectively, and the 3-year disease-free survival (DFS) rates of EF-IMRT and pelvic IMRT were 61.0 and 73.7% (P=0.55), respectively. Cox's regression analysis revealed that EF irradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range. PMID:29344136

  5. After low and high dose-rate interstitial brachytherapy followed by IMRT radiotherapy for intermediate and high risk prostate cancer.

    PubMed

    Nakamura, Satoshi; Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Kobayashi, Kazuma; Takahashi, Kana; Okamoto, Hiroyuki; Umezawa, Rei; Morota, Madoka; Sumi, Minako; Igaki, Hiroshi; Ito, Yoshinori; Itami, Jun

    2016-05-03

    The study aimed to compare urinary symptoms in patients with clinically localized prostate cancer after a combination of either low-dose-rate or high-dose-rate interstitial brachytherapy along with intensity-modulated radiation therapy (LDR-ISBT + IMRT or HDR-ISBT + IMRT). From June 2009 to April 2014, 16 and 22 patients were treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT, respectively. No patient from these groups was excluded from this study. The prescribed dose of LDR-ISBT, HDR-ISBT, and IMRT was 115 Gy, 20 Gy in 2 fractions, and 46 Gy in 23 fractions, respectively. Obstructive and irritative urinary symptoms were assessed by the International Prostate Symptom Score (IPSS) examined before and after treatments. After ISBT, IPSS was evaluated in the 1st and 4th weeks, then every 2-3 months for the 1st year, and every 6 months thereafter. The median follow-up of the patients treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT was 1070.5 days and 1048.5 days, respectively (p = 0.321). The IPSS-increment in the LDR-ISBT + IMRT group was greater than that in the HDR-ISBT + IMRT between 91 and 180 days after ISBT (p = 0.015). In the LDR-ISBT + IMRT group, the IPSS took longer time to return to the initial level than in the HDR-ISBT + IMRT group (in LDR-ISBT + IMRT group, the recovery time was 90 days later). The dose to urethra showed a statistically significant association with the IPSS-increment in the irritative urinary symptoms (p = 0.011). Clinical outcomes were comparable between both the groups. Both therapeutic modalities are safe and well suited for patients with clinically localized prostate cancer; however, it took patients longer to recover from LDR-ISBT + IMRT than from HDR-ISBT + IMRT. It is possible that fast dose delivery induced early symptoms and early recovery, while gradual dose delivery induced late symptoms and late recovery. Urethral dose reductions were associated with small increments in IPSS.

  6. TH-EF-204-02: Small Field Radiation Therapy: Physics and Recent Recommendations From IAEA and ICRU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  7. Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience

    NASA Astrophysics Data System (ADS)

    Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan

    2018-02-01

    The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.

  8. Analysis of Factors Influencing the Development of Xerostomia during Intensity-Modulated Radiotherapy

    PubMed Central

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E.; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J.; Miller, Craig S.

    2013-01-01

    OBJECTIVES Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. METHODS A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week two and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. RESULTS HNC subjects experienced mean SSFR decline of 36% by visit two (N=27; p=0.012) and 57% by visit three (N=20; p=0.0004), Concentrations of calcium and MUC5b increased, but not significantly during IMRT (p>0.05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (p<0.04) and linear mixed models (p<0.0001). CONCLUSIONS Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. PMID:23523462

  9. 75 FR 40039 - Medicare Program; Payment Policies Under the Physician Fee Schedule and Other Revisions to Part B...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... external defibrillator AFROC Association of Freestanding Radiation Oncology Centers AHA American Heart... Procedure Coding System HCRIS Healthcare Cost Report Information System HDRT High dose radiation therapy HH... rule with comment period IMRT Intensity-Modulated Radiation Therapy IPPE Initial preventive physical...

  10. NEW DEVELOPMENTS IN RADIATION THERAPY FOR HEAD AND NECK CANCER: INTENSITY MODULATED RADIATION THERAPY AND HYPOXIA TARGETING

    PubMed Central

    Lee, Nancy Y.; Le, Quynh-Thu

    2008-01-01

    Intensity modulated radiation therapy (IMRT) has revolutionized radiation treatment for head and neck cancers (HNC). When compared to the traditional techniques, IMRT has the unique ability to minimize the dose delivered to normal tissues without compromising tumor coverage. As a result, side effects from high dose radiation have decreased and patient quality of life has improved. In addition to toxicity reduction, excellent clinical outcomes have been reported for IMRT. The first part of this review will focus on clinical results of IMRT for HNC. Tumor hypoxia or the condition of low oxygen is a key factor for tumor progression and treatment resistance. Hypoxia develops in solid tumors due to aberrant blood vessel formation, fluctuation in blood flow and increasing oxygen demands for tumor growth. Because hypoxic tumor cells are more resistant to ionizing radiation, hypoxia has been a focus of clinical research in radiation therapy for half a decade. Interest for targeting tumor hypoxia have waxed and waned as promising treatments emerged from the laboratory, only to fail in the clinics. However, with the development of new technologies, the prospect of targeting tumor hypoxia is more tangible. The second half of the review will focus on approaches for assessing tumor hypoxia and on the strategies for targeting this important microenvironmental factor in HNC. PMID:18544439

  11. Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization.

    PubMed

    Purdie, Thomas G; Dinniwell, Robert E; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B

    2011-10-01

    To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle(3)) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of Larynx-Sparing Techniques With IMRT When Treating the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Gareth J.; Rowbottom, Carl G.; Ho, Kean F.

    2008-10-01

    Purpose: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. Methods and Materials: A total of 13 oropharyngeal cancer whole-field IMRT plans weremore » planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. Results: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. Conclusion: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.« less

  13. SU-E-T-163: Evaluation of Dose Distributions Recalculated with Per-Field Measurement Data Under the Condition of Respiratory Motion During IMRT for Liver Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J; Yoon, M; Nam, T

    2014-06-01

    Purpose: The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. Methods: The 4DCT data for 10 patients who had been treated with Gate-IMRT for liver cancer were selected to create ITV-IMRT plans. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The period and range of respiratory motion were recorded in allmore » patients from 4DCT-generated movie data, and the same period and range were applied when operating the dynamic phantom to realize coincident respiratory conditions in each patient. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array and compared with the DVHs calculated for the Gate-IMRT plan. Results: Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Conclusion: Because Gate-IMRT cannot always be considered an ideal method with which to correct the respiratory motional effect, given the dosimetric variations in the gating system application and the increased treatment time, a prior analysis for optimal IMRT method selection should be performed while considering the patient's respiratory condition and IMRT plan results.« less

  14. SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S; Peng, J; Li, K

    2016-06-15

    Purpose: To investigate the dose volume histogram (DVH) prediction varieties based on intensity modulate radiotherapy (IMRT) plan or volume arc modulate radiotherapy (VMAT) plan models on the RapidPlan. Methods: Two DVH prediction models were generated in this study, including an IMRT model trained from 83 IMRT rectum plans and a VMAT model trained from 60 VMAT rectum plans. In the internal validation, 20 plans from each training database were selected to verify the clinical feasibility of the model. Then, 10 IMRT plans (PIMRT-by-IMRT-model) generated from IMRT model and 10 IMRT plans generated from VMAT model (PIMRT-by-VMAT-model) were compared on themore » dose to organs at risk (OAR), which included bladder, left and right femoral heads. The similar comparison was also performed on the VMAT plans generated from IMRT model (PVMAT-by-IMRT-model) and VMAT plans generated from VMAT (PVMAT-by-VMAT-model) model. Results: For the internal validation, all plans from IMRT or VMAT model shows significantly improvement on OAR sparing compared with the corresponded clinical ones. Compared to the PIMRT-by-VMAT-model, the PIMRT-by-IMRT-model has a reduction of 6.90±3.87%(p<0.001) on V40 6.63±3.62%(p<0.001) on V45 and 4.74±2.26%(p<0.001) on V50 in bladder; and a mean dose reduction of 2.12±1.75Gy(p=0.004) and 2.84±1.53Gy(p<0.001) in right and left femoral head, respectively. There was no significant difference on OAR sparing between PVMAT-by-IMRT-model and PVMAT-by-VMAT-model. Conclusion: The IMRT model for the rectal cancer in the RapidPlan can be applied to for VMAT planning. However, the VMAT model is not suggested to use in the IMRT planning. Cautions should be taken that the planning model based on some technique may not feasible to other planning techniques.« less

  15. Planning comparison between intensity modulated radiation therapy and intensity modulated proton therapy in a case of head and neck cancer

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T. C.; Nguyen, B. T.; Mai, N. V.

    2018-03-01

    In this work, we made the comparison between IMRT plan and IMPT plan for a head and neck case. We used Prowess Panther to perform IMRT plan and LAP- CERR for IMPT plan. The result showed that IMPT plan had better coverage than IMRT plan. In the IMRT plan, normal structures received higher dose with higher volume. Especially, the maximum dose of spinal cord is 31.5 Gy (RBE) using IMRT technique compared to 13.5 Gy (RBE) using IMPT technique. These results showed that IMPT is beneficial for head and neck cancer compared to IMRT technique.

  16. Quality assurance of intensity-modulated radiation therapy.

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  17. [Comparation study of incidental irradiation dose to the internal mammary chain during postmastectomy radiotherapy for patients treated with different irradiation techniques].

    PubMed

    Wang, W; Meng, Y T; Song, Y F; Sun, T; Xu, M; Shao, Q; Zhang, Y J; Li, J B

    2018-05-23

    Objective: To evaluated the unplanned coverage dose to the internal mammary chain (IMC) in patient treated with postmastectomy radiotherapy (PMRT). Methods: One hundred and thirty eight patients with breast cancer receiving radiotherapy (RT) in our hospital were retrospectively analyzed. Patients were divided into three groups: three-dimensional conformal radiotherapy (3D-CRT) group, forward intensity-modulated radiotherapy (F-IMRT) group and inverse IMRT (I-IMRT) group. The IMC were contoured according to Radiation Therapy Oncology Group (RTOG) consensus, and were not include into the planning target volume (PTV). The incidental irradiation dose to IMC among the three groups and the first three intercostal spaces IMC (ICS-IMC 1-3) were all compared, and explored the relationship between the mean doses (Dmean) of IMC and the OARs (ipsilateral lung and heart). Results: The dose delivered to IMC showed no difference in CRT, F-IMRT and I-IMRT(33.80 Gy, 29.65 Gy and 32.95 Gy). And 10.42%, 2.04%, and 9.76% patients achieved ≥45 Gy when treated with CRT, F-IMRT and I-IMRT. For the IMC dose in the first three intercostal spaces (ICS1-3), there was no difference to the three treatment plannings. The Dmean, V(20), V(30), V(40) and V(50) of the ICS-IMC2 and ICS-IMC3 were all obviously superior than ICS-IMC1 for all these three plannings. Moderate positive correlation was founded between Dmean for IMC and Dmean for heart for left breast cancer patients underwent CRT ( r =0.338, P =0.01). Whereas for F-IMRT and I-IMRT groups, positive correlation were founded between Dmean for IMC and Dmean and V(20) for ipsilateral lung for all patients (F-IMRT: r =0.366, P =0.010; r =0.318, P =0.026; I-IMRT: r =0.427, P =0.005; r =0.411, P =0.008). Conclusions: In 3D-CRT, F-IMRT and I-IMRT planning methods, partial patients get IMC irradiated doses that could achieve therapeutic doses. Compared with 3D-CRT, F-IMRT and I-IMRT further reduced the dose of irradiated organs. However, there is no difference in the dose coverage of IMC for the three planned approaches when the IMC made an unplanned target.

  18. MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    developed practical methods for heterogeneity correction for MRI - based dose calculations (Chen et al 2007). 6) We will use existing Monte Carlo ... Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system, Phys. Med. Biol., 45:2483-95 (2000) Ma...accuracy and consistency for MR based IMRT treatment planning for prostate cancer. A short paper entitled “ Monte Carlo dose verification of MR image based

  19. Automated generation of IMRT treatment plans for prostate cancer patients with metal hip prostheses: Comparison of different planning strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voet, Peter W. J.; Dirkx, Maarten L. P.; Breedveld, Sebastiaan

    2013-07-15

    Purpose: To compare IMRT planning strategies for prostate cancer patients with metal hip prostheses.Methods: All plans were generated fully automatically (i.e., no human trial-and-error interactions) using iCycle, the authors' in-house developed algorithm for multicriterial selection of beam angles and optimization of fluence profiles, allowing objective comparison of planning strategies. For 18 prostate cancer patients (eight with bilateral hip prostheses, ten with a right-sided unilateral prosthesis), two planning strategies were evaluated: (i) full exclusion of beams containing beamlets that would deliver dose to the target after passing a prosthesis (IMRT{sub remove}) and (ii) exclusion of those beamlets only (IMRT{sub cut}). Plansmore » with optimized coplanar and noncoplanar beam arrangements were generated. Differences in PTV coverage and sparing of organs at risk (OARs) were quantified. The impact of beam number on plan quality was evaluated.Results: Especially for patients with bilateral hip prostheses, IMRT{sub cut} significantly improved rectum and bladder sparing compared to IMRT{sub remove}. For 9-beam coplanar plans, rectum V{sub 60Gy} reduced by 17.5%{+-} 15.0% (maximum 37.4%, p= 0.036) and rectum D{sub mean} by 9.4%{+-} 7.8% (maximum 19.8%, p= 0.036). Further improvements in OAR sparing were achievable by using noncoplanar beam setups, reducing rectum V{sub 60Gy} by another 4.6%{+-} 4.9% (p= 0.012) for noncoplanar 9-beam IMRT{sub cut} plans. Large reductions in rectum dose delivery were also observed when increasing the number of beam directions in the plans. For bilateral implants, the rectum V{sub 60Gy} was 37.3%{+-} 12.1% for coplanar 7-beam plans and reduced on average by 13.5% (maximum 30.1%, p= 0.012) for 15 directions.Conclusions: iCycle was able to automatically generate high quality plans for prostate cancer patients with prostheses. Excluding only beamlets that passed through the prostheses (IMRT{sub cut} strategy) significantly improved OAR sparing. Noncoplanar beam arrangements and, to a larger extent, increasing the number of treatment beams further improved plan quality.« less

  20. Treatment of Oral Cavity Squamous Cell Carcinoma With Adjuvant or Definitive Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sher, David J., E-mail: dsher@lroc.harvard.edu; Thotakura, Vijaya; Balboni, Tracy A.

    2011-11-15

    Purpose: The optimal management of oral cavity squamous cell carcinoma (OCSCC) typically involves surgical resection followed by adjuvant radiotherapy or chemoradiotherapy (CRT) in the setting of adverse pathologic features. Intensity-modulated radiation therapy (IMRT) is frequently used to treat oral cavity cancers, but published IMRT outcomes specific to this disease site are sparse. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for OCSCC. Methods and Materials: Retrospective study of all patients treated at Dana-Farber Cancer Institute for OCSCC with adjuvant or definitive IMRT between August 2004 and December 2009. The American Joint Committee on Cancer disease stage criteria distributionmore » of this cohort included 5 patients (12%) with stage I; 10 patients (24%) with stage II (n = 10, 24%),; 14 patients (33%) with stage III (n = 14, 33%),; and 13 patients (31%) with stage IV. The primary endpoint was overall survival (OS); secondary endpoints were locoregional control (LRC) and acute and chronic toxicity. Results: Forty-two patients with OCSCC were included, 30 of whom were initially treated with surgical resection. Twenty-three (77%) of 30 surgical patients treated with adjuvant IMRT also received concurrent chemotherapy, and 9 of 12 (75%) patients treated definitively without surgery were treated with CRT or induction chemotherapy and CRT. With a median follow-up of 2.1 years (interquartile range, 1.1-3.1 years) for all patients, the 2-year actuarial rates of OS and LRC following adjuvant IMRT were 85% and 91%, respectively, and the comparable results for definitive IMRT were 63% and 64% for OS and LRC, respectively. Only 1 patient developed symptomatic osteoradionecrosis, and among patients without evidence of disease, 35% experienced grade 2 to 3 late dysphagia, with only 1 patient who was continuously gastrostomy-dependent. Conclusions: In this single-institution series, postoperative IMRT was associated with promising LRC, OS, and lower late toxicity rates, and chemoradiotherapy was a successful treatment for patients with high-risk disease. In contrast, outcomes of radiation-based treatment for patients with inoperable locally advanced disease were markedly less successful.« less

  1. Benchmarking of a treatment planning system for spot scanning proton therapy: Comparison and analysis of robustness to setup errors of photon IMRT and proton SFUD treatment plans of base of skull meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, R., E-mail: ruth.harding2@wales.nhs.uk; Trnková, P.; Lomax, A. J.

    Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was tomore » benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.« less

  2. SU-E-T-105: An FMEA Survey of Intensity Modulated Radiation Therapy (IMRT) Step and Shoot Dose Delivery Failure Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, J Tonigan; Johnson, J; Stingo, F

    2015-06-15

    Purpose: To assess the perception of TG-142 tolerance level dose delivery failures in IMRT and the application of FMEA process to this specific aspect of IMRT. Methods: An online survey was distributed to medical physicists worldwide that briefly described 11 different failure modes (FMs) covered by basic quality assurance in step- and-shoot IMRT at or near TG-142 tolerance criteria levels. For each FM, respondents estimated the worst case H&N patient percent dose error and FMEA scores for Occurrence, Detectability, and Severity. Demographic data was also collected. Results: 181 individual and three group responses were submitted. 84% were from North America.more » Most (76%) individual respondents performed at least 80% clinical work and 92% were nationally certified. Respondent medical physics experience ranged from 2.5–45 years (average 18 years). 52% of individual respondents were at least somewhat familiar with FMEA, while 17% were not familiar. Several IMRT techniques, treatment planning systems and linear accelerator manufacturers were represented. All FMs received widely varying scores ranging from 1–10 for occurrence, at least 1–9 for detectability, and at least 1–7 for severity. Ranking FMs by RPN scores also resulted in large variability, with each FM being ranked both most risky (1st ) and least risky (11th) by different respondents. On average MLC modeling had the highest RPN scores. Individual estimated percent dose errors and severity scores positively correlated (p<0.10) for each FM as expected. No universal correlations were found between the demographic information collected and scoring, percent dose errors, or ranking. Conclusion: FMs investigated overall were evaluated as low to medium risk, with average RPNs less than 110. The ranking of 11 FMs was not agreed upon by the community. Large variability in FMEA scoring may be caused by individual interpretation and/or experience, thus reflecting the subjective nature of the FMEA tool.« less

  3. Image guided IMRT dosimetry using anatomy specific MOSFET configurations.

    PubMed

    Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-06-23

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.

  4. SU-E-T-126: Dosimetric Comparisons of VMAT, IMRT and 3DCRT for Locally Advanced Rectal Cancer with Simultaneous Integrated Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J; Wang, J; Zhang, Z

    2014-06-01

    Purpose: The purpose of this study is to compare the dosimetric differences among volumetric modulated arc therapy (VMAT), fixed-field intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for the preoperative locally advanced rectal cancer (LARC). Methods: Ten LARC patients treated in our department using the simultaneous escalate strategy were retrospectively analyzed in this study. All patients had T3 with N+/− and were treated with IMRT. Two additional VMAT and 3DCRT plans were created for each patient. Both IMRT and VMAT had similar optimization objectives. The prescription was 50Gy to the PTV and 55Gy to the GTV. The target coveragemore » and organs at risk were compared for all the techniques.The paired, two-tailed Wilcoxcon signed-rank test was applied for statistical analysis. Results: IMRT and VMAT plans achieved comparable tumor response except for the conformality index (1.07 vs 1.19 and 1.08 vs 1.03 of IMRT vs VMAT for PTV-G and PTV-C respectively). Compared to VMAT, IMRT showed superior or similar dose sparing in the small bowel, bladder, femoral head. Both IMRT and VMAT had better organs at risk sparing and homogeneity index of PTV-G. Conclusion: All 3DCRT, IMRT and VMAT meet the prescript. The IMRT and VMAT provided comparable dosemitric parameters for target volume. IMRT shows better sparing for small bowel, bladder, femoral heads and normal tissue to 3DCRT and VMAT.« less

  5. Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Aaron M.; Czerminska, Maria; Jaenne, Pasi A.

    2006-07-01

    Purpose: To describe the initial experience at Dana-Farber Cancer Institute/Brigham and Women's Hospital with intensity-modulated radiation therapy (IMRT) as adjuvant therapy after extrapleural pneumonectomy (EPP) and adjuvant chemotherapy. Methods and Materials: The medical records of patients treated with IMRT after EPP and adjuvant chemotherapy were retrospectively reviewed. IMRT was given to a dose of 54 Gy to the clinical target volume in 1.8 Gy daily fractions. Treatment was delivered with a dynamic multileaf collimator using a sliding window technique. Eleven of 13 patients received heated intraoperative cisplatin chemotherapy (225 mg/m{sup 2}). Two patients received neoadjuvant intravenous cisplatin/pemetrexed, and 10 patientsmore » received adjuvant cisplatin/pemetrexed chemotherapy after EPP but before radiation therapy. All patients received at least 2 cycles of intravenous chemotherapy. The contralateral lung was limited to a V20 (volume of lung receiving 20 Gy or more) of 20% and a mean lung dose (MLD) of 15 Gy. All patients underwent fluorodeoxyglucose positron emission tomography (FDG-PET) for staging, and any FDG-avid areas in the hemithorax were given a simultaneous boost of radiotherapy to 60 Gy. Statistical comparisons were done using two-sided t test. Results: Thirteen patients were treated with IMRT from December 2004 to September 2005. Six patients developed fatal pneumonitis after treatment. The median time from completion of IMRT to the onset of radiation pneumonitis was 30 days (range 5-57 days). Thirty percent of patients (4 of 13) developed acute Grade 3 nausea and vomiting. One patient developed acute Grade 3 thrombocytopenia. The median V20, MLD, and V5 (volume of lung receiving 5 Gy or more) for the patients who developed pneumonitis was 17.6% (range, 15.3-22.3%), 15.2 Gy (range, 13.3-17 Gy), and 98.6% (range, 81-100%), respectively, as compared with 10.9% (range, 5.5-24.7%) (p = 0.08), 12.9 Gy (range, 8.7-16.9 Gy) (p = 0.07), and 90% (range, 66-98.3%) (p = 0.20), respectively, for the patients who did not develop pneumonitis. Conclusions: Intensity-modulated RT treatment for mesothelioma after EPP and adjuvant chemotherapy resulted in a high rate of fatal pneumonitis when standard dose parameters were used. We therefore recommend caution in the utilization of this technique. Our data suggest that with IMRT, metrics such as V5 and MLD should be considered in addition to V20 to determine tolerance levels in future patients.« less

  6. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less

  7. Nasopharyngeal Carcinoma in Children: Comparison of Conventional and Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskar, Siddhartha; Bahl, Gaurav; Muckaden, MaryAnn

    2008-11-01

    Purpose: To evaluate the efficacy of intensity-modulated radiotherapy (IMRT) in reducing the acute toxicities associated with conventional RT (CRT) in children with nasopharyngeal carcinoma. Patients and Methods: A total of 36 children with nonmetastatic nasopharyngeal carcinoma, treated at the Tata Memorial Hospital between June 2003 and December 2006, were included in this study. Of the 36 patients, 28 were boys and 8 were girls, with a median age of 14 years; 4 (11%) had Stage II and 10 (28%) Stage III disease at presentation. All patients had undifferentiated carcinoma and were treated with a combination of chemotherapy and RT. Ofmore » the 36 patients, 19 underwent IMRT and 17 underwent CRT. Results: After a median follow-up of 27 months, the 2-year locoregional control, disease-free, and overall survival rate was 76.5%, 60.6%, and 71.3%, respectively. A significant reduction in acute Grade 3 toxicities of the skin (p = 0.006), mucous membrane (p = 0.033), and pharynx (p = 0.035) was noted with the use of IMRT. The median time to the development of Grade 2 toxicity was delayed with IMRT (skin, 35 vs. 25 days, p = 0.016; mucous-membrane, 39 vs. 27 days, p = 0.002; and larynx, 50 vs. 28 days, p = 0.009). The duration of RT significantly influenced disease-free survival on multivariate analysis (RT duration >52 days, hazard ratio = 5.49, 95% confidence interval, 1.14-26.45, p = 0.034). The average mean dose to the first and second planning target volume was 71.8 Gy and 62.5 Gy with IMRT compared with 66.3 Gy (p = 0.001) and 64.4 Gy (p = 0.046) with CRT, respectively. Conclusion: The results of our study have shown that IMRT significantly reduces and delays the onset of acute toxicity, resulting in improved tolerance and treatment compliance for children with nasopharyngeal carcinoma. Also, IMRT provided superior target coverage and normal tissue sparing compared with CRT.« less

  8. Comparative dosimetric and radiobiological assessment among a nonstandard RapidArc, standard RapidArc, classical intensity-modulated radiotherapy, and 3D brachytherapy for the treatment of the vaginal vault in patients affected by gynecologic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedicini, Piernicola, E-mail: ppiern@libero.it; Caivano, Rocchina; Fiorentino, Alba

    2012-01-01

    To evaluate a nonstandard RapidArc (RA) modality as alternative to high-dose-rate brachytherapy (HDR-BRT) or IMRT treatments of the vaginal vault in patients with gynecological cancer (GC). Nonstandard (with vaginal applicator) and standard (without vaginal applicator) RapidArc plans for 27 women with GC were developed to compare with HDR-BRT and IMRT. Dosimetric and radiobiological comparison were performed by means of dose-volume histogram and equivalent uniform dose (EUD) for planning target volume (PTV) and organs at risk (OARs). In addition, the integral dose and the overall treatment times were evaluated. RA, as well as IMRT, results in a high uniform dose onmore » PTV compared with HDR-BRT. However, the average of EUD for HDR-BRT was significantly higher than those with RA and IMRT. With respect to the OARs, standard RA was equivalent of IMRT but inferior to HDR-BRT. Furthermore, nonstandard RA was comparable with IMRT for bladder and sigmoid and better than HDR-BRT for the rectum because of a significant reduction of d{sub 2cc}, d{sub 1cc}, and d{sub max} (p < 0.01). Integral doses were always higher than HDR-BRT, although the values were very low. Delivery times were about the same and more than double for HDR-BRT compared with IMRT and RA, respectively. In conclusion, the boost of dose on vaginal vault in patients affected by GC delivered by a nonstandard RA technique was a reasonable alternative to the conventional HDR-BRT because of a reduction of delivery time and rectal dose at substantial comparable doses for the bladder and sigmoid. However HDR-BRT provides better performance in terms of PTV coverage as evidenced by a greater EUD.« less

  9. The treatment of extensive scalp lesions combining electrons with intensity-modulated photons.

    PubMed

    Chan, Maria F; Song, Yulin; Burman, Chandra; Chui, Chen S; Schupak, Karen

    2006-01-01

    This study was to investigate the feasibility and potential benefits of combining electrons with intensity modulated photons (IMRT+e) for patients with extensive scalp lesions. A case of a patient with an extensive scalp lesion, in which the target volume covered the entire front half of the scalp, is presented. This approach incorporated the electron dose into the inverse treatment planning optimization. The resulting doses to the planning target volume (PTV) and relevant critical structures were compared. Thermoluminescent dosimeters (TLD), diodes, and GAFCHROMIC EBT films were used to verify the accuracy of the techniques. The IMRT+e plan produced a superior dose distribution to the patient as compared to the IMRT plan in terms of reduction of the dose to the brain with the same dose conformity and homogeneity in the target volumes. This study showed that IMRT+e is a viable treatment modality for extensive scalp lesions patients. It provides a feasible alternative to existing treatment techniques, resulting in improved homogeneity of dose to the PTV compared to conventional electron techniques and a decrease in dose to the brain compared to photon IMRT alone.

  10. Cost-effectiveness analysis of intensity-modulated radiation therapy with normal and hypofractionated schemes for the treatment of localised prostate cancer.

    PubMed

    Zemplényi, A T; Kaló, Z; Kovács, G; Farkas, R; Beöthe, T; Bányai, D; Sebestyén, Z; Endrei, D; Boncz, I; Mangel, L

    2018-01-01

    The aim of our analysis was to compare the cost-effectiveness of high-dose intensity-modulated radiation therapy (IMRT) and hypofractionated intensity-modulated radiation therapy (HF-IMRT) versus conventional dose three-dimensional radiation therapy (3DCRT) for the treatment of localised prostate cancer. A Markov model was constructed to calculate the incremental quality-adjusted life years and costs. Transition probabilities, adverse events and utilities were derived from relevant systematic reviews. Microcosting in a large university hospital was applied to calculate cost vectors. The expected mean lifetime cost of patients undergoing 3DCRT, IMRT and HF-IMRT were 7,160 euros, 6,831 euros and 6,019 euros respectively. The expected quality-adjusted life years (QALYs) were 5.753 for 3DCRT, 5.956 for IMRT and 5.957 for HF-IMRT. Compared to 3DCRT, both IMRT and HF-IMRT resulted in more health gains at a lower cost. It can be concluded that high-dose IMRT is not only cost-effective compared to the conventional dose 3DCRT but, when used with a hypofractionation scheme, it has great cost-saving potential for the public payer and may improve access to radiation therapy for patients. © 2016 John Wiley & Sons Ltd.

  11. Effect of Intensity-Modulated Pelvic Radiotherapy on Second Cancer Risk in the Postoperative Treatment of Endometrial and Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwahlen, Daniel R.; Department of Radiation Oncology, University Hospital Zurich, Zurich; Ruben, Jeremy D.

    2009-06-01

    Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the Internationalmore » Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.« less

  12. Superior sulcus non-small cell lung carcinoma: A comparison of IMRT and 3D-RT dosimetry.

    PubMed

    Truntzer, Pierre; Antoni, Delphine; Santelmo, Nicola; Schumacher, Catherine; Falcoz, Pierre-Emmanuel; Quoix, Elisabeth; Massard, Gilbert; Noël, Georges

    2016-01-01

    A dosimetric study comparing intensity modulated radiotherapy (IMRT) by TomoTherapy to conformational 3D radiotherapy (3D-RT) in patients with superior sulcus non-small cell lung cancer (NSCLC). IMRT became the main technique in modern radiotherapy. However it was not currently used for lung cancers. Because of the need to increase the dose to control lung cancers but because of the critical organs surrounding the tumors, the gains obtainable with IMRT is not still demonstrated. A dosimetric comparison of the planned target and organs at risk parameters between IMRT and 3D-RT in eight patients who received preoperative or curative intent irradiation. In the patients who received at least 66 Gy, the mean V95% was significantly better with IMRT than 3D-RT (p = 0.043). IMRT delivered a lower D2% compared to 3D-RT (p = 0.043). The IH was significantly better with IMRT (p = 0.043). The lung V 5 Gy and V 13 Gy were significantly higher in IMRT than 3D-RT (p = 0.043), while the maximal dose (D max) to the spinal cord was significantly lower in IMRT (p = 0.043). The brachial plexus D max was significantly lower in IMRT than 3D-RT (p = 0.048). For patients treated with 46 Gy, no significant differences were found. Our study showed that IMRT is relevant for SS-NSCLC. In patients treated with a curative dose, it led to a reduction of the exposure of critical organs, allowing a better dose distribution in the tumor. For the patients treated with a preoperative schedule, our results provide a basis for future controlled trials to improve the histological complete response by increasing the radiation dose.

  13. The Impact of Intensity Modulated Radiation Therapy on Hospitalization Outcomes in the SEER-Medicare Population With Anal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollom, Erqi L., E-mail: erqiliu@stanford.edu; Wang, Guanying; Harris, Jeremy P.

    Purpose: We examined the impact of intensity modulated radiation therapy (IMRT) on hospitalization rates in the Surveillance, Epidemiology, and End Results (SEER)–Medicare population with anal squamous cell carcinoma (SCC). Methods and Materials: We performed a retrospective cohort study using the SEER-Medicare database. We identified patients with nonmetastatic anal SCC diagnosed between 2001 and 2011 and treated with chemoradiation therapy. We assessed the relation between IMRT and first hospitalization by use of a multivariate competing-risk model, as well as instrumental variable analysis, using provider IMRT affinity as our instrument. Results: Of the 1165 patients included in our study, 458 (39%) receivedmore » IMRT. IMRT use increased over time and was associated more with regional and provider characteristics than with patient characteristics. The 3- and 6-month cumulative incidences of first hospitalization were 41.9% (95% confidence interval [CI], 37.3%-46.4%) and 47.6% (95% CI, 43.0%-52.2%), respectively, for the IMRT cohort and 46.7% (95% CI, 43.0%-50.4%) and 52.1% (95% CI, 48.4%-55.7%), respectively, for the non-IMRT cohort. IMRT was associated with a decreased hazard of first hospitalization compared with 3-dimensional radiation techniques (hazard ratio, 0.70; 95% CI, 0.58-0.84; P=.0002). Instrumental variable analysis suggested an even greater reduction in hospitalizations with IMRT after controlling for unmeasured confounders. There was a trend toward improved overall survival with IMRT, with an adjusted hazard ratio of 0.77 (95% CI, 0.59-1.00; P=.05). Conclusions: The use of IMRT is associated with reduced hospitalizations in elderly patients with anal SCC. Further work is warranted to understand the long-term health and cost impact of IMRT, particularly for patient subgroups most at risk of toxicity and hospitalization.« less

  14. Comparison of anisotropic aperture based intensity modulated radiotherapy with 3D-conformal radiotherapy for the treatment of large lung tumors.

    PubMed

    Simeonova, Anna; Abo-Madyan, Yasser; El-Haddad, Mostafa; Welzel, Grit; Polednik, Martin; Boggula, Ramesh; Wenz, Frederik; Lohr, Frank

    2012-02-01

    IMRT allows dose escalation for large lung tumors, but respiratory motion may compromise delivery. A treatment plan that modulates fluence predominantly in the transversal direction and leaves the fluence identical in the direction of the breathing motion may reduce this problem. Planning-CT-datasets of 20 patients with Stage I-IV non small cell lung cancer (NSCLC) formed the basis of this study. A total of two IMRT plans and one 3D plan were created for each patient. Prescription dose was 60 Gy to the CTV and 70 Gy to the GTV. For the 3D plans an energy of 18 MV photons was used. IMRT plans were calculated for 6 MV photons with 13 coplanar and with 17 noncoplanar beams. Robustness of the used method of anisotropic modulation toward breathing motion was tested in a 13-field IMRT plan. As a consequence of identical prescription doses, mean target doses were similar for 3D and IMRT. Differences between 3D and 13- and 17-field IMRT were significant for CTV Dmin (43 Gy vs. 49.1 Gy vs. 48.6 Gy; p<0.001) and CTV D(95) (53.2 Gy vs. 55.0 Gy vs. 55.4 Gy; p=0.001). The D(mean) of the contralateral lung was significantly lower in the 17-field plans (17-field IMRT vs. 13- vs. 3D: 12.5 Gy vs. 14.8 Gy vs. 15.8 Gy: p<0.05). The spinal cord dose limit of 50 Gy was always respected in IMRT plans and only in 17 of 20 3D-plans. Heart D(max) was only marginally reduced with IMRT (3D vs. 13- vs. 17-field IMRT: 38.2 Gy vs. 36.8 Gy vs. 37.8 Gy). Simulated breathing motion caused only minor changes in the IMRT dose distribution (~0.5-1 Gy). Anisotropic modulation of IMRT improves dose delivery over 3D-RT and renders IMRT plans robust toward breathing induced organ motion, effectively preventing interplay effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

    PubMed

    Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan

    2011-06-08

    A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT), to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT) in standard, preoperative treatment for rectal cancer. Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1) or node-positive (N = 9), and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005), bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005), pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005), and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005), with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005). We found that the IMRT treatment volumes were typically larger than that covered by classic bony landmark-derived fields, without incurring penalty with respect to adjacent organs-at-risk. For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  16. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  17. Analysis of factors influencing the development of xerostomia during intensity-modulated radiotherapy.

    PubMed

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J; Miller, Craig S

    2013-06-01

    Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week 2 and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. HNC subjects experienced mean SSFR decline of 36% by visit 2 (N = 27; P = .012) and 57% by visit 3 (N = 20; P = .0004). Concentrations of calcium and MUC5b increased, but not significantly during IMRT (P > .05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (P < .04) and linear mixed models (P < .0001). Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.

  19. A Dosimetric Comparison of Proton and Intensity Modulated Radiation Therapy in Pediatric Rhabdomyosarcoma Patients Enrolled on a Prospective Phase II Proton Study

    PubMed Central

    Ladra, Matthew M.; Edgington, Samantha K.; Mahajan, Anita; Grosshans, David; Szymonifka, Jackie; Khan, Fazal; Moteabbed, Maryam; Friedmann, Alison M.; MacDonald, Shannon M.; Tarbell, Nancy J.; Yock, Torunn I.

    2015-01-01

    Background Pediatric rhabdomyosarcoma (RMS) is highly curable, however, cure may come with significant radiation related toxicity in developing tissues. Proton therapy (PT) can spare excess dose to normal structures, potentially reducing the incidence of adverse effects. Methods Between 2005 and 2012, 54 patients were enrolled on a prospective multi-institutional phase II trial using PT in pediatric RMS. As part of the protocol, intensity modulated radiation therapy (IMRT) plans were generated for comparison with clinical PT plans. Results Target coverage was comparable between PT and IMRT plans with a mean CTV V95 of 100% for both modalities (p=0.82). However, mean integral dose was 1.8 times higher for IMRT (range 1.0-4.9). By site, mean integral dose for IMRT was 1.8 times higher for H&N (p<0.01) and GU (p=0.02), 2.0 times higher for trunk/extremity (p<0.01), and 3.5 times higher for orbit (p<0.01) compared to PT. Significant sparing was seen with PT in 26 of 30 critical structures assessed for orbital, head and neck, pelvic, and trunk/extremity patients. Conclusions Proton radiation lowers integral dose and improves normal tissue sparing when compared to IMRT for pediatric RMS. Correlation with clinical outcomes is necessary once mature long-term toxicity data are available. PMID:25443861

  20. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    NASA Astrophysics Data System (ADS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-11-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.

  1. Evaluation of Dose Uncertainty to the Target Associated With Real-Time Tracking Intensity-Modulated Radiation Therapy Using the CyberKnife Synchrony System.

    PubMed

    Iwata, Hiromitsu; Inoue, Mitsuhiro; Shiomi, Hiroya; Murai, Taro; Tatewaki, Koshi; Ohta, Seiji; Okawa, Kohei; Yokota, Naoki; Shibamoto, Yuta

    2016-02-01

    We investigated the dose uncertainty caused by errors in real-time tracking intensity-modulated radiation therapy (IMRT) using the CyberKnife Synchrony Respiratory Tracking System (SRTS). Twenty lung tumors that had been treated with non-IMRT real-time tracking using CyberKnife SRTS were used for this study. After validating the tracking error in each case, we did 40 IMRT planning using 8 different collimator sizes for the 20 patients. The collimator size was determined for each planning target volume (PTV); smaller ones were one-half, and larger ones three-quarters, of the PTV diameter. The planned dose was 45 Gy in 4 fractions prescribed at 95% volume border of the PTV. Thereafter, the tracking error in each case was substituted into calculation software developed in house and randomly added in the setting of each beam. The IMRT planning incorporating tracking errors was simulated 1000 times, and various dose data on the clinical target volume (CTV) were compared with the original data. The same simulation was carried out by changing the fraction number from 1 to 6 in each IMRT plan. Finally, a total of 240 000 plans were analyzed. With 4 fractions, the change in the CTV maximum and minimum doses was within 3.0% (median) for each collimator. The change in D99 and D95 was within 2.0%. With decreases in the fraction number, the CTV coverage rate and the minimum dose decreased and varied greatly. The accuracy of real-time tracking IMRT delivered in 4 fractions using CyberKnife SRTS was considered to be clinically acceptable. © The Author(s) 2014.

  2. Intensity-Modulated Radiotherapy for Sinonasal Tumors: Ghent University Hospital Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, Indira; Bonte, Katrien; Vakaet, Luc

    2009-02-01

    Purpose: To report the long-term outcome of intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between July 1998 and November 2006, 84 patients with sinonasal tumors were treated with IMRT to a median dose of 70 Gy in 35 fractions. Of the 84 patients, 73 had a primary tumor and 11 had local recurrence. The tumor histologic type was adenocarcinoma in 54, squamous cell carcinoma in 17, esthesioneuroblastoma in 9, and adenoid cystic carcinoma in 4. The tumors were located in the ethmoid sinus in 47, maxillary sinus in 19, nasal cavity in 16, and multiple sites in 2.more » Postoperative IMRT was performed in 75 patients and 9 patients received primary IMRT. Results: The median follow-up of living patients was 40 months (range, 8-106). The 5-year local control, overall survival, disease-specific survival, disease-free survival, and freedom from distant metastasis rate was 70.7%, 58.5%, 67%, 59.3%, and 82.2%, respectively. No difference was found in local control and survival between patients with primary or recurrent tumors. On multivariate analysis, invasion of the cribriform plate was significantly associated with lower local control (p = 0.0001) and overall survival (p = 0.0001). Local and distant recurrence was detected in 19 and 10 patients, respectively. Radiation-induced blindness was not observed. One patient developed Grade 3 radiation-induced retinopathy and neovascular glaucoma. Nonocular late radiation-induced toxicity comprised complete lacrimal duct stenosis in 1 patient and brain necrosis in 3 patients. Osteoradionecrosis of the maxilla and brain necrosis were detected in 1 of the 5 reirradiated patients. Conclusion: IMRT for sinonasal tumors provides low rates of radiation-induced toxicity without blindness with high local control and survival. IMRT could be considered as the treatment of choi0008.« less

  3. Outcomes of xerostomia-related quality of life for nasopharyngeal carcinoma treated by IMRT: based on the EORTC QLQ-C30 and H&N35 questionnaires.

    PubMed

    Bian, Xiuhua; Song, Tao; Wu, Shixiu

    2015-01-01

    The aim of this study was to review the published literature addressing the question of whether intensity-modulated radiotherapy (IMRT) resulted in an improvement of quality of life (QoL), especially xerostomia-related QoL of all nasopharyngeal carcinoma patients as time progressed. A literature search of PubMed, Embase and Google Scholar was performed, only reports containing original data of the QoL scores after treated by IMRT were included. Two independent reviewers extracted information of study design, study population, interventions, outcome measures and conclusions for each article. The inclusion criteria were met by 14 articles covering outcomes based on the questionnaires treated by IMRT. Data from same questionnaires (European Organization of Research and Treatment of Cancer QLQ-C30 and H&N35 questionnaires) were exacted and we analyzed four items (global health status, dry mouth and sticky saliva, swallowing, social eating and social contact), which have a close relationship with xerostomia-related QoL. Results indicated that a maximal deterioration of most QoL scales including global health status developed during treatment or at the end of the treatment course and then followed by a gradual recovery to 1 year, 1-2 years after IMRT, compared with their baseline level, some specific head and neck items, most in the EORTC QLQ H&N35, remained worse for the surviving patients. In conclusion, the published data reasonably support the benefits of IMRT in improving QoL, but xerostomia-related items still had a significantly negative effect in 2 years to impact a survivor's QoL.

  4. Image guided IMRT dosimetry using anatomy specific MOSFET configurations

    PubMed Central

    Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-01-01

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobileMOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within −0.26±0.88% and 0.06±1.94% (1σ) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X‐Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47±2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PACS number: 87.55.Qr

  5. IMRT plan verification with EBT2 and EBT3 films compared to PTW 2D-ARRAY seven29

    NASA Astrophysics Data System (ADS)

    Hanušová, Tereza; Horáková, Ivana; Koniarová, Irena

    2017-11-01

    The aim of this study was to compare dosimetry with Gafchromic EBT2 and EBT3 films to the ion chamber array PTW seven29 in terms of their performance in clinical IMRT plan verification. A methodology for film processing and calibration was developed. Calibration curves were obtained in MATLAB and in FilmQA Pro. The best calibration curve was then used to calibrate EBT2 and EBT3 films for IMRT plan verification measurements. Films were placed in several coronal planes into an RW3 slab phantom and irradiated with a clinical IMRT plan for prostate and lymph nodes using 18 MV photon beams. Individual fields were tested and irradiated with gantry at 0°. Results were evaluated using gamma analysis with 3%/3 mm criteria in OmniPro I'mRT version 1.7. The same measurements were performed with the ion chamber array PTW seven29 in RW3 slabs (different depths) and in the OCTAVIUS II phantom (isocenter depth only; both original and nominal gantry angles). Results were evaluated in PTW VeriSoft version 3.1 using the same criteria. Altogether, 45 IMRT planes were tested with film and 25 planes with the PTW 2D-ARRAY seven29. Film measuerements showed different results than ion chamber matrix measurements. With PTW 2D-ARRAY seven29, worse results were obtained when the detector was placed into the OCTAVIUS phantom than into the RW3 slab phantom, and the worst pass rates were seen for rotational measurements. EBT2 films showed inconsistent results and could differ significantly for different planes in one field. EBT3 films seemed to give the best results of all the tested configurations.

  6. A quantitative analysis of craniopharyngioma cyst expansion during and after radiation therapy and surgical implications.

    PubMed

    Lamiman, Kelly; Wong, Kenneth K; Tamrazi, Benita; Nosrati, Jason D; Olch, Arthur; Chang, Eric L; Kiehna, Erin N

    2016-12-01

    OBJECTIVE When complete resection of craniopharyngioma is not achievable or the sequelae are prohibitive, limited surgery and radiation therapy have demonstrated excellent local disease control while minimizing treatment-related sequelae. When residual tissue exists, there is a propensity for further cyst development and expansion during and after radiation therapy. This can result in obstructive hydrocephalus, visual changes, and/or clinical decline. The authors present a quantitative analysis of cyst expansion during and after radiotherapy and examine how it affected subsequent management. METHODS The authors performed an institutional review board-approved retrospective study of patients with histologically confirmed craniopharyngioma treated between 2000 and 2015 with surgery and intensity-modulated radiation therapy (IMRT) at a single institution. Volumetric measurements of cyst contours were generated by radiation oncology treatment planning software postoperatively, during IMRT, and up to 12 months after IMRT. Patient, tumor, and treatment-related variables were collected until the last known follow-up and were analyzed. RESULTS Twenty-seven patients underwent surgery and IMRT. The median total radiation dose was 54 Gy. Of the 27 patients, 11 patients (40.7%) demonstrated cyst expansions within 1 year of IMRT. Of note, all tumors with cyst expansion were radiographically Puget Grade 2. Maximal cyst expansion peaked at 4.27 months following radiation therapy, with a median volume growth of 4.1 cm 3 (mean 9.61 cm 3 ) above the postoperative cyst volume. Eight patients experienced spontaneous cyst regression without therapeutic intervention. Three patients experienced MRI-confirmed cyst enlargement during IMRT, all of whom required adaptive planning to ensure adequate coverage of the entire tumor volume. Two of these 3 patients required ventriculoperitoneal shunt placement and additional intervention. One underwent additional resection, and the other had placement of an intracystic catheter for aspiration and delivery of intracystic interferon within 12 months of completing IMRT. All 3 patients now have stable disease. CONCLUSIONS Craniopharyngioma cyst expansion occurred in approximately 40% of the patients during or after radiotherapy. In the majority of patients, cyst expansion was a self-limiting process and did not confer a worse outcome. During radiotherapy, cyst expansion may be apparent on image-guided radiation therapy. Adaptive IMRT planning may be required to ensure that the intended IMRT dose covers the entire tumor and cyst volume. The sequelae of cyst expansion include progressive hydrocephalus, which may be treated with a shunt. For patients with solitary cyst expansion, cyst aspiration and/or intracystic interferon may result in disease control.

  7. Poster - Thur Eve - 29: Detecting changes in IMRT QA using statistical process control.

    PubMed

    Drever, L; Salomons, G

    2012-07-01

    Statistical process control (SPC) methods were used to analyze 239 measurement based individual IMRT QA events. The selected IMRT QA events were all head and neck (H&N) cases with 70Gy in 35 fractions, and all prostate cases with 76Gy in 38 fractions planned between March 2009 and 2012. The results were used to determine if the tolerance limits currently being used for IMRT QA were able to indicate if the process was under control. The SPC calculations were repeated for IMRT QA of the same type of cases that were planned after the treatment planning system was upgraded from Eclipse version 8.1.18 to version 10.0.39. The initial tolerance limits were found to be acceptable for two of the three metrics tested prior to the upgrade. After the upgrade to the treatment planning system the SPC analysis found that the a priori limits were no longer capable of indicating control for 2 of the 3 metrics analyzed. The changes in the IMRT QA results were clearly identified using SPC, indicating that it is a useful tool for finding changes in the IMRT QA process. Routine application of SPC to IMRT QA results would help to distinguish unintentional trends and changes from the random variation in the IMRT QA results for individual plans. © 2012 American Association of Physicists in Medicine.

  8. On-line Adaptive Radiation Treatment of Prostate Cancer

    DTIC Science & Technology

    2009-01-01

    12]. For intensity modulated radiation therapy (IMRT) plans , the beamlet weight can be re-optimized on a daily basis to mini- mize the dose to the OAR...Thongphiew D, Wang Z, Mathayomchan B, Chankong V, Yoo S, et al. On-line re-optimization of prostate IMRT plans for adaptive radiation therapy . Phys Med Biol...time. The treatment planning method for VMAT however is not mature. We are developing a robust VMAT treatment planning method which incorporates

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Karen; Small, William; Portelance, Lorraine

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aidmore » in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.« less

  10. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkul, R; Nejaiman, S; Pokhrel, D

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic themore » range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values agreed better than ±20% for 1mm and 2.5mm grid-sizes respectively. For 18MV, 56% and 18% of all measured-values agreed better than ±20% for 1mm and 2.5mm grid-sizes respectively. Conclusion: Reliable Skin-dose calculations by TPS can be very difficult due to steep dose-gradient and inaccurate beam-modelling in buildup region.Our results showed that Eclipse over-estimates surface-dose.Impact of grid-size is also significant,surface-dose increased up to 40% from 1mm to 2.5mm,however, 1mm calculated-values closely agrees with measurements. Due to large uncertnities in skin-dose predictions from TPS, outmost caution must be exercised when skin dose is evaluated,a sufficiently smaller grid-size(1mm)can improve the accuracy and MOSFETs can be used for verification.« less

  11. The potential of intensity-modulated proton radiotherapy to reduce swallowing dysfunction in the treatment of head and neck cancer: A planning comparative study.

    PubMed

    van der Laan, Hans Paul; van de Water, Tara A; van Herpt, Heleen E; Christianen, Miranda E M C; Bijl, Hendrik P; Korevaar, Erik W; Rasch, Coen R; van 't Veld, Aart A; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A

    2013-04-01

    Predictive models for swallowing dysfunction were developed previously and showed the potential of improved intensity-modulated radiotherapy to reduce the risk of swallowing dysfunction. Still the risk is high. The aim of this study was to determine the potential of swallowing-sparing (SW) intensity-modulated proton therapy (IMPT) in head and neck cancer (HNC) for reducing the risk of swallowing dysfunction relative to currently used photon therapy. Twenty-five patients with oropharyngeal (n = 21) and hypopharyngeal (n = 4) cancer received primary radiotherapy, including bilateral neck irradiation, using standard (ST) intensity-modulated photon therapy (IMRT). Prophylactic (54 Gy) and therapeutic (70 Gy) target volumes were defined. The dose to the parotid and submandibular glands was reduced as much as possible. Four additional radiotherapy plans were created for each patient: SW-IMRT, ST-IMPT, 3-beam SW-IMPT (3B-SW-IMPT) and 7-beam SW-IMPT (7B-SW-IMPT). All plans were optimized similarly, with additional attempts to spare the swallowing organs at risk (SWOARs) in the SW plans. Probabilities of swallowing dysfunction were calculated with recently developed predictive models. All plans complied with standard HNC radiotherapy objectives. The mean parotid gland doses were similar for the ST and SW photon plans, but clearly lower in all IMPT plans (ipsilateral parotid gland ST-IMRT: 46 Gy, 7B-SW-IMPT: 29 Gy). The mean dose in the SWOARs was lowest with SW-IMPT, in particular with 7B-SW-IMPT (supraglottic larynx ST-IMRT: 60 Gy, 7B-SW-IMPT: 40 Gy). The observed dose reductions to the SWOARs translated into substantial overall reductions in normal tissue complication risks for different swallowing dysfunction endpoints. Compared with ST-IMRT, the risk of physician-rated grade 2-4 swallowing dysfunction was reduced on average by 8.8% (95% CI 6.5-11.1%) with SW-IMRT, and by 17.2% (95% CI: 12.7-21.7%) with 7B-SW-IMPT. SWOAR-sparing with proton therapy has the potential to substantially reduce the risk of swallowing dysfunction compared to similar treatment with photons.

  12. Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.

    PubMed

    Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua

    2014-05-08

    This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of radiotherapy techniques for upper esophageal carcinoma.

  13. Patient-reported outcomes following parotid-sparing intensity-modulated radiotherapy for head and neck cancer. How important is dysphagia?

    PubMed

    Roe, Justin W G; Drinnan, Michael J; Carding, Paul N; Harrington, Kevin J; Nutting, Christopher M

    2014-12-01

    Swallowing can be significantly affected during and following radiotherapy for head and neck cancer (HNC). The purpose of this study was to understand: (1) the trajectory of swallowing recovery following parotid-sparing intensity-modulated radiotherapy (IMRT) and (2) overall physical and social-emotional wellbeing and how patients prioritise swallowing following treatment. Sixty-one HNC patients completed questionnaires as part of a prospective study exploring patient-reported swallowing outcomes following parotid-sparing IMRT. Participants were asked to complete the M.D. Anderson Dysphagia Inventory (MDADI) and University of Washington Quality of Life Questionnaire (UW-QoL) v.04 before treatment and 3, 6 and 12months after treatment. Given the rise in human papilloma virus (HPV) and associated oropharyngeal cancers, we completed a sub analysis of the data in those participants. There was a significant reduction in the MDADI composite scores 3months after completion of treatment. Improvements were observed by 12months, however, scores did not recover to baseline. The recovery in physical function was limited in comparison to social-emotional recovery at 12months. When oropharyngeal cancer scores were analysed, there was not a substantial difference to the whole group results. There was a shift in priorities following treatment. Swallowing was highlighted as a concern by 44% of HNC patients up to 12months after treatment with swallowing-related factors (saliva, taste and chewing) rated highly. Patient reported swallowing outcomes were significantly affected from baseline to all follow-up time points and remained a priority concern at 12months following treatment. Overall social-emotional functioning does improve, suggesting that patients have the potential to adapt to their "new normal" following IMRT for HNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Beam Path Toxicities to Non-Target Structures During Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.

    2008-11-01

    Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less

  15. SU-E-T-83: A Study On Evaluating the Directional Dependency of 2D Seven 29 Ion Chamber Array Clinically with Different IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aswathi, C.P.

    Purpose: To evaluate the directional dependency of 2D seven 29 ion chamber array clinically with different IMRT plans. Methods: 25 patients already treated with IMRT plans were selected for the study. Verification plans were created for each treatment plan in eclipse 10 treatment planning system using the AAA algorithm with the 2D array and the Octavius CT phantom. Verification plans were done 2 times for a single patient. First plan with real IMRT (plan-related approach) and second plan with zero degree gantry angle (field-related approach). Measurements were performed on a Varian Clinac-iX, linear accelerator equipped with a millennium 120 multileafmore » collimator. Fluence was measured for all the delivered plans and analyzed using the verisoft software. Comparison was done by selecting the fluence delivered in static gantry (zero degree gantry) versus IMRT with real gantry angles. Results: The gamma pass percentage is greater than 97 % for all IMRT delivered with zero gantry angle and between 95%–98% for real gantry angles. Dose difference between the TPS calculated and measured for IMRT delivered with zero gantry angle was found to be between (0.03 to 0.06Gy) and with real gantry angles between (0.02 to 0.05Gy). There is a significant difference between the gamma analysis between the zero degree and true angle with a significance of 0.002. Standard deviation of gamma pass percentage between the IMRT plans with zero gantry angle was 0.68 and for IMRT with true gantry angle was found to be 0.74. Conclusion: The gamma analysis for IMRT with zero degree gantry angles shows higher pass percentage than IMRT delivered with true gantry angles. Verification plans delivered with true gantry angles lower the verification accuracy when 2D array is used for measurement.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Hiraoka, Masahiro

    Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping themore » minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose-volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.« less

  17. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  18. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report.

    PubMed

    Yamada, Yoshiya; Lovelock, D Michael; Yenice, Kamil M; Bilsky, Mark H; Hunt, Margaret A; Zatcky, Joan; Leibel, Steven A

    2005-05-01

    The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never irradiated patients, respectively. More than 90% of patients experienced palliation from pain, weakness, or paresthesia; 75% and 81% of secondary and primary lesions, respectively, exhibited local control at the time of last follow-up. No cases of radiation-induced myelopathy or radiculopathy have thus far been encountered. Precision stereotactic and image-guided paraspinal IMRT allows the delivery of high doses of radiation in multiple fractions to tumors within close proximity to the spinal cord while respecting cord tolerance. Although preliminary, the clinical results are encouraging.

  19. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    PubMed

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  20. Association between intensity modulated radiotherapy and survival in patients with stage III non-small cell lung cancer treated with chemoradiotherapy.

    PubMed

    Koshy, Matthew; Malik, Renuka; Spiotto, Michael; Mahmood, Usama; Rusthoven, Chad G; Sher, David J

    2017-06-01

    To determine the effect of radiotherapy (RT) technique on treatment compliance and overall survival (OS) in patients with stage III non-small lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). This study included patients with stage III NSCLC in the National Cancer Database treated between 2003 and 2011 with definitive CRT to 60-63 Gray (Gy). Radiation treatment interruption (RTI) was defined as a break of ≥4 days. Treatment technique was dichotomized as intensity modulated (IMRT) or non-IMRT techniques. Out of the cohort of 7492, 35% had a RTI and 10% received IMRT. With a median follow-up of surviving patients of 32 months, the median survival for those with non-IMRT vs. IMRT was 18.2 months vs. 20 months (p<0.0001). Median survival for those with and without an RTI≥4 days was 16.1 months vs. 19.8 months (p<0.0001). Use of IMRT predicted for a decreased likelihood of RTI (odds ratio, 0.84, p=0.04). On multivariable analysis for OS, IMRT had a HR of 0.89 (95% CI: 0.80-0.98, p=0.01) and RTI had a HR of 1.2 (95% confidence interval (CI): 1.14-1.27, p=0.001). IMRT was associated with small but significant survival advantage for patients with stage III NSCLC treated with CRT. A RTI led to inferior survival, and both IMRT and RTI were independently associated with OS. Additional research should investigate whether improved tolerability, reduced normal tissue exposure, or superior coverage drives the association between IMRT and improved survival. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. SU-F-T-349: Dosimetric Comparison of Three Different Simultaneous Integrated Boost Irradiation Techniques for Multiple Brain Metastases: Intensity-Modulatedradiotherapy, Hybrid Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Yin, Y

    Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less

  2. Managed care and the diffusion of intensity-modulated radiotherapy for prostate cancer.

    PubMed

    Jacobs, Bruce L; Zhang, Yun; Skolarus, Ted A; Wei, John T; Montie, James E; Schroeck, Florian R; Hollenbeck, Brent K

    2012-12-01

    To better understand associations between managed care penetration in health care markets and the adoption of intensity-modulated radiotherapy (IMRT). We used Surveillance, Epidemiology, and End Results-Medicare data to identify men diagnosed with prostate cancer between 2001 and 2007 who were treated with radiotherapy (n = 55,162). We categorized managed care penetration in Health Service Areas (HSAs) as low (<3%), intermediate (3%-10%), and high (>10%), and assessed our main outcomes (ie, probability of IMRT adoption, which is the ability of a health care market to deliver IMRT, and IMRT utilization in HSA markets) using a Cox proportional hazards model and Poisson regression model, respectively. Compared with markets with low managed care penetration, populations in highly penetrated HSAs were more racially diverse (25% vs 15% non-white, P <.01), densely populated (2110 vs 145 people/square mile, P <.01), and wealthier (median income, $48,500 vs $31,900, P <.01). The probability of IMRT adoption was greatest in markets with the highest managed care penetration (eg, 0.82 [high] vs 0.72 [low] in 2007, P = .05). Among adopting markets, the use of IMRT increased in all HSA categories. However, relative to markets with low managed care penetration, IMRT use was constrained in markets with the highest penetration (0.69 [high] vs 0.76 [low] in 2007, P <.01). Markets with higher managed care penetration demonstrated a greater propensity for acquiring IMRT technology. However, after adopting IMRT, more highly penetrated markets had roughly 7% slower growth in IMRT use during the study period. These findings provide insight into the implications of delivery system reforms for cancer-related technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Thirty year celebration of journal publications on radiation oncology medical physics.

    PubMed

    Oliver, L D

    2007-03-01

    The Australasian Physical & Engineering Sciences in Medicine Journal (APESM) is an avenue for the profession to report scientific work in medicine; provide a facility for the publication of current work, new research and new techniques developed or reviewed; report on professional news from elsewhere and; publish the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) policies and protocols. The journal is a vital instrument within the ACPSEM organisation with a worldwide circulation. This review of APESM on medical physics in radiation oncology is meant to be a progress summary of work in that specialty. Even so, it has become a lengthy appraisal due to the many years involved. In considering publications related to medical physics in radiation oncology, this review has shown the progression of the College journal to an international journal. There is an increase in the number of papers contributed from Asia and other countries world wide for this discipline. Growth in the number of contributions should continue to rise. In order to provide some appreciation of where the present medical physics activity arose from, this article commences its discussion in 1959 and progresses towards the present, describing along the way, from radiation oncology papers published in APESM, the use of linear accelerators, brachytherapy, the medical physics workforce, the formation of the ACPSEM, and the more modern developments in radiotherapy such as 3-D treatment planning and IMRT.

  4. A model to predict the risk of lethal nasopharyngeal necrosis after re-irradiation with intensity-modulated radiotherapy in nasopharyngeal carcinoma patients.

    PubMed

    Yu, Ya-Hui; Xia, Wei-Xiong; Shi, Jun-Li; Ma, Wen-Juan; Li, Yong; Ye, Yan-Fang; Liang, Hu; Ke, Liang-Ru; Lv, Xing; Yang, Jing; Xiang, Yan-Qun; Guo, Xiang

    2016-06-29

    For patients with nasopharyngeal carcinoma (NPC) who undergo re-irradiation with intensity-modulated radiotherapy (IMRT), lethal nasopharyngeal necrosis (LNN) is a severe late adverse event. The purpose of this study was to identify risk factors for LNN and develop a model to predict LNN after radical re-irradiation with IMRT in patients with recurrent NPC. Patients who underwent radical re-irradiation with IMRT for locally recurrent NPC between March 2001 and December 2011 and who had no evidence of distant metastasis were included in this study. Clinical characteristics, including recurrent carcinoma conditions and dosimetric features, were evaluated as candidate risk factors for LNN. Logistic regression analysis was used to identify independent risk factors and construct the predictive scoring model. Among 228 patients enrolled in this study, 204 were at risk of developing LNN based on risk analysis. Of the 204 patients treated, 31 (15.2%) developed LNN. Logistic regression analysis showed that female sex (P = 0.008), necrosis before re-irradiation (P = 0.008), accumulated total prescription dose to the gross tumor volume (GTV) ≥145.5 Gy (P = 0.043), and recurrent tumor volume ≥25.38 cm(3) (P = 0.009) were independent risk factors for LNN. A model to predict LNN was then constructed that included these four independent risk factors. A model that includes sex, necrosis before re-irradiation, accumulated total prescription dose to GTV, and recurrent tumor volume can effectively predict the risk of developing LNN in NPC patients who undergo radical re-irradiation with IMRT.

  5. IMRT treatment of anal cancer with a scrotal shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Rodney C., E-mail: Rodney.Hood@duke.edu; Wu, Q. Jackie; McMahon, Ryan

    The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palomore » Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.« less

  6. Contralateral Breast Dose After Whole-Breast Irradiation: An Analysis by Treatment Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Terence M.; Moran, Jean M., E-mail: jmmoran@med.umich.edu; Hsu, Shu-Hui

    2012-04-01

    Purpose: To investigate the contralateral breast dose (CBD) across a continuum of breast-conservation therapy techniques. Methods and Materials: An anthropomorphic phantom was CT-simulated, and six treatment plans were generated: open tangents, tangents with an external wedge on the lateral beam, tangents with lateral and medial external wedges, a simple segment plan (three segments per tangent), a complex segmental intensity-modulated radiotherapy (IMRT) plan (five segments per tangent), and a beamlet IMRT plan (>100 segments). For all techniques, the breast on the phantom was irradiated to 5000 cGy. Contralateral breast dose was measured at a uniform depth at the center and eachmore » quadrant using thermoluminescent detectors. Results: Contralateral breast dose varied with position and was 50 {+-} 7.3 cGy in the inner half, 24 {+-} 4.1 cGy at the center, and 16 {+-} 2.2 cGy in the outer half for the open tangential plan. Compared with an average dose of 31 cGy across all points for the open field, the average doses were simple segment 32 cGy (range, 99-105% compared with open technique), complex segment 34 cGy (range, 103-117% compared with open technique), beamlet IMRT 34 cGy (range, 103-124% compared with open technique), lateral wedge only 46 cGy (range, 133-175% compared with open technique), and medial and lateral wedge 96 cGy (range, 282-370% compared with open technique). Conclusions: Single or dual wedge techniques resulted in the highest CBD increases compared with open tangents. To obtain the desired homogeneity to the treated breast while minimizing CBD, segmental and IMRT techniques should be encouraged over external physical compensators.« less

  7. Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning.

    PubMed

    Sharfo, Abdul Wahab M; Voet, Peter W J; Breedveld, Sebastiaan; Mens, Jan Willem M; Hoogeman, Mischa S; Heijmen, Ben J M

    2015-03-01

    In a published study on cervical cancer, 5-beam IMRT was inferior to single arc VMAT. Here we compare 9, 12, and 20 beam IMRT with single and dual arc VMAT. For each of 10 patients, automated plan generation with the in-house Erasmus-iCycle optimizer was used to assist an expert planner in generating the five plans with the clinical TPS. For each patient, all plans were clinically acceptable with a high and similar PTV coverage. OAR sparing increased when going from 9 to 12 to 20 IMRT beams, and from single to dual arc VMAT. For all patients, 12 and 20 beam IMRT were superior to single and dual arc VMAT, with substantial variations in gain among the study patients. As expected, delivery of VMAT plans was significantly faster than delivery of IMRT plans. Often reported increased plan quality for VMAT compared to IMRT has not been observed for cervical cancer. Twenty and 12 beam IMRT plans had a higher quality than single and dual arc VMAT. For individual patients, the optimal delivery technique depends on a complex trade-off between plan quality and treatment time that may change with introduction of faster delivery systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Growth Of High-Cost Intensity-Modulated Radiotherapy For Prostate Cancer Raises Concerns About Overuse

    PubMed Central

    Jacobs, Bruce L.; Zhang, Yun; Skolarus, Ted A.; Hollenbeck, Brent K.

    2012-01-01

    To study the impact of new, expensive, and unproven therapies to treat prostate cancer, we investigated the dissemination of intensity-modulated radiotherapy (IMRT). IMRT is an innovative treatment for prostate cancer that delivers higher doses of radiation with improved precision compared to alternative radiotherapies. We observed rapid adoption of this new treatment among men diagnosed with prostate cancer from 2001 through 2007, despite uncertainty about its relative effectiveness. We compared patient and disease characteristics of those receiving IMRT and the previous radiation standard of care, three-dimensional conformal therapy; assessed intermediate-term outcomes; and examined potential factors associated with the increased use of IMRT. We found that in the early period of IMRT adoption (2001–03) men with high-risk disease were more likely to receive IMRT, whereas after IMRT’s initial dissemination (2004–07) men with low-risk disease had fairly similar likelihoods of receiving IMRT as men with high-risk disease. This raises concerns about overtreatment, as well as considerable health care costs, because treatment with IMRT costs $15,000–$20,000 more than other standard therapies. As health care delivery reforms gain traction, policy makers must balance the promotion of new, yet unproven, technology with the risk of overuse. PMID:22492892

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aznar, Marianne C., E-mail: marianne.camille.aznar@regionh.dk; Faculty of Sciences, Niels Bohr Institute, and Faculty of Health Sciences, University of Copenhagen, Copenhagen; Maraldo, Maja V.

    Purpose: Hodgkin lymphoma (HL) survivors have an increased risk of cardiovascular disease (CD), lung cancer, and breast cancer. We investigated the risk for the development of CD and secondary lung, breast, and thyroid cancer after radiation therapy (RT) delivered with deep inspiration breath-hold (DIBH) compared with free-breathing (FB) using 3-dimensional conformal RT (3DCRT) and intensity modulated RT (IMRT). The aim of this study was to determine which treatment modality best reduced the combined risk of life-threatening late effects in patients with mediastinal HL. Methods and Materials: Twenty-two patients with early-stage mediastinal HL were eligible for the study. Treatment plans weremore » calculated with both 3DCRT and IMRT on both DIBH and FB planning computed tomographic scans. We reported the estimated dose to the heart, lung, female breasts, and thyroid and calculated the estimated life years lost attributable to CD and to lung, breast, and thyroid cancer. Results: DIBH lowered the estimated dose to heart and lung regardless of delivery technique (P<.001). There was no significant difference between IMRT-FB and 3DCRT-DIBH in mean heart dose, heart V20Gy, and lung V20Gy. The mean breast dose was increased with IMRT regardless of breathing technique. Life years lost was lowest with DIBH and highest with FB. Conclusions: In this cohort, 3DCRT-DIBH resulted in lower estimated doses and lower lifetime excess risks than did IMRT-FB. Combining IMRT and DIBH could be beneficial for a subgroup of patients.« less

  10. Phantom-to-clinic development of hypofractionated stereotactic body radiotherapy for early-stage glottic laryngeal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Chuxiong; Chun, Stephen G.; Sumer, Baran D.

    The purpose of this study was to commission and clinically test a robotic stereotactic delivery system (CyberKnife, Sunnyvale, CA) to treat early-stage glottic laryngeal cancer. We enrolled 15 patients with cTis-T2N0M0 carcinoma of the glottic larynx onto an institutional review board (IRB)-approved clinical trial. Stereotactic body radiotherapy (SBRT) plans prescribed 45 Gy/10 fractions to the involved hemilarynx. SBRT dosimetry was compared with (1) standard carotid-sparing laryngeal intensity-modulated radiation therapy (IMRT) and (2) selective hemilaryngeal IMRT. Our results demonstrate that SBRT plans improved sparing of the contralateral arytenoid (mean 20.0 Gy reduction, p <0.001), ipsilateral carotid D{sub max} (mean 20.6 Gy reduction, p <0.001), contralateral carotidmore » D{sub max} (mean 28.1 Gy reduction, p <0.001), and thyroid D{sub mean} (mean 15.0 Gy reduction, p <0.001) relative to carotid-sparing IMRT. SBRT also modestly improved dose sparing to the contralateral arytenoid (mean 4.8 Gy reduction, p = 0.13) and spinal cord D{sub max} (mean 4.9 Gy reduction, p = 0.015) relative to selective hemilaryngeal IMRT plans. This “phantom-to-clinic” feasibility study confirmed that hypofractionated SBRT treatment for early-stage laryngeal cancer can potentially spare dose to adjacent normal tissues relative to current IMRT standards. Clinical efficacy and toxicity correlates continue to be collected through an ongoing prospective trial.« less

  11. Analysis of Local Control in Patients Receiving IMRT for Resected Pancreatic Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yovino, Susannah; Maidment, Bert W.; Herman, Joseph M.

    2012-07-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is increasingly incorporated into therapy for pancreatic cancer. A concern regarding this technique is the potential for geographic miss and decreased local control. We analyzed patterns of first failure among patients treated with IMRT for resected pancreatic cancer. Methods and Materials: Seventy-one patients who underwent resection and adjuvant chemoradiation for pancreas cancer are included in this report. IMRT was used for all to a median dose of 50.4 Gy. Concurrent chemotherapy was 5-FU-based in 72% of patients and gemcitabine-based in 28%. Results: At median follow-up of 24 months, 49/71 patients (69%) had failed. The predominant failuremore » pattern was distant metastases in 35/71 patients (49%). The most common site of metastases was the liver. Fourteen patients (19%) developed locoregional failure in the tumor bed alone in 5 patients, regional nodes in 4 patients, and concurrently with metastases in 5 patients. Median overall survival (OS) was 25 months. On univariate analysis, nodal status, margin status, postoperative CA 19-9 level, and weight loss during treatment were predictive for OS. On multivariate analysis, higher postoperative CA19-9 levels predicted for worse OS on a continuous basis (p < 0.01). A trend to worse OS was seen among patients with more weight loss during therapy (p = 0.06). Patients with positive nodes and positive margins also had significantly worse OS (HR for death 2.8, 95% CI 1.1-7.5; HR for death 2.6, 95% CI 1.1-6.2, respectively). Grade 3-4 nausea and vomiting was seen in 8% of patients. Late complication of small bowel obstruction occurred in 4 (6%) patients. Conclusions: This is the first comprehensive report of patterns of failure among patients treated with adjuvant IMRT for pancreas cancer. IMRT was not associated with an increase in local recurrences in our cohort. These data support the use of IMRT in the recently activated EORTC/US Intergroup/RTOG 0848 adjuvant pancreas trial.« less

  12. SU-F-T-89: Investigation of Simultaneous Optimization of Photon and Electron Apertures for Mixed Beam Radiotherapy Based On An Academic Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, S; Joosten, A; Fix, MK

    Purpose: To estimate the dosimetric potential of mixed beam radiotherapy (MBRT) by using a single process optimizing the shape and weight of photon and electron apertures simultaneously based on Monte Carlo beamlet dose distributions. Methods: A simulated annealing based direct aperture optimization capable to perform simultaneous optimization was developed to generate treatment plans for MERT, photon-IMRT and MBRT. Both photon and electron apertures are collimated with the photon-MLC and are delivered in a segmented manner. For dosimetric comparison and for investigating the dependency on the number of apertures, photon-IMRT, MERT and MBRT plans were generated for an academic case consistingmore » of a water phantom containing two shallow PTVs differing in the maximal depth of 5 and 7 cm, respectively and two OARs in distal and lateral direction to the PTVs. Results: For the superficial PTV, the dose homogeneity (V95%–V107%) and the mean dose (in percent of the prescribed dose) to the distal and the lateral OARs of the MBRT plan (94.9%, 16.9%, 17.8%) are superior or comparable to those for the MERT (74%, 18.4%, 15.4%) and the photon-IMRT plan (89.4%, 20.8%, 24.7%). For the enlarged PTV, the dosimetric superiority of MBRT compared to MERT and photon-IMRT is even more pronounced. Furthermore, an MBRT plan with 12 electron and 10 photon apertures lead to an objective function value 38% lower than that of a photon-IMRT plan with 40 apertures. Conclusion: The results of simultaneous optimization for MBRT are promising with regards to further OAR sparing and improved dose coverage to the PTV compared to photon-IMRT and MERT. Especially superficial targets with deeper subparts (>5 cm) could substantially benefit. Moreover, MBRT seems to be a possible solution of two downsides of photon-IMRT, namely the extended low dose bath and the requirement of numerous apertures. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less

  13. SU-E-J-81: Adaptive Radiotherapy for IMRT Head & Neck Patient in AKUH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousuf, A; Qureshi, B; Qadir, A

    2015-06-15

    Purpose: In this study we proposed Adaptive radiotherapy for IMRT patients which will brought an additional dimension to the management of patients with H&N cancer in Aga Khan University Hospital. Methods: In this study 5 Head and Neck (H&N) patients plan where selected, who’s Re-CT were done during the course of their treatment, they were simulated with IMRT technique to learn the consequence of anatomical changes that may occur during the treatment, as they are more dramatic changes can occur as compare to conventional treatment. All the organ at risk were drawn according RTOG guidelines and doses were checked asmore » per NCCN guidelines. Results: The reduction in size of Planning target volume (PTV) is more than 20% in all the cases which leads to 3 to 5 % overdose to normal tissues and Organ at Risk. Conclusion: Through this study we would like to emphasis the importance of Adaptive Radiotherapy practice in all IMRT (H&N) patients, although prospective studies are required with larger sample sizes to address the safety and the clinical effect of such approaches on patient outcome, also one need to develop protocols before implementation of this technique in practice.« less

  14. Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods.

    PubMed

    Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg

    2005-02-21

    A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.

  15. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes

    DTIC Science & Technology

    2013-06-01

    08-1-0358 TITLE: Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes PRINCIPAL...AND SUBTITLE Multi-Adaptive Plan (MAP) IMRT to Accommodate Independent 5a. CONTRACT NUMBER W81XWH-08-1-0358 Movement of the Prostate and...multi-adaptive plan (MAP) IMRT to accommodate independent movement of the two targeted tumor volumes. In this project, we evaluated two adaptive

  16. Shielding evaluation for IMRT implementation in an existing accelerator vault

    PubMed Central

    Price, R. A.; Chibani, O.; Ma, C.‐M.

    2003-01-01

    A formalism is developed for evaluating the shielding in an existing vault to be used for IMRT. Existing exposure rate measurements are utilized as well as a newly developed effective modulation scaling factor. Examples are given for vaults housing 6, 10 and 18 MV linear accelerators. The use of an 18 MV Siemens linear accelerator is evaluated for IMRT delivery with respect to neutron production and the effects on individual patients. A modified modulation scaling factor is developed and the risk of the incurrence of fatal secondary malignancies is estimated. The difference in neutron production between 18 MV Varian and Siemens accelerators is estimated using Monte Carlo results. The neutron production from the Siemens accelerator is found to be approximately 4 times less than that of the Varian accelerator resulting in a risk of fatal secondary malignancy occurrence of approximately 1.6% when using the SMLC delivery technique and our measured modulation scaling factors. This compares with a previously published value of 1.6% for routine 3D CRT delivery on the Varian accelerator. PACS number(s): 87.52.Ga, 87.52.Px, 87.53.Qc, 87.53.Wz PMID:12841794

  17. Poster - Thurs Eve-21: Experience with the Velocity(TM) pre-commissioning services.

    PubMed

    Scora, D; Sixel, K; Mason, D; Neath, C

    2008-07-01

    As the first Canadian users of the Velocity™ program offered by Siemens, we would like to share our experience with the program. The Velocity program involves the measurement of the commissioning data by an independent Physics consulting company at the factory test cell. The data collected was used to model the treatment beams in our planning system in parallel with the linac delivery and installation. Beam models and a complete data book were generated for two photon energies including Virtual Wedge, physical wedge, and IMRT, and 6 electron energies at 100 and 110 cm SSD. Our final beam models are essentially the Velocity models with some minor modifications to customize the fit to our liking. Our experience with the Velocity program was very positive; the data collection was professional and efficient. It allowed us to proceed with confidence in our beam data and modeling and to spend more time on other aspects of opening a new clinic. With the assistance of the program we were able to open a three-linac clinic with Image-Guided IMRT within 4.5 months of machine delivery. © 2008 American Association of Physicists in Medicine.

  18. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    NASA Astrophysics Data System (ADS)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  19. Impact of gastric filling on radiation dose delivered to gastroesophageal junction tumors.

    PubMed

    Bouchard, Myriam; McAleer, Mary Frances; Starkschall, George

    2010-05-01

    This study examined the impact of gastric filling variation on target coverage of gastroesophageal junction (GEJ) tumors in three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), or IMRT with simultaneous integrated boost (IMRT-SIB) plans. Eight patients previously receiving radiation therapy for esophageal cancer had computed tomography (CT) datasets acquired with full stomach (FS) and empty stomach (ES). We generated treatment plans for 3DCRT, IMRT, or IMRT-SIB for each patient on the ES-CT and on the FS-CT datasets. The 3DCRT and IMRT plans were planned to 50.4 Gy to the clinical target volume (CTV), and the same for IMRT-SIB plus 63.0 Gy to the gross tumor volume (GTV). Target coverage was evaluated using dose-volume histogram data for patient treatments simulated with ES-CT sets, assuming treatment on an FS for the entire course, and vice versa. FS volumes were a mean of 3.3 (range, 1.7-7.5) times greater than ES volumes. The volume of the GTV receiving >or=50.4 Gy (V(50.4Gy)) was 100% in all situations. The planning GTV V(63Gy) became suboptimal when gastric filling varied, regardless of whether simulation was done on the ES-CT or the FS-CT set. Stomach filling has a negligible impact on prescribed dose delivered to the GEJ GTV, using either 3DCRT or IMRT planning. Thus, local relapses are not likely to be related to variations in gastric filling. Dose escalation for GEJ tumors with IMRT-SIB may require gastric filling monitoring.

  20. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacingmore » between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage. These findings suggest clinical situations where each technique may be most useful if DS constraints are to be employed.« less

  1. Static beam tomotherapy as an optimisation method in whole-breast radiation therapy (WBRT).

    PubMed

    Squires, Matthew; Hu, Yunfei; Byrne, Mikel; Archibald-Heeren, Ben; Cheers, Sonja; Bosco, Bruno; Teh, Amy; Fong, Andrew

    2017-12-01

    TomoTherapy (Accuray, Sunnyvale, CA) has recently introduced a static form of tomotherapy: TomoDirect™ (TD). This study aimed to evaluate TD against a contemporary intensity modulated radiation therapy (IMRT) alternative through comparison of target and organ at risk (OAR) doses in breast cancer cases. A secondary objective was to evaluate planning efficiency by measuring optimisation times. Treatment plans of 27 whole-breast radiation therapy (WBRT) patients optimised with a tangential hybrid IMRT technique were replanned using TD. Parameters included a dynamic field width of 2.5 cm, a pitch of 0.251 and a modulation factor of 2.000; 50 Gy in 25 fractions was prescribed and planning time recorded. The planning metrics used in analysis were ICRU based, with the mean PTV minimum (D 99 ) used as the point of comparison. Both modalities met ICRU50 target heterogeneity objectives (TD D 99 = 48.0 Gy vs. IMRT = 48.1 Gy, P = 0.26; TD D 1 = 53.5 Gy vs. IMRT = 53.0 Gy, P = 0.02; Homogeneity index TD = 0.11 vs. IMRT = 0.10, P = 0.03), with TD plans generating higher median doses (TD D 50 = 51.1 Gy vs. IMRT = 50.9 Gy, P = 0.03). No significant difference was found in prescription dose coverage (TD V 50 = 85.5% vs. IMRT = 82.0%, P = 0.09). TD plans produced a statistically significant reduction in V 5 ipsilateral lung doses (TD V 5 = 23.2% vs. IMRT = 27.2%, P = 0.04), while other queried OARs remained comparable (TD ipsilateral lung V 20 = 13.2% vs. IMRT = 14.6%, P = 0.30; TD heart V 5 = 2.7% vs. IMRT = 2.8%, P = 0.47; TD heart V 10 = 1.7% vs. IMRT = 1.8%, P = 0.44). TD reduced planning time considerably (TD = 9.8 m vs. IMRT = 27.6 m, P < 0.01), saving an average planning time of 17.8 min per patient. TD represents a suitable WBRT treatment approach both in terms of plan quality metrics and planning efficiency. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  2. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma.

    PubMed

    Martin, Spencer; Chen, Jeff Z; Rashid Dar, A; Yartsev, Slav

    2011-12-01

    To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT & Arc technique (IMRT & Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT&Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT&Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p=0.001) and dose homogeneity (p=0.002) to planning target volume (PTV), while IMRT&Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V(10) of the lungs was significantly reduced by the RA2 plans compared to IMRT&Arc (40.3%, p=0.001) and HT (66.2%, p<0.001) techniques. Mean V(15) of the lungs for the RA2 plans also showed significant improvement over the IMRT&Arc (25.2%, p=0.042) and HT (34.8%, p=0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT&Arc techniques. Mean lung dose (MLD) for the IMRT&Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p=0.004), RA1 (23.3%, p=0.028), and RA2 (23.2%, p=0.017) techniques. The IMRT&Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2 technique provided for improved treatment plans using additional arcs with low doses to the lungs at the cost of increased heart dose. Plan quality could still be improved through the use of additional arcs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Intensity Modulated Radiotherapy (IMRT) in head and neck cancers - an overview.

    PubMed

    Nutting, C M

    2012-07-01

    Radiotherapy (RT) is effective in head and neck cancers. Following RT, dryness and dysphagia are the 2 major sequelae which alter the quality of life (QOL) significantly in these patients. There is randomized evidence that Intensity Modulated Radiotherapy (IMRT) effectively spares the parotid glands. IMRT has been attempted in all head and neck subsites with encouraging results (discussed below). Role of IMRT in swallowing structure (constrictor muscles) sparing is less clear.Further improvement in results may be possible by using functional imaging at the time of RT planning and by image guidance/verification at the time of treatment delivery. The following text discusses these issues in detail. Head and neck cancer, IMRT.

  4. Potential for intensity-modulated radiation therapy to permit dose escalation for canine nasal cancer.

    PubMed

    Vaudaux, Catherine; Schneider, Uwe; Kaser-Hotz, Barbara

    2007-01-01

    We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary

  5. SU-E-T-233: Cyberknife Versus Linac IMRT for Dose Comparision in Hypofractionated Hemi Larynx Irradiation of Early Stage True Vocal Cord Cancer: A Dosimetric Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Lee, P; Jiang, S

    2015-06-15

    Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less

  6. Impact of Salivary Gland Dosimetry on Post-IMRT Recovery of Saliva Output and Xerostomia Grade for Head-and-Neck Cancer Patients Treated With or Without Contralateral Submandibular Gland Sparing: A Longitudinal Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhonghe; Yan Chao; Zhang Zhiyuan

    Purpose: To observe the recovery of saliva output and effect on xerostomia grade after intensity-modulated radiotherapy (IMRT) with or without contralateral submandibular gland (cSMG) sparing and to assess the impact of salivary gland dosimetry on this recovery among patients with head-and-neck cancer. Methods and Materials: Between May 2007 and May 2008, 52 patients with head-and-neck cancer received definitive (n = 5 patients) and postoperative (n = 47 patients) IMRT at our institution, with at least one parotid gland spared. Of these patients, 26 patients with a low risk of recurrence in the cSMG region underwent IMRT and had their cSMGsmore » spared (cSMG-sparing group). The remaining 26 high-risk patients had no cSMGs spared (cSMG-unspared group). Xerostomia grades and salivary flow rates were monitored at five time points (before IMRT and at 2, 6, 12, and 18 months after IMRT). Results: Average mean doses and mean volumes receiving 30 Gy (V30) of the cSMGs were lower in the cSMG-sparing group than in the cSMG-unspared group (mean dose, 20.4 Gy vs. 57.4 Gy; mean V30, 14.7% vs. 99.8%, respectively). Xerostomia grades at 2 and 6 months post-IMRT were also significantly lower among patients in the cSMG-sparing group than in the cSMG-unspared group, but differences were not significant at 12 and 18 months after IMRT. Patients in the cSMG-sparing group had significantly better mean unstimulated salivary flow rates at each time point post- IMRT as well as better mean stimulated salivary flow rates at 2 months post-IMRT. Conclusions: Recovery of saliva output and grade of xerostomia post-IMRT in patients whose cSMGs were spared were much better than in patients whose cSMGs were not spared. The influence of the mean doses to the cSMG and parotid gland on the recovery of saliva output was equivalent to that of the mean V30 to the glands.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yao; Chen, Josephine; Leary, Celeste I.

    Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques.more » To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.« less

  8. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial.

    PubMed

    Chun, Stephen G; Hu, Chen; Choy, Hak; Komaki, Ritsuko U; Timmerman, Robert D; Schild, Steven E; Bogart, Jeffrey A; Dobelbower, Michael C; Bosch, Walter; Galvin, James M; Kavadi, Vivek S; Narayan, Samir; Iyengar, Puneeth; Robinson, Clifford G; Wynn, Raymond B; Raben, Adam; Augspurger, Mark E; MacRae, Robert M; Paulus, Rebecca; Bradley, Jeffrey D

    2017-01-01

    Purpose Although intensity-modulated radiation therapy (IMRT) is increasingly used to treat locally advanced non-small-cell lung cancer (NSCLC), IMRT and three-dimensional conformal external beam radiation therapy (3D-CRT) have not been compared prospectively. This study compares 3D-CRT and IMRT outcomes for locally advanced NSCLC in a large prospective clinical trial. Patients and Methods A secondary analysis was performed to compare IMRT with 3D-CRT in NRG Oncology clinical trial RTOG 0617, in which patients received concurrent chemotherapy of carboplatin and paclitaxel with or without cetuximab, and 60- versus 74-Gy radiation doses. Comparisons included 2-year overall survival (OS), progression-free survival, local failure, distant metastasis, and selected Common Terminology Criteria for Adverse Events (version 3) ≥ grade 3 toxicities. Results The median follow-up was 21.3 months. Of 482 patients, 53% were treated with 3D-CRT and 47% with IMRT. The IMRT group had larger planning treatment volumes (median, 427 v 486 mL; P = .005); a larger planning treatment volume/volume of lung ratio (median, 0.13 v 0.15; P = .013); and more stage IIIB disease (30.3% v 38.6%, P = .056). Two-year OS, progression-free survival, local failure, and distant metastasis-free survival were not different between IMRT and 3D-CRT. IMRT was associated with less ≥ grade 3 pneumonitis (7.9% v 3.5%, P = .039) and a reduced risk in adjusted analyses (odds ratio, 0.41; 95% CI, 0.171 to 0.986; P = .046). IMRT also produced lower heart doses ( P < .05), and the volume of heart receiving 40 Gy (V40) was significantly associated with OS on adjusted analysis ( P < .05). The lung V5 was not associated with any ≥ grade 3 toxicity, whereas the lung V20 was associated with increased ≥ grade 3 pneumonitis risk on multivariable analysis ( P = .026). Conclusion IMRT was associated with lower rates of severe pneumonitis and cardiac doses in NRG Oncology clinical trial RTOG 0617, which supports routine use of IMRT for locally advanced NSCLC.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K; Basavatia, A; Mynampati, D

    Purpose: To compare VMAT SRS plans, dynamic conformal arc (DCA) plans, and Brainlab iPlan’s capability of planning and delivering brain SRS plans by employing HybridArc. HybridArc utilizes both DCA and IMRT. Using HybridArc, the amount of DCA versus IMRT needs to be optimized. Methods: Four SRS patients with the aim of reducing brainstem dose were selected for this study. All patients were contoured in iPlan and transferred to Eclipse for VMAT planning. In iPlan, DCA plans were created for each case. Moreover, nine HybridArc plans with DCA-IMRT ratios between 9:1 through 1:9 were created with a single ring structure generatedmore » by subtracting 3 mm expansion of target from a 10 mm expansion of the target. Two static IMRT beams were used in each of the five DCA arcs for HybridArc. The dose was prescribed to DCA only and HybridArc plans and normalized so that the target volume (TV) receives 100% dose to 99.5% of the TV to achieve 120% ∼ 130% max dose within targets. Following metrics were compared: PITV, V12Gy, CGIc, CGIg, CGI, brainstem max dose, and total monitor units (MUs). Results: A brainstem max dose comparable with VMAT from 30% IMRT and less with 50% or more IMRT could be achieved. PITV decreased with increasing IMRT portion and begins to saturate past an IMRT portion of 30%. The CGIg index, which represents how fast the dose falls off, was better with HybridArc in all HybridArc plans. Total MUs increased with increasing IMRT but less than VMAT in all cases. Conclusion: Overall, a lower brainstem max dose and a lower V12Gy with fewer MUs can be achieved with HybridArc. Considering all factors, it would be best to use a DCA-IMRT ratio of either 7:3 or 6:4.« less

  10. NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies - A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT).

    PubMed

    Yoshimura, Takaaki; Kinoshita, Rumiko; Onodera, Shunsuke; Toramatsu, Chie; Suzuki, Ryusuke; Ito, Yoichi M; Takao, Seishin; Matsuura, Taeko; Matsuzaki, Yuka; Umegaki, Kikuo; Shirato, Hiroki; Shimizu, Shinichi

    2016-09-01

    This treatment planning study was conducted to determine whether spot scanning proton beam therapy (SSPT) reduces the risk of grade ⩾3 hematologic toxicity (HT3+) compared with intensity modulated radiation therapy (IMRT) for postoperative whole pelvic radiation therapy (WPRT). The normal tissue complication probability (NTCP) of the risk of HT3+ was used as an in silico surrogate marker in this analysis. IMRT and SSPT plans were created for 13 gynecologic malignancy patients who had received hysterectomies. The IMRT plans were generated using the 7-fields step and shoot technique. The SSPT plans were generated using anterior-posterior field with single field optimization. Using the relative biological effectives (RBE) value of 1.0 for IMRT and 1.1 for SSPT, the prescribed dose was 45Gy(RBE) in 1.8Gy(RBE) per fractions for 95% of the planning target volume (PTV). The homogeneity index (HI) and the conformity index (CI) of the PTV were also compared. The bone marrow (BM) and femoral head doses using SSPT were significantly lower than with IMRT. The NTCP modeling analysis showed that the risk of HT3+ using SSPT was significantly lower than with IMRT (NTCP=0.04±0.01 and 0.19±0.03, p=0.0002, respectively). There were no significant differences in the CI and HI of the PTV between IMRT and SSPT (CI=0.97±0.01 and 0.96±0.02, p=0.3177, and HI=1.24±0.11 and 1.27±0.05, p=0.8473, respectively). The SSPT achieves significant reductions in the dose to BM without compromising target coverage, compared with IMRT. The NTCP value for HT3+ in SSPT was significantly lower than in IMRT. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Anders T., E-mail: andehans@rm.dk; Lukacova, Slavka; Lassen-Ramshad, Yasmin

    2015-01-01

    When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanarmore » volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used—the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%—causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques. All the new techniques increased the number of MU compared with the standard technique.« less

  12. Intensity Modulated Radiotherapy Improves Target Coverage and Parotid Gland Sparing When Delivering Total Mucosal Irradiation in Patients With Squamous Cell Carcinoma of Head and Neck of Unknown Primary Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhide, Shreerang; Clark, Catherine; Harrington, Kevin

    2007-10-01

    Head and neck squamous cell carcinoma with occult primary site represents a controversial clinical problem. Conventional total mucosal irradiation (TMI) maximizes local control, but at the expense of xerostomia. IMRT has been shown to spare salivary tissue in head and cancer patients. This study has been performed to investigate the potential of IMRT to perform nodal and TMI and also allow parotid gland sparing in this patient group. Conventional radiotherapy (CRT) and IMRT plans were produced for six patients to treat the ipsilateral (involved) post-operative neck (PTV1) and the un-operated contralateral neck and mucosal axis (PTV2). Plans were produced withmore » and without the inclusion of nasopharynx in the PTV2. The potential to improve target coverage and spare the parotid glands was investigated for the IMRT plans. There was no significant difference in the mean doses to the PTV1 using CRT and IMRT (59.7 and 60.0 respectively, p = 0.5). The maximum doses to PTV1 and PTV2 were lower for the IMRT technique as compared to CRT (P = 0.008 and P < 0.0001), respectively, and the minimum doses to PTV1 and PTV2 were significantly higher for IMRT as compared to CRT (P = 0.001 and P = 0.001), respectively, illustrating better dose homogeneity with IMRT. The mean dose to the parotid gland contralateral to PTV1 was significantly lower for IMRT (23.21 {+-} 0.7) as compared to CRT (50.5 {+-} 5.8) (P < 0.0001). There was a significant difference in parotid dose between plans with and without the inclusion of the nasopharynx. IMRT offers improved dose homogeneity in PTV1 and PTV2 and allows for parotid sparing.« less

  13. SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D; Feygelman, V; Moros, E

    2016-06-15

    Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less

  14. Role of belly board device in the age of intensity modulated radiotherapy for pelvic irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estabrook, Neil C.; Bartlett, Gregory K.; Compton, Julia J.

    Small bowel dose often represents a limiting factor for radiation treatment of pelvic malignancies. To reduce small bowel toxicity, a belly board device (BBD) with a prone position is often recommended. Intensity modulated radiotherapy (IMRT) could reduce dose to small bowel based on the desired dose-volume constraints. We investigated the efficacy of BBD in conjunction with IMRT. A total of 11 consecutive patients with the diagnosis of rectal cancer, who were candidates for definitive therapy, were selected. Patients were immobilized with BBD in prone position for simulation and treatment. Supine position computed tomography (CT) data were either acquired at themore » same time or during a diagnostic scan, and if existed was used. Target volumes (TV) as well as organs at risk (OAR) were delineated in both studies. Three-dimensional conformal treatment (3DCRT) and IMRT plans were made for both scans. Thus for each patient, 4 plans were generated. Statistical analysis was conducted for maximum, minimum, and mean dose to each structure. When comparing the normalized mean Gross TV dose for the different plans, there was no statistical difference found between the planning types. There was a significant difference in small bowel sparing when using prone position on BBD comparing 3DCRT and IMRT plans, favoring IMRT with a 29.6% reduction in dose (p = 0.007). There was also a statistically significant difference in small bowel sparing when comparing supine position IMRT to prone-BBD IMRT favoring prone-BBD IMRT with a reduction of 30.3% (p = 0.002). For rectal cancer when small bowel could be a limiting factor, prone position using BBD along with IMRT provides the best sparing. We conclude that whenever a dose escalation in rectal cancer is desired where small bowel could be limiting factor, IMRT in conjunction with BBD should be selected.« less

  15. Genital marginal failures after intensity-modulated radiation therapy (IMRT) in squamous cell anal cancer: no higher risk with IMRT when compared to 3DCRT.

    PubMed

    Dell'Acqua, V; Kobiela, J; Kraja, F; Leonardi, M C; Surgo, A; Zerella, M A; Arculeo, S; Fodor, C; Ricotti, R; Zampino, M G; Ravenda, S; Spinoglio, G; Biffi, R; Bazani, A; Luraschi, R; Vigorito, S; Spychalski, P; Orecchia, R; Glynne-Jones, R; Jereczek-Fossa, B A

    2018-03-28

    Intensity-modulated radiotherapy (IMRT) is considered the preferred option in squamous cell canal cancer (SCAC), delivering high doses to tumor volumes while minimizing dose to surrounding normal tissues. IMRT has steep dose gradients, but the technique is more demanding as deep understanding of target structures is required. To evaluate genital marginal failure in a cohort of patients with non-metastatic SCAC treated either with IMRT or 3DCRT and concurrent chemotherapy, 117 patients with SCAC were evaluated: 64 and 53 patients were treated with IMRT and 3DCRT techniques, respectively. All patients underwent clinical and radiological examination during their follow-up. Tumor response was evaluated with response evaluation criteria in solid tumors v1.1 guideline on regular basis. All patients' data were analyzed, and patients with marginal failure were identified. Concomitant chemotherapy was administered in 97 and 77.4% of patients in the IMRT and 3DCRT groups, respectively. In the IMRT group, the median follow-up was 25 months (range 6-78). Progressive disease was registered in 15.6% of patients; infield recurrence, distant recurrence and both infield recurrence and distant recurrence were identified in 5, 4 and 1 patient, respectively. Two out of 64 patients (3.1%) had marginal failures, localized at vagina/recto-vaginal septum and left perineal region. In the 3DCRT group, the median follow-up was 71.3 months (range 6-194 months). Two out of 53 patients (3.8%) had marginal failures, localized at recto-vaginal septum and perigenital structures. The rate of marginal failures was comparable in IMRT and 3DCRT groups (χ 2 test p = 0.85). In this series, the use of IMRT for the treatment of SCAC did not increase the rate of marginal failures offering improved dose conformity to the target. Dose constraints should be applied with caution-particularly in females with involvement of the vagina or the vaginal septum.

  16. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less

  17. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC: A direct comparison of PET-based treatment planning.

    PubMed

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Rübe, Christian

    2016-02-01

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy inmore » 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.« less

  19. TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, T; Miyabe, Y; Yamada, M

    2014-06-15

    Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mmmore » from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique would be effective.« less

  20. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  1. Feasibility of using Geant4 Monte Carlo simulation for IMRT dose calculations for the Novalis Tx with a HD-120 multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho

    2015-05-01

    The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.

  2. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    PubMed

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  3. TU-G-BRB-01: Continuous Path Optimization for Non-Coplanar Variant SAD IMRT Delivery Using C-Arm Machines.

    PubMed

    Ruan, D; Dong, P; Low, D; Sheng, K

    2012-06-01

    To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic controls in new-generation C-arm systems, enabling practical harvesting of the dose benefit offered by non-coplanar, variant SAD IMRT treatment. © 2012 American Association of Physicists in Medicine.

  4. The effects of incidence angle on film dosimetry and their consequences in IMRT dose verification.

    PubMed

    Srivastava, R P; De Wagter, C

    2012-10-01

    The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. An inverse pyramid IMRT field, consisting of six regular and elongated 3 × 20 cm(2) field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 × 5 cm(2) field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 × 5 cm(2). On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 × 20 cm(2) at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing field size and depth. Surprisingly a composite IMRT beam consisting of 20 adjacent strip segments also produced a significant orientational dependence of film response, notwithstanding the large total field size of 20 × 20 cm(2). This analysis allowed the development of a hypothesis about the physics behind the orientational dependence of film response in general and to formulate precautions when using film dosimetry in the dosimetric verification of multibeam treatments.

  5. TH-EF-204-00: AAPM-AMPR (Russia)-SEFM (Spain) Joint Course On Challenges and Advantages of Small Field Radiation Treatment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  6. TH-EF-204-06: Closing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borras, C.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  7. TH-EF-204-01: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygler, J.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  8. TH-EF-204-03: Determination of Small Field Output Factors, Advantages and Limitations of Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaque, J. Puxeu

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  9. TH-EF-204-05: Application of Small-Field Treatment: The Promises and Pitfalls of SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  10. Intensity modulated radiotherapy (IMRT) in the treatment of children and adolescents--a single institution's experience and a review of the literature.

    PubMed

    Sterzing, Florian; Stoiber, Eva M; Nill, Simeon; Bauer, Harald; Huber, Peter; Debus, Jürgen; Münter, Marc W

    2009-09-23

    While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature. Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed. With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed. IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.

  11. Comparison of dental health of patients with head and neck cancer receiving IMRT vs conventional radiation.

    PubMed

    Duarte, Victor M; Liu, Yuan F; Rafizadeh, Sassan; Tajima, Tracey; Nabili, Vishad; Wang, Marilene B

    2014-01-01

    To analyze the dental health of patients with head and neck cancer who received comprehensive dental care after intensity-modulated radiation therapy (IMRT) compared with radiation therapy (RT). Historical cohort study. Veteran Affairs (VA) hospital. In total, 158 patients at a single VA hospital who were treated with RT or IMRT between 2003 and 2011 were identified. A complete dental evaluation was performed prior to radiation treatment, including periodontal probing, tooth profile, cavity check, and mobility. The dental treatment plan was formulated to eliminate current and potential dental disease. The rates of dental extractions, infections, caries, mucositis, xerostomia, and osteoradionecrosis (ORN) were analyzed, and a comparison was made between patients treated with IMRT and those treated with RT. Of the 158 patients, 99 were treated with RT and 59 were treated with IMRT. Compared with those treated with IMRT, significantly more patients treated with RT exhibited xerostomia (46.5% vs 16.9%; P < .001; odds ratio [OR], 0.24; 95% confidence interval [CI], 0.11-0.52), mucositis (46.5% vs 16.9%; P < .001; OR, 0.24; 95% CI, 0.11-0.52), and ORN (10.1% vs 0%; P = .014; OR, 0.07; 95% CI, 0.00-1.21). However, significantly more patients treated with IMRT were edentulous by the conclusion of radiation treatment (32.2% vs 11.1%; P = .002; OR, 3.8; 95% CI, 1.65-8.73). Patients who were treated with IMRT had fewer instances of dental disease, more salivary flow, and fewer requisite posttreatment extractions compared with those treated with RT. The number of posttreatment extractions has been reduced with the advent of IMRT and more so with a complete dental evaluation prior to treatment.

  12. Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer.

    PubMed

    Van Benthuysen, Liam; Hales, Lee; Podgorsak, Matthew B

    2011-01-01

    Several studies have demonstrated that volumetric modulated arc therapy (VMAT) has the ability to reduce monitor units and treatment time when compared with intensity-modulated radiation therapy (IMRT). This study aims to demonstrate that VMAT is able to provide adequate organs at risk (OAR) sparing and planning target volume (PTV) coverage for adenocarcinoma of the distal esophagus while reducing monitor units and treatment time. Fourteen patients having been treated previously for esophageal cancer were planned using both VMAT and IMRT techniques. Dosimetric quality was evaluated based on doses to several OARs, as well as coverage of the PTV. Treatment times were assessed by recording the number of monitor units required for dose delivery. Body V(5) was also recorded to evaluate the increased volume of healthy tissue irradiated to low doses. Dosimetric differences in OAR sparing between VMAT and IMRT were comparable. PTV coverage was similar for the 2 techniques but it was found that IMRT was capable of delivering a slightly more homogenous dose distribution. Of the 14 patients, 12 were treated with a single arc and 2 were treated with a double arc. Single-arc plans reduced monitor units by 42% when compared with the IMRT plans. Double-arc plans reduced monitor units by 67% when compared with IMRT. The V(5) for the body was found to be 18% greater for VMAT than for IMRT. VMAT has the capability to decrease treatment times over IMRT while still providing similar OAR sparing and PTV coverage. Although there will be a smaller risk of patient movement during VMAT treatments, this advantage comes at the cost of delivering small doses to a greater volume of the patient. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Cardiac Dose Reduction with Deep-Inspiratory Breath Hold Technique of Radiotherapy for Left-Sided Breast Cancer.

    PubMed

    Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet

    2017-01-01

    Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart D mean ), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRT DIBH decreased the Heart D mean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRT FB . IMRT further lowered mean LAD dose by 18%. Heart D mean was lower with 3DCRT DIBH over IMRT DIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V 20 of ipsilateral lung were lower with 3DCRT DIBH over IMRT DIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. 3DCRT DIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.

  14. Parotid gland sparing IMRT for head and neck cancer improves xerostomia related quality of life

    PubMed Central

    van Rij, CM; Oughlane-Heemsbergen, WD; Ackerstaff, AH; Lamers, EA; Balm, AJM; Rasch, CRN

    2008-01-01

    Background and purpose To assess the impact of intensity modulated radiotherapy (IMRT) versus conventional radiation on late xerostomia and Quality of Life aspects in head and neck cancer patients. Patients and nethods Questionnaires on xerostomia in rest and during meals were sent to all patients treated between January 1999 and December 2003 with a T1-4, N0-2 M0 head and neck cancer, with parotid gland sparing IMRT or conventional bilateral neck irradiation to a dose of at least 60 Gy, who were progression free and had no disseminated disease (n = 192). Overall response was 85% (n = 163); 97% in the IMRT group (n = 75) and 77% in the control group (n = 88) the median follow-up was 2.6 years. The prevalence of complaints was compared between the two groups, correcting for all relevant factors at multivariate ordinal regression analysis. Results Patients treated with IMRT reported significantly less difficulty transporting and swallowing their food and needed less water for a dry mouth during day, night and meals. They also experienced fewer problems with speech and eating in public. Laryngeal cancer patients in general had fewer complaints than oropharynx cancer patients but both groups benefited from IMRT. Within the IMRT group the xerostomia scores were better for those patients with a mean parotid dose to the "spared" parotid below 26 Gy. Conclusion Parotid gland sparing IMRT for head and neck cancer patients improves xerostomia related quality of life compared to conventional radiation both in rest and during meals. Laryngeal cancer patients had fewer complaints but benefited equally compared to oropharyngeal cancer patients from IMRT. PMID:19068126

  15. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    NASA Astrophysics Data System (ADS)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.

  16. Intensity-modulated radiotherapy for cervical node squamous cell carcinoma metastases from unknown head-and-neck primary site: M. D. Anderson Cancer Center outcomes and patterns of failure.

    PubMed

    Frank, Steven J; Rosenthal, David I; Petsuksiri, Janjira; Ang, K Kian; Morrison, William H; Weber, Randal S; Glisson, Bonnie S; Chao, K S Clifford; Schwartz, David L; Chronowski, Gregory M; El-Naggar, Adel K; Garden, Adam S

    2010-11-15

    Conventional therapy for cervical node squamous cell carcinoma metastases from an unknown primary can cause considerable toxicity owing to the volume of tissues to be irradiated. In the present study, hypothesizing that using intensity-modulated radiotherapy (IMRT) would provide effective treatment with minimal toxicity, we reviewed the outcomes and patterns of failure for head-and-neck unknown primary cancer at a single tertiary cancer center. We retrospectively reviewed the records of 52 patients who had undergone IMRT for an unknown primary at M.D. Anderson Cancer Center between 1998 and 2005. The patient and treatment characteristics were extracted and the survival rates calculated using the Kaplan-Meier method. Of the 52 patients, 5 presented with Stage N1, 11 with Stage N2a, 23 with Stage N2b, 6 with Stage N2c, 4 with Stage N3, and 3 with Stage Nx disease. A total of 26 patients had undergone neck dissection, 13 before and 13 after IMRT; 14 patients had undergone excisional biopsy and presented for IMRT without evidence of disease. Finally, 14 patients had received systemic chemotherapy. All patients underwent IMRT to targets on both sides of the neck and pharyngeal axis. The median follow-up time for the surviving patients was 3.7 years. The 5-year actuarial rate of primary mucosal tumor control and regional control was 98% and 94%, respectively. Only 3 patients developed distant metastasis with locoregional control. The 5-year actuarial disease-free and overall survival rate was 88% and 89%, respectively. The most severe toxicity was Grade 3 dysphagia/esophageal stricture, experienced by 2 patients. The results of our study have shown that IMRT can produce excellent outcomes for patients who present with cervical node squamous cell carcinoma metastases from an unknown head-and-neck primary tumor. Severe late complications were uncommon. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.

    PubMed

    Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S

    2012-06-01

    With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.

  18. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    PubMed

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  19. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  20. SU-F-BRE-01: A Rapid Method to Determine An Upper Limit On a Radiation Detector's Correction Factor During the QA of IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamio, Y; Bouchard, H

    2014-06-15

    Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less

  1. Intensity-Modulated Radiotherapy for Cervical Node Squamous Cell Carcinoma Metastases From Unknown Head-and-Neck Primary Site: M. D. Anderson Cancer Center Outcomes and Patterns of Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Steven J., E-mail: sjfrank@mdanderson.or; Rosenthal, David I.; Petsuksiri, Janjira

    2010-11-15

    Purpose: Conventional therapy for cervical node squamous cell carcinoma metastases from an unknown primary can cause considerable toxicity owing to the volume of tissues to be irradiated. In the present study, hypothesizing that using intensity-modulated radiotherapy (IMRT) would provide effective treatment with minimal toxicity, we reviewed the outcomes and patterns of failure for head-and-neck unknown primary cancer at a single tertiary cancer center. Methods and Materials: We retrospectively reviewed the records of 52 patients who had undergone IMRT for an unknown primary at M.D. Anderson Cancer Center between 1998 and 2005. The patient and treatment characteristics were extracted and themore » survival rates calculated using the Kaplan-Meier method. Results: Of the 52 patients, 5 presented with Stage N1, 11 with Stage N2a, 23 with Stage N2b, 6 with Stage N2c, 4 with Stage N3, and 3 with Stage Nx disease. A total of 26 patients had undergone neck dissection, 13 before and 13 after IMRT; 14 patients had undergone excisional biopsy and presented for IMRT without evidence of disease. Finally, 14 patients had received systemic chemotherapy. All patients underwent IMRT to targets on both sides of the neck and pharyngeal axis. The median follow-up time for the surviving patients was 3.7 years. The 5-year actuarial rate of primary mucosal tumor control and regional control was 98% and 94%, respectively. Only 3 patients developed distant metastasis with locoregional control. The 5-year actuarial disease-free and overall survival rate was 88% and 89%, respectively. The most severe toxicity was Grade 3 dysphagia/esophageal stricture, experienced by 2 patients. Conclusion: The results of our study have shown that IMRT can produce excellent outcomes for patients who present with cervical node squamous cell carcinoma metastases from an unknown head-and-neck primary tumor. Severe late complications were uncommon.« less

  2. WE-A-BRE-01: Debate: To Measure or Not to Measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, J; Miften, M; Mihailidis, D

    2014-06-15

    Recent studies have highlighted some of the limitations of patient-specific pre-treatment IMRT QA measurements with respect to assessing plan deliverability. Pre-treatment QA measurements are frequently performed with detectors in phantoms that do not involve any patient heterogeneities or with an EPID without a phantom. Other techniques have been developed where measurement results are used to recalculate the patient-specific dose volume histograms. Measurements continue to play a fundamental role in understanding the initial and continued performance of treatment planning and delivery systems. Less attention has been focused on the role of computational techniques in a QA program such as calculation withmore » independent dose calculation algorithms or recalculation of the delivery with machine log files or EPID measurements. This session will explore the role of pre-treatment measurements compared to other methods such as computational and transit dosimetry techniques. Efficiency and practicality of the two approaches will also be presented and debated. The speakers will present a history of IMRT quality assurance and debate each other regarding which types of techniques are needed today and for future quality assurance. Examples will be shared of situations where overall quality needed to be assessed with calculation techniques in addition to measurements. Elements where measurements continue to be crucial such as for a thorough end-to-end test involving measurement will be discussed. Operational details that can reduce the gamma tool effectiveness and accuracy for patient-specific pre-treatment IMRT/VMAT QA will be described. Finally, a vision for the future of IMRT and VMAT plan QA will be discussed from a safety perspective. Learning Objectives: Understand the advantages and limitations of measurement and calculation approaches for pre-treatment measurements for IMRT and VMAT planning Learn about the elements of a balanced quality assurance program involving modulated techniques Learn how to use tools and techniques such as an end-to-end test to enhance your IMRT and VMAT QA program.« less

  3. Thyroid V50 Highly Predictive of Hypothyroidism in Head-and-Neck Cancer Patients Treated With Intensity-modulated Radiotherapy (IMRT).

    PubMed

    Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B

    2017-08-01

    Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.

  4. The feasibility of contralateral lower neck sparing intensity modulation radiated therapy for nasopharyngeal carcinoma patients with unilateral cervical lymph node involvement.

    PubMed

    Tang, Ling-Long; Tang, Xin-Ran; Li, Wen-Fei; Chen, Lei; Tian, Li; Lin, Ai-Hua; Sun, Ying; Ma, Jun

    2017-06-01

    To investigate the feasibility of contralateral lower neck sparing intensity modulation radiated therapy (IMRT) for nasopharyngeal carcinoma patients (NPC) with unilateral cervical lymph node metastasis. Retrospective review of 546 patients with unilateral cervical lymph node metastasis treated between November 2009 and February 2012 at one institution. All patients were staged using magnetic resonance imaging and received radical IMRT. Patients were classified into two groups: the inferior border of the negative neck irradiation field only covered Levels III to Va in Group 1; the inferior border covered entire neck down to Levels IV to Vb in Group 2. Median follow-up was 49.9months (range, 1.3-69.2months). Four-year overall survival (OS:89.3% vs. 88.9%, P=0.91), disease-free survival (DFS:81.7% vs. 81.0%, P=0.91), distant metastasis-free survival (DMFS:88.2% vs. 87.9%, P=0.95), local relapse-free survival (LRFS:96.7% vs. 94.7%, P=0.70) and nodal relapse-free survival (NRFS: 96.1% vs. 95.9%, P=0.94) were not significantly different between Group 1 and Group 2. Twenty-two patients developed cervical lymph node relapse; of whom 20/22 (91.0%) developed unilateral relapse within pretreatment positive neck. Only one patient developed out-of-field relapse, though this patient also relapsed within the neck irradiation field (Level II). No clinicopathological feature tested had significant prognostic value for NRFS in multivariate analysis. In the IMRT and MRI era, contralateral lower neck sparing IMRT seems to be feasible for NPC patients with unilateral cervical lymph node metastasis. Copyright © 2017. Published by Elsevier Ltd.

  5. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research facilitated protocol development of a proposed national breast radiotherapy trial investigating IMRT and partial breast irradiation.

  6. Sci—Sat AM: Stereo — 02: Implementation of a VMAT class solution for kidney SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, M; Lalani, N; Korol, R

    An emerging treatment option for inoperable primary renal cell carcinoma and oligometastatic adrenal lesions is stereotactic body radiation therapy (SBRT). At our center, kidney SBRT treatments were originally planned with IMRT. The goal was to plan future patients using VMAT to improve treatment delivery efficiency. The purpose of this work was twofold: 1) to develop a VMAT class solution for the treatment of kidney SBRT; and, 2) to assess VMAT plan quality when compared to IMRT plans. Five patients treated with IMRT for kidney SBRT were reviewed and replanned in Pinnacle using a single VMAT arc with a 15° collimatormore » rotation, constrained leaf motion and 4° gantry spacing. In comparison, IMRT plans utilized 7–9 6MV beams, with various collimator rotations and up to 2 non-coplanar beams for maximum organ-at-risk (OAR) sparing. Comparisons were made concerning target volume conformity, homogeneity, dose to OARs, treatment time and monitor units (MUs). There was no difference in MUs; however, VMAT reduced the treatment time from 13.0±2.6min, for IMRT, to 4.0±0.9min. The collection of target and OAR constraints and SmartArc parameters, produced a class solution that generated VMAT plans with increased target homogeneity and improved 95% conformity index calculated at < 1.2. In general, the VMAT plans displayed a reduced maximum point dose to nearby OARs with increased intermediate dose to distant OARs. Overall, the introduction of a VMAT class solution for kidney SBRT improves efficiency by reducing treatment planning and delivery time.« less

  7. S-1 chemotherapy and intensity-modulated radiotherapy after D1/D2 lymph node dissection in patients with node-positive gastric cancer: a phase I/II study.

    PubMed

    Wang, X; Zhao, D B; Yang, L; Chi, Y; Tang, Y; Li, N; Wang, S L; Song, Y W; Liu, Y P; Liu, W Y; Ren, H; Zhang, T; Wang, J Y; Chen, X S; Fang, H; Wang, W H; Li, Y X; Jin, J

    2018-02-06

    This phase I/II clinical trial investigated S-1 administered with intensity-modulated radiotherapy (IMRT) as adjuvant therapy for node-positive gastric cancer. Patients had undergone radical resection and D1/D2 lymph node dissection. In phase I, patients received adjuvant chemoradiotherapy of IMRT (45 Gy in 25 fractions) with concurrent S-1 administered on a dose-escalation schedule to determine the recommended dose (RD). In phase II, the safety and efficacy of the RD of S-1 combined with IMRT were assessed. We consecutively enrolled 73 patients (56 men; median age, 53 years; range, 29-73 years) and the phase I portion of the study included 27 patients. The RD of S-1 administered concomitantly with IMRT was 80 mg m -2  day -1 orally, twice daily. The phase II analysis included 52 patients (46 new patients plus 6 from phase I). 8 patients (15.4%) developed grade 3 or 4 toxicities. There were 21 recurrence events and 15 deaths (1 bowel obstruction, 14 gastric cancer). Three-year disease-free survival and overall survival were 62.2% (95% confidence interval (CI), 48.5-75.9) and 70.0% (95% CI, 56.3-83.7), respectively. The median time to recurrence was 17.5 months (range, 3.8-42.0). The median time from recurrence to death was 7.0 months (range, 1.5-28.7). S-1 combined with IMRT adjuvant chemoradiotherapy is safe and efficacious for advanced gastric cancer.

  8. Changes Mimicking New Leptomeningeal Disease After Intensity-Modulated Radiotherapy for Medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscal, Jodi A.; Jones, Jeremy Y.; Paulino, Arnold C.

    2009-01-01

    Purpose: Acute and late changes in magnetic resonance imaging of the pediatric brain have been described after radiotherapy (RT). We report the post-RT neuroimaging changes in the posterior fossa after intensity-modulated RT (IMRT) in children with medulloblastoma and contrast them with those of leptomeningeal disease. Methods and Materials: We performed a retrospective review of 53 consecutive children with medulloblastoma who were treated with craniospinal RT followed by IMRT to the posterior fossa and chemotherapy between 1997 and 2006. Results: After IMRT to the posterior fossa, 8 (15%) of 53 patients developed increased fluid-attenuated inversion-recovery signal changes in the brainstem ormore » cerebellum and patchy, multifocal, nodular contrast enhancement at a median of 6 months. The enhancement superficially resembled leptomeningeal disease. However, the enhancement resolved without intervention at a median of 6 months later. The accompanying fluid-attenuated inversion-recovery signal changes occasionally preceded the enhancement, were often parenchymal in location, and resolved or persisted to a lesser degree. All 8 patients with transient magnetic resonance imaging changes in the posterior fossa were alive at last follow-up. In contrast, leptomeningeal disease occurred in 8 (15%) of our 53 patients at a median of 19.5 months after IMRT completion. Of these 8 patients, 7 demonstrated initial nodular enhancement outside the conformal field, and 7 patients died. Conclusion: Magnetic resonance imaging changes can occur in the posterior fossa of children treated with IMRT for medulloblastoma. In our experience, these transient changes occur at a characteristic time and location after RT, allowing them to be distinguished from leptomeningeal disease.« less

  9. Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison

    PubMed Central

    Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying

    2012-01-01

    AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage. PMID:23066322

  10. Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.

    PubMed

    Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying

    2012-10-07

    To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs. 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.

  11. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Costa Ferreira, Brigida; Shi, Chengyu; Lind, Bengt K.; Papanikolaou, Nikos

    2007-07-01

    The rapid implementation of advanced treatment planning and delivery technologies for radiation therapy has brought new challenges in evaluating the most effective treatment modality. Intensity-modulated radiotherapy (IMRT) using multi-leaf collimators (MLC) and helical tomotherapy (HT) are becoming popular modes of treatment delivery and their application and effectiveness continues to be investigated. Presently, there are several treatment planning systems (TPS) that can generate and optimize IMRT plans based on user-defined objective functions for the internal target volume (ITV) and organs at risk (OAR). However, the radiobiological parameters of the different tumours and normal tissues are typically not taken into account during dose prescription and optimization of a treatment plan or during plan evaluation. The suitability of a treatment plan is typically decided based on dosimetric criteria such as dose-volume histograms (DVH), maximum, minimum, mean and standard deviation of the dose distribution. For a more comprehensive treatment plan evaluation, the biologically effective uniform dose ({\\bar{\\bar{D}}}) is applied together with the complication-free tumour control probability (P+). Its utilization is demonstrated using three clinical cases that were planned with two different forms of IMRT. In this study, three different cancer types at different anatomical sites were investigated: head and neck, lung and prostate cancers. For each cancer type, a linac MLC-based step-and-shoot IMRT plan and a HT plan were developed. The MLC-based IMRT treatment plans were developed on the Philips treatment-planning platform, using the Pinnacle 7.6 software release. For the tomotherapy HiArt plans, the dedicated tomotherapy treatment planning station was used, running version 2.1.2. By using {\\bar{\\bar{D}}} as the common prescription point of the treatment plans and plotting the tissue response probabilities versus {\\bar{\\bar{D}}} for a range of prescription doses, a number of plan trials can be compared based on radiobiological measures. The applied plan evaluation method shows that in the head and neck cancer case the HT treatment gives better results than MLC-based IMRT in terms of expected clinical outcome (P+ of 62.2% and 46.0%, {\\bar{\\bar{D}}} to the ITV of 72.3 Gy and 70.7 Gy, respectively). In the lung cancer and prostate cancer cases, the MLC-based IMRT plans are better over the clinically useful dose prescription range. For the lung cancer case, the HT and MLC-based IMRT plans give a P+ of 66.9% and 72.9%, {\\bar{\\bar{D}}} to the ITV of 64.0 Gy and 66.9 Gy, respectively. Similarly, for the prostate cancer case, the two radiation modalities give a P+ of 68.7% and 72.2%, {\\bar{\\bar{D}}} to the ITV of 86.0 Gy and 85.9 Gy, respectively. If a higher risk of complications (higher than 5%) could be allowed, the complication-free tumour control could increase by over 40%, 2% and 30% compared to the initial dose prescription for the three cancer cases, respectively. Both MLC-based IMRT and HT can encompass the often-large ITV required while they minimize the volume of the organs at risk receiving high doses. Radiobiological evaluation of treatment plans may provide an improved correlation of the delivered treatment with the clinical outcome by taking into account the dose-response characteristics of the irradiated targets and normal tissues. There may exist clinical cases, which may look dosimetrically similar but in radiobiological terms may be quite different. In such situations, traditional dose-based evaluation tools can be complemented by the use of P_ +{-}{\\bar{\\bar{D}}} diagrams to effectively evaluate and compare treatment plans.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuangrod, T; Simpson, J; Greer, P

    Purpose: A real-time patient treatment delivery verification system using EPID (Watchdog) has been developed as an advanced patient safety tool. In a pilot study data was acquired for 119 prostate and head and neck (HN) IMRT patient deliveries to generate body-site specific action limits using statistical process control. The purpose of this study is to determine the sensitivity of Watchdog to detect clinically significant errors during treatment delivery. Methods: Watchdog utilizes a physics-based model to generate a series of predicted transit cine EPID images as a reference data set, and compares these in real-time to measured transit cine-EPID images acquiredmore » during treatment using chi comparison (4%, 4mm criteria) after the initial 2s of treatment to allow for dose ramp-up. Four study cases were used; dosimetric (monitor unit) errors in prostate (7 fields) and HN (9 fields) IMRT treatments of (5%, 7%, 10%) and positioning (systematic displacement) errors in the same treatments of (5mm, 7mm, 10mm). These errors were introduced by modifying the patient CT scan and re-calculating the predicted EPID data set. The error embedded predicted EPID data sets were compared to the measured EPID data acquired during patient treatment. The treatment delivery percentage (measured from 2s) where Watchdog detected the error was determined. Results: Watchdog detected all simulated errors for all fields during delivery. The dosimetric errors were detected at average treatment delivery percentage of (4%, 0%, 0%) and (7%, 0%, 0%) for prostate and HN respectively. For patient positional errors, the average treatment delivery percentage was (52%, 43%, 25%) and (39%, 16%, 6%). Conclusion: These results suggest that Watchdog can detect significant dosimetric and positioning errors in prostate and HN IMRT treatments in real-time allowing for treatment interruption. Displacements of the patient require longer to detect however incorrect body site or very large geographic misses will be detected rapidly.« less

  13. SU-F-T-471: Simulated External Beam Delivery Errors Detection with a Large Area Ion Chamber Transmission Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D; Dyer, B; Kumaran Nair, C

    Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Chan Tseung, Hok Seum, E-mail: wanchantseung.hok@mayo.edu; Ma, Jiasen; Kreofsky, Cole R.

    Purpose: Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)–based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods and Materials: Recently, a fast and accurate graphics processor unit (GPU)–based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LET{sub d}), which makes biological dose (BD) optimization possible. To convert from LET{sub d} to BD, a simple linear relation was assumed. By use of thismore » novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Results: Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. Conclusions: By exploiting GPU acceleration, MC-based, biologically optimized plans were created for small–tumor target patients. This optimizer will be used in an upcoming feasibility trial on LET{sub d} painting for radioresistant tumors.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirix, Piet, E-mail: piet.dirix@uzleuven.b; Vanstraelen, Bianca; Jorissen, Mark

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 tomore » 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.« less

  16. SU-E-T-503: Intensity Modulated Proton Therapy (IMPT) Versus Intensity Modulated X-Ray Therapy (IMRT) for Patient with Hepatocellular Carcinoma: A Dosimetric Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, H; Zhao, L; Prabhu, K

    2015-06-15

    Purpose This study compares the dosimetric parameters in treatment of unresectable hepatocellular carcinoma between intensity modulated proton therapy (IMPT) and intensity modulated x-ray radiation therapy (IMRT). Methods and Materials: We studied four patients treated at our institution. All patients were simulated supine with 4D-CT using a GE light speed simulator with a maximum slice thickness of 3mm. The average CT and an internal target volume to account for respiration motion were used for planning. Both IMRT and IMPT plans were created using Elekta’s CMSXiO treatment planning system (TPS). The prescription dose was 58.05 CGE in 15 fractions. The IMRT plansmore » had five beams with combination of co-planar and non-co-planar. The IMPT plans had 2 to 3 beams. Dose comparison was performed based on the averaged results of the four patients. Results The mean dose and V95% to PTV were 58.24CGE, 98.57% for IMPT, versus 57.34CGE and 96.68% for IMRT, respectively. The V10, V20, V30 and mean dose of the normal liver for IMPT were 23.10%, 18.61%, 13.75% and 9.78 CGE; and 47.19%, 37.55%, 22.73% and 17.12CGE for IMRT. The spinal cord didn’t receive any dose in IMPT technique, but received a maximum of 18.77CGE for IMRT. The IMPT gave lower maximum dose to the stomach as compared to IMRT (19.26 vs 26.35CGE). V14 for left and right kidney was 0% and 2.32% for IMPT and 3.89% and 29.54% for IMRT. The mean dose, V35, V40 and V45 for small bowl were similar in both techniques, 0.74CGE, 6.27cc, 4.85cc and 3.53 cc for IMPT, 3.47CGE, 9.73cc, 7.61cc 5.35cc for IMRT. Conclusion Based on this study, IMPT plans gave less dose to the critical structures such as normal liver, kidney, stomach and spinal cord as compared to IMRT plans, potentially leading to less toxicity and providing better quality of life for patients.« less

  17. Energy modulated electron therapy using a few leaf electron collimator in combination with IMRT and 3D-CRT: Monte Carlo-based planning and dosimetric evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George

    2005-09-15

    Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jun, E-mail: jun-lian@med.unc.edu; Chera, Bhishamjit S.; Chang, Sha

    Purpose: To build a statistical model to quantitatively correlate the anatomic features of structures and the corresponding dose-volume histogram (DVH) of head and neck (HN) Tomotherapy (Tomo) plans. To study if the model built upon one intensity modulated radiation therapy (IMRT) technique (such as conventional Linac) can be used to predict anticipated organs-at-risk (OAR) DVH of patients treated with a different IMRT technique (such as Tomo). To study if the model built upon the clinical experience of one institution can be used to aid IMRT planning for another institution. Methods: Forty-four Tomotherapy intensity modulate radiotherapy plans of HN cases (Tomo-IMRT)more » from Institution A were included in the study. A different patient group of 53 HN fixed gantry IMRT (FG-IMRT) plans was selected from Institution B. The analyzed OARs included the parotid, larynx, spinal cord, brainstem, and submandibular gland. Two major groups of anatomical features were considered: the volumetric information and the spatial information. The volume information includes the volume of target, OAR, and overlapped volume between target and OAR. The spatial information of OARs relative to PTVs was represented by the distance-to-target histogram (DTH). Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. Two regression models, one for Tomotherapy plan and one for IMRT plan, were built independently. The accuracy of intratreatment-modality model prediction was validated by a leave one out cross-validation method. The intertechnique and interinstitution validations were performed by using the FG-IMRT model to predict the OAR dosimetry of Tomo-IMRT plans. The dosimetry of OARs, under the same and different institutional preferences, was analyzed to examine the correlation between the model prediction and planning protocol. Results: Significant patient anatomical factors contributing to OAR dose sparing in HN Tomotherapy plans have been analyzed and identified. For all the OARs, the discrepancies of dose indices between the model predicted values and the actual plan values were within 2.1%. Similar results were obtained from the modeling of FG-IMRT plans. The parotid gland was spared in a comparable fashion during the treatment planning of two institutions. The model based on FG-IMRT plans was found to predict the median dose of the parotid of Tomotherapy plans quite well, with a mean error of 2.6%. Predictions from the FG-IMRT model suggested the median dose of the larynx, median dose of the brainstem and D2 of the brainstem could be reduced by 10.5%, 12.8%, and 20.4%, respectively, in the Tomo-IMRT plans. This was found to be correlated to the institutional differences in OAR constraint settings. Re-planning of six Tomotherapy patients confirmed the potential of optimization improvement predicted by the FG-IMRT model was correct. Conclusions: The authors established a mathematical model to correlate the anatomical features and dosimetric indexes of OARs of HN patients in Tomotherapy plans. The model can be used for the setup of patient-specific OAR dose sparing goals and quality control of planning results. The institutional clinical experience was incorporated into the model which allows the model from one institution to generate a reference plan for another institution, or another IMRT technique.« less

  19. Inverse-optimized 3D conformal planning: Minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites

    PubMed Central

    Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.

    2012-01-01

    Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717

  20. Toward a planning scheme for emission guided radiation therapy (EGRT): FDG based tumor tracking in a metastatic breast cancer patient

    PubMed Central

    Fan, Qiyong; Nanduri, Akshay; Yang, Jaewon; Yamamoto, Tokihiro; Loo, Billy; Graves, Edward; Zhu, Lei; Mazin, Samuel

    2013-01-01

    Purpose: Emission guided radiation therapy (EGRT) is a new modality that uses PET emissions in real-time for direct tumor tracking during radiation delivery. Radiation beamlets are delivered along positron emission tomography (PET) lines of response (LORs) by a fast rotating ring therapy unit consisting of a linear accelerator (Linac) and PET detectors. The feasibility of tumor tracking and a primitive modulation method to compensate for attenuation have been demonstrated using a 4D digital phantom in our prior work. However, the essential capability of achieving dose modulation as in conventional intensity modulated radiation therapy (IMRT) treatments remains absent. In this work, the authors develop a planning scheme for EGRT to accomplish sophisticated intensity modulation based on an IMRT plan while preserving tumor tracking. Methods: The planning scheme utilizes a precomputed LOR response probability distribution to achieve desired IMRT planning modulation with effects of inhomogeneous attenuation and nonuniform background activity distribution accounted for. Evaluation studies are performed on a 4D digital patient with a simulated lung tumor and a clinical patient who has a moving breast cancer metastasis in the lung. The Linac dose delivery is simulated using a voxel-based Monte Carlo algorithm. The IMRT plan is optimized for a planning target volume (PTV) that encompasses the tumor motion using the MOSEK package and a Pinnacle3™ workstation (Philips Healthcare, Fitchburg, WI) for digital and clinical patients, respectively. To obtain the emission data for both patients, the Geant4 application for tomographic emission (GATE) package and a commercial PET scanner are used. As a comparison, 3D and helical IMRT treatments covering the same PTV based on the same IMRT plan are simulated. Results: 3D and helical IMRT treatments show similar dose distribution. In the digital patient case, compared with the 3D IMRT treatment, EGRT achieves a 15.1% relative increase in dose to 95% of the gross tumor volume (GTV) and a 31.8% increase to 50% of the GTV. In the patient case, EGRT yields a 15.2% relative increase in dose to 95% of the GTV and a 20.7% increase to 50% of the GTV. The organs at risk (OARs) doses are kept similar or lower for EGRT in both cases. Tumor tracking is observed in the presence of planning modulation in all EGRT treatments. Conclusions: As compared to conventional IMRT treatments, the proposed EGRT planning scheme allows an escalated target dose while keeping dose to the OARs within the same planning limits. With the capabilities of incorporating planning modulation and accurate tumor tracking, EGRT has the potential to greatly improve targeting in radiation therapy and enable a practical and effective implementation of 4D radiation therapy for planning and delivery. PMID:23927305

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chau, Ricky; Teo, Peter; Kam, Michael

    The aim of this study is to evaluate the deficiencies in target coverage and organ protection of 2-dimensional radiation therapy (2DRT) in the treatment of advanced T-stage (T3-4) nasopharyngeal carcinoma (NPC), and assess the extent of improvement that could be achieved with intensity modulated radiation therapy (IMRT), with special reference to of the dose to the planning organ-at-risk volume (PRV) of the brainstem and spinal cord. A dosimetric study was performed on 10 patients with advanced T-stage (T3-4 and N0-2) NPC. Computer tomography (CT) images of 2.5-mm slice thickness of the head and neck were acquired with the patient immobilizedmore » in semi-extended-head position. A 2D plan based on Ho's technique, and an IMRT plan based on a 7-coplanar portals arrangement, were established for each patient. 2DRT was planned with the field borders and shielding drawn on the simulator radiograph with reference to bony landmarks, digitized, and entered into a planning computer for reconstruction of the 3D dose distribution. The 2DRT and IMRT treatment plans were evaluated and compared with respect to the dose-volume histograms (DVHs) of the targets and the organs-at-risk (OARs), tumor control probability (TCP), and normal tissue complication probabilities (NTCPs). With IMRT, the dose coverage of the target was superior to that of 2DRT. The mean minimum dose of the GTV and PTV were increased from 33.7 Gy (2DRT) to 62.6 Gy (IMRT), and 11.9 Gy (2DRT) to 47.8 Gy (IMRT), respectively. The D{sub 95} of the GTV and PTV were also increased from 57.1 Gy (2DRT) to 67 Gy (IMRT), and 45 Gy (2DRT) to 63.6 Gy (IMRT), respectively. The TCP was substantially increased to 78.5% in IMRT. Better protection of the critical normal organs was also achieved with IMRT. The mean maximum dose delivered to the brainstem and spinal cord were reduced significantly from 61.8 Gy (2DRT) to 52.8 Gy (IMRT) and 56 Gy (2DRT) to 43.6 Gy (IMRT), respectively, which were within the conventional dose limits of 54 Gy for brainstem and of 45 Gy for spinal cord. The mean maximum doses deposited on the PRV of the brainstem and spinal cord were 60.7 Gy and 51.6 Gy respectively, which were above the conventional dose limits. For the chiasm, the mean dose maximum and the dose to 5% of its volume were reduced from 64.3 Gy (2DRT) to 53.7 Gy (IMRT) and from 62.8 Gy (2DRT) to 48.7 Gy (IMRT), respectively, and the corresponding NTCP was reduced from 18.4% to 2.1%. For the temporal lobes, the mean dose to 10% of its volume (about 4.6 cc) was reduced from 63.8 Gy (2DRT) to 55.4 Gy (IMRT) and the NTCP was decreased from 11.7% to 3.4%. The therapeutic ratio for T3-4 NPC tumors can be significantly improved with IMRT treatment technique due to improvement both in target coverage and the sparing of the critical normal organ. Although the maximum doses delivered to the brainstem and spinal cord in IMRT can be kept at or below their conventional dose limits, the maximum doses deposited on the PRV often exceed these limits due to the close proximity between the target and OARs. In other words, ideal dosimetric considerations cannot be fulfilled in IMRT planning for T3-4 NPC tumors. A compromise of the maximal dose limit to the PRV of the brainstem and spinal cord would need be accepted if dose coverage to the targets is not to be unacceptably compromised. Dosimetric comparison with 2DRT plans show that these dose limits to PRV were also frequently exceeded in 2DRT plans for locally advanced NPC. A dedicated retrospective study on the incidence of clinical injury to neurological organs in a large series of patients with T3-4 NPC treated by 2DRT may provide useful reference data in exploring how far the PRV dose constraints may be relaxed, to maximize the target coverage without compromising the normal organ function.« less

  2. Late Side Effects After Image Guided Intensity Modulated Radiation Therapy Compared to 3D-Conformal Radiation Therapy for Prostate Cancer: Results From 2 Prospective Cohorts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.

    Purpose: Technical developments in the field of external beam radiation therapy (RT) enabled the clinical introduction of image guided intensity modulated radiation therapy (IG-IMRT), which improved target conformity and allowed reduction of safety margins. Whether this had an impact on late toxicity levels compared to previously applied three-dimensional conformal radiation therapy (3D-CRT) is currently unknown. We analyzed late side effects after treatment with IG-IMRT or 3D-CRT, evaluating 2 prospective cohorts of men treated for localized prostate cancer to investigate the hypothesized reductions in toxicity. Methods and Materials: Patients treated with 3D-CRT (n=189) or IG-IMRT (n=242) to 78 Gy in 39 fractionsmore » were recruited from 2 Dutch randomized trials with identical toxicity scoring protocols. Late toxicity (>90 days after treatment) was derived from self-assessment questionnaires and case report forms, according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG-EORTC) scoring criteria. Grade ≥2 endpoints included gastrointestinal (GI) rectal bleeding, increased stool frequency, discomfort, rectal incontinence, proctitis, and genitourinary (GU) obstruction, increased urinary frequency, nocturia, urinary incontinence, and dysuria. The Cox proportional hazards regression model was used to compare grade ≥2 toxicities between both techniques, adjusting for other modifying factors. Results: The 5-year cumulative incidence of grade ≥2 GI toxicity was 24.9% for IG-IMRT and 37.6% following 3D-CRT (adjusted hazard ratio [HR]: 0.59, P=.005), with significant reductions in proctitis (HR: 0.37, P=.047) and increased stool frequency (HR: 0.23, P<.001). GU grade ≥2 toxicity levels at 5 years were comparable with 46.2% and 36.4% following IG-IMRT and 3D-CRT, respectively (adjusted HR: 1.19, P=.33). Other strong predictors (P<.01) of grade ≥2 late toxicity were baseline complaints, acute toxicity, and age. Conclusions: Treatment with IG-IMRT reduced the risk of late grade ≥2 complications, whereas GU toxicities remained comparable. This clinically relevant observation demonstrates that IMRT and image-guidance should therefore be the preferred treatment option, provided that margin reduction is implemented with caution.« less

  3. Preoperative Intensity Modulated Radiation Therapy and Chemotherapy for Locally Advanced Vulvar Carcinoma: Analysis of Pattern of Relapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beriwal, Sushil, E-mail: beriwals@upmc.edu; Shukla, Gaurav; Shinde, Ashwin

    2013-04-01

    Purpose: To examine clinical outcomes and relapse patterns in locally advanced vulvar carcinoma treated using preoperative chemotherapy and intensity modulated radiation therapy (IMRT). Methods and Materials: Forty-two patients with stage I-IV{sub A} (stage I, n=3; stage II, n=13; stage III, n=23; stage IV{sub A}, n=3) vulvar cancer were treated with chemotherapy and IMRT via a modified Gynecological Oncology Group schema using 5-fluorouracil and cisplatin with twice-daily IMRT during the first and last weeks of treatment or weekly cisplatin with daily radiation therapy. Median dose of radiation was 46.4 Gy. Results: Thirty-three patients (78.6%) had surgery for resection of vulva; 13more » of these patients also had inguinal lymph node dissection. Complete pathologic response was seen in 48.5% (n=16) of these patients. Of these, 15 had no recurrence at a median time of 26.5 months. Of the 17 patients with partial pathological response, 8 (47.1%) developed recurrence in the vulvar surgical site within a median of 8 (range, 5-34) months. No patient had grade ≥3 chronic gastrointestinal/genitourinary toxicity. Of those having surgery, 8 (24.2%) developed wound infections requiring debridement. Conclusions: Preoperative chemotherapy/IMRT was well tolerated, with good pathologic response and clinical outcome. The most common pattern of recurrence was local in patients with partial response, and strategies to increase pathologic response rate with increasing dose or adding different chemotherapy need to be explored to help further improve outcomes.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chance, William W.; Rice, David C.; Allen, Pamela K.

    Purpose: To investigate safety, efficacy, and recurrence after hemithoracic intensity modulated radiation therapy after pleurectomy/decortication (PD-IMRT) and after extrapleural pneumonectomy (EPP-IMRT). Methods and Materials: In 2009-2013, 24 patients with mesothelioma underwent PD-IMRT to the involved hemithorax to a dose of 45 Gy, with an optional integrated boost; 22 also received chemotherapy. Toxicity was scored with the Common Terminology Criteria for Adverse Events v4.0. Pulmonary function was compared at baseline, after surgery, and after IMRT. Kaplan-Meier analysis was used to calculate overall survival (OS), progression-free survival (PFS), time to locoregional failure, and time to distant metastasis. Failures were in-field, marginal, or outmore » of field. Outcomes were compared with those of 24 patients, matched for age, nodal status, performance status, and chemotherapy, who had received EPP-IMRT. Results: Median follow-up time was 12.2 months. Grade 3 toxicity rates were 8% skin and 8% pulmonary. Pulmonary function declined from baseline to after surgery (by 21% for forced vital capacity, 16% for forced expiratory volume in 1 second, and 19% for lung diffusion of carbon monoxide [P for all = .01]) and declined still further after IMRT (by 31% for forced vital capacity [P=.02], 25% for forced expiratory volume in 1 second [P=.01], and 30% for lung diffusion of carbon monoxide [P=.01]). The OS and PFS rates were 76% and 67%, respectively, at 1 year and 56% and 34% at 2 years. Median OS (28.4 vs 14.2 months, P=.04) and median PFS (16.4 vs 8.2 months, P=.01) favored PD-IMRT versus EPP-IMRT. No differences were found in grade 4-5 toxicity (0 of 24 vs 3 of 24, P=.23), median time to locoregional failure (18.7 months vs not reached, P not calculable), or median time to distant metastasis (18.8 vs 11.8 months, P=.12). Conclusions: Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication produced little high-grade toxicity but led to progressive declines in pulmonary function; OS and PFS were better in PD-IMRT compared with EPP-IMRT.« less

  5. Comparison of survival rates between 3D conformal radiotherapy and intensity-modulated radiotherapy in patients with stage III non-small cell lung cancer.

    PubMed

    Kong, Moonkyoo; Hong, Seong Eon

    2016-01-01

    Randomized trials showing a clear survival benefit of intensity-modulated radiotherapy (IMRT) over 3-dimensional conformal radiotherapy (3D-CRT) in the treatment of lung cancer are lacking. This study compared the survival rates of patients with stage III non-small cell lung cancer who were treated with either 3D-CRT or IMRT and analyzed the prognostic factors for survival. From January 2008 to July 2015, 19 patients were treated with IMRT and 30 were treated with 3D-CRT in our institution. The choice between 3D-CRT and IMRT was determined by the physician based on tumor extent and general condition of the patients. The primary endpoint of this study was overall survival. The secondary endpoints were loco-regional recurrence-free survival, distant metastasis-free survival, and the incidence of radiation-induced lung and esophageal toxicities. The 1- and 2-year overall survival rates were 94.7% and 77.1% in the IMRT group and 76.7% and 52.5% in the 3D-CRT group, respectively. The overall survival rates of the IMRT group were higher than those of the 3D-CRT group; however, these differences were not statistically significant ( P =0.072). Gross tumor volume was significantly associated with the overall survival rate. The 1- and 2-year loco-regional recurrence-free survival rates were 63.2% and 51% in the IMRT group and 67.5% and 48.1% in the 3D-CRT group ( P =0.897), respectively. The 1- and 2-year distant metastasis-free survival rates were 78.9% and 68.4% in the IMRT group and 62.6% and 40.9% in the 3D-CRT group ( P =0.120), respectively. Chemotherapy and treatment interruption were significantly associated with distant metastasis-free survival. IMRT showed comparable or better overall survival compared with 3D-CRT in patients with stage III non-small cell lung cancer. To confirm the results of this study, further randomized prospective trials comparing IMRT with 3D-CRT are warranted.

  6. Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication for malignant pleural mesothelioma: toxicity, patterns of failure, and a matched survival analysis.

    PubMed

    Chance, William W; Rice, David C; Allen, Pamela K; Tsao, Anne S; Fontanilla, Hiral P; Liao, Zhongxing; Chang, Joe Y; Tang, Chad; Pan, Hubert Y; Welsh, James W; Mehran, Reza J; Gomez, Daniel R

    2015-01-01

    To investigate safety, efficacy, and recurrence after hemithoracic intensity modulated radiation therapy after pleurectomy/decortication (PD-IMRT) and after extrapleural pneumonectomy (EPP-IMRT). In 2009-2013, 24 patients with mesothelioma underwent PD-IMRT to the involved hemithorax to a dose of 45 Gy, with an optional integrated boost; 22 also received chemotherapy. Toxicity was scored with the Common Terminology Criteria for Adverse Events v4.0. Pulmonary function was compared at baseline, after surgery, and after IMRT. Kaplan-Meier analysis was used to calculate overall survival (OS), progression-free survival (PFS), time to locoregional failure, and time to distant metastasis. Failures were in-field, marginal, or out of field. Outcomes were compared with those of 24 patients, matched for age, nodal status, performance status, and chemotherapy, who had received EPP-IMRT. Median follow-up time was 12.2 months. Grade 3 toxicity rates were 8% skin and 8% pulmonary. Pulmonary function declined from baseline to after surgery (by 21% for forced vital capacity, 16% for forced expiratory volume in 1 second, and 19% for lung diffusion of carbon monoxide [P for all = .01]) and declined still further after IMRT (by 31% for forced vital capacity [P=.02], 25% for forced expiratory volume in 1 second [P=.01], and 30% for lung diffusion of carbon monoxide [P=.01]). The OS and PFS rates were 76% and 67%, respectively, at 1 year and 56% and 34% at 2 years. Median OS (28.4 vs 14.2 months, P=.04) and median PFS (16.4 vs 8.2 months, P=.01) favored PD-IMRT versus EPP-IMRT. No differences were found in grade 4-5 toxicity (0 of 24 vs 3 of 24, P=.23), median time to locoregional failure (18.7 months vs not reached, P not calculable), or median time to distant metastasis (18.8 vs 11.8 months, P=.12). Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication produced little high-grade toxicity but led to progressive declines in pulmonary function; OS and PFS were better in PD-IMRT compared with EPP-IMRT. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. SU-F-J-124: Reduction in Dosimetric Impact of Motion Using VMAT Compared to IMRT in Hypofractionated Prostate Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindranath, B; Xiong, J; Happersett, L

    2016-06-15

    Purpose: To quantify and compare the dosimetric impact of motion management correction strategies during VMAT and IMRT for hypofractionated prostate treatment. Methods: Two arc VMAT and 9 field IMRT plans were generated for two prostate cancer patients undergoing hypofractionated radiotherapy (7.5Gy × 5 and 8Gy × 5). 212 motion traces were retrospectively extracted from treatment records of prostate cancer patients with implanted Calypso beacons. Dose to the CTV and normal tissues was reconstructed for each trace and plan taking into account the actual treatment delivery time. Following motion correction scenarios were simulated: (1) VMAT plan – (a) No correction, (b)more » correction between arcs, (c) correction every 20 degrees of gantry rotation and (2) IMRT plan - (a) No correction,(b) correction between fields. Two mm action threshold for position correction was assumed. The 5–95% confidence interval (CI) range was extracted from the family of DVHs for each correction scenario. Results: Treatment duration for 8Gy plan (VMAT vs IMRT) was 3 vs 12 mins and for 7.5Gy plan was 3 vs 9 mins. In the absence of correction, the VMAT 5–−95% CI dose spread was, on average, less than the IMRT dose spread by 2% for CTVD95, 9% for rectalwall (RW) D1cc and 9% for bladderwall (BW) D53. Further, VMAT b/w arcs correction strategy reduced the spread about the planned value compared to IMRT b/w fields correction by: 1% for CTVD95, 2.6% for RW1cc and 2% for BWD53. VMAT 20 degree strategy led to greater reduction in dose spread compared to IMRT by: 2% for CTVD95, 4.5% for RW1cc and 6.7% for BWD53. Conclusion: In the absence of a correction strategy, the limited motion during VMAT’s shorter delivery times translates into less motion-induced dosimetric degradation than IMRT. Performing limited periodic motion correction during VMAT can yield excellent conformity to planned values that is superior to IMRT. This work was partially supported by Varian Medical Systems.« less

  8. Dosimetric benefits of IMRT and VMAT in the treatment of middle thoracic esophageal cancer: is the conformal radiotherapy still an alternative option?

    PubMed

    Wu, Zhiqin; Xie, Congying; Hu, Meilong; Han, Ce; Yi, Jinling; Zhou, Yongqiang; Yuan, Huawei; Jin, Xiance

    2014-05-08

    The purpose of this study is to investigate the dosimetric differences among conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated radiotherapy (VMAT) in the treatment of middle thoracic esophageal cancer, and determine the most appropriate treatment modality. IMRT and one-arc VMAT plans were generated for eight middle thoracic esophageal cancer patients treated previous with CRT. The planning target volume (PTV) coverage and protections on organs at risk of three planning schemes were compared. All plans have sufficient PTV coverage and no significant differences were observed, except for the conformity and homogeneity. The lung V5, V10, and V13 in CRT were 47.9% ± 6.1%, 36.5% ± 4.6%, and 33.2% ± 4.2%, respectively, which were greatly increased to 78.2% ± 13.7% (p < 0.01), 80.8% ± 14.9% (p < 0.01), 48.4% ± 8.2% (p = 0.05) in IMRT and 58.6% ± 10.5% (p = 0.03), 67.7% ± 14.0% (p < 0.01), and 53.0% ± 10.1% (p < 0.01) in VMAT, respectively. The lung V20 (p = 0.03) in VMAT and the V30 (p = 0.04) in IMRT were lower than those in CRT. Both IMRT and VMAT achieved a better protection on heart. However, the volumes of the healthy tissue outside of PTV irradiated by a low dose were higher for IMRT and VMAT. IMRT and VMAT also had a higher MU, optimization time, and delivery time compared to CRT. In conclusion, all CRT, IMRT, and VMAT plans are able to meet the prescription and there is no clear distinction on PTV coverage. IMRT and VMAT can only decrease the volume of lung and heart receiving a high dose, but at a cost of delivering low dose to more volume of lung and normal tissues. CRT is still a feasible option for middle thoracic esophageal cancer radiotherapy, especially for the cost-effective consideration.

  9. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun

    2006-10-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less

  10. Estimate of the risk of radiation-induced cancers after linear-accelerator-based breast-cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Koh, Eui Kwan; Seo, Jungju; Baek, Tae Seong; Chung, Eun Ji; Yoon, Myonggeun; Lee, Hyun-ho

    2013-07-01

    The aim of this study is to assess and compare the excess absolute risks (EARs) of radiation-induced cancers following conformal (3D-CRT), fixed-field intensity-modulated (IMRT) and volumetric modulated arc (RapidArc) radiation therapy in patients with breast cancer. 3D-CRT, IMRT and RapidArc were planned for 10 breast cancer patients. The organ-specific EAR for cancer induction was estimated using the organ equivalent dose (OED) based on computed dose volume histograms (DVHs) and the secondary doses measured at various points from the field edge. The average secondary dose per Gy treatment dose from 3D-CRT, measured 10 to 50 cm from the field edge, ranged from 8.27 to 1.04 mGy. The secondary doses per Gy from IMRT and RapidArc, however, ranged between 5.86 and 0.54 mGy, indicating that IMRT and RapidArc are associated with smaller doses of secondary radiation than 3D-CRT. The organ specific EARs for out-of-field organs, such as the thyroid, liver and colon, were higher with 3D-CRT than with IMRT or RapidArc. In contrast, EARs for in-field organs were much lower with 3D-CRT than with IMRT or RapidArc. The overall estimate of EAR indicated that the radiation-induced cancer risk was 1.8-2.0 times lower with 3D-CRT than with IMRT or RapidArc. Comparisons of EARs during breast irradiation suggested that the predicted risk of secondary cancers was lower with 3D-CRT than with IMRT or RapidArc.

  11. Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience.

    PubMed

    Choi, Kyu Hye; Kim, Jina; Lee, Sea-Won; Kang, Young-Nam; Jang, HongSeok

    2018-03-01

    The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V 5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart V 30 (p = 0.039), V 40 (p = 0.040), and V 50 (p = 0.032). Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung V 10 , V 20 , and V 30 than in 3D-CRT, but could not be proven superior in lung V 5 . In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.

  12. Whole Abdominopelvic Intensity-Modulated Radiation Therapy for Desmoplastic Small Round Cell Tumor After Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinnix, Chelsea C.; Fontanilla, Hiral P.; Hayes-Jordan, Andrea

    2012-05-01

    Purpose: Desmoplastic small round cell tumor (DSCRT) is an uncommon pediatric tumor with a poor prognosis. Aggressive multimodality therapy is the current treatment approach; however. treatment toxicity is of concern. We report our results with whole abdominopelvic intensity-modulated radiation therapy (WAP-IMRT) as a component of multimodality therapy for DSCRT at a single institution. Materials/Methods: Medical records of all patients with DSCRT who received WAP-IMRT as part of definitive treatment at MD Anderson (2006-2010) were identified and reviewed. Results: Eight patients with DSRCT received WAP-IMRT with a median follow-up of 15.2 months. All patients received multiple courses of chemotherapy followed bymore » surgical debulking of intra-abdominal disease; seven also had intraoperative hyperthermic cisplatin. WAP-IMRT was delivered to a total dose of 30 Gy postoperatively; four patients received a simultaneous boost (6-10 Gy) to sites of gross residual disease. Seven patients received concurrent chemotherapy during WAP-IMRT. No Radiation Therapy Oncology Group Grade 4 nausea, vomiting, or diarrhea occurred during RT. Red-cell transfusions were given to two patients to maintain hemoglobin levels >10 g/dL. Grade 4 cytopenia requiring growth factor support occurred in only one patient; no other significant cytopenias were noted. WAP-IMRT resulted in 25% lower radiation doses to the lumbosacral vertebral bodies and pelvic bones than conventional RT plans. The median time to local or distant failure after WAP-IMRT was 8.73 months in seven patients. One patient who had completed RT 20 months before the last follow-up remains alive without evidence of disease. Five patients (63%) experienced treatment failure in the abdomen. Distant failure occurred in three patients (37.5%). Conclusions: WAP-IMRT with concurrent radiosensitizing chemotherapy was well tolerated after aggressive surgery for DSCRT. Enhanced bone sparing with IMRT probably accounts for the low hematologic toxicity (vs. conventional WAP-RT). This modality should be considered as an additional local-regional control option for DSRCT.« less

  13. Time-driven activity-based cost comparison of prostate cancer brachytherapy and intensity-modulated radiation therapy.

    PubMed

    Dutta, Sunil W; Bauer-Nilsen, Kristine; Sanders, Jason C; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N

    To evaluate the delivery cost of frequently used radiotherapy options offered to patients with intermediate- to high-risk prostate cancer using time-driven activity-based costing and compare the results with Medicare reimbursement and relative value units (RVUs). Process maps were created to represent each step of prostate radiotherapy treatment at our institution. Salary data, equipment purchase costs, and consumable costs were factored into the cost analysis. The capacity cost rate was determined for each resource and calculated for each treatment option from initial consultation to its completion. Treatment options included low-dose-rate brachytherapy (LDR-BT), combined high-dose-rate brachytherapy single fraction boost with 25-fraction intensity-modulated radiotherapy (HDR-BT-IMRT), moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost. The total cost to deliver LDR-BT, HDR-BT-IMRT, moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost was $2719, $6517, $4173, $5507, and $5663, respectively. Total reimbursement for each course was $3123, $10,156, $7862, $9725, and $10,377, respectively. Radiation oncology attending time was 1.5-2 times higher for treatment courses incorporating BT. Attending radiation oncologist's time consumed per RVU was higher with BT (4.83 and 2.56 minutes per RVU generated for LDR-BT and HDR-BT-IMRT, respectively) compared to without BT (1.41-1.62 minutes per RVU). Time-driven activity-based costing analysis identified higher delivery costs associated with prostate BT compared with IMRT alone. In light of recent guidelines promoting BT for intermediate- to high-risk disease, re-evaluation of payment policies is warranted to encourage BT delivery. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies.

    PubMed

    Liang, Yun; Bydder, Mark; Yashar, Catheryn M; Rose, Brent S; Cornell, Mariel; Hoh, Carl K; Lawson, Joshua D; Einck, John; Saenz, Cheryl; Fanta, Paul; Mundt, Arno J; Bydder, Graeme M; Mell, Loren K

    2013-02-01

    To test the hypothesis that intensity modulated radiation therapy (IMRT) can reduce radiation dose to functional bone marrow (BM) in patients with pelvic malignancies (phase IA) and estimate the clinical feasibility and acute toxicity associated with this technique (phase IB). We enrolled 31 subjects (19 with gynecologic cancer and 12 with anal cancer) in an institutional review board-approved prospective trial (6 in the pilot study, 10 in phase IA, and 15 in phase IB). The mean age was 52 years; 8 of 31 patients (26%) were men. Twenty-one subjects completed (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) simulation and magnetic resonance imaging by use of quantitative IDEAL (IDEAL IQ; GE Healthcare, Waukesha, WI). The PET/CT and IDEAL IQ were registered, and BM subvolumes were segmented above the mean standardized uptake value and below the mean fat fraction within the pelvis and lumbar spine; their intersection was designated as functional BM for IMRT planning. Functional BM-sparing vs total BM-sparing IMRT plans were compared in 12 subjects; 10 were treated with functional BM-sparing pelvic IMRT per protocol. In gynecologic cancer patients, the mean functional BM V(10) (volume receiving ≥10 Gy) and V(20) (volume receiving ≥20 Gy) were 85% vs 94% (P<.0001) and 70% vs 82% (P<.0001), respectively, for functional BM-sparing IMRT vs total BM-sparing IMRT. In anal cancer patients, the corresponding values were 75% vs 77% (P=.06) and 62% vs 67% (P=.002), respectively. Of 10 subjects treated with functional BM-sparing pelvic IMRT, 3 (30%) had acute grade 3 hematologic toxicity or greater. IMRT can reduce dose to BM subregions identified by (18)F-fluorodeoxyglucose-PET/CT and IDEAL IQ. The efficacy of BM-sparing IMRT is being tested in a phase II trial. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. SU-F-T-356: DosimetricComparison of VMAT Vs Step and Shoot IMRT Plans for Stage III Lung CancerPatients with Mediastinal Involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, D; Bogue, J

    Purpose: For Stage III lung cancers that entail treatment of some or all of the mediastinum, anterior-posterior focused Step and Shoot IMRT (SS-IMRT) and VMAT plans have been clinically used to deliver the prescribed dose while working to minimize lung dose and avoid other critical structures. A comparison between the two planning methods was completed to see which treatment method is superior and minimizes dose to healthy lung tissue. Methods: Ten patients who were recently treated with SS-IMRT or VMAT plans for Stage III lung cancer with mediastinal involvement were selected. All patients received a simulation CT for treatment planning,more » as well as a 4D CT and PET/CT fusion for target delineation. Plans were prescribed 6250 cGy in 25 fractions and normalized such that 100% of the prescription dose covered 95% of the PTV. Clinically approved SS-IMRT or VMAT plans were then copied and planned using the alternative modality with identical optimization criteria. SS-IMRT plans utilized seven to nine beams distributed around the patient while the VMAT plans consisted of two full 360 degree arcs. Plans were compared for the lung volume receiving 20 Gy (V20). Results: Both SS-IMRT and VMAT can be used to achieve clinical treatment plans for patients with Stage III Lung cancer with targets encompassing the mediastinum. VMAT plans produced an average V20 of 23.0+/−8.3% and SS-IMRT produced an average of 24.2+/−10.0%. Conclusion: Results indicate that either method can achieve comparable dose distributions, however, VMAT can allow the optimizer to distribute dose over paths of minimal lung tissue and reduce the V20. Therefore, creating a VMAT with constraints identical to an SS-IMRT plan could help to reduce the V20 in clinical treatment plans.« less

  16. Dosimetric comparison of four different external beams for breast irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Yoon Hee; Chung, Weon Kuu; Kim, Dong Wook; Kwon, Oh Young

    2017-02-01

    An intensity-modulated radiation-therapy (IMRT)-based technique, blocked single iso-centric IMRT (IMRT), is compared to multi-center IMRT (MIRT) and other conventional techniques such as three dimensional conformal radiation therapy (3D-CRT) and volumetric modulated arc therapy (VMAT) for the treatment of breast cancer patients. Four different plans were devised and compared for 15 breast cancer patients, all of whom had early stage disease and had undergone breast conserving surgery. A total dose of 50.4 Gy in 28 fractions was prescribed as the planning target volume in all treatment plans. The doses to the ipsilateral lung, heart, and opposite breast were compared using a dose-volume histogram. The conformity index (CI), homogeneity index (HI), and coverage index (CoVI) were evaluated and compared among the four treatment techniques. The lifetime attributable risk (LAR) associated with each of the four techniques from age at exposure of 30 to 100 years was measured for the organs at risk. We found that MIRT had a better CoVI (1.02 ± 0.13 and 1.01 ± 0.04, respectively) and IMRT had a better CI (0.88 ± 0.04, and 0.87 ± 0.02, respectively) compared to the other three modalities. All four techniques had similar HIs. Moreover, we found that IMRT and MIRT were less likely to cause radiation induced-pneumonitis, 3D-CRT had the lowest LAR, IMRT and MIRT had similar LARs and VMAT had the highest LAR. In study we found that compared to the VMAT, MIRT and IMRT provided adequate the planning target volume (PTV) coverage and reduced the risk of secondary cancers in most of the organs at risk (OARs), while 3D-CRT had the lowest secondary-cancer risks. Therefore, 3D-CRT is still a reasonable choice for whole breast RT except for patients with complex PTV shapes, in which cases IMRT and MIRT may provide better target coverage.

  17. Prospective Study of Functional Bone Marrow-Sparing Intensity Modulated Radiation Therapy With Concurrent Chemotherapy for Pelvic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Yun; Center for Advanced Radiotherapy Technologies, University of California, San Diego, La Jolla, California; Bydder, Mark

    2013-02-01

    Purpose: To test the hypothesis that intensity modulated radiation therapy (IMRT) can reduce radiation dose to functional bone marrow (BM) in patients with pelvic malignancies (phase IA) and estimate the clinical feasibility and acute toxicity associated with this technique (phase IB). Methods and Materials: We enrolled 31 subjects (19 with gynecologic cancer and 12 with anal cancer) in an institutional review board-approved prospective trial (6 in the pilot study, 10 in phase IA, and 15 in phase IB). The mean age was 52 years; 8 of 31 patients (26%) were men. Twenty-one subjects completed {sup 18}F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computedmore » tomography (CT) simulation and magnetic resonance imaging by use of quantitative IDEAL (IDEAL IQ; GE Healthcare, Waukesha, WI). The PET/CT and IDEAL IQ were registered, and BM subvolumes were segmented above the mean standardized uptake value and below the mean fat fraction within the pelvis and lumbar spine; their intersection was designated as functional BM for IMRT planning. Functional BM-sparing vs total BM-sparing IMRT plans were compared in 12 subjects; 10 were treated with functional BM-sparing pelvic IMRT per protocol. Results: In gynecologic cancer patients, the mean functional BM V{sub 10} (volume receiving {>=}10 Gy) and V{sub 20} (volume receiving {>=}20 Gy) were 85% vs 94% (P<.0001) and 70% vs 82% (P<.0001), respectively, for functional BM-sparing IMRT vs total BM-sparing IMRT. In anal cancer patients, the corresponding values were 75% vs 77% (P=.06) and 62% vs 67% (P=.002), respectively. Of 10 subjects treated with functional BM-sparing pelvic IMRT, 3 (30%) had acute grade 3 hematologic toxicity or greater. Conclusions: IMRT can reduce dose to BM subregions identified by {sup 18}F-fluorodeoxyglucose-PET/CT and IDEAL IQ. The efficacy of BM-sparing IMRT is being tested in a phase II trial.« less

  18. Propensity score based comparison of long term outcomes with 3D conformal radiotherapy (3DCRT) versus Intensity Modulated Radiation Therapy (IMRT) in the treatment of esophageal cancer

    PubMed Central

    Lin, Steven H.; Wang, Lu; Myles, Bevan; Thall, Peter F.; Hofstetter, Wayne L.; Swisher, Stephen G.; Ajani, Jaffer A.; Cox, James D.; Komaki, Ritsuko; Liao, Zhongxing

    2014-01-01

    Purpose Although 3DCRT is the worldwide standard for the treatment of esophageal cancers, IMRT improves dose conformality and reduces radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared to 3DCRT. Methods and Materials Analysis was performed on 676 nonrandomized patients (3DCRT=413, IMRT=263) with stage Ib-IVa (AJCC 2002) esophageal cancers treated with chemoradiation at a single institution from 1998–2008. An inverse probability of treatment weighting (IPW) and inclusion of propensity score (treatment probability) as a covariate were used to compare overall survival (OS) time, time to local failure, and time to distant metastasis, while accounting for effects of other clinically relevant covariates. Propensity scores were estimated using logistic regression. Results A fitted multivariate inverse probability weighted (IPW)-adjusted Cox model showed that OS time was significantly associated with several well-known prognostic factors, along with radiation modality (IMRT vs 3DCRT, HR=0.72, p<0.001). Compared to IMRT, 3DCRT patients had a significantly greater risk of dying (72.6% vs 52.9%, IPW log rank test: p<0.0001) and for local-regional recurrence (LRR) (p=0.0038). There was no difference in cancer-specific mortality (Gray’s test, p=0.86), or distant metastasis (p=0.99) between the two groups. An increased cumulative incidence of cardiac deaths was seen in the 3DCRT group (p=0.049), but most deaths were undocumented (5 year estimate: 11.7% in 3DCRT vs 5.4% in IMRT, Gray’s test, p=0.0029). Conclusions Overall survival, locoregional control, and non-cancer related deaths were significantly better for IMRT compared to 3DCRT. Although these results need confirmation, IMRT should be considered for the treatment of esophageal cancer. PMID:22867894

  19. Reduced toxicity with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy compared with conventional two-dimensional radiotherapy for esophageal squamous cell carcinoma: a secondary analysis of data from four prospective clinical trials.

    PubMed

    Deng, J-Y; Wang, C; Shi, X-H; Jiang, G-L; Wang, Y; Liu, Y; Zhao, K-L

    2016-11-01

    We conducted a retrospective analysis to assess the toxicity and long-term survival of esophageal squamous cell carcinoma patients treated with three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) versus conventional two-dimensional radiotherapy (2DRT). All data in the present study were based on four prospective clinical trials conducted at our institution from 1996 to 2004 and included 308 esophageal squamous cell carcinoma patients treated with 2DRT or 3DCRT/IMRT. Based on the inclusion and exclusion criteria, 254 patients were included in the analysis. Of these patients, 158 were treated with 2DRT, whereas 96 were treated with 3DCRT/IMRT. The rates of ≥Grade3 acute toxicity of the esophagus and lung were 11.5% versus 28.5% (P = 0.002) and 5.2% versus 10.8% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The incidences of ≥Grade 3 late toxicity of the esophagus and lungs were 3.1% versus 10.7% (P = 0.028) and 3.1% versus 5.7% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The 1-year, 3-year and 5-year estimated overall survival rates were 81%, 38% and 34% in the 3DCRT/IMRT group and 79%, 44% and 31% in the 2DRT group, respectively (P = 0.628). The 1-year, 3-year and 5-year local control rates were 88%, 71% and 66% in the 3DCRT/IMRT group and 84%, 66% and 60% in the 2DRT group, respectively (P = 0.412). Fewer incidences of acute and late toxicities were observed in esophageal squamous cell carcinoma patients treated with 3DCRT/IMRT compared with those treated with 2DRT. No significant survival benefit was observed with the use of 3DCRT/IMRT. © 2015 International Society for Diseases of the Esophagus.

  20. Esophagus and Contralateral Lung-Sparing IMRT for Locally Advanced Lung Cancer in the Community Hospital Setting.

    PubMed

    Kao, Johnny; Pettit, Jeffrey; Zahid, Soombal; Gold, Kenneth D; Palatt, Terry

    2015-01-01

    The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue-sparing IMRT can allow safe dose escalation resulting in decreased acute and late toxicity. We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of three-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT). From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity, and overall survival. Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 vs. 60.8 Gy, p = 0.04), patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, esophageal V60, and mean esophagus doses compared to patients treated with standard RT (p ≤ 0.001). Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0 vs. 11%, p < 0.001), acute grade ≥2 weight loss (2 vs. 16%, p = 0.04), and late grade ≥2 pneumonitis (7 vs. 21%, p = 0.02). The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p = 0.015). These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose-volume constraints are feasible in the community hospital setting without sacrificing disease control.

  1. A dosimetric analysis of intensity-modulated radiation therapy (IMRT) as an alternative to adjuvant high-dose-rate (HDR) brachytherapy in early endometrial cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, Bulent; Mundt, Arno J.; Department of Radiation Oncology, University of Illinois at Chicago, Chicago, IL

    2006-05-01

    Purpose: To evaluate the role of intensity-modulated radiation treatment (IMRT) as an alternative to high-dose-rate (HDR) brachytherapy in the treatment of the vagina in postoperative early endometrial cancer patients after surgery. Methods and Materials: Planning computed tomography (CT) scans of 10 patients previously treated with HDR were used in this study. In all cases, a dose of 700 cGy/fraction was prescribed at a distance of 0.5 cm from the cylinder surface. The same CT scans were then used in IMRT planning. In this paradigm, the vaginal cylinder represents a component of a hypothetical immobilization system that would be indexed tomore » the linac treatment table. Results: Our study showed that IMRT provided relatively lower rectal doses than HDR when treatment was prescribed at a distance of 0.5 cm away from the cylinder surface. Maximum rectal doses were lower with IMRT compared with HDR (average: 89.0% vs. 142.6%, respectively, p < 0.05). Moreover, the mean rectal dose was lower in IMRT plans compared with HDR plans with treatment prescribed either to the surface (average: 14.8% vs. 21.4%, respectively, p < 0.05) or to 0.5 cm (average: 19.6% vs. 33.5%, respectively, p < 0.05). IMRT plans had planning target volume (PTV) coverage comparable with HDR (average PTV minimum for treatment prescribed to 0.5 cm: 93.9% vs. 92.1%, p = 0.71, respectively) with less inhomogeneity (average PTV maximum: 110.8% vs. 381.6%, p < 0.05). Conclusion: Our dosimetric analysis suggests that when used in conjunction with a suitable immobilization system, IMRT may provide an alternative to HDR brachytherapy in women with early endometrial cancer after hysterectomy. However, more studies are needed to evaluate the clinical merit of the IMRT in these patients.« less

  2. Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

    PubMed Central

    Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.

    2016-01-01

    This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562

  3. A case study of IMRT planning (Plan B) subsequent to a previously treated IMRT plan (Plan A)

    NASA Astrophysics Data System (ADS)

    Cao, F.; Leong, C.; Schroeder, J.; Lee, B.

    2014-03-01

    Background and purpose: Treatment of the contralateral neck after previous ipsilateral intensity modulated radiation therapy (IMRT) for head and neck cancer is a challenging problem. We have developed a technique that limits the cumulative dose to the spinal cord and brainstem while maximizing coverage of a planning target volume (PTV) in the contralateral neck. Our case involves a patient with right tonsil carcinoma who was given ipsilateral IMRT with 70Gy in 35 fractions (Plan A). A left neck recurrence was detected 14 months later. The patient underwent a neck dissection followed by postoperative left neck radiation to a dose of 66 Gy in 33 fractions (Plan B). Materials and Methods: The spinal cord-brainstem margin (SCBM) was defined as the spinal cord and brainstem with a 1.0 cm margin. Plan A was recalculated on the postoperative CT scan but the fluence outside of SCBM was deleted. A further modification of Plan A resulted in a base plan that was summed with Plan B to evaluate the cumulative dose received by the spinal cord and brainstem. Plan B alone was used to evaluate for coverage of the contralateral neck PTV. Results: The maximum cumulative doses to the spinal cord with 0.5cm margin and brainstem with 0.5cm margin were 51.96 Gy and 45.60 Gy respectively. For Plan B, 100% of the prescribed dose covered 95% of PTVb1. Conclusion: The use of a modified ipsilateral IMRT plan as a base plan is an effective way to limit the cumulative dose to the spinal cord and brainstem while enabling coverage of a PTV in the contralateral neck.

  4. Clinical impact of prolonged diagnosis to treatment interval (DTI) among patients with oropharyngeal squamous cell carcinoma.

    PubMed

    Sharma, Sonam; Bekelman, Justin; Lin, Alexander; Lukens, J Nicholas; Roman, Benjamin R; Mitra, Nandita; Swisher-McClure, Samuel

    2016-05-01

    We examined practice patterns using the National Cancer Data Base (NCDB) to determine risk factors for prolonged diagnosis to treatment interval (DTI) and survival outcomes in patients receiving chemoradiation for oropharyngeal squamous cell carcinoma (OPSCC). We identified 6606 NCDB patients with Stage III-IV OPSCC receiving chemoradiation from 2003 to 2006. We determined risk factors for prolonged DTI (>30days) using univariate and multivariable logistic regression models. We examined overall survival (OS) using Kaplan Meier and multivariable Cox proportional hazards models. 3586 (54.3%) patients had prolonged DTI. Race, IMRT, insurance status, and high volume facilities were significant risk factors for prolonged DTI. Patients with prolonged DTI had inferior OS compared to DTI⩽30days (Hazard Ratio (HR)=1.12, 95% CI 1.04-1.20, p=0.005). For every week increase in DTI there was a 2.2% (95% CI 1.1-3.3%, p<0.001) increase in risk of death. Patients receiving IMRT, treatment at academic, or high-volume facilities were more likely to experience prolonged DTI (High vs. Low volume: 61.5% vs. 51.8%, adjusted OR 1.38, 95% CI 1.21-1.58; Academic vs. Community: 59.5% vs. 50.6%, adjusted OR 1.26, 95% CI 1.13-1.42; non-IMRT vs. IMRT: 53.4% vs. 56.5%; adjusted OR 1.17, 95% CI 1.04-1.31). Our results suggest that prolonged DTI has a significant impact on survival outcomes. We observed disparities in DTI by socioeconomic factors. However, facility level factors such as academic affiliation, high volume, and IMRT also increased risk of DTI. These findings should be considered in developing efficient pathways to mitigate adverse effects of prolonged DTI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  6. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less

  7. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhu, T

    2014-06-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less

  8. Incorporating Model Parameter Uncertainty into Prostate IMRT Treatment Planning

    DTIC Science & Technology

    2005-04-01

    HD HJ. Fractionation in radiotherapy. London: Taylor & Francis, 1987. 8. Withers HR. Biologic basis for altered fractionation schemes. Cancer 1985; 55...of combined agent regimens. Int J Radiat Biol 1990; 57: 709-722. 15. Thames HD , Jr., Withers HR, Peters LJ, Fletcher GH. Changes in early and late...Oncology, Biology, Physics 2001; 50: 551-560. 30. Turesson I, Thames HD . Repair capacity and kinetics of human skin during fractionated radiotherapy

  9. Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma.

    PubMed

    Greenfield, Brad J; Okcu, Mehmet F; Baxter, Patricia A; Chintagumpala, Murali; Teh, Bin S; Dauser, Robert C; Su, Jack; Desai, Snehal S; Paulino, Arnold C

    2015-02-01

    To report long-term progression-free survival (PFS) and late-toxicity outcomes in pediatric craniopharyngioma patients treated with IMRT. Twenty-four children were treated with IMRT to a median dose of 50.4Gy (range, 49.8-54Gy). The clinical target volume (CTV) was the gross tumor volume (GTV) with a 1cm margin. The planning target volume (PTV) was the CTV with a 3-5mm margin. Median follow-up was 107.3months. The 5- and 10-year PFS rates were 65.8% and 60.7%. The 5- and 10-year cystic PFS rates were 70.2% and 65.2% while the 5- and 10-year solid PFS were the same at 90.7%. Endocrinopathy was seen in 42% at initial diagnosis and in 74% after surgical intervention, prior to IMRT. Hypothalamic dysfunction and visual deficits were associated with increasing PTV and number of surgical interventions. IMRT is a viable treatment option for pediatric craniopharyngioma. Despite the use of IMRT, majority of the craniopharyngioma patients experienced long-term toxicity, many of which present prior to radiotherapy. Limitations of retrospective analyses on small patient cohort elicit the need for a prospective multi-institutional study to determine the absolute benefit of IMRT in pediatric craniopharyngioma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. On Voxel based Iso-Tumor Control Probabilty and Iso-Complication Maps for Selective Boosting and Selective Avoidance Intensity Modulated Radiotherapy.

    PubMed

    Kim, Yusung; Tomé, Wolfgang A

    2008-01-01

    Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans.

  11. TH-A-BRC-03: AAPM TG218: Measurement Methods and Tolerance Levels for Patient-Specific IMRT Verification QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miften, M.

    2016-06-15

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less

  12. General strategy for the protection of organs at risk in IMRT therapy of a moving body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, Ramin M.; Papiez, Lech

    2009-07-15

    We investigated protection strategies of organs at risk (OARs) in intensity modulated radiation therapy (IMRT). These strategies apply to delivery of IMRT to moving body anatomies that show relative displacement of OAR in close proximity to a tumor target. We formulated an efficient genetic algorithm which makes it possible to search for global minima in a complex landscape of multiple irradiation strategies delivering a given, predetermined intensity map to a target. The optimal strategy was investigated with respect to minimizing the dose delivered to the OAR. The optimization procedure developed relies on variability of all parameters available for control ofmore » radiation delivery in modern linear accelerators, including adaptation of leaf trajectories and simultaneous modification of beam dose rate during irradiation. We showed that the optimization algorithms lead to a significant reduction in the dose delivered to OAR in cases where organs at risk move relative to a treatment target.« less

  13. In vivo dose verification of IMRT treated head and neck cancer patients.

    PubMed

    Engström, Per E; Haraldsson, Pia; Landberg, Torsten; Sand Hansen, Hanne; Aage Engelholm, Svend; Nyström, Håkan

    2005-01-01

    An independent in vivo dose verification procedure for IMRT treatments of head and neck cancers was developed. Results of 177 intracavitary TLD measurements from 10 patients are presented. The study includes data from 10 patients with cancer of the rhinopharynx or the thyroid treated with dynamic IMRT. Dose verification was performed by insertion of a flexible naso-oesophageal tube containing TLD rods and markers for EPID and simulator image detection. Part of the study focussed on investigating the accuracy of the TPS calculations in the presence of inhomogeneities. Phantom measurements and Monte Carlo simulations were performed for a number of geometries involving lateral electronic disequilibrium and steep density shifts. The in vivo TLD measurements correlated well with the predictions of the treatment planning system with a measured/calculated dose ratio of 1.002+/-0.051 (1 SD, N=177). The measurements were easily performed and well tolerated by the patients. We conclude that in vivo intracavitary dosimetry with TLD is suitable and accurate for dose determination in intensity-modulated beams.

  14. TL and OSL dose response of LiF:Mg,Ti and Al2O3:C dosimeters using a PMMA phantom for IMRT technique quality assurance.

    PubMed

    Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; Cruz, José C; Campos, Letícia L

    2015-06-01

    The principle of IMRT is to treat a patient from a number of different directions (or continuous arcs) with beams of nonuniform fluences, which have been optimized to deliver a high dose to the target volume and an acceptably low dose to the surrounding normal structures (Khan, 2010). This study intends to provide information to the physicist regarding the application of different dosimeters type, phantoms and analysis technique for Intensity Modulated Radiation Therapy (IMRT) dose distributions evaluation. The measures were performed using dosimeters of LiF:Mg,Ti and Al2O3:C evaluated by techniques of thermoluminescent (TL) and Optically Stimulated Luminescence (OSL). A polymethylmethacrylate (PMMA) phantom with five cavities, two principal target volumes considered like tumours to be treated and other three cavities to measure the scattered radiation dose was developed to carried out the measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Phase II multi-institutional clinical trial on a new mixed beam RT scheme of IMRT on pelvis combined with a carbon ion boost for high-risk prostate cancer patients.

    PubMed

    Marvaso, Giulia; Jereczek-Fossa, Barbara A; Vischioni, Barbara; Ciardo, Delia; Giandini, Tommaso; Hasegawa, Azusa; Cattani, Federica; Carrara, Mauro; Ciocca, Mario; Bedini, Nice; Villa, Sergio; Morlino, Sara; Russo, Stefania; Zerini, Dario; Colangione, Sarah Pia; Panaino, Costanza Maria Vittoria; Fodor, Cristiana; Santoro, Luigi; Pignoli, Emanuele; Valvo, Francesca; Valdagni, Riccardo; De Cobelli, Ottavio; Orecchia, Roberto

    2017-05-12

    Definition of the optimal treatment schedule for high-risk prostate cancer is under debate. A combination of photon intensity modulated radiotherapy (IMRT) on pelvis with a carbon ion boost might be the optimal treatment scheme to escalate the dose on prostate and deliver curative dose with respect to normal tissue and quality of dose distributions. In fact, carbon ion beams offer the advantage to deliver hypofractionated radiotherapy (RT) using a significantly smaller number of fractions compared to conventional RT without increasing risks of late effects. This study is a prospective phase II clinical trial exploring safety and feasibility of a mixed beam scheme of carbon ion prostate boost followed by photon IMRT on pelvis. The study is designed to enroll 65 patients with localized high-risk prostate cancer at 3 different oncologic hospitals: Istituto Europeo di Oncologia, Fondazione IRCCS Istituto Nazionale dei Tumori, and Centro Nazionale di Adroterapia Oncologica. The primary endpoint is the evaluation of safety and feasibility with acute toxicity scored up to 1 month after the end of RT. Secondary endpoints are treatment early (3 months after the end of RT) and long-term tolerability, quality of life, and efficacy. The study is not yet recruiting; in silico studies are ongoing and we expect to start recruitment by 2017. The present clinical trial aims at improving the current treatment for high-risk prostate cancer, evaluating safety and feasibility of a new RT mixed-beam scheme including photons and carbon ions. Encouraging results are coming from carbon ion facilities worldwide on the treatment of different tumors including prostate cancers. Carbon ions combine physical properties allowing for high dose conformity and advantageous radiobiological characteristics. The proposed mixed beam treatment has the advantage to combine a photon high conformity standard of care IMRT phase with a hypofractionated carbon ion RT boost delivered in a short overall treatment time.

  16. Constituent components of out-of-field scatter dose for 18-MV intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy: a comparison with 6-MV and implications for carcinogenesis.

    PubMed

    Ruben, Jeremy D; Smith, Ryan; Lancaster, Craig M; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be considered for large PTVs especially when the anterior mediastinum is involved.« less

  18. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruben, Jeremy D., E-mail: jeremy.ruben@wbrc.org.au; Department of Surgery, Monash University, Melbourne; Smith, Ryan

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. Inmore » absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide.« less

  19. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.« less

  20. Dosimetric and efficiency comparison of high-dose radiotherapy for esophageal cancer: volumetric modulated arc therapy versus fixed-field intensity-modulated radiotherapy.

    PubMed

    Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S

    2014-08-01

    The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  1. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, Indira; Vakaet, Luc; Bonte, Katrien

    2008-07-15

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy betweenmore » August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy.« less

  2. SU-E-T-302: Dosimetric Comparison Between Volumetric Modulated Arc Radiotherapy and Intensity-Modulated Radiotherapy for Locally Recurrent Nasopharyngeal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J-Y; Huang, B-T; Zhang, J-Y

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of themore » IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.« less

  3. Treatment plan comparison between Tri-Co-60 magnetic-resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer

    PubMed Central

    Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Kim, Jin Ho; Kim, Jung-In

    2017-01-01

    To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans. PMID:29207634

  4. Comparison of Toxicity Between Intensity-Modulated Radiotherapy and 3-Dimensional Conformal Radiotherapy for Locally Advanced Non-small-cell Lung Cancer.

    PubMed

    Ling, Diane C; Hess, Clayton B; Chen, Allen M; Daly, Megan E

    2016-01-01

    The role of intensity-modulated radiotherapy (IMRT) in reducing treatment-related toxicity for locally advanced non-small-cell lung cancer (NSCLC) remains incompletely defined. We compared acute toxicity and oncologic outcomes in a large cohort of patients treated with IMRT or 3-dimensional conformal radiotherapy (3-DCRT), with or without elective nodal irradiation (ENI). A single-institution retrospective review was performed evaluating 145 consecutive patients with histologically confirmed stage III NSCLC treated with definitive chemoradiotherapy. Sixty-five (44.8%) were treated with 3-DCRT using ENI, 43 (30.0%) with 3-DCRT using involved-field radiotherapy (IFRT), and 37 (25.5%) with IMRT using IFRT. All patients received concurrent chemotherapy. Comparison of acute toxicities by treatment technique (IMRT vs. 3-DCRT) and extent of nodal irradiation (3-DCRT-IFRT vs. 3-DCRT-ENI) was performed for grade 2 or higher esophagitis or pneumonitis, number of acute hospitalizations, incidence of opioid requirement, percutaneous endoscopic gastrostomy utilization, and percentage weight loss during treatment. Local control and overall survival were analyzed by the Kaplan-Meier method. We identified no significant differences in any measures of acute toxicity by treatment technique or extent of nodal irradiation. There was a trend toward lower rates of grade 2 or higher pneumonitis among IMRT patients compared to 3-DCRT patients (5.4% vs. 23.0%; P = .065). Local control and overall survival were similar between cohorts. Acute and subacute toxicities were similar for patients treated with IMRT and with 3-DCRT with or without ENI, with a nonsignificant trend toward a reduction in pneumonitis with IMRT. Larger studies are needed to better define which patients will benefit from IMRT. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Outcomes and xerostomia after postoperative radiotherapy for oral and oropharyngeal carcinoma.

    PubMed

    Wang, Zhong-He; Yan, Chao; Zhang, Zhi-Yuan; Zhang, Chen-Ping; Hu, Hai-Sheng; Tu, Wen-Yong; Kirwan, Jessica; Mendenhall, William M

    2014-10-01

    We compared outcomes and xerostomia grade after postoperative intensity-modulated radiation therapy (IMRT) and conventional radiotherapy (RT) in patients with oral and oropharyngeal carcinoma. Eighty-eight patients with oral cavity (n = 77) and oropharyngeal (n = 11) carcinoma underwent postoperative IMRT (n = 44) or conventional RT (n = 44). Outcomes, failure patterns, volume, doses, salivary gland V30, and xerostomia grade were evaluated. The median follow-up was 53 months (range, 48-58 months). The median interval from surgery to RT was 4 weeks (range, 3-6 weeks). Twenty-one patients (7 and 14 for the IMRT and conventional RT groups, respectively) experienced local-regional failure. For the IMRT group, all 7 local-regional failures occurred in the high-dose target volumes. For the conventional RT group, there were 12 in-field failures, 1 at the margin, and 1 out-of-field. Nine patients experienced distant failure (5 and 4 for the IMRT and conventional RT groups, respectively). The 4-year local-regional control, disease-free survival (DFS), overall survival (OS), and distant-metastasis rates for the IMRT and conventional RT groups were 84.1% versus 68.2% (p = .055), 68.2% versus 52.3% (p = .091), 70.5% versus 56.8% (p = .124), and 11.4% versus 9.1% (p = .927), respectively. Xerostomia grade after RT was lower for IMRT compared to conventional RT (p < .001). Postoperative IMRT for oral and oropharyngeal carcinoma significantly improves mean dose, salivary gland V30, and xerostomia grade when compared to conventional RT. The predominant failure pattern was local. No differences were found in survival outcomes between both groups. There was a marginal difference in local-regional control. © 2014 Wiley Periodicals, Inc.

  6. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    NASA Astrophysics Data System (ADS)

    Tyler, M.; Vial, P.; Metcalfe, P.; Downes, S.

    2013-06-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters weremore » statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications.« less

  8. Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy.

    PubMed

    Shiraishi, Yutaka; Xu, Cai; Yang, Jinzhong; Komaki, Ritsuko; Lin, Steven H

    2017-10-01

    To compare heart and cardiac substructure radiation exposure using intensity-modulated radiotherapy (IMRT) vs. proton beam therapy (PBT) for patients with mid- to distal esophageal cancer who received chemoradiation therapy. We identified 727 esophageal cancer patients who received IMRT (n=477) or PBT (n=250) from March 2004 to December 2015. All patients were treated to 50.4Gy with IMRT or to 50.4 cobalt Gray equivalents with PBT. IMRT and PBT dose-volume histograms (DVHs) of the whole heart, atria, ventricles, and four coronary arteries were compared. For PBT patients, passive scattering proton therapy (PSPT; n=237) and intensity-modulated proton therapy (IMPT; n=13) DVHs were compared. Compared with IMRT, PBT resulted in significantly lower mean heart dose (MHD) and heart V5, V10, V20, V30, and V40as well as lower radiation exposure to the four chambers and four coronary arteries. Compared with PSPT, IMPT resulted in significantly lower heart V20, V30, and V40 but not MHD or heart V5 or V10. IMPT also resulted in significantly lower radiation doses to the left atrium, right atrium, left main coronary artery, and left circumflex artery, but not the left ventricle, right ventricle, left anterior descending artery, or right coronary artery. Factors associated with lower MHD included PBT (P<0.001), smaller planning target volume (PTV; P<0.001), and gastroesophageal junction (GEJ) tumor (P<0.001). Among PBT patients, factors associated with lower MHD included IMPT (P=0.038), beam arrangement other than AP/PA (P<0.001), smaller PTV (P<0.001), and GEJ tumor (P<0.001). In patients with mid- to distal esophageal cancer, PBT results in significantly lower radiation exposure to the whole heart and cardiac substructures than IMRT. Long-term studies are necessary to determine how this cardiac sparing effect impacts the development of coronary artery disease and other cardiac complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    PubMed Central

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Purpose Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Methods and materials Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. Conclusion There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for the treatment of prostate cancer. PMID:25210465

  10. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer.

    PubMed

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for the treatment of prostate cancer.

  11. Adjuvant radiation therapy for bladder cancer: A dosimetric comparison of techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Brian C.; Noa, Kate; Wileyto, E. Paul

    Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to comparemore » plans for bowel and rectal volumes exposed to 35% (V{sub 35%}), 65% (V{sub 65%}), and 95% (V{sub 95%}) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V{sub 35%} {sub rectum}, V{sub 65%} {sub rectum}, and V{sub 95%} {sub rectum}; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V{sub 95%} {sub bowel}, V{sub 65%} {sub bowel}, or V{sub 35%} {sub bowel}). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V{sub 65%} {sub bowel} and V{sub 95%} {sub bowel} for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation. Using the IMRT or the SFUD plans instead of the 3-D conformal plan may improve both bowel and rectal toxicity.« less

  12. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer.

    PubMed

    Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A

    2012-08-01

    To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.

    PubMed

    Lu, Weiguo

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan quality. The computation parallelization on a GPU instead of a computer cluster significantly reduces hardware and service costs. Compared with using the current VBS framework on a computer cluster, the planning time is significantly reduced using the NVBB framework on a single workstation with a GPU card.

  14. Bile acid malabsorption after pelvic and prostate intensity modulated radiation therapy: an uncommon but treatable condition.

    PubMed

    Harris, Victoria; Benton, Barbara; Sohaib, Aslam; Dearnaley, David; Andreyev, H Jervoise N

    2012-12-01

    Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75 homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an α/β ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received ≥45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede accurate dosimetric evaluation. Thorough toxicity assessment and close liaison between oncologist and gastroenterologist allow timely diagnosis and treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Victoria; Benton, Barbara; Sohaib, Aslam

    Purpose: Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Methods and Materials: Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75more » homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Results: Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an {alpha}/{beta} ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received {>=}45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Conclusions: Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede accurate dosimetric evaluation. Thorough toxicity assessment and close liaison between oncologist and gastroenterologist allow timely diagnosis and treatment.« less

  16. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced esophageal squamous cell carcinoma.

    PubMed

    Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo

    2018-02-09

    The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally advanced stage III ESCC were compared between PBT and 3DCRT or IMRT, PBT enabled a significant reduction in the dose to the lung and heart, compared with 3DCRT or IMRT.

  17. Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: A propensity matched analysis of the relative risk of proton versus photon-based radiation therapy.

    PubMed

    Shiraishi, Yutaka; Fang, Penny; Xu, Cai; Song, Juhee; Krishnan, Sunil; Koay, Eugene J; Mehran, Reza J; Hofstetter, Wayne L; Blum-Murphy, Mariela; Ajani, Jaffer A; Komaki, Ritsuko; Minsky, Bruce; Mohan, Radhe; Hsu, Charles C; Hobbs, Brian P; Lin, Steven H

    2017-12-13

    Circulating lymphocytes are exquisitely sensitive to radiation exposure, even to low scattered doses which can vary drastically between radiation modalities. We compared the relative risk of radiation-induced lymphopenia between intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT) in esophageal cancer (EC) patients undergoing neoadjuvant chemoradiation therapy (nCRT). EC patients treated with IMRT and PBT were propensity matched based on key clinical variables. Treatment-associated lymphopenia was graded using CTCAE v.4.0. Using matched cohorts, univariate and multivariable multiple logistic regression was used to identify factors associated with increased risk of grade 4 lymphopenia as well as characterize their relative contributions. Among the 480 patients treated with nCRT, 136 IMRT patients were propensity score matched with 136 PBT patients. In the matched groups, a greater proportion of the IMRT patients (55/136, 40.4%) developed grade 4 lymphopenia during nCRT compared with the PBT patients (24/136, 17.6%, P < 0.0001). On multivariable analysis, PBT was significantly associated with a reduction in grade 4 lymphopenia risk (odds ratio, 0.29; 95% confidence interval, 0.16-0.52; P < 0.0001). PBT is associated with significant risk reduction in grade 4 lymphopenia during nCRT in esophageal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID

    NASA Astrophysics Data System (ADS)

    Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun

    2015-11-01

    Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.

  19. Cardiac-Sparing Whole Lung IMRT in Children With Lung Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Zhang, Yunkai; Kepka, Alan

    Purpose: To demonstrate the dosimetric advantages of cardiac-sparing (CS) intensity modulated radiation therapy (IMRT) in children undergoing whole lung irradiation (WLI). Methods and Materials: Chest CT scans of 22 children who underwent simulation with 3-dimensional (n=10) or 4-dimensional (n=12) techniques were used for this study. Treatment planning was performed using standard anteroposterior-posteroanterior (S-RT) technique and CS-IMRT. Left and right flank fields were added to WLI fields to determine whether CS-IMRT offered any added protection to normal tissues at the junction between these fields. The radiation dose to the lung PTV, cardiac structures, liver, and thyroid were analyzed and compared. Results:more » CS-IMRT had 4 significant advantages over S-RT: (1) superior cardiac protection (2) superior 4-dimensional lung planning target volume coverage, (3) superior dose uniformity in the lungs with fewer hot spots, and (4) significantly lower dose to the heart when flank RT is administered after WLI. Conclusions: The use of CS-IMRT and 4-dimensional treatment planning has the potential to improve tumor control rates and reduce cardiac toxicity in children receiving WLI.« less

  20. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Poonam; Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI; Yan, Yue, E-mail: yyan5@mdanderson.org

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to themore » helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.« less

  1. FusionArc optimization: a hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy.

    PubMed

    Matuszak, Martha M; Steers, Jennifer M; Long, Troy; McShan, Daniel L; Fraass, Benedick A; Romeijn, H Edwin; Ten Haken, Randall K

    2013-07-01

    To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT∕hybrid beams. The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU∕Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost--32.9%-55.2% compared to single-arc VMAT--the decrease in MU∕Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT. A hybrid VMAT∕IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This optimization method will allow patients to be simultaneously planned for dosimetric quality and delivery efficiency without switching between delivery techniques. Example phantom and clinical cases suggest that the conversion of only three VMAT segments to modulated beams may result in a good combination of quality and efficiency.

  2. Dosimetric evaluation of incidental irradiation to the axilla during whole breast radiotherapy for patients with left-sided early breast cancer in the IMRT era.

    PubMed

    Lee, Jayoung; Kim, Shin-Wook; Son, Seok Hyun

    2016-06-01

    The purpose of this study was to compare the dosimetric parameters for incidental irradiation to the axilla during whole breast radiotherapy (WBRT) with 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). Twenty left breast cancer patients treated with WBRT after breast-conserving surgery (BCS) were enrolled in this study. Remnant breast tissue, 3 levels of the axilla, heart, and lung were delineated. We used 2 different radiotherapy methods: 3D-CRT with field-in-field technique and 7-field fixed-beam IMRT. The target coverage of IMRT was significantly better than that of 3D-CRT (Dmean: 49.72 ± 0.64 Gy vs 50.24 ± 0.66 Gy, P < 0.001; V45: 93.19 ± 1.40% vs 98.59 ± 0.30%, P < 0.001; V47.5: 86.43 ± 2.72% vs 95.00 ± 0.02%, P < 0.001, for 3D-CRT and IMRT, respectively). In the IMRT plan, a lower dose was delivered to a wider region of the heart and lung. Significantly lower axillary irradiation was shown throughout each level of axilla by IMRT compared to 3D-CRT (Dmean for level I: 42.58 ± 5.31 Gy vs 14.49 ± 6.91 Gy, P < 0.001; Dmean for level II: 26.25 ± 10.43 Gy vs 3.41 ± 3.11 Gy, P < 0.001; Dmean for level III: 6.26 ± 4.69 Gy vs 1.16 ± 0.51 Gy, P < 0.001; Dmean for total axilla: 33.9 ± 6.89 Gy vs 9.96 ± 5.21 Gy, P < 0.001, for 3D-CRT and IMRT, respectively). In conclusion, the incidental dose delivered to the axilla was significantly lower for IMRT compared to 3D-CRT. Therefore, IMRT, which only includes the breast parenchyma, should be cautiously used in patients with limited positive sentinel lymph nodes and who do not undergo complete axillary lymph node dissection.

  3. SU-F-T-539: Dosimetric Comparison of Volumetric Modulated Arc Therapy and Intensity Modulated Radiation Therapy for Whole Brain Hippocampal Sparing Radiation Therapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, E; Higby, C; Algan, O

    2016-06-15

    Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied inmore » all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.« less

  4. A novel dynamic field-matching technique for treatment of patients with para-aortic node-positive cervical cancer: Clinical experience

    PubMed Central

    Baden, Craig; Whitley, Alexander; López-Araujo, Javier; Popple, Richard; Duan, Jun; Kim, Robert

    2016-01-01

    Aim To report outcomes for patients with para-aortic lymph node positive cervical cancer treated with a dynamic field-matching technique. Background PET staging of cervical cancer has increased identification of patients with para-aortic lymph node metastasis. IMRT enables dose escalation in this area, but matching IMRT fields with traditional whole pelvis fields presents a challenge. Materials and methods From 2003 to 2012, 20 patients with cervical cancer and para-aortic lymph node metastasis were treated utilizing the dynamic field-matching technique. As opposed to single-isocenter half-beam junction techniques, this technique employs wedge-shaped dose junctions for the abutment of fields. We reviewed the records of all patients who completed treatment with the technique and abstracted treatment, toxicity, and disease-related outcome data for analysis. Results Median prescribed dose to the whole pelvis field was 45 Gy and para-aortic IMRT field 50.4 Gy. All but 3 patients underwent HDR (13 pts) or LDR (4 pts) brachytherapy. All patients developed lower GI toxicity; 10 grade 1, 9 grade 2, and 1 grade 4 (enterovaginal fistula). Median DFS was 12.4 months with 1 and 2-year DFS 60.0% and 38.1%. One-year OS was 83.7% and 2-year OS, 64.4%. A total of 10 patients developed recurrence; none occurred at the matched junction. Conclusions The dynamic field-matching technique provides a means for joining conventional whole pelvis fields and para-aortic IMRT fields that substantially reduces dose deviations at the junction due to field mismatch. Treatment with the dynamic matching technique is simple, effective, and tolerated with no apparent increase in toxicity. PMID:26900356

  5. On Voxel based Iso-Tumor Control Probabilty and Iso-Complication Maps for Selective Boosting and Selective Avoidance Intensity Modulated Radiotherapy

    PubMed Central

    Kim, Yusung; Tomé, Wolfgang A.

    2010-01-01

    Summary Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans. PMID:21151734

  6. Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    2008-08-01

    Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less

  7. The Evolution of and Risk Factors for Neck Muscle Atrophy and Weakness in Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy

    PubMed Central

    Zhang, Lu-Lu; Mao, Yan-Ping; Zhou, Guan-Qun; Tang, Ling-Long; Qi, Zhen-Yu; Lin, Li; Yao, Ji-Jin; Ma, Jun; Lin, Ai-Hua; Sun, Ying

    2015-01-01

    Abstract The aim of this study was to investigate the evolution of sternocleidomastoid muscle (SCM) atrophy in nasopharyngeal carcinoma (NPC) patients following intensity-modulated radiotherapy (IMRT), and the relationship between SCM atrophy and neck weakness. Data were retrospectively analyzed from 223 biopsy-proven NPC patients with no distant metastasis who underwent IMRT with or without chemotherapy. The volume of SCM was measured on pretreatment magnetic resonance imaging (MRI), and MRIs were conducted 1, 2, and 3 years after the completion of IMRT. Change in SCM volume was calculated and classified using the late effects of normal tissues–subjective, objective, management, and analytic system. The grade of neck muscle weakness, classified by the Common Terminology Criteria for Adverse Events V 3.0, was measured 3 years after the completion of IMRT. The average SCM atrophy ratio was −10.97%, −18.65%, and −22.25% at 1, 2, and 3 years postirradiation, respectively. Multivariate analysis indicated N stage and the length of time after IMRT were independent prognostic variables. There were significant associations between the degree of SCM atrophy and neck weakness. Radical IMRT can cause significant SCM atrophy in NPC patients. A more advanced N stage was associated with more severe SCM atrophy, but no difference was observed between N2 and N3. SCM atrophy progresses over time during the 3 years following IMRT. Grade of SCM atrophy is significantly associated with neck weakness. PMID:26252307

  8. The Evolution of and Risk Factors for Neck Muscle Atrophy and Weakness in Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy: A Retrospective Study in an Endemic Area.

    PubMed

    Zhang, Lu-Lu; Mao, Yan-Ping; Zhou, Guan-Qun; Tang, Ling-Long; Qi, Zhen-Yu; Lin, Li; Yao, Ji-Jin; Ma, Jun; Lin, Ai-Hua; Sun, Ying

    2015-08-01

    The aim of this study was to investigate the evolution of sternocleidomastoid muscle (SCM) atrophy in nasopharyngeal carcinoma (NPC) patients following intensity-modulated radiotherapy (IMRT), and the relationship between SCM atrophy and neck weakness.Data were retrospectively analyzed from 223 biopsy-proven NPC patients with no distant metastasis who underwent IMRT with or without chemotherapy. The volume of SCM was measured on pretreatment magnetic resonance imaging (MRI), and MRIs were conducted 1, 2, and 3 years after the completion of IMRT. Change in SCM volume was calculated and classified using the late effects of normal tissues-subjective, objective, management, and analytic system. The grade of neck muscle weakness, classified by the Common Terminology Criteria for Adverse Events V 3.0, was measured 3 years after the completion of IMRT.The average SCM atrophy ratio was -10.97%, -18.65%, and -22.25% at 1, 2, and 3 years postirradiation, respectively. Multivariate analysis indicated N stage and the length of time after IMRT were independent prognostic variables. There were significant associations between the degree of SCM atrophy and neck weakness.Radical IMRT can cause significant SCM atrophy in NPC patients. A more advanced N stage was associated with more severe SCM atrophy, but no difference was observed between N2 and N3. SCM atrophy progresses over time during the 3 years following IMRT. Grade of SCM atrophy is significantly associated with neck weakness.

  9. Applications of IMAT in cervical esophageal cancer radiotherapy: a comparison with fixed-field IMRT in dosimetry and implementation.

    PubMed

    Yin, Yong; Chen, Jinhu; Xing, Ligang; Dong, Xiaoling; Liu, Tonghai; Lu, Jie; Yu, Jinming

    2011-01-13

    This study aimed to compare fixed-field, intensity-modulated radiotherapy (f-IMRT) with intensity-modulated arc therapy (IMAT) treatment plans in dosimetry and practical application for cervical esophageal carcinoma. For ten cervical esophageal carcinoma cases, f-IMRT plan (seven fixed-fields) and two IMAT plans, namely RA (coplanar 360° arcs) and RAx (coplanar 360° arcs without sectors from 80° to 110°, and 250° to 280°), were generated. DVHs were adopted for the statistics of above parameters, as well as conformal index (CI), homogeneity index (HI), dose-volumetric parameters of normal tissues, total accelerator output MUs and total treatment time. There were differences between RAx and f-IMRT, as well as RA in PTV parameters such as HI, V(95%) and V(110%), but not in CI. RAx reduced lung V₅ from (50.9% ± 9.8% in f-IMRT and (51.4% ± 10.8% in RA to (49.3% ± 10.4% in RAx (p < 0.05). However, lung V₃₀, V₄₀, V₅₀ and MLD increased in RAx. There was no difference in the mean heart dose in three plans. Total MU was reduced from 1174.8 ± 144.6 in f-IMRT to 803.8 ± 122.2 in RA and 736.2 ± 186.9 in RAx (p < 0.05). Compared with f-IMRT, IMAT reduced low dose volumes of lung and total MU on the basis of meeting clinical requirements.

  10. Proof of Principle of Ocular sparing in dogs with sinonasal tumors treated with intensity-modulated radiation therapy

    PubMed Central

    Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.

    2010-01-01

    Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393

  11. Dosimetric comparison of helical tomotherapy, intensity-modulated radiation therapy, volumetric-modulated arc therapy, and 3-dimensional conformal therapy for the treatment of T1N0 glottic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin

    2016-01-01

    Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less

  12. Peripheral doses from pediatric IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Eric E.; Maserang, Beth; Wood, Roy

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 tomore » 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from 0.47-0.94) doses {approx}[0.4-1.8 cGy]/[0.9-2.9 cGy]/fraction, respectively. Prior phantom reports are for fields 10 cm or greater, while pediatric central nervous system fields range from 4 to 7 cm, and effectively much smaller for IMRT (2-6 cm). Peripheral dose in close proximity (<10 cm from the field edge) is dominated by internal scatter; therefore, field-size differences overwhelm phantom size affects and increased MU. Distant peripheral dose, dominated by head leakage, was higher than predicted, even when accounting for MUs ({approx}factor of 3) likely due to the pediatric phantom size. The ratio of the testes dose ranged from 3.3-5.3 for IMRT/conventional. PD to OAR for pediatric IMRT cannot be predicted from large-field full phantom studies. For regional OAR, doses are likely lower than predicted by existing ''large field'' data, while the distant PD is higher.« less

  13. A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours.

    PubMed

    Seco, J; Clark, C H; Evans, P M; Webb, S

    2006-05-01

    This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.

  14. Biological-based and physical-based optimization for biological evaluation of prostate patient's plans

    NASA Astrophysics Data System (ADS)

    Sukhikh, E.; Sheino, I.; Vertinsky, A.

    2017-09-01

    Modern modalities of radiation treatment therapy allow irradiation of the tumor to high dose values and irradiation of organs at risk (OARs) to low dose values at the same time. In this paper we study optimal radiation treatment plans made in Monaco system. The first aim of this study was to evaluate dosimetric features of Monaco treatment planning system using biological versus dose-based cost functions for the OARs and irradiation targets (namely tumors) when the full potential of built-in biological cost functions is utilized. The second aim was to develop criteria for the evaluation of radiation dosimetry plans for patients based on the macroscopic radiobiological criteria - TCP/NTCP. In the framework of the study four dosimetric plans were created utilizing the full extent of biological and physical cost functions using dose calculation-based treatment planning for IMRT Step-and-Shoot delivery of stereotactic body radiation therapy (SBRT) in prostate case (5 fractions per 7 Gy).

  15. Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization.

    PubMed

    Zhong, Hualiang; Chetty, Indrin J

    2012-05-01

    Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.

  16. Protons Offer Reduced Normal-Tissue Exposure for Patients Receiving Postoperative Radiotherapy for Resected Pancreatic Head Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Romaine C., E-mail: rnichols@floridaproton.org; Huh, Soon N.; Prado, Karl L.

    2012-05-01

    Purpose: To determine the potential role for adjuvant proton-based radiotherapy (PT) for resected pancreatic head cancer. Methods and Materials: Between June 2008 and November 2008, 8 consecutive patients with resected pancreatic head cancers underwent optimized intensity-modulated radiotherapy (IMRT) treatment planning. IMRT plans used between 10 and 18 fields and delivered 45 Gy to the initial planning target volume (PTV) and a 5.4 Gy boost to a reduced PTV. PTVs were defined according to the Radiation Therapy Oncology Group 9704 radiotherapy guidelines. Ninety-five percent of PTVs received 100% of the target dose and 100% of the PTVs received 95% of themore » target dose. Normal tissue constraints were as follows: right kidney V18 Gy to <70%; left kidney V18 Gy to <30%; small bowel/stomach V20 Gy to <50%, V45 Gy to <15%, V50 Gy to <10%, and V54 Gy to <5%; liver V30 Gy to <60%; and spinal cord maximum to 46 Gy. Optimized two- to three-field three-dimensional conformal proton plans were retrospectively generated on the same patients. The team generating the proton plans was blinded to the dose distributions achieved by the IMRT plans. The IMRT and proton plans were then compared. A Wilcoxon paired t-test was performed to compare various dosimetric points between the two plans for each patient. Results: All proton plans met all normal tissue constraints and were isoeffective with the corresponding IMRT plans in terms of PTV coverage. The proton plans offered significantly reduced normal-tissue exposure over the IMRT plans with respect to the following: median small bowel V20 Gy, 15.4% with protons versus 47.0% with IMRT (p = 0.0156); median gastric V20 Gy, 2.3% with protons versus 20.0% with IMRT (p = 0.0313); and median right kidney V18 Gy, 27.3% with protons versus 50.5% with IMRT (p = 0.0156). Conclusions: By reducing small bowel and stomach exposure, protons have the potential to reduce the acute and late toxicities of postoperative chemoradiation in this setting.« less

  17. SU-E-T-393: Evaluation of Large Field IMRT Versus RapidArc Planning for Carcinoma Cervix with Para-Aotic Node Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, S Kothanda; Girigesh, Y; MISHRA, M

    Purpose: The objective of this work is to evaluate and compare Large field IMRT and RapidArc planning for Carcinoma Cervix and Para-aotic node irradiation. Methods: In this study, ten patients of Cervix with para-aotic node have been selected with PTV length 35+2cm. All plans were generated in Eclipse TPS V10.0 with Dynamic IMRT and RapidArc technique using 6MV photon energy. In IMRT planning, 7 fields were chosen to get optimal plan and in RapidArc, double Full arc clockwise and counter clockwise were used for planning. All the plans were generated with single isocenter and calculated using AAA dose algorithm. Formore » all the cases the prescribed dose to PTV was same and the plan acceptance criteria is; 95% of the PTV volume should receive 100% prescribed dose. The tolerance doses for the OAR’s is also taken in to account. The evaluation criteria used for analysis are; 1) Homogeneity Index, 2) Conformity Index, 3) Mean Dose to OAR’s, 4)Total monitor units delivered. Results: DVH analysis were performed for both IMRT and RapidArc planning. In both the plans, 95% of PTV volume receives prescribed dose and maximum dose are less than 107%. The conformity index are same in both the techniques. The mean Homogeneity index are 1.036 and 1.053 for IMRT and RapidArc plan. The mean (mean + SD) dose of bladder and rectum in IMRT is 44.2+1.55, 42.05+2.52 and RapidArc is 46.66+1.6, 44.2+2.75 respectively. There is no significant difference found in Right Femoral head, Left Femoral head and Kidney doses. It is found that total MU’s are more in IMRT compared with RapidArc planning. Conclusion: In the case of cervix with Para-arotic node single isocenter irradiation, IMRT planning in large-field is better compared to RapidArc planning in terms of Homogeneity Index and mean dose of Bladder and Rectum.« less

  18. SU-F-T-388: Comparison of Biophysical Indices in Hippocampal-Avoidance Whole Brain VMAT and IMRT Radiation Therapy Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, E; Ahmad, S; Algan, O

    2016-06-15

    Purpose: To compare biophysical indices of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) treatment plans for whole brain radiation therapy following the NRG-CC001 protocol. Methods: In this retrospective study, a total of fifteen patients were planned with Varian Eclipse Treatment Planning System using VMAT (RapidArc) and IMRT techniques. The planning target volume (PTV) was defined as the whole brain volume excluding a uniform three-dimensional 5mm expansion of the hippocampus volume. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 95% of the target volume receiving 100% of themore » prescribed dose. The NRG Oncology protocol guidelines were followed for contouring and dose-volume constraints. A single radiation oncologist evaluated all treatment plans. Calculations of statistical significance were performed using Student’s paired t-test. Results: All VMAT and IMRT plans met the NRG-CC001 protocol dose-volume criteria. The average equivalent uniform dose (EUD) for the PTV for VMAT vs. IMRT was respectively (19.05±0.33 Gy vs. 19.38±0.47 Gy) for α/β of 2 Gy and (19.47±0.30 Gy vs. 19.84±0.42 Gy) for α/β of 10 Gy. For the PTV, the average mean and maximum doses were 2% and 5% lower in VMAT plans than in IMRT plans, respectively. The average EUD and the normal tissue complication probability (NTCP) for the hippocampus in VMAT vs. IMRT plans were (15.28±1.35 Gy vs. 15.65±0.99 Gy, p=0.18) and (0.305±0.012 Gy vs. 0.308±0.008 Gy, p=0.192), respectively. The average EUD and NTCP for the optic chiasm were both 2% higher in VMAT than in IMRT plans. Conclusion: Though statistically insignificant, VMAT plans indicate a lower hippocampus EUD than IMRT plans. Also, a small variation in NTCP was found between plans.« less

  19. Volumetric modulated arc radiotherapy for esophageal cancer.

    PubMed

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matney, Jason; Park, Peter C.; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable imagemore » registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential dosimetric error caused by breathing motion.« less

  1. Protons offer reduced normal-tissue exposure for patients receiving postoperative radiotherapy for resected pancreatic head cancer.

    PubMed

    Nichols, Romaine C; Huh, Soon N; Prado, Karl L; Yi, Byong Y; Sharma, Navesh K; Ho, Meng W; Hoppe, Bradford S; Mendenhall, Nancy P; Li, Zuofeng; Regine, William F

    2012-05-01

    To determine the potential role for adjuvant proton-based radiotherapy (PT) for resected pancreatic head cancer. Between June 2008 and November 2008, 8 consecutive patients with resected pancreatic head cancers underwent optimized intensity-modulated radiotherapy (IMRT) treatment planning. IMRT plans used between 10 and 18 fields and delivered 45 Gy to the initial planning target volume (PTV) and a 5.4 Gy boost to a reduced PTV. PTVs were defined according to the Radiation Therapy Oncology Group 9704 radiotherapy guidelines. Ninety-five percent of PTVs received 100% of the target dose and 100% of the PTVs received 95% of the target dose. Normal tissue constraints were as follows: right kidney V18 Gy to <70%; left kidney V18 Gy to <30%; small bowel/stomach V20 Gy to <50%, V45 Gy to <15%, V50 Gy to <10%, and V54 Gy to <5%; liver V30 Gy to <60%; and spinal cord maximum to 46 Gy. Optimized two- to three-field three-dimensional conformal proton plans were retrospectively generated on the same patients. The team generating the proton plans was blinded to the dose distributions achieved by the IMRT plans. The IMRT and proton plans were then compared. A Wilcoxon paired t-test was performed to compare various dosimetric points between the two plans for each patient. All proton plans met all normal tissue constraints and were isoeffective with the corresponding IMRT plans in terms of PTV coverage. The proton plans offered significantly reduced normal-tissue exposure over the IMRT plans with respect to the following: median small bowel V20 Gy, 15.4% with protons versus 47.0% with IMRT (p = 0.0156); median gastric V20 Gy, 2.3% with protons versus 20.0% with IMRT (p = 0.0313); and median right kidney V18 Gy, 27.3% with protons versus 50.5% with IMRT (p = 0.0156). By reducing small bowel and stomach exposure, protons have the potential to reduce the acute and late toxicities of postoperative chemoradiation in this setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial

    PubMed Central

    Nutting, Christopher M; Morden, James P; Harrington, Kevin J; Urbano, Teresa Guerrero; Bhide, Shreerang A; Clark, Catharine; Miles, Elizabeth A; Miah, Aisha B; Newbold, Kate; Tanay, MaryAnne; Adab, Fawzi; Jefferies, Sarah J; Scrase, Christopher; Yap, Beng K; A'Hern, Roger P; Sydenham, Mark A; Emson, Marie; Hall, Emma

    2011-01-01

    Summary Background Xerostomia is the most common late side-effect of radiotherapy to the head and neck. Compared with conventional radiotherapy, intensity-modulated radiotherapy (IMRT) can reduce irradiation of the parotid glands. We assessed the hypothesis that parotid-sparing IMRT reduces the incidence of severe xerostomia. Methods We undertook a randomised controlled trial between Jan 21, 2003, and Dec 7, 2007, that compared conventional radiotherapy (control) with parotid-sparing IMRT. We randomly assigned patients with histologically confirmed pharyngeal squamous-cell carcinoma (T1–4, N0–3, M0) at six UK radiotherapy centres between the two radiotherapy techniques (1:1 ratio). A dose of 60 or 65 Gy was prescribed in 30 daily fractions given Monday to Friday. Treatment was not masked. Randomisation was by computer-generated permuted blocks and was stratified by centre and tumour site. Our primary endpoint was the proportion of patients with grade 2 or worse xerostomia at 12 months, as assessed by the Late Effects of Normal Tissue (LENT SOMA) scale. Analyses were done on an intention-to-treat basis, with all patients who had assessments included. Long-term follow-up of patients is ongoing. This study is registered with the International Standard Randomised Controlled Trial register, number ISRCTN48243537. Findings 47 patients were assigned to each treatment arm. Median follow-up was 44·0 months (IQR 30·0–59·7). Six patients from each group died before 12 months and seven patients from the conventional radiotherapy and two from the IMRT group were not assessed at 12 months. At 12 months xerostomia side-effects were reported in 73 of 82 alive patients; grade 2 or worse xerostomia at 12 months was significantly lower in the IMRT group than in the conventional radiotherapy group (25 [74%; 95% CI 56–87] of 34 patients given conventional radiotherapy vs 15 [38%; 23–55] of 39 given IMRT, p=0·0027). The only recorded acute adverse event of grade 2 or worse that differed significantly between the treatment groups was fatigue, which was more prevalent in the IMRT group (18 [41%; 99% CI 23–61] of 44 patients given conventional radiotherapy vs 35 [74%; 55–89] of 47 given IMRT, p=0·0015). At 24 months, grade 2 or worse xerostomia was significantly less common with IMRT than with conventional radiotherapy (20 [83%; 95% CI 63–95] of 24 patients given conventional radiotherapy vs nine [29%; 14–48] of 31 given IMRT; p<0·0001). At 12 and 24 months, significant benefits were seen in recovery of saliva secretion with IMRT compared with conventional radiotherapy, as were clinically significant improvements in dry-mouth-specific and global quality of life scores. At 24 months, no significant differences were seen between randomised groups in non-xerostomia late toxicities, locoregional control, or overall survival. Interpretation Sparing the parotid glands with IMRT significantly reduces the incidence of xerostomia and leads to recovery of saliva secretion and improvements in associated quality of life, and thus strongly supports a role for IMRT in squamous-cell carcinoma of the head and neck. Funding Cancer Research UK (CRUK/03/005). PMID:21236730

  3. Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation : Is IMRT more beneficial than VMAT?

    PubMed

    Sakka, Mazen; Kunzelmann, Leonie; Metzger, Martin; Grabenbauer, Gerhard G

    2017-10-01

    Given the reduction in death from breast cancer, as well as improvements in overall survival, adjuvant radiotherapy is considered the standard treatment for breast cancer. However, left-sided breast irradiation was associated with an increased rate of fatal cardiovascular events due to incidental irradiation of the heart. Recently, considerable efforts have been made to minimize cardiac toxicity of left-sided breast irradiation by new treatment methods such as deep-inspiration breath-hold (DIBH) and new radiation techniques, particularly intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). The primary aim of this study was to evaluate the effect of DIBH irradiation on cardiac dose compared with free-breathing (FB) irradiation, while the secondary objective was to compare the advantages of IMRT versus VMAT plans in both the FB and the DIBH position for left-sided breast cancer. In all, 25 consecutive left-sided breast cancer patients underwent CT simulation in the FB and DIBH position. Five patients were excluded with no cardiac displacement following DIBH-CT simulation. The other 20 patients were irradiated in the DIBH position using respiratory gating. Four different treatment plans were generated for each patient, an IMRT and a VMAT plan in the DIBH and in the FB position, respectively. The following parameters were used for plan comparison: dose to the heart, left anterior descending coronary artery (mean dose, maximum dose, D25% and D45%), ipsilateral, contralateral lung (mean dose, D20%, D30%) and contralateral breast (mean dose). The percentage in dose reduction for organs at risk achieved by DIBH for both IMRT and VMAT plans was calculated and compared for each patient by each treatment plan. DIBH irradiation significantly reduced mean dose to the heart and left anterior descending coronary artery (LADCA) using both IMRT (heart -20%; p = 0.0002, LADCA -9%; p = 0.001) and VMAT (heart -23%; p = 0.00003, LADCA -16%; p = 0.01) techniques as compared with FB radiation. There were no significant changes in left lung dose by IMRT; however, with VMAT planning, mean dose to the left lung was reduced by -4% (p = 0.0004). In addition, DIBH significantly increased the mean dose to the contralateral breast with IMRT (+14%, p = 0.002) and significantly reduced the dose to the contralateral breast with VMAT planning (-9%, p = 0.003) compared with the FB position. Additionally, in comparison with VMAT, the IMRT technique reduced mean heart dose both in the FB and the DIBH-position by -30% (p = 0.0004) and -26% (p = 0.002), respectively. Furthermore, IMRT increased the mean dose to the left lung in both the FB and the DIBH position (+5%, p = 0.003, p = 0.006), respectively. There were no significant changes in dose to the right lung and contralateral breast either in the FB or DIBH position between IMRT and VMAT techniques. Left-sided breast irradiation is best performed in the DIBH position, since a considerable dose sparing to the heart and LADCA can be achieved by using either IMRT or VMAT techniques. A significant additional decrease in heart and LADCA dose by IMRT in both FB and DIBH irradiation was seen compared with VMAT.

  4. Variable beam dose rate and DMLC IMRT to moving body anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papiez, Lech; Abolfath, Ramin M.

    2008-11-15

    Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used.more » Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.« less

  5. Automated IMRT planning in Pinnacle : A study in head-and-neck cancer.

    PubMed

    Kusters, J M A M; Bzdusek, K; Kumar, P; van Kollenburg, P G M; Kunze-Busch, M C; Wendling, M; Dijkema, T; Kaanders, J H A M

    2017-12-01

    This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.

  6. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    NASA Astrophysics Data System (ADS)

    Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  7. Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.

    PubMed

    Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene

    2012-04-21

    Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.

  8. LASSO NTCP predictors for the incidence of xerostomia in patients with head and neck squamous cell carcinoma and nasopharyngeal carcinoma

    PubMed Central

    Lee, Tsair-Fwu; Liou, Ming-Hsiang; Huang, Yu-Jie; Chao, Pei-Ju; Ting, Hui-Min; Lee, Hsiao-Yi

    2014-01-01

    To predict the incidence of moderate-to-severe patient-reported xerostomia among head and neck squamous cell carcinoma (HNSCC) and nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT). Multivariable normal tissue complication probability (NTCP) models were developed by using quality of life questionnaire datasets from 152 patients with HNSCC and 84 patients with NPC. The primary endpoint was defined as moderate-to-severe xerostomia after IMRT. The numbers of predictive factors for a multivariable logistic regression model were determined using the least absolute shrinkage and selection operator (LASSO) with bootstrapping technique. Four predictive models were achieved by LASSO with the smallest number of factors while preserving predictive value with higher AUC performance. For all models, the dosimetric factors for the mean dose given to the contralateral and ipsilateral parotid gland were selected as the most significant predictors. Followed by the different clinical and socio-economic factors being selected, namely age, financial status, T stage, and education for different models were chosen. The predicted incidence of xerostomia for HNSCC and NPC patients can be improved by using multivariable logistic regression models with LASSO technique. The predictive model developed in HNSCC cannot be generalized to NPC cohort treated with IMRT without validation and vice versa. PMID:25163814

  9. SU-F-T-391: Comparative Study of Treatment Planning Between IMRT and IMAT for Malignant Pleural Mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    Purpose: The purpose of this study was to compare the dosimetric differences between intensitymodulated radiation therapy (IMRT) and intensity modulated arc therapy (IMAT) for malignant pleural mesothelioma (MPM) patients with regard to the sparing effect on organs at risk (OARs), plan quality, and delivery efficiency. Methods: Ten MPM patients were recruited in this study. To avoid the inter-operator variability, IMRT and IMAT plans for each patient were performed by one experienced dosimetrist. The treatment planning optimization process was carried out using the Eclipse 13.0 software. For a fair comparison, the planning target volume (PTV) coverage of the two plans wasmore » normalized to the same level. The treatment plans were evaluated on the following dosimetric variables: conformity index (CI) and homogeneity index (HI) for PTV, OARs dose, and the delivery efficiency for each plan. Results: All plans satisfied clinical requirements. The IMAT plans gained better CI and HI. The IMRT plans performed better sparing for heart and lung. Less MUs and control points were found in the IMAT plans. IMAT shortened delivery time compared with IMRT. Conclusion: For MPM, IMAT gains better conformity and homogeneity for PTV with IMRT, but increases the irradiation dose for OARs. IMAT shows an advantage in delivery efficiency.« less

  10. Dose Volume Histogram (DVH) Analysis in Intensity Modulation Radiation Therapy (IMRT) Treatments for Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    Studies have shown that as many as 8 out of 10 men had prostate cancer by age 80.Prostate cancer begins with small changes (prostatic intraepithelial neoplasia(PIN)) in size and shape of prostate gland cells,known as prostate adenocarcinoma.With advent in technology, prostate cancer has been the most widely used application of IMRT with the longest follow-up periods.Prostate cancer fits the ideal target criteria for IMRT of adjacent sensitive dose-limiting tissue (rectal, bladder).A retrospective study was performed on 10 prostate cancer patients treated with radiation to a limited pelvic field with a standard 4 field arrangements at dose 45 Gy, and an IMRT boost field to a total isocenter dose of 75 Gy.Plans were simulated for 4 field and the supplementary IMRT treatments with proposed dose delivery at 1.5 Gy/fraction in BID basis.An automated DVH analysis software, HART (S. Jang et al., 2008,Med Phys 35,p.2812)was used to perform DVH assessments in IMRT plans.A statistical analysis of dose coverage at targets in prostate gland and neighboring critical organs,and the plan indices(homogeneity, conformality etc) evaluations were also performed using HART extracted DVH statistics.Analyzed results showed a better correlation with the proposed outcomes (TCP, NTCP) of the treatments.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krayenbuehl, Jerome; Hartmann, Matthias; Lomax, Anthony J.

    Purpose: To perform comparative planning for intensity-modulated radiotherapy (IMRT) and proton therapy (PT) for malignant pleural mesothelioma after radical surgery. Methods and Materials: Eight patients treated with IMRT after extrapleural pleuropneumonectomy (EPP) were replanned for PT, comparing dose homogeneity, target volume coverage, and mean and maximal dose to organs at risk. Feasibility of PT was evaluated regarding the dose distribution with respect to air cavities after EPP. Results: Dose coverage and dose homogeneity of the planning target volume (PTV) were significantly better for PT than for IMRT regarding the volume covered by >95% (V95) for the high-dose PTV. The meanmore » dose to the contralateral kidney, ipsilateral kidney, contralateral lung, liver, and heart and spinal cord dose were significantly reduced with PT compared with IMRT. After EPP, air cavities were common (range, 0-850 cm{sup 3}), decreasing from 0 to 18.5 cm{sup 3}/day. In 2 patients, air cavity changes during RT decreased the generalized equivalent uniform dose (gEUD) in the case of using an a value of < - 10 to the PTV2 to <2 Gy in the presence of changing cavities for PT, and to 40 Gy for IMRT. Small changes were observed for gEUD of PTV1 because PTV1 was reached by the beams before air. Conclusion: Both PT and IMRT achieved good target coverage and dose homogeneity. Proton therapy accomplished additional dose sparing of most organs at risk compared with IMRT. Proton therapy dose distributions were more susceptible to changing air cavities, emphasizing the need for adaptive RT and replanning.« less

  12. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Liu, Feng; White, Julia

    2015-04-01

    This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volumemore » parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered.« less

  13. Comparative Effectiveness Study of Patient-Reported Outcomes following Proton Therapy or IMRT for Prostate Cancer

    PubMed Central

    Hoppe, Bradford S.; Michalski, Jeff M.; Mendenhall, Nancy P.; Morris, Christopher G.; Henderson, Randal H.; Nichols, Romaine C.; Mendenhall, William M.; Williams, Christopher; Regan, Meredith M.; Chipman, Jonathan; Crociani, Catrina; Sandler, Howard M.; Sanda, Martin G.; Hamstra, Daniel A.

    2014-01-01

    Background Data continues to emerge on the relative merits of different treatment modalities for prostate cancer. The purpose of this study is to compare patient-reported quality-of-life outcomes (QOL) after proton therapy (PT) and intensity-modulated radiation therapy (IMRT) for prostate cancer. Methods A comparison was performed of prospectively collected QOL data using the expanded prostate cancer index (EPIC) questionnaire. QOL data was collected during the first 2 years following treatment for men treated with PT and IMRT. PT was delivered to 1,243 men at a single center to 76-82Gy. IMRT was delivered to 204 men included in the Prostate Cancer Quality Assurance Study (PROSTQA) in doses of 75.6-79.4Gy.The Wilcoxon rank sum test was used to compare EPIC outcomes by modality using baseline-adjusted scores at different time points. Individual questions were assessed by converting to binary outcomes and testing with generalized estimating equations. Results No differences in changes in summary scores for bowel, urinary incontinence, urinary irritative/obstructive, and sexual domains were seen between the two cohorts. However, more men treated with IMRT reported moderate/big problems with rectal urgency (p=0.02) and frequent bowel movements (p=0.05) than men treated with PT. Conclusions There were no differences in QOL summary scores between the IMRT and PT cohorts during early follow-up up to 2-years. Response to individual questions suggests possible differences in specific bowel symptoms between the two cohorts. These outcomes highlight the need for further comparative studies of PT and IMRT. PMID:24382757

  14. Reduced Feeding Tube Duration with IMRT for Head and Neck Cancer: A SEER-Medicare Analysis

    PubMed Central

    Beadle, Beth M.; Liao, Kai-Ping; Giordano, Sharon H.; Garden, Adam S.; Hutcheson, Katherine A.; Lai, Stephen Y.; Guadagnolo, B. Ashleigh

    2016-01-01

    Background Intensity-modulated radiation therapy (IMRT) is a technologically advanced and resource-intensive method of delivering radiation therapy (RT) used to minimize toxicity for patients with head and neck cancers (HNC). Dependence on feeding tubes is a significant marker of toxicity of RT. The goal of this analysis was to compare the placement and duration of feeding tube use for patients with HNC from 1999-2011. Methods The cohort, demographics, and cancer-related variables were determined using the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database and analyzed regarding treatment details using claims data. Results A total of 2993 patients were identified. With a median follow-up of 47 months, 54.4% of patients had a feeding tube placed. The median duration from feeding tube placement to removal was 277 days. On zero-inflated negative binomial regression, patients treated with IMRT and 3DRT (non-IMRT) had similar rates of feeding tube placement (odds ratio (OR) 1.10; p=.35); however, patients treated with 3DRT had the feeding tube in place 1.18 times longer than those treated with IMRT (p=.03). The difference was only seen amongst patients treated with definitive radiation; patients treated with surgery and adjuvant radiation had no statistically significant difference in placement or duration. Conclusions Patients with HNC treated with definitive IMRT had significantly shorter duration of feeding tubes in place than those treated with 3DRT. These data suggest that there may be significant quality of life benefits to IMRT with respect to long-term swallowing function for patients. PMID:27662641

  15. Esophageal cancer dose escalation using a simultaneous integrated boost technique.

    PubMed

    Welsh, James; Palmer, Matthew B; Ajani, Jaffer A; Liao, Zhongxing; Swisher, Steven G; Hofstetter, Wayne L; Allen, Pamela K; Settle, Steven H; Gomez, Daniel; Likhacheva, Anna; Cox, James D; Komaki, Ritsuko

    2012-01-01

    We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Intensity-Modulated Radiation Therapy for Anal Malignancies: A Preliminary Toxicity and Disease Outcomes Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepek, Joseph M.; Willett, Christopher G.; Wu, Q. Jackie

    Purpose: Intensity-modulated radiation therapy (IMRT) has the potential to reduce toxicities associated with chemoradiotherapy in the treatment of anal cancer. This study reports the results of using IMRT in the treatment of anal cancer. Methods and Materials: Records of patients with anal malignancies treated with IMRT at Duke University were reviewed. Acute toxicity was graded using the NCI CTCAEv3.0 scale. Overall survival (OS), metastasis-free survival (MFS), local-regional control (LRC) and colostomy-free survival (CFS) were calculated using the Kaplan-Meier method. Results: Forty-seven patients with anal malignancy (89% canal, 11% perianal skin) were treated with IMRT between August 2006 and September 2008.more » Median follow-up was 14 months (19 months for SCC patients). Median radiation dose was 54 Gy. Eight patients (18%) required treatment breaks lasting a median of 5 days (range, 2-7 days). Toxicity rates were as follows: Grade 4: leukopenia (7%), thrombocytopenia (2%); Grade 3: leukopenia (18%), diarrhea (9%), and anemia (4%); Grade 2: skin (93%), diarrhea (24%), and leukopenia (24%). The 2-year actuarial overall OS, MFS, LRC, and CFS rates were 85%, 78%, 90% and 82%, respectively. For SCC patients, the 2-year OS, MFS, LRC, and CFS rates were 100%, 100%, 95%, and 91%, respectively. Conclusions: IMRT-based chemoradiotherapy for anal cancer results in significant reductions in normal tissue dose and acute toxicities versus historic controls treated without IMRT, leading to reduced rates of toxicity-related treatment interruption. Early disease-related outcomes seem encouraging. IMRT is emerging as a standard therapy for anal cancer.« less

  17. Esophageal Cancer Dose Escalation using a Simultaneous Integrated Boost Technique

    PubMed Central

    Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao, Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko

    2014-01-01

    Purpose We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials Treatment plans were generated using four different approaches (two-dimensional conformal RT [2D-CRT] to 50.4 Gy or 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results The 50.4-Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4-Gy 2D-CRT plan. The 64.8-Gy SIB-IMRT plan produced a 28% increase in GTV dose and the same normal tissue doses as the 50.4-Gy IMRT plan; compared with the 50.4-Gy 2D-CRT plan, the 64.8-Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. PMID:21123005

  18. Intensity-modulated radiation therapy (IMRT) in the treatment of anal cancer: Toxicity and clinical outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, Michael T.; Jani, Ashesh B.; Farrey, Karl J.

    2005-10-01

    Purpose: To assess survival, local control, and toxicity of intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the anal canal. Methods and Materials: Seventeen patients were treated with nine-field IMRT plans. Thirteen received concurrent 5-fluorouracil and mitomycin C, whereas 1 patient received 5-fluorouracil alone. Seven patients were planned with three-dimensional anteroposterior/posterior-anterior (AP/PA) fields for dosimetric comparison to IMRT. Results: Compared with AP/PA, IMRT reduced the mean and threshold doses to small bowel, bladder, and genitalia. Treatment was well tolerated, with no Grade {>=}3 acute nonhematologic toxicity. There were no treatment breaks attributable to gastrointestinal or skin toxicity. Ofmore » patients who received mitomycin C, 38% experienced Grade 4 hematologic toxicity. IMRT did not afford bone marrow sparing, possibly resulting from the clinical decision to prescribe 45 Gy to the whole pelvis in most patients, vs. the Radiation Therapy Oncology Group-recommended 30.6 Gy whole pelvic dose. Three of 17 patients, who did not achieve a complete response, proceeded to an abdominoperineal resection and colostomy. At a median follow-up of 20.3 months, there were no other local failures. Two-year overall survival, disease-free survival, and colostomy-free survival are: 91%, 65%, and 82% respectively. Conclusions: In this hypothesis-generating analysis, the acute toxicity and clinical outcome with IMRT in the treatment of anal cancer is encouraging. Compared with historical controls, local control is not compromised despite efforts to increase conformality and reduce normal structure dose.« less

  19. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Preoperative Treatment of Extremity Soft Tissue Sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Patrick, E-mail: patrjr@uw.edu; Phillips, Mark; Smith, Wade

    Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with themore » largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.« less

  20. Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow. PMID:23176540

  1. RTOG 0529: A Phase 2 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination With 5-Fluorouracil and Mitomycin-C for the Reduction of Acute Morbidity in Carcinoma of the Anal Canal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachnic, Lisa A., E-mail: lisa.kachnic@bmc.org; Winter, Kathryn; Myerson, Robert J.

    2013-05-01

    Purpose: A multi-institutional phase 2 trial assessed the utility of dose-painted intensity modulated radiation therapy (DP-IMRT) in reducing grade 2+ combined acute gastrointestinal and genitourinary adverse events (AEs) of 5-fluorouracil (5FU) and mitomycin-C (MMC) chemoradiation for anal cancer by at least 15% compared with the conventional radiation/5FU/MMC arm from RTOG 9811. Methods and Materials: T2-4N0-3M0 anal cancer patients received 5FU and MMC on days 1 and 29 of DP-IMRT, prescribed per stage: T2N0, 42 Gy elective nodal and 50.4 Gy anal tumor planning target volumes (PTVs) in 28 fractions; T3-4N0-3, 45 Gy elective nodal, 50.4 Gy ≤3 cm or 54more » Gy >3 cm metastatic nodal and 54 Gy anal tumor PTVs in 30 fractions. The primary endpoint is described above. Planned secondary endpoints assessed all AEs and the investigator’s ability to perform DP-IMRT. Results: Of 63 accrued patients, 52 were evaluable. Tumor stage included 54% II, 25% IIIA, and 21% IIIB. In primary endpoint analysis, 77% experienced grade 2+ gastrointestinal/genitourinary acute AEs (9811 77%). There was, however, a significant reduction in acute grade 2+ hematologic, 73% (9811 85%, P=.032), grade 3+ gastrointestinal, 21% (9811 36%, P=.0082), and grade 3+ dermatologic AEs 23% (9811 49%, P<.0001) with DP-IMRT. On initial pretreatment review, 81% required DP-IMRT replanning, and final review revealed only 3 cases with normal tissue major deviations. Conclusions: Although the primary endpoint was not met, DP-IMRT was associated with significant sparing of acute grade 2+ hematologic and grade 3+ dermatologic and gastrointestinal toxicity. Although DP-IMRT proved feasible, the high pretreatment planning revision rate emphasizes the importance of real-time radiation quality assurance for IMRT trials.« less

  2. SU-E-T-368: Evaluating Dosimetric Outcome of Modulated Photon Radiotherapy (XMRT) Optimization for Head and Neck Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeachy, P; Villarreal-Barajas, JE; Khan, R

    2015-06-15

    Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing bothmore » 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.« less

  3. A Population-Based Comparative Effectiveness Study of Radiation Therapy Techniques in Stage III Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Jeremy P.; Murphy, James D.; Hanlon, Alexandra L.

    2014-03-15

    Purpose: Concerns have been raised about the potential for worse treatment outcomes because of dosimetric inaccuracies related to tumor motion and increased toxicity caused by the spread of low-dose radiation to normal tissues in patients with locally advanced non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy (IMRT). We therefore performed a population-based comparative effectiveness analysis of IMRT, conventional 3-dimensional conformal radiation therapy (3D-CRT), and 2-dimensional radiation therapy (2D-RT) in stage III NSCLC. Methods and Materials: We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare database to identify a cohort of patients diagnosed with stage III NSCLC frommore » 2002 to 2009 treated with IMRT, 3D-CRT, or 2D-RT. Using Cox regression and propensity score matching, we compared survival and toxicities of these treatments. Results: The proportion of patients treated with IMRT increased from 2% in 2002 to 25% in 2009, and the use of 2D-RT decreased from 32% to 3%. In univariate analysis, IMRT was associated with improved overall survival (OS) (hazard ratio [HR] 0.90, P=.02) and cancer-specific survival (CSS) (HR 0.89, P=.02). After controlling for confounders, IMRT was associated with similar OS (HR 0.94, P=.23) and CSS (HR 0.94, P=.28) compared with 3D-CRT. Both techniques had superior OS compared with 2D-RT. IMRT was associated with similar toxicity risks on multivariate analysis compared with 3D-CRT. Propensity score matched model results were similar to those from adjusted models. Conclusions: In this population-based analysis, IMRT for stage III NSCLC was associated with similar OS and CSS and maintained similar toxicity risks compared with 3D-CRT.« less

  4. SU-F-T-378: Evaluation of Dose-Volume Variability and Parameters Between Prostate IMRT and VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J; Jiang, R; Kiciak, A

    2016-06-15

    Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT andmore » VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.« less

  5. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  6. Intrafraction Motion in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer: Intensity Modulated Radiation Therapy Versus Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Maddalena M.G.; Peulen, Heike M.U.; Belderbos, Josè S.A.

    Purpose: Stereotactic body radiation therapy (SBRT) for early-stage inoperable non-small cell lung cancer (NSCLC) patients delivers high doses that require high-precision treatment. Typically, image guidance is used to minimize day-to-day target displacement, but intrafraction position variability is often not corrected. Currently, volumetric modulated arc therapy (VMAT) is replacing intensity modulated radiation therapy (IMRT) in many departments because of its shorter delivery time. This study aimed to evaluate whether intrafraction variation in VMAT patients is reduced in comparison with patients treated with IMRT. Methods and Materials: NSCLC patients (197 IMRT and 112 VMAT) treated with a frameless SBRT technique to amore » prescribed dose of 3 × 18 Gy were evaluated. Image guidance for both techniques was identical: pretreatment cone beam computed tomography (CBCT) (CBCT{sub precorr}) for setup correction followed immediately before treatment by postcorrection CBCT (CBCT{sub postcorr}) for verification. Then, after either a noncoplanar IMRT technique or a VMAT technique, a posttreatment (CBCT{sub postRT}) scan was acquired. The CBCT{sub postRT} and CBCT{sub postcorr} scans were then used to evaluate intrafraction motion. Treatment delivery times, systematic (Σ) and random (σ) intrafraction variations, and associated planning target volume (PTV) margins were calculated. Results: The median treatment delivery time was significantly reduced by 20 minutes (range, 32-12 minutes) using VMAT compared with noncoplanar IMRT. Intrafraction tumor motion was significantly larger for IMRT in all directions up to 0.5 mm systematic (Σ) and 0.7 mm random (σ). The required PTV margins for IMRT and VMAT differed by less than 0.3 mm. Conclusion: VMAT-based SBRT for NSCLC was associated with significantly shorter delivery times and correspondingly smaller intrafraction motion compared with noncoplanar IMRT. However, the impact on the required PTV margin was small.« less

  7. Comparison of PSA value at last follow-up of patients who underwent low-dose rate brachytherapy and intensity-modulated radiation therapy for prostate cancer.

    PubMed

    Tanaka, Nobumichi; Asakawa, Isao; Nakai, Yasushi; Miyake, Makito; Anai, Satoshi; Fujii, Tomomi; Hasegawa, Masatoshi; Konishi, Noboru; Fujimoto, Kiyohide

    2017-08-25

    To compare the PSA value at the last follow-up of patients who underwent prostate low-dose rate brachytherapy (LDR-BT) with that of patients who underwent intensity-modulated radiation therapy (IMRT). A total of 610 prostate cancer patients (cT1c-3bN0M0) were enrolled, and 445 of them underwent LDR-BT, while 165 received IMRT (74-76 Gy). The median follow-up period of these two groups was 75 months (LDR-BT) and 78 months (IMRT), respectively. We also evaluated the biochemical recurrence (BCR)-free rate using two definitions (Phoenix definition and PSA ≥ 0.2 ng/mL). The percentage of patients who achieved PSA < 0.2 ng/mL at the last follow-up was 77.5% in the LDR-BT group and 49.7% in the IMRT group (p < 0.001). Among patients with a normal testosterone level at the last follow-up, the percentage of those who achieved PSA < 0.2 ng/mL at the last follow-up was 79.2% in the LDR-BT group and 32.1% in the IMRT group (p < 0.001). The 5-year BCR-free rate by the Phoenix definition in the IMRT and LDR-BT groups was 89.5 and 95.0% (p < 0.001), respectively. On the other hand, the 5-year BCR-free rate using the definition of PSA ≥ 0.2 ng/mL was 59.1 and 80.1% in the IMRT and LDR-BT groups, respectively (p < 0.001). The PSA value at the last follow-up of LDR-BT was significantly lower than that of IMRT, and this result was particularly marked in patients with a normal testosterone level at the last follow-up.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huh, S; Lee, S; Dagan, R

    Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm withmore » a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets.« less

  9. Dosimetric comparison between step-shoot intensity-modulated radiotherapy and volumetric-modulated arc therapy for upper thoracic and cervical esophageal carcinoma.

    PubMed

    Gao, Min; Li, Qilin; Ning, Zhonghua; Gu, Wendong; Huang, Jin; Mu, Jinming; Pei, Honglei

    2016-01-01

    To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4Gy in 28 fractions, and PTV1 was prescribed to 60Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage. The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. Advantages of Whole-liver Intensity Modulated Radiation Therapy in Children With Wilms Tumor and Liver Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu; Pokhrel, Damodar; Gopalakrishnan, Mahesh

    Purpose: To demonstrate the dosimetric advantages of intensity modulated radiation therapy (IMRT) in children with Wilms tumor (WT) undergoing whole-liver (WL) RT. Methods and Materials: Computed tomography simulation scans of 10 children, either 3 (3D) or 4-dimensional (4D), were used for this study. The WL PTV was determined by the 3D or 4D liver volumes, with a margin of 1 cm. A total of 40 WL RT plans were performed: 10 each for left- and right-sided WT with IMRT and anteroposterior-posteroanterior (AP-PA) techniques. The radiation dose-volume coverage of the WL planning target volume (PTV), remaining kidney, and other organs weremore » analyzed and compared. Results: The 95% dose coverage to WL PTV for left and right WT were as follows: 97% ± 4% (IMRT), 83% ± 8% (AP-PA) (P<.01) and 99% ± 1% (IMRT), 94% ± 5% (AP-PA) (P<.01), respectively. When 3D WL PTV was used for RT planning, the AP-PA technique delivered 95% of dose to only 78% ± 13% and 88% ± 8% of 4D liver volume. For left WT, the right kidney V15 and V10 for IMRT were 29% ± 7% and 55% ± 8%, compared with 61% ± 29% (P<.01) and 78% ± 25% (P<.01) with AP-PA. For right WT, the left kidney V15 and V10 were 0 ± 0 and 2% ± 3% for IMRT, compared with 25% ± 19% (P<.01) and 40% ± 31% (P<.01) for AP-PA. Conclusions: The use of IMRT and 4D treatment planning resulted in the delivery of a higher RT dose to the liver compared with the standard AP-PA technique. Whole-liver IMRT also delivered a significantly lower dose to the remaining kidney.« less

  11. Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.

    PubMed

    Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.

  12. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer.

    PubMed

    Freilich, J; Hoffe, S E; Almhanna, K; Dinwoodie, W; Yue, B; Fulp, W; Meredith, K L; Shridhar, R

    2015-01-01

    Emerging data suggests a benefit for using intensity modulated radiation therapy (IMRT) for the management of esophageal cancer. We retrospectively reviewed patients treated at our institution who received definitive or preoperative chemoradiation with either IMRT or 3D conformal radiation therapy (3DCRT) between October 2000 and January 2012. Kaplan Meier analysis and the Cox proportional hazard model were used to evaluate survival outcomes. We evaluated a total of 232 patients (138 IMRT, 94 3DCRT) who received a median dose of 50.4 Gy (range, 44-64.8) to gross disease. Median follow up for all patients, IMRT patients alone, and 3DCRT patients alone was 18.5 (range, 2.5-124.2), 16.5 (range, 3-59), and 25.9 months (range, 2.5-124.2), respectively. We observed no significant difference based on radiation technique (3DCRT vs. IMRT) with respect to median overall survival (OS) (median 29 vs. 32 months; P = 0.74) or median relapse free survival (median 20 vs. 25 months; P = 0.66). On multivariable analysis (MVA), surgical resection resulted in improved OS (HR 0.444; P < 0.0001). Superior OS was also associated on MVA with stage I/II disease (HR 0.523; P = 0.010) and tumor length ≤5 cm (HR 0.567; P = 0.006). IMRT was also associated on univariate analysis with a significant decrease in acute weight loss (mean 6% + 4.3% vs 9% + 7.4%, P = 0.012) and on MVA with a decrease in objective grade ≥3 toxicity, defined as any hospitalization, feeding tube, or >20% weight loss (OR 0.51; P = 0.050). Our data suggest that while IMRT-based chemoradiation for esophageal cancer does not impact survival there was significantly less toxicity. In the IMRT group there was significant decrease in weight loss and grade ≥3 toxicity compared to 3DCRT. © 2014 International Society for Diseases of the Esophagus.

  13. Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study.

    PubMed

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-05-01

    To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. MO-FG-202-09: Virtual IMRT QA Using Machine Learning: A Multi-Institutional Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, G; Scheuermann, R; Solberg, T

    Purpose: To validate a machine learning approach to Virtual IMRT QA for accurately predicting gamma passing rates using different QA devices at different institutions. Methods: A Virtual IMRT QA was constructed using a machine learning algorithm based on 416 IMRT plans, in which QA measurements were performed using diode-array detectors and a 3%local/3mm with 10% threshold. An independent set of 139 IMRT measurements from a different institution, with QA data based on portal dosimetry using the same gamma index and 10% threshold, was used to further test the algorithm. Plans were characterized by 90 different complexity metrics. A weighted poisonmore » regression with Lasso regularization was trained to predict passing rates using the complexity metrics as input. Results: In addition to predicting passing rates with 3% accuracy for all composite plans using diode-array detectors, passing rates for portal dosimetry on per-beam basis were predicted with an error <3.5% for 120 IMRT measurements. The remaining measurements (19) had large areas of low CU, where portal dosimetry has larger disagreement with the calculated dose and, as such, large errors were expected. These beams need to be further modeled to correct the under-response in low dose regions. Important features selected by Lasso to predict gamma passing rates were: complete irradiated area outline (CIAO) area, jaw position, fraction of MLC leafs with gaps smaller than 20 mm or 5mm, fraction of area receiving less than 50% of the total CU, fraction of the area receiving dose from penumbra, weighted Average Irregularity Factor, duty cycle among others. Conclusion: We have demonstrated that the Virtual IMRT QA can predict passing rates using different QA devices and across multiple institutions. Prediction of QA passing rates could have profound implications on the current IMRT process.« less

  15. Dosimetric comparison between step-shoot intensity-modulated radiotherapy and volumetric-modulated arc therapy for upper thoracic and cervical esophageal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Min; Li, Qilin; Ning, Zhonghua

    2016-07-01

    To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4 Gy in 28 fractions, and PTV1 was prescribed to 60 Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage.more » The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans.« less

  16. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less

  17. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivakumar, R; Janardhan, N; Bhavani, P

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less

  18. Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low–dose rate delivery techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Lang, Jinyi; Wang, Pei

    2014-01-01

    Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low–dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatmentmore » planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7 cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4 cGy. The maximum doses ranged between 22.9 and 34.8 cGy. The minimum doses ranged from 8.2 to 17.5 cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6 cGy. The maximum doses per gantry angle were between 24.0 and 34.7 cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4 cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. The volume receiving an 18-Gy (V{sub 18}) dose for the left and right kidneys was reduced by 10.6% and 12.5%, respectively, for the pancreatic plans. The volume receiving a 45-Gy (V{sub 45}) dose for the small bowel decreased from 65.3% to 45.5%. For the cases with prostate cancer, the volume receiving a 40-Gy (V{sub 40}) dose for the bladder and the rectum was reduced significantly by 25.1% and 51.2%, respectively. When compared with the RapidArc technique, the volume receiving a 30-Gy (V{sub 30}) dose for the left and the right kidneys was lower in the IMRT plans. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. These results clearly demonstrated that the PLDR-IMRT plan was suitable for PLDR pancreatic and prostate cancer treatments in terms of the overall plan quality. A significant reduction in the OAR dose was achieved with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. When compared with the PLDR-3DCRT plan, the PLDR-IMRT plan could provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent pancreatic and prostate cancers. The PLDR-IMRT plan is an effective treatment choice for recurrent cancers in most cancer centers.« less

  19. Pretreatment risk stratification of feeding tube use in patients treated with intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Anderson, Nigel J; Jackson, James E; Smith, Jennifer G; Wada, Morikatsu; Schneider, Michal; Poulsen, Michael; Rolfo, Maureen; Fahandej, Maziar; Gan, Hui; Joon, Daryl Lim; Khoo, Vincent

    2018-05-13

    The purpose of this study was to establish a risk stratification model for feeding tube use in patients who undergo intensity-modulated radiotherapy (IMRT) for head and neck cancers. One hundred thirty-nine patients treated with definitive IMRT (+/- concurrent chemotherapy) for head and neck mucosal cancers were included in this study. Patients were recommended a prophylactic feeding tube and followed up by a dietician for at least 8 weeks postradiotherapy (post-RT). Potential prognostic factors were analyzed for risk and duration of feeding tube use for at least 25% of dietary requirements. Many variables had significant effects on risk and/or duration of feeding tube use in univariate analyses. Subsequent multivariable analysis showed that T classification ≥3 and level 2 lymphadenopathy were the best independent significant predictors of higher risk and duration of feeding tube use, respectively, in oral cavity, pharyngeal, and supraglottic primaries. In patients treated with definitive IMRT, T classification ≥3 and level 2 lymphadenopathy can potentially stratify patients into 4 risk groups for developing severe dysphagia requiring feeding tube use. © 2018 Wiley Periodicals, Inc.

  20. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih

    2008-07-15

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% {+-}more » 9%. The 3-year local control rate was 68% {+-} 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival.« less

  1. SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, J; Zhang, Z; Wang, J

    2016-06-15

    Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less

  2. SU-E-T-571: Prostate IMRT QA: Prediction of the Range of Rectal NTCP Using a 2D Field Approach Based on Variations of the Rectal Wall Motion and Thickness.

    PubMed

    Grigorov, G; Chow, J; Foster, K

    2012-06-01

    The aims of this study is to (1) introduce a 2D field of possible rectal normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) plan, so that based on a given prescribed dose the rectal NTCP is merely a function of the rectal wall thickness and rectal motion; and (2) separate the 2D field of rectal NTCP into area of low risk and area of high risk for rectal toxicity < Grade II, based on the threshold rectal NTCP. The 2D field of NTCP model was developed using ten randomly selected prostate IMRT plans. The clinical rectal geometry was initially represented by the cylindrical contour in the treatment planning system. Different combinations of rectal motions, rectal wall thicknesses, planning target volume margins and prescribed doses were used to determine the NTCP in prostate IMRT plans. It was found that the functions bordering the 2D field for the given AP, LR and SI direction can be described as exponential, quadratic and linear equations, respectively. A ratio of the area of 2D field containing data of the low risk NTCP to the entire area of the field was introduced and calculated. Although our method is based on the Kutcher's dose response model and published tissue parameters, other mathematical models can be used in our approach. The 2D field of rectal NTCP is useful to estimate the rectal NTCP range in the prostate pre-treatment and treatment QA. Our method can determine the patient's threshold immobilization for a given rectal wall thickness so that prescribed dose can be delivered to the prostate to avoid rectal complication. Our method is also applicable to multi-phase prostate IMRT, and can be adapted to any treatment planning systems. © 2012 American Association of Physicists in Medicine.

  3. Lack of Osteoradionecrosis of the Mandible After Intensity-Modulated Radiotherapy for Head and Neck Cancer: Likely Contributions of Both Dental Care and Improved Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-David, Merav A.; Diamante, Maximiliano; Radawski, Jeffrey D.

    Purpose: To assess the prevalence and dosimetric and clinical predictors of mandibular osteoradionecrosis (ORN) in patients with head and neck cancer who underwent a pretherapy dental evaluation and prophylactic treatment according to a uniform policy and were treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 1996 and 2005, all patients with head-and-neck cancer treated with parotid gland-sparing IMRT in prospective studies underwent a dental examination and prophylactic treatment according to a uniform policy that included extractions of high-risk, periodontally involved, and nonrestorable teeth in parts of the mandible expected to receive high radiation doses, fluoride supplements, and the placementmore » of guards aiming to reduce electron backscatter off metal teeth restorations. The IMRT plans included dose constraints for the maximal mandibular doses and reduced mean parotid gland and noninvolved oral cavity doses. A retrospective analysis of Grade 2 or worse (clinical) ORN was performed. Results: A total of 176 patients had a minimal follow-up of 6 months. Of these, 31 (17%) had undergone teeth extractions before RT and 13 (7%) after RT. Of the 176 patients, 75% and 50% had received {>=}65 Gy and {>=}70 Gy to {>=}1% of the mandibular volume, respectively. Falloff across the mandible characterized the dose distributions: the average gradient (in the axial plane containing the maximal mandibular dose) was 11 Gy (range, 1-27 Gy; median, 8 Gy). At a median follow-up of 34 months, no cases of ORN had developed (95% confidence interval, 0-2%). Conclusion: The use of a strict prophylactic dental care policy and IMRT resulted in no case of clinical ORN. In addition to the dosimetric advantages offered by IMRT, meticulous dental prophylactic care is likely an essential factor in reducing ORN risk.« less

  4. Individualized Selection of Beam Angles and Treatment Isocenter in Tangential Breast Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl; Spadola, Sara; Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna

    Purpose and Objective: Propose a novel method for individualized selection of beam angles and treatment isocenter in tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: For each patient, beam and isocenter selection starts with the fully automatic generation of a large database of IMRT plans (up to 847 in this study); each of these plans belongs to a unique combination of isocenter position, lateral beam angle, and medial beam angle. The imposed hard planning constraint on patient maximum dose may result in plans with unacceptable target dose delivery. Such plans are excluded from further analyses. Owing to differencesmore » in beam setup, database plans differ in mean doses to organs at risk (OARs). These mean doses are used to construct 2-dimensional graphs, showing relationships between: (1) contralateral breast dose and ipsilateral lung dose; and (2) contralateral breast dose and heart dose (analyzed only for left-sided). The graphs can be used for selection of the isocenter and beam angles with the optimal, patient-specific tradeoffs between the mean OAR doses. For 30 previously treated patients (15 left-sided and 15 right-sided tumors), graphs were generated considering only the clinically applied isocenter with 121 tangential beam angle pairs. For 20 of the 30 patients, 6 alternative isocenters were also investigated. Results: Computation time for automatic generation of 121 IMRT plans took on average 30 minutes. The generated graphs demonstrated large variations in tradeoffs between conflicting OAR objectives, depending on beam angles and patient anatomy. For patients with isocenter optimization, 847 IMRT plans were considered. Adding isocenter position optimization next to beam angle optimization had a small impact on the final plan quality. Conclusion: A method is proposed for individualized selection of beam angles in tangential breast IMRT. This may be especially important for patients with cardiac risk factors or an enhanced risk for the development of contralateral breast cancer.« less

  5. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Edward F.; Larrier, Nicole A.; Kelsey, Christopher R.

    2008-07-15

    Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survivalmore » were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V{sub 20}) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V{sub 20}) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V{sub 20} (6.9% vs. 1.9%), and V{sub 5} (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio.« less

  6. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator.

    PubMed

    Zhu, X R; Jursinic, P A; Grimm, D F; Lopez, F; Rownd, J J; Gillin, M T

    2002-08-01

    A new type of radiographic film, Kodak EDR2 film, was evaluated for dose verification of intensity modulated radiation therapy (IMRT) delivered by a static multileaf collimator (SMLC). A sensitometric curve of EDR2 film irradiated by a 6 MV x-ray beam was compared with that of Kodak X-OMAT V (XV) film. The effects of field size, depth and dose rate on the sensitometric curve were also studied. It is found that EDR2 film is much less sensitive than XV film. In high-energy x-ray beams, the double hit process is the dominant mechanism that renders the grains on EDR2 films developable. As a result, in the dose range that is commonly used for film dosimetry for IMRT and conventional external beam therapy, the sensitometric curves of EDR2 films cannot be approximated as a linear function, OD = c * D. Within experimental uncertainty, the film sensitivity does not depend on the dose rate (50 vs 300 MU/min) or dose per pulse (from 1.0 x 10(-4) to 4.21 x 10(-4) Gy/pulse). Field sizes and depths (up to field size of 10 x 10 cm2 and depth = 10 cm) have little effect on the sensitometric curves. Percent depth doses (PDDs) for both 6 and 23 MV x rays were measured with both EDR2 and XV films and compared with ion chamber data. Film data are within 2.5% of the ion chamber results. Dose profiles measured with EDR2 film are consistent with those measured with an ion chamber. Examples of measured IMRT isodose distributions versus calculated isodoses are presented. We have used EDR2 films for verification of all IMRT patients treated by SMLC in our clinic. In most cases, with EDR2 film, actual clinical daily fraction doses can be used for verification of composite isodose distributions of SMLC-based IMRT.

  7. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  8. SU-F-T-352: Development of a Knowledge Based Automatic Lung IMRT Planning Algorithm with Non-Coplanar Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W; Wu, Q; Yuan, L

    Purpose: To improve the robustness of a knowledge based automatic lung IMRT planning method and to further validate the reliability of this algorithm by utilizing for the planning of clinical cases with non-coplanar beams. Methods: A lung IMRT planning method which automatically determines both plan optimization objectives and beam configurations with non-coplanar beams has been reported previously. A beam efficiency index map is constructed to guide beam angle selection in this algorithm. This index takes into account both the dose contributions from individual beams and the combined effect of multiple beams which is represented by a beam separation score. Wemore » studied the effect of this beam separation score on plan quality and determined the optimal weight for this score.14 clinical plans were re-planned with the knowledge-based algorithm. Significant dosimetric metrics for the PTV and OARs in the automatic plans are compared with those in the clinical plans by the two-sample t-test. In addition, a composite dosimetric quality index was defined to obtain the relationship between the plan quality and the beam separation score. Results: On average, we observed more than 15% reduction on conformity index and homogeneity index for PTV and V{sub 40}, V{sub 60} for heart while an 8% and 3% increase on V{sub 5}, V{sub 20} for lungs, respectively. The variation curve of the composite index as a function of angle spread score shows that 0.6 is the best value for the weight of the beam separation score. Conclusion: Optimal value for beam angle spread score in automatic lung IMRT planning is obtained. With this value, model can result in statistically the “best” achievable plans. This method can potentially improve the quality and planning efficiency for IMRT plans with no-coplanar angles.« less

  9. Comparison of three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy in the treatment of cervical esophageal carcinoma.

    PubMed

    Yang, Hao; Feng, Cong; Cai, Bo-Ning; Yang, Jun; Liu, Hai-Xia; Ma, Lin

    2017-02-01

    The aim of this study was to evaluate the effectiveness and toxicities of three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) in patients with cervical esophageal cancer. Specifically, we asked whether technological advances conferred an advantage with respect to the clinical curative effect. Seventy-eight patients with cervical esophageal cancer treated with definitive radiotherapy with or without concomitant chemotherapy at our institution between 2007 and 2014 were enrolled in the study: 26 received 3DCRT, 30 were treated with IMRT, and 22 underwent VMAT. Kaplan-Meier analysis and the Cox proportional hazard model were used to analyze overall survival (OS) and failure-free survival (FFS). Treatment-related toxicity was also assessed. For all patients, the 2-year OS and FFS rates were 56.2 and 53.9%, respectively. The 2-year OS for the 3DCRT, IMRT, and VMAT groups was 53.6, 55.6, and 60.6%, respectively (P = 0.965). The corresponding 2-year FFS rates were 49.5, 56.7, and 60.1% (P = 0.998). A univariate analysis of the complete response to treatment showed an advantage of treatment modality with respect to OS (P < 0.001). The development of acute hematologic toxicity was not significantly different among the three groups. The survival rates of patients treated with IMRT and VMAT were comparable to the survival of patients administered 3DCRT, while lower lung mean dose, V20, maximum dose of brachial plexus and spinal cord. Grade 1 radiation pneumonitis occurred significantly less in patients treated with IMRT and VMAT than with 3DCRT (P = 0.011). A complete response was the most important prognostic factor of the patients with cervical esophageal cancer. © 2016 International Society for Diseases of the Esophagus.

  10. Predictors of Hypothyroidism in Hodgkin Lymphoma Survivors After Intensity Modulated Versus 3-Dimensional Radiation Therapy.

    PubMed

    Pinnix, Chelsea C; Cella, Laura; Andraos, Therese Y; Ayoub, Zeina; Milgrom, Sarah A; Gunther, Jillian; Thosani, Sonali; Wogan, Christine; Conson, Manuel; D'Avino, Vittoria; Oki, Yasuhiro; Fanale, Michelle; Lee, Hun J; Neelapu, Sattva; Fayad, Luis; Hagemeister, Frederick; Rodriguez, M Alma; Nastoupil, Loretta J; Nieto, Yago; Qiao, Wei; Pacelli, Roberto; Dabaja, Bouthaina

    2018-03-14

    To identify predictors of hypothyroidism after chemoradiation therapy for Hodgkin lymphoma (HL) and to compare outcomes after intensity modulated radiation therapy (IMRT) with those after 3-dimensional (3D) conformal radiation therapy (CRT). Ninety patients who underwent involved-site IMRT in 2009 through 2014 were evaluated for treatment-induced hypothyroidism, defined as elevated thyroid-stimulating hormone or decreased free thyroxine levels (or both). Receiver operating characteristic curve analysis identified individuals at low versus high risk based on dosimetric variables. Dosimetric cutoff points were verified with an external data set of 50 patients who underwent 3D-CRT. In the IMRT group, most patients (75 [83%]) had stage II HL, and the median prescribed dose was 30.6 Gy; in the 3D-CRT group, 32 patients (64%) had stage II HL, and the median prescribed dose was 32.0 Gy. No differences were found in the proportions of patients with bilateral (P = .982) or unilateral (P = .074) neck involvement between the 2 groups. Hypothyroidism rates were marginally higher in the IMRT group, with estimated 3-year rates of freedom from hypothyroidism of 56.1% in the 3D-CRT group and 40% in the IMRT group (P = .057). Univariate analysis showed that smaller thyroid volume and higher thyroid dose were associated with hypothyroidism in both groups (P < .05). In the IMRT group, the percentage of the thyroid gland volume receiving ≥25 Gy (V25) and the absolute volume of the thyroid gland spared from 25 Gy (VS25Gy) were the strongest predictors of hypothyroidism (P = .001 and P < .001, respectively). Cutoff points of 63.5% (V25) and 2.2 mL (VS25Gy) classified patients as high risk (80%-82%) or low risk (37%-44%) (P < .001). Use of a thyroid avoidance structure reduced the incidence of hypothyroidism (P < .05) in the IMRT group. The percentage of the thyroid receiving 25 Gy and the volume of the thyroid spared from 25 Gy predicted the risk of hypothyroidism after either IMRT or 3D-CRT for HL. IMRT may confer a higher risk than 3D-CRT unless a treatment avoidance structure is used during planning. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma.

    PubMed

    Kataria, Tejinder; Govardhan, H B; Gupta, Deepak; Mohanraj, U; Bisht, Shyam Singh; Sambasivaselli, R; Goyal, S; Abhishek, A; Srivatsava, A; Pushpan, L; Kumar, V; Vikraman, S

    2014-01-01

    Dosimetric comparison of VMAT with IMRT in middle third esophageal cancer for planning target volume (PTV) and organs at risk (OAR). Ten patients in various stages from I‒III were inducted in the neo-adjuvant chemoradiation protocol for this study. The prescribed dose was 4500 cGy in 25 fractions. Both VMAT and IMRT plan were generated in all cases and Dose Volume Histogram (DVH) comparative analysis was performed for PTV and OAR. Paired t-test was used for statistical analysis. The PTV Dmean and D95 in IMRT and VMAT plan were 4566.6±50.6 cGy vs 4462.8±81.8 cGy (P=0.1) and 4379.8±50.6 cGy Vs 4424.3±109.8 cGy (P=0.1), respectively. The CI and HI for PTV in IMRT vs VMAT plans were 0.96±0.02 vs 0.97±0.01 (P=0.4) and 10.58±3.07 vs 9.45±2.42 (P=0.2), respectively. Lung doses for VMAT vs IMRT were 4.19 vs 2.59% (P=0.03) for V35-7.63 vs 4.76% (P=0.01) for V30-13.6 vs 9.98% (P=0.01) for V25-24.77 vs 18.57% (P=0.04) for V20-46.5 vs 34.73% (P=0.002) for V15. The Mean Lung Dose (MLD) was reduced by VMAT technique compared to IMRT; 1524.6±308.37 cGy and 1353±186.32 cGy (P=0.012). There was no change in Dmax to spinal cord in both the techniques. There was a dose reduction by VMAT compared to IMRT to the heart but it was statistically insignificant; V35-6.75% vs 5.55% (P=0.223); V30-12.3% vs 10.91% (P=0.352); V25-21.81% vs 20.16% (P=0.459); V20-38.11% vs 32.88% (P=0.070); V15-61.05% vs 54.2% (P=0.10). VMAT can be a better option in treating mid esophageal carcinoma as compared to IMRT. The VMAT plans resulted in equivalent or superior dose distribution with a reduction in the dose to lung and heart.

  12. Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study

    PubMed Central

    Junius, Sara; Haustermans, Karin; Bussels, Barbara; Oyen, Raymond; Vanstraelen, Bianca; Depuydt, Tom; Verstraete, Jan; Joniau, Steven; Van Poppel, Hendrik

    2007-01-01

    Background To assess acute (primary endpoint) and late toxicity, quality of life (QOL), biochemical or clinical failure (secondary endpoints) of a hypofractionated IMRT schedule for prostate cancer (PC). Methods 38 men with localized PC received 66 Gy (2.64 Gy) to prostate,2 Gy to seminal vesicles (50 Gy total) using IMRT. Acute toxicity was evaluated weekly during radiotherapy (RT), at 1–3 months afterwards using RTOG acute scoring system. Late side effects were scored at 6, 9, 12, 16, 20, 24 and 36 months after RT using RTOG/EORTC criteria. Quality of life was assessed by EORTC-C30 questionnaire and PR25 prostate module. Biochemical failure was defined using ASTRO consensus and nadir+2 definition, clinical failure as local, regional or distant relapse. Results None experienced grade III-IV toxicity. 10% had no acute genito-urinary (GU) toxicity, 63% grade I; 26% grade II. Maximum acute gastrointestinal (GI) scores 0, I, II were 37%, 47% and 16%. Maximal acute toxicity was reached weeks 4–5 and resolved within 4 weeks after RT in 82%. Grade II rectal bleeding needing coagulation had a peak incidence of 18% at 16 months after RT but is 0% at 24–36 months. One developed a urethral stricture at 2 years (grade II late GU toxicity) successfully dilated until now. QOL urinary symptom scores reached a peak incidence 1 month after RT but normalized 6 months later. Bowel symptom scores before, at 1–6 months showed similar values but rose slowly 2–3 years after RT. Nadir of sexual symptom scores was reached 1–6 months after RT but improved 2–3 years later as well as physical, cognitive and role functional scales. Emotional, social functional scales were lowest before RT when diagnosis was given but improved later. Two years after RT global health status normalized. Conclusion This hypofractionated IMRT schedule for PC using 25 fractions of 2.64 Gy did not result in severe acute side effects. Until now late urethral, rectal toxicities seemed acceptable as well as failure rates. Detailed analysis of QOL questionnaires resulted in the same conclusion. PMID:17686162

  13. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature upmore » to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.« less

  14. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer.

    PubMed

    Chen, Guang-Pei; Liu, Feng; White, Julia; Vicini, Frank A; Freedman, Gary M; Arthur, Douglas W; Li, X Allen

    2015-01-01

    This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volume parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J-Y; Huang, B-T; Zhang, W-Z

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HImore » of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J-Y; Huang, B-T; Zhang, W-Z

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided bettermore » CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.« less

  17. Vaginal motion and bladder and rectal volumes during pelvic intensity-modulated radiation therapy after hysterectomy.

    PubMed

    Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Levy, Larry; Eifel, Patricia J

    2012-01-01

    To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy. Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated. The mean full and empty bladder volumes at simulation were 480 cc (range, 122-1,052) and 155 cc (range, 49-371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96-585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right-left direction (range, 0-0.9), 1.46 cm in the anterior-posterior direction (range, 0.8-2.79), and 1.2 cm in the superior-inferior direction (range, 0.6-2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex. Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration

    NASA Astrophysics Data System (ADS)

    Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.

    2012-08-01

    In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.

  19. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753).more » The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79-0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64-0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83-1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83-1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14-1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.« less

  20. Limiting the risk of cardiac toxicity with esophageal-sparing intensity modulated radiotherapy for locally advanced lung cancers.

    PubMed

    Woodford, Katrina; Panettieri, Vanessa; Ruben, Jeremy D; Senthi, Sashendra

    2016-05-01

    Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses.

  1. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of Stage I-II nasal natural killer/T-cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianfeng; Yang, Yong; Jin, Fu

    This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subjectmore » to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.« less

  2. Cardiac Dose Reduction with Deep-Inspiratory Breath Hold Technique of Radiotherapy for Left-Sided Breast Cancer

    PubMed Central

    Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet

    2017-01-01

    Introduction: Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. Aim: In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Materials and Methods: Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart Dmean), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Results: Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRTDIBH decreased the Heart Dmean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRTFB. IMRT further lowered mean LAD dose by 18%. Heart Dmean was lower with 3DCRTDIBH over IMRTDIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V20 of ipsilateral lung were lower with 3DCRTDIBH over IMRTDIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. Conclusions: 3DCRTDIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT. PMID:28974856

  3. Dosimetric feasibility of magnetic resonance imaging-guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity.

    PubMed

    Kishan, Amar U; Cao, Minsong; Mikaeilian, Argin G; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Kamrava, Mitchell

    2015-01-01

    The purpose of this study was to investigate the dosimetric differences of delivering preoperative intensity modulated radiation therapy (IMRT) to patients with soft tissue sarcomas of the extremity (ESTS) with a teletherapy system equipped with 3 rotating (60)Co sources and a built-in magnetic resonance imaging and with standard linear accelerator (LINAC)-based IMRT. The primary study population consisted of 9 patients treated with preoperative radiation for ESTS between 2008 and 2014 with LINAC-based static field IMRT. LINAC plans were designed to deliver 50 Gy in 25 fractions to 95% of the planning target volume (PTV). Tri-(60)Co system IMRT plans were designed with ViewRay system software. Tri-(60)Co-based IMRT plans achieved equivalent target coverage and dosimetry for organs at risk (long bone, skin, and skin corridor) compared with LINAC-based IMRT plans. The maximum and minimum PTV doses, heterogeneity indices, and ratio of the dose to 50% of the volume were equivalent for both planning systems. One LINAC plan violated the maximum bone dose constraint, whereas none of the tri-(60)Co plans did. Using a tri-(60)Co system, we were able to achieve equivalent dosimetry to the PTV and organs at risk for patients with ESTS compared with LINAC-based IMRT plans. The tri-(60)Co system may be advantageous over current treatment platforms by allowing PTV reduction and by elimination of the additional radiation dose associated with daily image guidance, but this needs to be evaluated prospectively. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  4. Radiobiological evaluation of simultaneously dose-escalated versus non-escalated intensity-modulated radiation therapy for patients with upper thoracic esophageal cancer.

    PubMed

    Huang, Bao-Tian; Wu, Li-Li; Guo, Long-Jia; Xu, Liang-Yu; Huang, Rui-Hong; Lin, Pei-Xian; Chen, Jian-Zhou; Li, De-Rui; Chen, Chuang-Zhen

    2017-01-01

    To compare the radiobiological response between simultaneously dose-escalated and non-escalated intensity-modulated radiation therapy (DE-IMRT and NE-IMRT) for patients with upper thoracic esophageal cancer (UTEC) using radiobiological evaluation. Computed tomography simulation data sets for 25 patients pathologically diagnosed with primary UTEC were used in this study. DE-IMRT plan with an escalated dose of 64.8 Gy/28 fractions to the gross tumor volume (GTV) and involved lymph nodes from 25 patients pathologically diagnosed with primary UTEC, was compared to an NE-IMRT plan of 50.4 Gy/28 fractions. Dose-volume metrics, tumor control probability (TCP), and normal tissue complication probability for the lung and spinal cord were compared. In addition, the risk of acute esophageal toxicity (AET) and late esophageal toxicity (LET) were also analyzed. Compared with NE-IMRT plan, we found the DE-IMRT plan resulted in a 14.6 Gy dose escalation to the GTV. The tumor control was predicted to increase by 31.8%, 39.1%, and 40.9% for three independent TCP models. The predicted incidence of radiation pneumonitis was similar (3.9% versus 3.6%), and the estimated risk of radiation-induced spinal cord injury was extremely low (<0.13%) in both groups. Regarding the esophageal toxicities, the estimated grade ≥2 and grade ≥3 AET predicted by the Kwint model were increased by 2.5% and 3.8%. Grade ≥2 AET predicted using the Wijsman model was increased by 14.9%. The predicted incidence of LET was low (<0.51%) in both groups. Radiobiological evaluation reveals that the DE-IMRT dosing strategy is feasible for patients with UTEC, with significant gains in tumor control and minor or clinically acceptable increases in radiation-induced toxicities.

  5. [Feasibility and short-term efficacy of simplified intensity-modulated radiotherapy and concurrent chemotherapy for neck and upper thoracic esophageal carcinoma].

    PubMed

    Zhu, Wei-Guo; Yu, Chang-Hua; Han, Ji-Hua; Li, Tao; Zhou, Xi-Lei; Tao, Guang-Zhou

    2009-12-01

    For neck and upper thoracic esophageal carcinoma, three dimensional conformal radiation therapy (3D-CRT) does not necessarily meet all clinical requirements while intensity modulated radiation therapy (IMRT) may take up a lot of labour power and material resources. This study was to explore the feasibility of simplified IMPT(sIMRT) and concurrent chemotherapy for neck and upper thoracic esophageal carcinoma, and to investigate the acute toxicities and short-term efficacy of this treatment modality. sIMRT plans were designed for 30 patients with neck and upper thoracic esophageal carcinoma. Two target volumes were defined: PTV1, which was designed to irradiate to 64 Gy (2.13 Gy x 30 fractions); PTV2, which was given to 54 Gy (1.8 Gy x 30). The sIMRT plan included five equiangular coplanar beams. All patients concurrently received DDP+5-FU regimen with radiotherapy on d1-5 and d29-33. Chemotherapy was repeated for two cycles 28 days after radiotherapy. The treatment was completed for all patients within 6 weeks, and only one patient had Grade 3 acute bronchitis. The complete response (CR) rate was 90.0% (27/30) and the partial response (PR) rate 10.0% (3/30). Overall response was 100% for esophageal lesions and the CR rate 76.5% (13/17). The PR rate was 23.5% (4/17) in lymph node lesions. The major toxicities observed were Grades I-II leukocytopenia. sIMRT can generate desirable dose distribution for neck and upper thoracic esophageal carcinoma, which is similar to sophisticated IMRT but obviously better than 3D-CRT. The short-term efficacy of sIMRT is satisfactory and its acute toxicities are tolerable.

  6. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plansmore » consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.« less

  7. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dosemore » differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.« less

  8. Vaginal Motion and Bladder and Rectal Volumes During Pelvic Intensity-Modulated Radiation Therapy After Hysterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhingran, Anuja, E-mail: ajhingra@mdanderson.org; Salehpour, Mohammad; Sam, Marianne

    2012-01-01

    Purpose: To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy. Methods and Materials: Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated. Results: The mean full and empty bladdermore » volumes at simulation were 480 cc (range, 122-1,052) and 155 cc (range, 49-371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96-585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right-left direction (range, 0-0.9), 1.46 cm in the anterior-posterior direction (range, 0.8-2.79), and 1.2 cm in the superior-inferior direction (range, 0.6-2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex. Conclusion: Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation.« less

  9. Influence of different treatment techniques on radiation dose to the LAD coronary artery

    PubMed Central

    Nieder, Carsten; Schill, Sabine; Kneschaurek, Peter; Molls, Michael

    2007-01-01

    Background The purpose of this proof-of-principle study was to test the ability of an intensity-modulated radiotherapy (IMRT) technique to reduce the radiation dose to the heart plus the left ventricle and a coronary artery. Radiation-induced heart disease might be a serious complication in long-term cancer survivors. Methods Planning CT scans from 6 female patients were available. They were part of a previous study of mediastinal IMRT for target volumes used in lymphoma treatment that included 8 patients and represent all cases where the left anterior descending coronary artery (LAD) could be contoured. We compared 6 MV AP/PA opposed fields to a 3D conformal 4-field technique and an optimised 7-field step-and-shoot IMRT technique and evaluated DVH's for several structures. The planning system was BrainSCAN 5.21 (BrainLAB, Heimstetten, Germany). Results IMRT maintained target volume coverage but resulted in better dose reduction to the heart, left ventricle and LAD than the other techniques. Selective dose reduction could be accomplished, although not to the degree initially attempted. The median LAD dose was approximately 50% lower with IMRT. In 5 out of 6 patients, IMRT was the best technique with regard to heart sparing. Conclusion IMRT techniques are able to reduce the radiation dose to the heart. In addition to dose reduction to whole heart, individualised dose distributions can be created, which spare, e.g., one ventricle plus one of the coronary arteries. Certain patients with well-defined vessel pathology might profit from an approach of general heart sparing with further selective dose reduction, accounting for the individual aspects of pre-existing damage. PMID:17547777

  10. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L; Deng, G; Xie, J

    2015-06-15

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less

  11. Use of plan quality degradation to evaluate tradeoffs in delivery efficiency and clinical plan metrics arising from IMRT optimizer and sequencer compromises

    PubMed Central

    Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.

    2013-01-01

    Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment site and on the stage in the process at which the levels are limited. The cost of improved delivery efficiency, in terms of plan quality degradation, increased as the number of intensity levels in the sequencer or optimizer decreased. The degradation was more substantial for the head and neck cases relative to the prostate cases, particularly when fewer than 20 intensity levels were used. Plan quality degradation was less severe when the number of intensity levels was limited in the optimizer rather than the sequencer. Conclusions: Analysis of plan quality degradation allows for a quantitative assessment of the compromises in clinical plan quality as delivery efficiency is improved, in order to determine the optimal delivery settings. The technique is based on physician-determined quality degradation factors and can be extended to other clinical situations where investigation of various tradeoffs is warranted. PMID:23822412

  12. Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study

    NASA Astrophysics Data System (ADS)

    Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral

    2017-09-01

    Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.

  13. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams.

    PubMed

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealedmore » that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.« less

  15. Multi-institutional Comparison of Intensity Modulated Radiation Therapy (IMRT) Planning Strategies and Planning Results for Nasopharyngeal Cancer

    PubMed Central

    Park, Sung Ho; Park, Suk Won; Oh, Do Hoon; Choi, Youngmin; Kim, Jeung Kee; Ahn, Yong Chan; Park, Won; Suh, Hyun Sook; Lee, Rena; Bae, Hoonsik

    2009-01-01

    The intensity-modulated radiation therapy (IMRT) planning strategies for nasopharyngeal cancer among Korean radiation oncology facilities were investigated. Five institutions with IMRT planning capacity using the same planning system were invited to participate in this study. The institutions were requested to produce the best plan possible for 2 cases that would deliver 70 Gy to the planning target volume of gross tumor (PTV1), 59.4 Gy to the PTV2, and 51.5 Gy to the PTV3 in which elective irradiation was required. The advised fractionation number was 33. The planning parameters, resultant dose distributions, and biological indices were compared. We found 2-3-fold variations in the volume of treatment targets. Similar degree of variation was found in the delineation of normal tissue. The physician-related factors in IMRT planning had more influence on the plan quality. The inhomogeneity index of PTV dose ranged from 4 to 49% in Case 1, and from 5 to 46% in Case 2. Variation in tumor control probabilities for the primary lesion and involved LNs was less marked. Normal tissue complication probabilities for parotid glands and skin showed marked variation. Results from this study suggest that greater efforts in providing training and continuing education in terms of IMRT planning parameters usually set by physician are necessary for the successful implementation of IMRT. PMID:19399266

  16. Dose-Escalated Robotic SBRT for Stage I–II Prostate Cancer

    PubMed Central

    Meier, Robert

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is the precise external delivery of very high-dose radiotherapy to targets in the body, with treatment completed in one to five fractions. SBRT should be an ideal approach for organ-confined prostate cancer because (I) dose-escalation should yield improved rates of cancer control; (II) the unique radiobiology of prostate cancer favors hypofractionation; and (III) the conformal nature of SBRT minimizes high-dose radiation delivery to immediately adjacent organs, potentially reducing complications. This approach is also more convenient for patients, and is cheaper than intensity-modulated radiotherapy (IMRT). Several external beam platforms are capable of delivering SBRT for early-stage prostate cancer, although most of the mature reported series have employed a robotic non-coplanar platform (i.e., CyberKnife). Several large studies report 5-year biochemical relapse rates which compare favorably to IMRT. Rates of late GU toxicity are similar to those seen with IMRT, and rates of late rectal toxicity may be less than with IMRT and low-dose rate brachytherapy. Patient-reported quality of life (QOL) outcomes appear similar to IMRT in the urinary domain. Bowel QOL may be less adversely affected by SBRT than with other radiation modalities. After 5 years of follow-up, SBRT delivered on a robotic platform is yielding outcomes at least as favorable as IMRT, and may be considered appropriate therapy for stage I–II prostate cancer. PMID:25905037

  17. [Intensity-modulated or 3-D conformal radiotherapy combined with chemotherapy with docetaxel and cisplatin for locally advanced esophageal carcinoma].

    PubMed

    Lin, Xiao-dan; Shi, Xing-yuan; Zhou, Tong-chong; Zhang, Wei-jun

    2011-06-01

    To evaluate the therapeutic effect and toxicity of intensity-modulated radiation therapy (IMRT) or three-dimensional conformal radiotherapy combined with chemotherapy (3-DCRT) with docetaxel and cisplatin in the treatment of locally advanced esophageal carcinoma. Sixty patients with locally advanced esophageal carcinoma were randomly assigned in two equal groups to receive IMRT or 3-DCRT, both combined with the chemotherapy with docetaxel and cisplatin. The total dose of radiotherapy was 64 Gy, administered in 30 fractions in 6 weeks. The complete response rate (complete and partial remissions) of IMRT group was 90.0%, significantly higher than the rate of 80.0% in 3-DCRT group (P>0.05). The 1-, 2-, and 3-year survival rates of IMRT group were 86.7%, 70.0%, and 66.7%, as compared to 70.0%, 63.3%, and 63.3% in 3-DCRT group, respectively, showing no significant differences between the two groups (P>0.05). IMRT showed advantages over 3-DCRT in terms of the V20 and V30 parameters of the lung (P<0.05), and the incidences of radiation-induced esophagitis were comparable between the two groups (P>0.05). When combined with the chemotherapy with docetaxel and cisplatin, IMRT appears to be a more effective treatment than 3-DCRT for locally advanced esophageal cancer.

  18. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution.

    PubMed

    Chen, Yi-Jen; Liu, An; Han, Chunhui; Tsai, Peter T; Schultheiss, Timothy E; Pezner, Richard D; Vora, Nilesh; Lim, Dean; Shibata, Stephen; Kernstine, Kemp H; Wong, Jeffrey Y C

    2007-01-01

    We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.

  19. SU-E-T-125: Dosimetric Comparison of Intensity Modulated Radiation Therapy Using Robotic Versus Traditional Linac Platform in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, T; Rella, J; Yang, J

    Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less

  20. SU-E-T-618: Plan Robustness Study of Volumetric-Modulated Arc Therapy Vs. Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Patel, S; Shen, J

    Purpose: Lack of plan robustness may contribute to local failure in volumetric-modulated arc therapy (VMAT) to treat head and neck (H&N) cancer. Thus we compared plan robustness of VMAT with intensity-modulated radiation therapy (IMRT). Methods: VMAT and IMRT plans were created for 9 H&N cancer patients. For each plan, six new perturbed dose distributions were computed — one each for ± 3mm setup deviations along the S-I, A-P and L-R directions. We used three robustness quantification tools: (1) worst-case analysis (WCA); (2) dose-volume histograms (DVHs) band (DVHB); and (3) root-mean-square-dose deviation (RMSD) volume histogram (DDVH). DDVH represents the relative volumemore » (y) on the vertical axis and the RMSD (x) on the horizontal axis. Similar to DVH, this means that y% of the volume of the indicated structure has the RMSD at least x Gy[RBE].The width from the first two methods at different target DVH indices (such as D95 and D5) and the area under the DDVH curves (AUC) for the target were used to indicate plan robustness. In these robustness quantification tools, the smaller the value, the more robust the plan is. Plan robustness evaluation metrics were compared using Wilcoxon test. Results: DVHB showed the width at D95 from IMRT to be larger than from VMAT (unit Gy) [1.59 vs 1.18 (p=0.49)], while the width at D5 from IMRT was found to be slightly larger than from VMAT [0.59 vs 0.54 (p=0.84)]. WCA showed similar results [D95: 3.28 vs 3.00 (p=0.56); D5: 1.68 vs 1.95 (p=0.23)]. DDVH showed the AUC from IMRT to be slightly smaller than from VMAT [1.13 vs 1.15 (p=0.43)]. Conclusion: VMAT plan robustness is comparable to IMRT plan robustness. The plan robustness conclusions from WCA and DVHB are DVH parameter dependent. On the other hand DDVH captures the overall effect of uncertainties on the dose to a volume of interest. NIH/NCI K25CA168984; Eagles Cancer Research Career Development; The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research Mayo ASU Seed Grant; The Kemper Marley Foundation.« less

  1. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kham, E-mail: khamdiep@gmail.com; UT MD Anderson Cancer Center, School of Health Professions—Unit 2, Houston, TX; Cummings, David

    The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle{sup 3} Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle{sup 3} Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum,more » minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume.« less

  3. WE-AB-209-02: A New Inverse Planning Framework with Principle-Based Modeling of Inter-Structural Dosimetric Tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Dong, P; Xing, L

    Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan. Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibilitymore » problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach. Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan. Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.« less

  4. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenfeld, Jonathan D., E-mail: jdschoenfeld@partners.org; Sher, David J.; Norris, Charles M.

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2-2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinomamore » in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions: Treatment of salivary gland malignancies with postoperative IMRT was well tolerated with a high rate of local control. Chemoradiotherapy resulted in excellent local control in a subgroup of patients with adverse prognostic factors and might be warranted in select patients.« less

  5. SU-E-T-164: Clinical Implementation of ASi EPID Panels for QA of IMRT/VMAT Plans.

    PubMed

    Hosier, K; Wu, C; Beck, K; Radevic, M; Asche, D; Bareng, J; Kroner, A; Lehmann, J; Logsdon, M; Dutton, S; Rosenthal, S

    2012-06-01

    To investigate various issues for clinical implementation of aSi EPID panels for IMRT/VMAT QA. Six linacs are used in our clinic for EPID-based plan QA; two Varian Truebeams, two Varian 2100 series, two Elekta Infiniti series. Multiple corrections must be accounted for in the calibration of each panel for dosimetric use. Varian aSi panels are calibrated with standard dark field, flood field, and 40×40 diagonal profile for beam profile correction. Additional corrections to account for off-axis and support arm backscatter are needed for larger field sizes. Since Elekta iViewGT system does not export gantry angle with images, a third-party inclinometer must be physically mounted to back of linac gantry and synchronized with data acquisition via iViewGT PC clock. A T/2 offset correctly correlates image and gantry angle for arc plans due to iView image time stamp at the end of data acquisition for each image. For both Varian and Elekta panels, a 5 MU 10×10 calibration field is used to account for the nonlinear MU to dose response at higher energies. Acquired EPID images are deconvolved via a high pass filter in Fourier space and resultant fluence maps are used to reconstruct a 3D dose 'delivered' to patient using DosimetryCheck. Results are compared to patient 3D dose computed by TPS using a 3D-gamma analysis. 120 IMRT and 100 VMAT cases are reported. Two 3D gamma quantities (Gamma(V10) and Gamma(PTV)) are proposed for evaluating QA results. The Gamma(PTV) is sensitive to MLC offsets while Gamma(V10) is sensitive to gantry rotations. When a 3mm/3% criteria and 90% or higher 3D gamma pass rate is used, all IMRT and 90% of VMAT QA pass QA. After appropriate calibration of aSi panels and setup of image acquisition systems, EPID based 3D dose reconstruction method is found clinically feasible. © 2012 American Association of Physicists in Medicine.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scorsetti, Marta; Bignardi, Mario; Clivio, Alessandro

    Purpose: A planning study was performed to evaluate RapidArc (RA), a volumetric modulated arc technique, on malignant pleural mesothelioma. The benchmark was conventional fixed-field intensity-modulated radiotherapy (IMRT). Methods and materials: The computed tomography data sets of 6 patients were included. The plans for IMRT with nine fixed beams were compared against double-modulated arcs with a single isocenter. All plans were optimized for 15-MV photon beams. The dose prescription was 54 Gy to the planning target volume. The planning objectives for the planning target volume were a minimal dose of >95% and maximal dose of <107%. For the organs at risk,more » the parameters were as follows: contralateral lung, percentage of volume receiving 5 Gy (V{sub 5Gy}) <60%, V{sub 20Gy} < 10%, mean <10.0 Gy; liver, V{sub 30Gy} <33%, mean <31 Gy; heart, V{sub 45Gy} <30%, V{sub 50Gy} <20%, dose received by 1% of the volume (D{sub 1%}) <60 Gy; contralateral kidney, V{sub 15Gy} <20%; spine, D{sub 1%} <45 Gy; esophagus, V{sub 55Gy} <30%; and spleen, V{sub 40Gy} <50%. The monitor units (MUs) and delivery time were scored to measure the treatment efficiency. The pretreatment portal dosimetry scored delivery to the calculation agreement with the Gamma Agreement Index. Results: RA and IMRT provided equivalent coverage and homogeneity. Both techniques fulfilled objectives on organs at risk with a tendency of RA to improve sparing. The conformity index was 1.9 {+-} 0.1 for RA and IMRT. The number of MU/2Gy was 734 {+-} 82 for RA and 2,195 {+-} 317 for IMRT. The planning vs. delivery agreement revealed a Gamma Agreement Index for IMRT of 96.0% {+-} 2.6% and for RA of 95.7% {+-} 1.5%. The treatment time was 3.7 {+-} 0.3min for RA and 13.4 {+-} 0.1min for IMRT. Conclusion: RA demonstrated compared with conventional IMRT, similar target coverage and better dose sparing to the organs at risks. The number of MUs and the time required to deliver a 2-Gy fraction were much lower for RA, allowing the possibility to incorporate this technique in the treatment options for mesothelioma patients.« less

  7. SU-F-BRD-05: Dosimetric Comparison of Protocol-Based SBRT Lung Treatment Modalities: Statistically Significant VMAT Advantages Over Fixed- Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, R; Harrell, A; Geesey, C

    2014-06-15

    Purpose: The purpose of this study is to inter-compare and find statistically significant differences between flattened field fixed-beam (FB) IMRT with flattening-filter free (FFF) volumetric modulated arc therapy (VMAT) for stereotactic body radiation therapy SBRT. Methods: SBRT plans using FB IMRT and FFF VMAT were generated for fifteen SBRT lung patients using 6 MV beams. For each patient, both IMRT and VMAT plans were created for comparison. Plans were generated utilizing RTOG 0915 (peripheral, 10 patients) and RTOG 0813 (medial, 5 patients) lung protocols. Target dose, critical structure dose, and treatment time were compared and tested for statistical significance. Parametersmore » of interest included prescription isodose surface coverage, target dose heterogeneity, high dose spillage (location and volume), low dose spillage (location and volume), lung dose spillage, and critical structure maximum- and volumetric-dose limits. Results: For all criteria, we found equivalent or higher conformality with VMAT plans as well as reduced critical structure doses. Several differences passed a Student's t-test of significance: VMAT reduced the high dose spillage, evaluated with conformality index (CI), by an average of 9.4%±15.1% (p=0.030) compared to IMRT. VMAT plans reduced the lung volume receiving 20 Gy by 16.2%±15.0% (p=0.016) compared with IMRT. For the RTOG 0915 peripheral lesions, the volumes of lung receiving 12.4 Gy and 11.6 Gy were reduced by 27.0%±13.8% and 27.5%±12.6% (for both, p<0.001) in VMAT plans. Of the 26 protocol pass/fail criteria, VMAT plans were able to achieve an average of 0.2±0.7 (p=0.026) more constraints than the IMRT plans. Conclusions: FFF VMAT has dosimetric advantages over fixed beam IMRT for lung SBRT. Significant advantages included increased dose conformity, and reduced organs-at-risk doses. The overall improvements in terms of protocol pass/fail criteria were more modest and will require more patient data to establish difference trends of more statistical significance.« less

  8. Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Wei, Xian-ding; Zhao, Yu-tian

    2014-07-01

    To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed fieldmore » of 6-MV x-rays (16 Gy) and 9-MeV electrons (34 Gy) for the upper supraclavicular region. The common prescription dose was 50 Gy/25 Fx/5 W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V{sub 30} of the ipsilateral lung and V{sub 10}, V{sub 30}, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V{sub 5} and V{sub 10} of the ipsilateral lung and V{sub 5} of the heart were higher on the integrated IMRT plans (p < 0.05) than on conventional plans. Without an increase in the radiation dose to organs at risk, the integrated IMRT treatment plans improved the dose distribution of the supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region.« less

  9. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT.

    PubMed

    Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon

    2006-10-01

    For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the measured neutron dose equivalent among the three therapy machines for both the in vivo and phantom exposures.

  10. SU-F-T-274: Modified Dose Calibration Methods for IMRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W; Westlund, S

    2016-06-15

    Purpose: To investigate IMRT QA uncertainties caused by dose calibration and modify widely used dose calibration procedures to improve IMRT QA accuracy and passing rate. Methods: IMRT QA dose measurement is calibrated using a calibration factor (CF) that is the ratio between measured value and expected value corresponding to the reference fields delivered on a phantom. Two IMRT QA phantoms were used for this study: a 30×30×30 cm3 solid water cube phantom (Cube), and the PTW Octavius phantom. CF was obtained by delivering 100 MUs to the phantoms with different reference fields ranging from 3×3 cm2 to 20×20 cm{sup 2}.more » For Cube, CFs were obtained using the following beam arrangements: 2-AP Field - chamber at dmax, 2-AP Field - chamber at isocenter, 4-beam box - chamber at isocenter, and 8 equally spaced fields and chamber at isocenter. The same plans were delivered on Octavius and CFs were derived for the dose at the isocenter using the above beam arrangements. The Octavius plans were evaluated with PTW-VeriSoft (Gamma criteria of 3%/3mm). Results: Four head and neck IMRT plans were included in this study. For point dose measurement with Cube, the CFs with 4-Field gave the best agreement between measurement and calculation within 4% for large field plans. All the measurement results agreed within 2% for a small field plan. Compared with calibration field sizes, 5×5 to 15×15 were more accurate than other field sizes. For Octavius, 4-Field calibration increased passing rate by up to 10% compared to AP calibration. Passing rate also increased by up to 4% with the increase of field size from 3×3 to 20×20. Conclusion: IMRT QA results are correlated with calibration methods used. The dose calibration using 4-beam box with field sizes from 5×5 to 20×20 can improve IMRT QA accuracy and passing rate.« less

  11. SU-E-T-367: Optimization of DLG Using TG-119 Test Cases and a Weighted Mean Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sintay, B; Vanderstraeten, C; Terrell, J

    2014-06-01

    Purpose: Optimization of the dosimetric leaf gap (DLG) is an important step in commissioning the Eclipse treatment planning system for sliding window intensity-modulated radiation therapy (SW-IMRT) and RapidArc. Often the values needed for optimal dose delivery differ markedly from those measured at commissioning. We present a method to optimize this value using the AAPM TG-119 test cases. Methods: For SW-IMRT and RapidArc, TG-119 based test plans were created using a water-equivalent phantom. Dose distributions measured on film and ion chamber (IC) readings taken in low-gradient regions within the targets were analyzed separately. Since DLG is a single value per energy,more » SW-IMRT and RapidArc must be considered simultaneously. Plans were recalculated using a linear sweep from 0.02cm (the minimum DLG) to 0.3 cm. The calculated point doses were compared to the measured doses for each plan, and based on these comparisons an optimal DLG value was computed for each plan. TG-119 cases are designed to push the system in various ways, thus, a weighted mean of the DLG was computed where the relative importance of each type of plan was given a score from 0.0 to 1.0. Finally, SW-IMRT and RapidArc are assigned an overall weight based on clinical utilization. Our routine patient-QA (PQA) process was performed as independent validation. Results: For a Varian TrueBeam, the optimized DLG varied with σ = 0.044cm for SW-IMRT and σ = 0.035cm for RapidArc. The difference between the weighted mean SW-IMRT and RapidArc value was 0.038cm. We predicted utilization of 25% SW-IMRT and 75% RapidArc. The resulting DLG was ~1mm different than that found by commissioning and produced an average error of <1% for SW-IMRT and RapidArc PQA test cases separately. Conclusion: The weighted mean method presented is a useful tool for determining an optimal DLG value for commissioning Eclipse.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venencia, C; Vacca, N; Garrigo, E

    Purpose: Spine SBRT treatments require high dose to PTV, located close to OAR. Treatment time should be short due to patient condition. The objective of this work is to compare HybridARC (HA) with sliding windows IMRT treatment modality Methods: A 6MV photon beam with 1000MU/min (SRS beam) produced by a NovalisTX (Varian/BrainLAB) equipped with HDMLC was used. The TPS was iPlan v4.5.3 (BrainLAB). Treatment plans comparison was done for 5 patients. Dose prescription was 27Gy in 3 fractions. HA used 1 arc plus 3 (HA), 5 (HA5) and 8 (HA8) IMRT fields. HA plans used OAR high. Between 60–40% ofmore » the prescribed dose was given by the arc. IMRT plans used 15 beams. Treatment times, MU, CI, V50% and V20% was used for plans comparisons. Results: Assuming IMRT plan as reference, the treatment time was reduced by −14.6% with HA8, −8.6% with HA5 and −23% with HA3. Increasing arc dose proportion in HA (arc MU > 2000) requires 2 or more arcs which increments treatment time. HA3 and HA5 exhibits beam hold off for fixed IMRT fields which in some cases need to be split in 2 segments. MU varied +4% with HA8, +3.7% with HA5 and −5% with HA3. CI increased +5% with HA8, +23% with HA5 and +37% with H3. V50% increased +5% with HA8, +43% with HA5 and +62% with HA3. V20% increased +13.2% with HA8, +7.6% with HA5 and +1% with HA3. OARs doses were keep within tolerances in all plans. Conclusion: HybridARC for spine SBRT with 8 fix IMRT gantry angle shows a treatment time reduction, comparable MU and similar dose conformation to dMLC IMRT. HybridARC with 5 or 3 fix IMRT fields produce undesirable beam hold off, worse dose conformation and increments the total volume with 50% of the prescribed dose.« less

  13. Technological Advancements and Error Rates in Radiation Therapy Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui

    2011-11-15

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.« less

  14. SU-E-T-217: Comprehensive Dosimetric Evaluation On 3D-CRT, IMRT and Non-Coplanar Arc Treatment for Prone Accelerated Partial Breast Irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Yan, Y; Ramirez, E

    2015-06-15

    Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less

  15. Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Steven H., E-mail: SHLin@mdanderson.org; Wang Lu; Myles, Bevan

    2012-12-01

    Purpose: Although 3-dimensional conformal radiotherapy (3D-CRT) is the worldwide standard for the treatment of esophageal cancer, intensity modulated radiotherapy (IMRT) improves dose conformality and reduces the radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared with 3D-CRT. Methods and Materials: An analysis was performed of 676 nonrandomized patients (3D-CRT, n=413; IMRT, n=263) with stage Ib-IVa (American Joint Committee on Cancer 2002) esophageal cancers treated with chemoradiotherapy at a single institution from 1998-2008. An inverse probability of treatment weighting and inclusion of propensity score (treatment probability) as amore » covariate were used to compare overall survival time, interval to local failure, and interval to distant metastasis, while accounting for the effects of other clinically relevant covariates. The propensity scores were estimated using logistic regression analysis. Results: A fitted multivariate inverse probability weighted-adjusted Cox model showed that the overall survival time was significantly associated with several well-known prognostic factors, along with the treatment modality (IMRT vs 3D-CRT, hazard ratio 0.72, P<.001). Compared with IMRT, 3D-CRT patients had a significantly greater risk of dying (72.6% vs 52.9%, inverse probability of treatment weighting, log-rank test, P<.0001) and of locoregional recurrence (P=.0038). No difference was seen in cancer-specific mortality (Gray's test, P=.86) or distant metastasis (P=.99) between the 2 groups. An increased cumulative incidence of cardiac death was seen in the 3D-CRT group (P=.049), but most deaths were undocumented (5-year estimate, 11.7% in 3D-CRT vs 5.4% in IMRT group, Gray's test, P=.0029). Conclusions: Overall survival, locoregional control, and noncancer-related death were significantly better after IMRT than after 3D-CRT. Although these results need confirmation, IMRT should be considered for the treatment of esophageal cancer.« less

  16. IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases.

    PubMed

    Wen, Ning; Zhao, Bo; Kim, Jinkoo; Chin-Snyder, Karen; Bellon, Maria; Glide-Hurst, Carri; Barton, Kenneth; Chen, Daiquan; Chetty, Indrin J

    2014-09-08

    The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017-0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high-dose region were 5.9 ± 2.7 (range, 1.4-8.6) and 3.9 ± 2.9 (range, 1.5-8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low-dose region were 5.3 ± 2.6 (range, 1.2-7.4) and 3.7 ± 2.8 (range, 1.8-8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.

  17. Development and validation of MCNPX-based Monte Carlo treatment plan verification system

    PubMed Central

    Jabbari, Iraj; Monadi, Shahram

    2015-01-01

    A Monte Carlo treatment plan verification (MCTPV) system was developed for clinical treatment plan verification (TPV), especially for the conformal and intensity-modulated radiotherapy (IMRT) plans. In the MCTPV, the MCNPX code was used for particle transport through the accelerator head and the patient body. MCTPV has an interface with TiGRT planning system and reads the information which is needed for Monte Carlo calculation transferred in digital image communications in medicine-radiation therapy (DICOM-RT) format. In MCTPV several methods were applied in order to reduce the simulation time. The relative dose distribution of a clinical prostate conformal plan calculated by the MCTPV was compared with that of TiGRT planning system. The results showed well implementation of the beams configuration and patient information in this system. For quantitative evaluation of MCTPV a two-dimensional (2D) diode array (MapCHECK2) and gamma index analysis were used. The gamma passing rate (3%/3 mm) of an IMRT plan was found to be 98.5% for total beams. Also, comparison of the measured and Monte Carlo calculated doses at several points inside an inhomogeneous phantom for 6- and 18-MV photon beams showed a good agreement (within 1.5%). The accuracy and timing results of MCTPV showed that MCTPV could be used very efficiently for additional assessment of complicated plans such as IMRT plan. PMID:26170554

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Pretesh R., E-mail: patel073@mc.duke.edu; Yoo, Sua; Broadwater, Gloria

    Purpose: To assess the impact of increasing experience with intensity-modulated radiation therapy (IMRT) after extrapleural pneumonectomy (EPP) for malignant pleural mesothelioma (MPM). Methods and Materials: The records of all patients who received IMRT following EPP at Duke University Medical Center between 2005 and 2010 were reviewed. Target volumes included the preoperative extent of the pleural space, chest wall incisions, involved nodal stations, and a boost to close/positive surgical margins if applicable. Patients were typically treated with 9-11 beams with gantry angles, collimator rotations, and beam apertures manually fixed to avoid the contalateral lung and to optimize target coverage. Toxicity wasmore » graded retrospectively using National Cancer Institute common toxicity criteria version 4.0. Target coverage and contralateral lung irradiation were evaluated over time by using linear regression. Local control, disease-free survival, and overall survival rates were estimated using the Kaplan-Meier method. Results: Thirty patients received IMRT following EPP; 21 patients also received systemic chemotherapy. Median follow-up was 15 months. The median dose prescribed to the entire ipsilateral hemithorax was 45 Gy (range, 40-50.4 Gy) with a boost of 8-25 Gy in 9 patients. Median survival was 23.2 months. Two-year local control, disease-free survival, and overall survival rates were 47%, 34%, and 50%, respectively. Increasing experience planning MPM cases was associated with improved coverage of planning target volumes (P=.04). Similarly, mean lung dose (P<.01) and lung V5 (volume receiving 5 Gy or more; P<.01) values decreased with increasing experience. Lung toxicity developed after IMRT in 4 (13%) patients at a median of 2.2 months after RT (three grade 3-4 and one grade 5). Lung toxicity developed in 4 of the initial 15 patients vs none of the last 15 patients treated. Conclusions: With increasing experience, target volume coverage improved and dose to the contralateral lung decreased. Rates of pulmonary toxicity were relatively low. However, both local and distant control rates remained suboptimal.« less

  19. Dosimetric Predictors of Hypothyroidism After Radical Intensity-modulated Radiation Therapy for Non-metastatic Nasopharyngeal Carcinoma.

    PubMed

    Lee, V; Chan, Sum-Yin; Choi, Cheuk-Wai; Kwong, D; Lam, Ka-On; Tong, Chi-Chung; Sze, Chun-Kin; Ng, S; Leung, To-Wai; Lee, A

    2016-08-01

    To investigate dosimetric predictors of hypothyroidism after radical intensity-modulated radiation therapy (IMRT) for non-metastatic nasopharyngeal carcinoma (NPC). Patients with non-metastatic NPC treated with radical IMRT from 2008 to 2013 were reviewed. Serum thyroid function tests before and after IMRT were regularly monitored. Univariable and multivariable analyses were carried out for predictors of biochemical and clinical hypothyroidism. In total, 149 patients were recruited. After a median follow-up duration of 3.1 years, 33 (22.1%) and 21 (14.1%) patients developed biochemical and clinical hypothyroidism, respectively. Eight (24.2%) patients who had biochemical hypothyroidism developed clinical hypothyroidism later. Univariable and multivariable analyses revealed that the volume of the thyroid (P=0.002, multivariable), VS60 (the absolute thyroid volume spared from 60 Gy or less) (P<0.001, multivariable) and VS45 (P<0.001, multivariable) of the thyroid were significant predictors of biochemical hypothyroidism. The freedom from biochemical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (mean 90.9 versus 62.6 months; P<0.001) and VS45 ≥ 5 cm(3) (mean 91.9 versus 65.2 months; P=0.001). Similarly multivariable analyses revealed that VS60 (P=0.001) and VS45 (P=0.003) were significant predictors of clinical hypothyroidism. The freedom from clinical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (91.5 versus 73.3 months; P=0.002) and VS45 ≥ 5 cm(3) (91.5 versus 75.9 months; P=0.007). VS60 and VS45 of the thyroid should be considered important dose constraints against hypothyroidism without compromising target coverage during IMRT optimisation for NPC. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. WE-A-BRD-01: Innovation in Radiation Therapy Planning I: Knowledge Guided Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q; Olsen, L

    2014-06-15

    Intensity modulated radiation therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) offer the capability of normal tissues and organs sparing. However, the exact amount of sparing is often unknown until the plan is complete. This lack of prior guidance has led to the iterative, trial and-error approach in current planning practice. Even with this effort the search for patient-specific optimal organ sparing is still strongly influenced by planner's experience. While experience generally helps in maximizing the dosimetric advantages of IMRT/VMAT, there have been several reports showing unnecessarily high degree of plan quality variability at individual institutions and amongst different institutions,more » even with a large amount of experience and the best available tools. Further, when physician and physicist evaluate a plan, the dosimetric quality of the plan is often compared with a standard protocol that ignores individual patient anatomy and tumor characteristic variations. In recent years, developments of knowledge models for clinical IMRT/VMAT planning guidance have shown promising clinical potentials. These knowledge models extract past expert clinical experience into mathematical models that predict dose sparing references at patient-specific level. For physicians and planners, these references provide objective values that reflect best achievable dosimetric constraints. For quality assurance, applying patient-specific dosimetry requirements will enable more quantitative and objective assessment of protocol compliance for complex IMRT planning. Learning Objectives: Modeling and representation of knowledge for knowledge-guided treatment planning. Demonstrations of knowledge-guided treatment planning with a few clinical caanatomical sites. Validation and evaluation of knowledge models for cost and quality effective standardization of plan optimization.« less

  1. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification.

    PubMed

    Sankar, A; Ayyangar, Komanduri M; Nehru, R Mothilal; Kurup, P G Gopalakrishna; Murali, V; Enke, Charles A; Velmurugan, J

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  2. Recurrence in Region of Spared Parotid Gland After Definitive Intensity-Modulated Radiotherapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Donald M.; Lee, Nancy Y.

    2008-03-01

    Purpose: To discuss the implications of three examples of periparotid recurrence after definitive intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods and Materials: We present 3 patients with HNC who underwent definitive IMRT with concurrent chemotherapy and later had treatment failure in or near a spared parotid gland. Two patients had bilateral multilevel nodal disease, and all had Level II nodal disease ipsilateral to the site of recurrence. The patients were treated using dose-painting IMRT with a dose of 70 Gy to the gross tumor volume and 59.4 Gy or 54 Gy to the high-risk or low-risk clinicalmore » tumor volume, respectively. The parotid glands were spared bilaterally. The patients had not undergone any surgical treatment for HNC before radiotherapy. Results: All patients had treatment failure in the region of a spared parotid gland. Failure in the 2 patients with bilateral multilevel nodal involvement occurred in the periparotid lymph nodes. The third patient developed a dermal metastasis near the tail of a spared parotid gland. On pretreatment imaging, the 2 patients with nodal failure had small nonspecific periparotid nodules that showed no hypermetabolic activity on positron emission tomography. Conclusion: For HNC patients receiving definitive IMRT, nonspecific positron emission tomography-negative periparotid nodules on pretreatment imaging should raise the index of suspicion for subclinical disease in the presence of multilevel or Level II nodal metastases. Additional evaluation of such nodules might be indicated before sparing the ipsilateral parotid gland.« less

  3. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 receivedmore » a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.« less

  4. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less

  5. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu; Beg, Muhammad S.; Das, Prajnan

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivitymore » analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.« less

  6. Clinicopathologic Comparison of High-Dose-Rate Endorectal Brachytherapy versus Conventional Chemoradiotherapy in the Neoadjuvant Setting for Resectable Stages II and III Low Rectal Cancer

    PubMed Central

    Smith, Jessica A.; Wild, Aaron T.; Singhi, Aatur; Raman, Siva P.; Qiu, Haoming; Kumar, Rachit; Hacker-Prietz, Amy; Hruban, Ralph H.; Kamel, Ihab R.; Efron, Jonathan; Wick, Elizabeth C.; Azad, Nilofer S.; Diaz, Luis A.; Le, Yi; Armour, Elwood P.; Gearhart, Susan L.; Herman, Joseph M.

    2012-01-01

    Purpose. To assess for differences in clinical, radiologic, and pathologic outcomes between patients with stage II-III rectal adenocarcinoma treated neoadjuvantly with conventional external beam radiotherapy (3D conformal radiotherapy (3DRT) or intensity-modulated radiotherapy (IMRT)) versus high-dose-rate endorectal brachytherapy (EBT). Methods. Patients undergoing neoadjuvant EBT received 4 consecutive daily 6.5 Gy fractions without chemotherapy, while those undergoing 3DRT or IMRT received 28 daily 1.8 Gy fractions with concurrent 5-fluorouracil. Data was collected prospectively for 7 EBT patients and retrospectively for 25 historical 3DRT/IMRT controls. Results. Time to surgery was less for EBT compared to 3DRT and IMRT (P < 0.001). There was a trend towards higher rate of pathologic CR for EBT (P = 0.06). Rates of margin and lymph node positivity at resection were similar for all groups. Acute toxicity was less for EBT compared to 3DRT and IMRT (P = 0.025). Overall and progression-free survival were noninferior for EBT. On MRI, EBT achieved similar complete response rate and reduction in tumor volume as 3DRT and IMRT. Histopathologic comparison showed that EBT resulted in more localized treatment effects and fewer serosal adhesions. Conclusions. EBT offers several practical benefits over conventional radiotherapy techniques and appears to be at least as effective against low rectal cancer as measured by short-term outcomes. PMID:22830003

  7. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    PubMed

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately calculate the dose distribution in lung cancer and can provide a notably effective tool for benchmarking the performance of other dose calculation algorithms within patients.

  8. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk; Kwong, Dora L.W.; Sham, Jonathan S.T.

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months aftermore » IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.« less

  9. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    PubMed Central

    Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan

    2013-01-01

    Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069

  10. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  11. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A; Mohan, R; Liao, Z

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on eachmore » patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.« less

  12. SU-E-T-18: A Comparison of Planning Techniques for Bilateral Reconstructed Chest Wall Patients Undergoing Whole Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volpe, T; Margiasso, R; Saleh, Z

    2015-06-15

    Purpose: As we continuously see more bilateral reconstructed chest wall cases, new challenges are being presented to deliver left-sided breast irradiation. We herein compare three Deep Inspiration Breath Hold (DIBH) planning techniques (tangents, VMAT, and IMRT) and two free breathing techniques (VMAT and IMRT). Methods: Three left-sided chest wall patients with bilateral implants were studied. Tangents, VMAT, and IMRT plans were created for DIBH scans. VMAT and IMRT plans were created for free breathing scans. All plans were normalized so that 95% of the prescription dose was delivered to 95% of the planning target volume (PTV). The maximum point dosemore » was constrained to less than 120% of the prescription dose. Since the success of DIBH delivery largely depends on patient’s ability to perform consistent breath hold during beam on time, smaller number of Monitor Units (MU) is in general desired. For each patient, the following information was collected to compare the planning techniques: heart mean dose, left and right lung V20 Gy, contra-lateral (right) breast mean dose, cord max dose, and MU. Results: The average heart mean dose over all patients are 1561, 692, 985, 1245, and 1121 cGy, for DIBH tangents, VMAT, IMRT, free breathing VMAT and IMRT, respectively. For left lung V20 are 60%, 28%, 26%, 30%, and 29%. For contra-lateral breast mean dose are 244, 687, 616, 783, 438 cGy. MU are 253, 853, 2048, 1035, and 1874 MUs. Conclusion: In the setting of bilateral chest wall reconstruction, opposed tangent beams cannot consistently achieve desired heart and left lung sparing. DIBH consistently achieves better healthy tissue sparing. VMAT appears to be preferential to IMRT for planning and delivering radiation to patients with bilaterally reconstructed chest walls being treated with DIBH.« less

  13. Microionization chamber for reference dosimetry in IMRT verification: clinical implications on OAR dosimetric errors

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.

    2005-03-01

    Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.

  14. SU-F-T-395: Evaluation of Best Dosimetry Achievable with VMAT and IMRT Treatment Techniques Targeting Borderline Resectable Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; Schnell, E; Herman, T

    Purpose: To determine from retrospective study the most appropriate technique for targeting small borderline operable pancreatic cancer surrounding blood vessels by evaluating the dosimetry and normal tissue sparing achievable using Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT). Methods: Treatment plans from ten patients who have undergone treatment with a prescribed dose of 4950 cGy, at 275 cGy per fraction, were analyzed. All plans were replanned using Eclipse TPS (Varian Medical Systems, Palo Alto, CA) with complementary VMAT or IMRT techniques to obtain paired data sets for comparison. The coverage to at least 95% of the plannedmore » target volume (PTV) was normalized to receive 100% of the prescription dose. The normal tissue constraints followed the quantitative analysis of normal tissue effects in the clinic (QUANTEC) guidelines and the organs at risks (OARs) were liver, kidneys, spinal cord and bowel. The plan evaluation was based on conformity index (CI), homogeneity index (HI), uniformity index (UI), DVH parameters, and student’s-t statistics (2 tails). Results: The VMAT technique delivered less maximum dose to the right kidney, left kidney, total kidney, liver, spinal cord, and bowel by 9.3%, 5.9%, 6.7%, 3.9%, 15.1%, 3.9%, and 4.3%, respectively. The averaged V15 for the total kidney was 10.21% for IMRT and 7.29% for VMAT. The averaged V20 for the bowel was 19.89% for IMRT and 14.06% for VMAT. On average, the CI for IMRT was 1.20 and 1.16 for VMAT (p = 0.20). The HI was 0.08 for both techniques (p = 0.91) and UI was 1.05 and 1.06 for IMRT and VMAT respectively (p = 0.59). Conclusion: Both techniques achieve adequate PTV coverage. Although VMAT techniques show better normal tissue sparing from excessive dose, no significant differences were observed. Slight discrepancies may rise from different versions of calculation algorithms.« less

  15. The adoption of new adjuvant radiation therapy modalities among Medicare beneficiaries with breast cancer: clinical correlates and cost implications.

    PubMed

    Roberts, Kenneth B; Soulos, Pamela R; Herrin, Jeph; Yu, James B; Long, Jessica B; Dostaler, Edward; Gross, Cary P

    2013-04-01

    New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Kenneth B.; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut; Soulos, Pamela R.

    2013-04-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient andmore » regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy.« less

  17. SU-F-T-392: Superior Brainstem and Cochlea Sparing with VMAT for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briere, TM; McAleer, MF; Levy, LB

    Purpose: Volumetric arc therapy (VMAT) can provide similar target coverage and normal tissue sparing as IMRT but with shorter treatment times. At our institution VMAT was adopted for the treatment glioblastoma multiforme (GBM) after a small number of test plans demonstrated its non-inferiority. In this study, we compare actual clinical treatment plans for a larger cohort of patients treated with either VMAT or IMRT. Methods: 90 GBM patients were included in this study, 45 treated with IMRT and 45 with VMAT. All planning target volumes (PTVs) were prescribed a dose of 50 Gy, with a simultaneous integrated boost to 60more » Gy. Most IMRT plans used 5 non-coplanar beams, while most VMAT plans used 2 coplanar beams. Statistical analysis was performed using Fisher’s exact test or the Wilcoxon-Mann-Whitney rank sum test. Included in the analysis were patient and treatment characteristics as well as the doses to the target volumes and organs at risk. Results: Treatment times for the VMAT plans were reduced by 5 minutes compared with IMRT. The PTV coverage was similar, with at least 95% covered for all plans, while the median boost PTV dose differed by 0.1 Gy between the IMRT and VMAT cohorts. The doses to the brain, optic chiasm, optic nerves and eyes were not significantly different. The mean dose to the brainstem, however, was 9.4 Gy less with VMAT (p<0.001). The dose to the ipsilateral and contralateral cochleae were respectively 19.7 and 9.5 Gy less (p<0.001). Conclusion: Comparison of clinical treatment plans for separate IMRT and VMAT cohorts demonstrates that VMAT can save substantial treatment time while providing similar target coverage and superior sparing of the brainstem and cochleae. To our knowledge this is the first study to demonstrate this benefit of VMAT in the management of GBM.« less

  18. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Jackie; Suttie, Clare; Bromley, Regina

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less

  19. TU-G-BRD-03: IMRT Dosimetry Differences in An Institution with Community and Academic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Indiana University School of Medicine, Indianapolis, IN; Andersen, A

    Purpose: Radiation outcome among institutions can be interpreted meaningfully if the dose delivery and prescription to the target volume is documented accurately and consistently. ICRU-83 recommended specific guidelines in IMRT for target volume definitions and dose reporting. This retrospective study evaluates the pattern of IMRT dose prescription and recording in an academic institution (AI) and a community hospital (CH) models in a single institution with reference to ICRU-83 recommendation. Materials & Methods: Dosimetric information of 625 (500 from academic and 125 from community) patients treated with IMRT was collected retrospectively from the AI and a CH. The dose-volume histogram (DVH)more » for the target volume of each patient was extracted. Standard dose parameters such as D2, D50, D95, D98, D100, as well as the homogeneity index (HI) defined as (D2-D98)/D50 and monitor units (MUs) were collected. Results: Significant dosimetric variations were observed in disease sites and between AI and CH. The variation in the mean value of D95 for AI is 98.48±4.12 and for CH is 96.41±4.13. A similar pattern was noticed for D50 (104.18±6.04 for AI and 101.05±3.49 for CH). Thus, nearly 95% of patients received dosage higher than 100% to the site viewed by D50 and varied between AI and CH models. The average variation of HI is found to be 0.12±0.08 and 0.11±0.08 for AI and CH model, showing better IMRT treatment plans for academic model compared to community. Conclusion: Even with the implementation of ICRU-83 guidelines, there is a large variation in dose prescription and delivery in IMRT. The variation is institution and site specific. For any meaningful comparison of the IMRT outcome, strict guidelines for dose reporting should be maintained in every institution.« less

  20. WE-D-BRA-06: IMRT QA with ArcCHECK: The MD Anderson Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Suh, Y; Chi, P

    Purpose: The objective of this project was to report our initial IMRT QA results and experience with the SunNuclear ArcCHECK. Methods: Three thousand one-hundred and sixteen cases were treated with IMRT or VMAT at our institution between October 2013 and September 2014. All IMRT/VMAT treatment plans underwent Quality Assurance (QA) using ArcCHECK prior to therapy. For clinical evaluation, a Gamma analysis is performed following QA delivery using the SNC Patient software (Sun Nuclear Corp) at the 3%/3mm level. QA Gamma pass rates were analyzed based on categories of treatment site, technique, and type of MLCs. Our current clinical threshold formore » passing a QA (Tclin) is set at a Gamma pass rate greater than 90%. We recorded the percent of failures for each category, as well as the Gamma pass rate threshold that would Result in 95% of QAs to pass (T95). Results: Using Tclin a failure rate of 5.9% over all QAs was observed. The highest failure rate was observed for gynecological (22%) and the lowest for CNS (0.9%) treatments. T95 was 91% over all QAs and ranged from 73% (gynecological) to 96.5% (CNS) for individual treatments sites. T95 was lower for IMRT and non-HD (high definition) MLCs at 88.5% and 94.5%, respectively, compared to 92.4% and 97.1% for VMAT and HD MLC treatments, respectively. There was a statistically significant difference between the passing rates for IMRT vs. VMAT and for HD MLCs vs. non-HD MLCs (p-values << 0.01). Gynecological, IMRT, and HD MLC treatments typically include more plans with larger field sizes. Conclusion: On average, Tclin with ArcCHECK was consistent with T95, as well as the 90% action level reported in TG-119. However, significant variations between the examined categories suggest a link between field size and QA passing rates and may warrant field size-specific passing rate thresholds.« less

  1. [Dynamic observation on the short-term change of xerostomia after intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma].

    PubMed

    Li, Yanjie; Zhao, Changqing

    2015-01-01

    To dynamically analyze the change of xerostomia in patients with nasopharyngeal carcinoma after radiotherapy by DW MRI. Twenty-three nasopharyngeal carcinoma patients confirmed by pathology were enrolled. Male/Female: 19/4. The age was from 37 to 69 years. The patients were divided into two groups: G1, Dmean<26 Gy, G2, Dmean ≥ 26 Gy. All patients underwent salivary glands examination by DW MRI before IMRT, at the end of IMRT, 6 months and 12 months after IMRT, at the same time the ADC value of salivary glands were calculated. According to the RTOG/EORTC salivary gland injury grading standard and referring the subjective index, the degree of xerostomia was assessed. SPSS 13.0 and SAS 8.2 software were used to analyze the data. At the end of IMRT, the change tendency of ADC in parotid and submandibular glands value was different in patients with different degree of xerostomia (F = 11.52, P < 0.01). At the end of IMRT, a significant difference for degree of xerostomia could be found in patients within different irradiation dose groups (Z = -3.622, P < 0.01). Clinical stage, treatment mode and age had no significant effect on the degree of xerostomia for patients at the end of IMRT (Z value was -0.791, -0.949, 2.488, all P > 0.05). A significant difference of xerostomia degree in patients was found at the various follow-up time after IMRT (χ(2) = 19.59, P < 0.01). There is good correlation between the function of salivary gland and subjective rating of xerostomia in patients with nasopharyngeal carcinoma after radiotherapy. The degrees of salivary gland function and dry mouth in patients with nasopharyngeal carcinoma damage evaluate with illuminated dose increases. The function of salivary gland gradually restored and the degree of dry mouth gradually reduce with the extension of time after radiotherapy.

  2. Planning hybrid intensity modulated radiation therapy for whole-breast irradiation.

    PubMed

    Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orrù, Sivia; Lay, Giancarlo

    2012-09-01

    To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose (∼5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses (∼20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. SU-F-T-522: Dosimetric Study of Junction Dose in Double Isocenter Flatten and Flatten Filter Free IMRT and VMAT Plan Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuvel, K; Yadav, G; Bhushan, M

    2016-06-15

    Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less

  4. Clinical Toxicities and Dosimetric Parameters After Whole-Pelvis Versus Prostate-Only Intensity-Modulated Radiation Therapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deville, Curtiland, E-mail: deville@uphs.upenn.ed; Both, Stefan; Hwang, Wei-Ting

    2010-11-01

    Purpose: To assess whether whole-pelvis (WP) intensity-modulated radiation therapy (IMRT) is associated with increased toxicity compared with prostate-only (PO) IMRT. Methods and Materials: We retrospectively analyzed all patients with prostate cancer undergoing definitive IMRT to 79.2 Gy with concurrent androgen deprivation at our institution from November 2005 to May 2007 with a minimum follow-up of 12 months. Thirty patients received initial WP IMRT to 45 Gy in 1.8-Gy fractions, and thirty patients received PO IMRT. Study patients underwent computed tomography simulation and treatment planning by use of predefined dose constraints. Bladder and rectal dose-volume histograms, maximum genitourinary (GU) and gastrointestinalmore » (GI) Radiation Therapy Oncology Group toxicity grade, and late Grade 2 or greater toxicity-free survival curves were compared between the two groups by use of the Student t test, Fisher exact test, and Kaplan-Meier curve, respectively. Results: Bladder minimum dose, mean dose, median dose, volume receiving 5 Gy, volume receiving 20 Gy, volume receiving 40 Gy, and volume receiving 45 Gy and rectal minimum dose, median dose, and volume receiving 20 Gy were significantly increased in the WP group (all p values < 0.01). Maximum acute GI toxicity was limited to Grade 2 and was significantly increased in the WP group at 50% vs. 13% the PO group (p = 0.006). With a median follow-up of 24 months (range, 12-35 months), there was no difference in late GI toxicity (p = 0.884) or in acute or late GU toxicity. Conclusions: Despite dosimetric differences in the volume of bowel, bladder, and rectum irradiated in the low-dose and median-dose regions, WP IMRT results only in a clinically significant increase in acute GI toxicity, in comparison to PO IMRT, with no difference in GU or late GI toxicity.« less

  5. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR.

    PubMed

    Choi, Chang Heon; Park, So-Yeon; Kim, Jung-In; Kim, Jin Ho; Kim, Kyubo; Carlson, Joel; Park, Jong Min

    2017-02-01

    To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) plans for spine stereotactic ablative radiotherapy (SABR). A total of 20 patients with spine metastasis were retrospectively selected. For each patient, a tri-Co-60 IMRT plan and a volumetric-modulated arc therapy (VMAT) plan were generated. The spinal cords were defined based on MR images for the tri-Co-60 IMRT, while isotropic 1-mm margins were added to the spinal cords for the VMAT plans. The VMAT plans were generated with 10-MV flattening filter-free photon beams of TrueBeam STx ™ (Varian Medical Systems, Palo Alto, CA), while the tri-Co-60 IMRT plans were generated with the ViewRay ™ system (ViewRay inc., Cleveland, OH). The initial prescription dose was 18 Gy (1 fraction). If the tolerance dose of the spinal cord was not met, the prescription dose was reduced until the spinal cord tolerance dose was satisfied. The mean dose to the target volumes, conformity index and homogeneity index of the VMAT and tri-Co-60 IMRT were 17.8 ± 0.8 vs 13.7 ± 3.9 Gy, 0.85 ± 0.20 vs 1.58 ± 1.29 and 0.09 ± 0.04 vs 0.24 ± 0.19, respectively. The integral doses and beam-on times were 16,570 ± 1768 vs 22,087 ± 2.986 Gy cm 3 and 3.95 ± 1.13 vs 48.82 ± 10.44 min, respectively. The tri-Co-60 IMRT seems inappropriate for spine SABR compared with VMAT. Advances in knowledge: For spine SABR, the tri-Co-60 IMRT is inappropriate owing to the large penumbra, large leaf width and low dose rate of the ViewRay system.

  6. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR

    PubMed Central

    Choi, Chang Heon; Park, So-Yeon; Kim, Jung-in; Kim, Jin Ho; Kim, Kyubo; Carlson, Joel

    2017-01-01

    Objective: To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) plans for spine stereotactic ablative radiotherapy (SABR). Methods: A total of 20 patients with spine metastasis were retrospectively selected. For each patient, a tri-Co-60 IMRT plan and a volumetric-modulated arc therapy (VMAT) plan were generated. The spinal cords were defined based on MR images for the tri-Co-60 IMRT, while isotropic 1-mm margins were added to the spinal cords for the VMAT plans. The VMAT plans were generated with 10-MV flattening filter-free photon beams of TrueBeam STx™ (Varian Medical Systems, Palo Alto, CA), while the tri-Co-60 IMRT plans were generated with the ViewRay™ system (ViewRay inc., Cleveland, OH). The initial prescription dose was 18 Gy (1 fraction). If the tolerance dose of the spinal cord was not met, the prescription dose was reduced until the spinal cord tolerance dose was satisfied. Results: The mean dose to the target volumes, conformity index and homogeneity index of the VMAT and tri-Co-60 IMRT were 17.8 ± 0.8 vs 13.7 ± 3.9 Gy, 0.85 ± 0.20 vs 1.58 ± 1.29 and 0.09 ± 0.04 vs 0.24 ± 0.19, respectively. The integral doses and beam-on times were 16,570 ± 1768 vs 22,087 ± 2.986 Gy cm3 and 3.95 ± 1.13 vs 48.82 ± 10.44 min, respectively. Conclusion: The tri-Co-60 IMRT seems inappropriate for spine SABR compared with VMAT. Advances in knowledge: For spine SABR, the tri-Co-60 IMRT is inappropriate owing to the large penumbra, large leaf width and low dose rate of the ViewRay system. PMID:27781486

  7. Preliminary analysis of the sequential simultaneous integrated boost technique for intensity-modulated radiotherapy for head and neck cancers.

    PubMed

    Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki

    2016-07-01

    The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. Dosimetric study and in-vivo dose verification for conformal avoidance treatment of anal adenocarcinoma using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Chunhui; Chen Yijen; Liu An

    2007-04-01

    This study evaluated the efficacy of using helical tomotherapy for conformal avoidance treatment of anal adenocarcinoma. We retrospectively generated step-and-shoot intensity-modulated radiotherapy (sIMRT) plans and helical tomotherapy plans for two anal cancer patients, one male and one female, who were treated by the sIMRT technique. Dose parameters for the planning target volume (PTV) and the organs-at-risk (OARs) were compared between the sIMRT and the helical tomotherapy plans. The helical tomotherapy plans showed better dose homogeneity in the PTV, better dose conformity around the PTV, and, therefore, better sparing of nearby OARs compared with the sIMRT plans. In-vivo skin dose measurementsmore » were performed during conformal avoidance helical tomotherapy treatment of an anal cancer patient to verify adequate delivery of skin dose and sparing of OARs.« less

  9. SU-E-T-192: FMEA Severity Scores - Do We Really Know?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonigan, J; Johnson, J; Kry, S

    2014-06-01

    Purpose: Failure modes and effects analysis (FMEA) is a subjective risk mitigation technique that has not been applied to physics-specific quality management practices. There is a need for quantitative FMEA data as called for in the literature. This work focuses specifically on quantifying FMEA severity scores for physics components of IMRT delivery and comparing to subjective scores. Methods: Eleven physical failure modes (FMs) for head and neck IMRT dose calculation and delivery are examined near commonly accepted tolerance criteria levels. Phantom treatment planning studies and dosimetry measurements (requiring decommissioning in several cases) are performed to determine the magnitude of dosemore » delivery errors for the FMs (i.e., severity of the FM). Resultant quantitative severity scores are compared to FMEA scores obtained through an international survey and focus group studies. Results: Physical measurements for six FMs have resulted in significant PTV dose errors up to 4.3% as well as close to 1 mm significant distance-to-agreement error between PTV and OAR. Of the 129 survey responses, the vast majority of the responders used Varian machines with Pinnacle and Eclipse planning systems. The average years of experience was 17, yet familiarity with FMEA less than expected. Survey reports perception of dose delivery error magnitude varies widely, in some cases 50% difference in dose delivery error expected amongst respondents. Substantial variance is also seen for all FMs in occurrence, detectability, and severity scores assigned with average variance values of 5.5, 4.6, and 2.2, respectively. Survey shows for MLC positional FM(2mm) average of 7.6% dose error expected (range 0–50%) compared to 2% error seen in measurement. Analysis of ranking in survey, treatment planning studies, and quantitative value comparison will be presented. Conclusion: Resultant quantitative severity scores will expand the utility of FMEA for radiotherapy and verify accuracy of FMEA results compared to highly variable subjective scores.« less

  10. Evaluation of the radiobiological gamma index with motion interplay in tangential IMRT breast treatment

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Das, Indra J.; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Tamari, Kiesuke; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2016-01-01

    The purpose of this study was to evaluate the impact of the motion interplay effect in early-stage left-sided breast cancer intensity-modulated radiation therapy (IMRT), incorporating the radiobiological gamma index (RGI). The IMRT dosimetry for various breathing amplitudes and cycles was investigated in 10 patients. The predicted dose was calculated using the convolution of segmented measured doses. The physical gamma index (PGI) of the planning target volume (PTV) and the organs at risk (OAR) was calculated by comparing the original with the predicted dose distributions. The RGI was calculated from the PGI using the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The predicted mean dose and the generalized equivalent uniform dose (gEUD) to the target with various breathing amplitudes were lower than the original dose (P < 0.01). The predicted mean dose and gEUD to the OARs with motion were higher than for the original dose to the OARs (P < 0.01). However, the predicted data did not differ significantly between the various breathing cycles for either the PTV or the OARs. The mean RGI gamma passing rate for the PTV was higher than that for the PGI (P < 0.01), and for OARs, the RGI values were higher than those for the PGI (P < 0.01). The gamma passing rates of the RGI for the target and the OARs other than the contralateral lung differed significantly from those of the PGI under organ motion. Provided an NTCP value <0.05 is considered acceptable, it may be possible, by taking breathing motion into consideration, to escalate the dose to achieve the PTV coverage without compromising the TCP. PMID:27534793

  11. Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer.

    PubMed

    Smith, Wade P; Kim, Minsun; Holdsworth, Clay; Liao, Jay; Phillips, Mark H

    2016-03-11

    To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. An in-house treatment planning system was modified to include multiobjective inverse planning, a probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans. The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans, and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in agreement with an independent clinical study. The radiation therapy model proposed has integrated a number of different physical, biological and clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning that can be improved and represents a more detailed description of the therapy process. A Markov model was implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could provide a practical, quantitative method for making difficult clinical decisions.

  12. Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field

    NASA Astrophysics Data System (ADS)

    Paganetti, Harald; Athar, Basit S.; Moteabbed, Maryam; Adams, Judith A.; Schneider, Uwe; Yock, Torunn I.

    2012-10-01

    There is clinical evidence that second malignancies in radiation therapy occur mainly within the beam path, i.e. in the medium or high-dose region. The purpose of this study was to assess the risk for developing a radiation-induced tumor within the treated volume and to compare this risk for proton therapy and intensity-modulated photon therapy (IMRT). Instead of using data for specific patients we have created a representative scenario. Fully contoured age- and gender-specific whole body phantoms (4 year and 14 year old) were uploaded into a treatment planning system and tumor volumes were contoured based on patients treated for optic glioma and vertebral body Ewing's sarcoma. Treatment plans for IMRT and proton therapy treatments were generated. Lifetime attributable risks (LARs) for developing a second malignancy were calculated using a risk model considering cell kill, mutation, repopulation, as well as inhomogeneous organ doses. For standard fractionation schemes, the LAR for developing a second malignancy from radiation therapy alone was found to be up to 2.7% for a 4 year old optic glioma patient treated with IMRT considering a soft-tissue carcinoma risk model only. Sarcoma risks were found to be below 1% in all cases. For a 14 year old, risks were found to be about a factor of 2 lower. For Ewing's sarcoma cases the risks based on a sarcoma model were typically higher than the carcinoma risks, i.e. LAR up to 1.3% for soft-tissue sarcoma. In all cases, the risk from proton therapy turned out to be lower by at least a factor of 2 and up to a factor of 10. This is mainly due to lower total energy deposited in the patient when using proton beams. However, the comparison of a three-field and four-field proton plan also shows that the distribution of the dose, i.e. the particular treatment plan, plays a role. When using different fractionation schemes, the estimated risks roughly scale with the total dose difference in%. In conclusion, proton therapy can significantly reduce the risk for developing an in-field second malignancy. The risk depends on treatment planning parameters, i.e. an analysis based on our formalism could be applied within treatment planning programs to guide treatment plans for pediatric patients.

  13. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less

  14. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forde, Elizabeth, E-mail: eforde@tcd.ie; Kneebone, Andrew; Northern Clinical School, University of Sydney, New South Wales

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for meanmore » dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.« less

  15. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiahao, E-mail: mashenglin@medmail.com.cn; Li, Xiadong; Deng, Qinghua

    2015-10-01

    The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor controlmore » probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan, Ellen M., E-mail: ellen.donovan@icr.ac.u; Ciurlionis, Laura; Fairfoul, Jamie

    Purpose: To establish planning solutions for a concomitant three-level radiation dose distribution to the breast using linear accelerator- or tomotherapy-based intensity-modulated radiotherapy (IMRT), for the U.K. Intensity Modulated and Partial Organ (IMPORT) High trial. Methods and Materials: Computed tomography data sets for 9 patients undergoing breast conservation surgery with implanted tumor bed gold markers were used to prepare three-level dose distributions encompassing the whole breast (36 Gy), partial breast (40 Gy), and tumor bed boost (48 or 53 Gy) treated concomitantly in 15 fractions within 3 weeks. Forward and inverse planned IMRT and tomotherapy were investigated as solutions. A standardmore » electron field was compared with a photon field arrangement encompassing the tumor bed boost volume. The out-of-field doses were measured for all methods. Results: Dose-volume constraints of volume >90% receiving 32.4 Gy and volume >95% receiving 50.4 Gy for the whole breast and tumor bed were achieved. The constraint of volume >90% receiving 36 Gy for the partial breast was fulfilled in the inverse IMRT and tomotherapy plans and in 7 of 9 cases of a forward planned IMRT distribution. An electron boost to the tumor bed was inadequate in 8 of 9 cases. The IMRT methods delivered a greater whole body dose than the standard breast tangents. A contralateral lung volume >2.5 Gy was increased in the inverse IMRT and tomotherapy plans, although it did not exceed the constraint. Conclusion: We have demonstrated a set of widely applicable solutions that fulfilled the stringent clinical trial requirements for the delivery of a concomitant three-level dose distribution to the breast.« less

  17. Poster - 33: Dosimetry Comparison of Prone Breast Forward and Inverse Treatment planning considering daily setup variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Runqing; Zhan, Lixin; Osei, Ernest

    2016-08-15

    Introduction: The purpose of this study is to investigate the effects of daily setup variations on prone breast forward field-in-field (FinF) and inverse IMRT treatment planning. Methods: Rando Phantom (Left breast) and Pixy phantom (Right breast) were built and CT scanned in prone position. The treatment planning (TP) is performed in Eclipse TP system. Forward FinF plan and inverse IMRT plan were created to satisfy the CTV coverage and OARs criteria. The daily setup variations were assumed to be 5 mm at left-right, superior-inferior, and anterior-posterior directions. The DVHs of CTV coverage and OARs were compared for both forward FinFmore » plan and inverse IMRT plans due to 5mm setup variation. Results and Discussions: DVHs of CTV coverage had fewer variations for 5m setup variation for forward FinF and inverse IMRT plan for both phantoms. However, for the setup variations in the left-right direction, the DVH of CTV coverage of IMRT plan showed the worst variation due to lateral setup variation for both phantoms. For anterior-posterior variation, the CTV could not get full coverage when the breast chest wall is shallow; however, with the guidance of MV imaging, breast chest wall will be checked during the MV imaging setup. So the setup variations have more effects on inverse IMRT plan, compared to forward FinF plan, especially in the left-right direction. Conclusions: The Forward FinF plan was recommended clinically considering daily setup variation.« less

  18. Protons in head-and-neck cancer: bridging the gap of evidence.

    PubMed

    Ramaekers, Bram L T; Grutters, Janneke P C; Pijls-Johannesma, Madelon; Lambin, Philippe; Joore, Manuela A; Langendijk, Johannes A

    2013-04-01

    To use Normal Tissue Complication Probability (NTCP) models and comparative planning studies to explore the (cost-)effectiveness of swallowing sparing intensity modulated proton radiotherapy (IMPT) compared with swallowing sparing intensity modulated radiotherapy with photons (IMRT) in head and neck cancer (HNC). A Markov model was constructed to examine and compare the costs and quality-adjusted life years (QALYs) of the following strategies: (1) IMPT for all patients; (2) IMRT for all patients; and (3) IMPT if efficient. The assumption of equal survival for IMPT and IMRT in the base case analysis was relaxed in a sensitivity analysis. Intensity modulated proton radiation therapy and IMRT for all patients yielded 6.620 and 6.520 QALYs and cost €50,989 and €41,038, respectively. Intensity modulated proton radiation therapy if efficient yielded 6.563 QALYs and cost €43,650. The incremental cost-effectiveness ratio of IMPT if efficient versus IMRT for all patients was €60,278 per QALY gained. In the sensitivity analysis, IMRT was more effective (0.967 QALYs) and less expensive (€8218) and thus dominated IMPT for all patients. Cost-effectiveness analysis based on normal tissue complication probability models and planning studies proved feasible and informative and enables the analysis of individualized strategies. The increased effectiveness of IMPT does not seem to outweigh the higher costs for all head-and-neck cancer patients. However, when assuming equal survival among both modalities, there seems to be value in identifying those patients for whom IMPT is cost-effective. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients.

    PubMed

    Qi, Zhen-Yu; Deng, Xiao-Wu; Huang, Shao-Min; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas

    2011-08-01

    A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 × 20 cm(2), MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360°, and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer.

    PubMed

    Wu, V W C; Sham, J S T; Kwong, D L W

    2004-07-01

    The aim of this study is to demonstrate the use of inverse planning in three-dimensional conformal radiation therapy (3DCRT) of oesophageal cancer patients and to evaluate its dosimetric results by comparing them with forward planning of 3DCRT and inverse planning of intensity-modulated radiotherapy (IMRT). For each of the 15 oesophageal cancer patients in this study, the forward 3DCRT, inverse 3DCRT and inverse IMRT plans were produced using the FOCUS treatment planning system. The dosimetric results and the planner's time associated with each of the treatment plans were recorded for comparison. The inverse 3DCRT plans showed similar dosimetric results to the forward plans in the planning target volume (PTV) and organs at risk (OARs). However, they were inferior to that of the IMRT plans in terms of tumour control probability and target dose conformity. Furthermore, the inverse 3DCRT plans were less effective in reducing the percentage lung volume receiving a dose below 25 Gy when compared with the IMRT plans. The inverse 3DCRT plans delivered a similar heart dose as in the forward plans, but higher dose than the IMRT plans. The inverse 3DCRT plans significantly reduced the operator's time by 2.5 fold relative to the forward plans. In conclusion, inverse planning for 3DCRT is a reasonable alternative to the forward planning for oesophageal cancer patients with reduction of the operator's time. However, IMRT has the better potential to allow further dose escalation and improvement of tumour control.

  1. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Neil B.; Stein, Nicholas F.; LaQuaglia, Michael P.

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximalmore » surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves hematologic toxicity in particular. Although the long-term efficacy of current treatment options remains disappointing, the improved therapeutic index of IMRT may aid in generalizing its use and allowing the addition of novel approaches such as intraperitoneal immunotherapy.« less

  2. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de; Pohl, Fabian; Weidner, Karin

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to themore » average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.« less

  3. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams.

    PubMed

    Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive

    2007-11-01

    The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.

  4. SU-F-T-283: A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, A; Wu, Q; Adamson, J

    Purpose: Varian’s electronic portal imaging device (EPID) based portal dosimetry tool is a popular and effective means of performing IMRT QA. EPIDs for older models of the TrueBeam accelerator utilize a 40cmx30cm Image Detection Unit (IDU) that saturates at the center for standard source to imager distances with high dose rate flattening filter free (FFF) beams. This makes portal dosimetry not possible and an alternative means of IMRT QA necessary. We developed a filter that would attenuate the beam to a dose rate measureable by the IDU for portal dosimetry IMRT QA. Methods: Multipurpose 304 stainless steel plates were placedmore » on an accessory tray to attenuate the beam. Profiles of an open field measured on the IDU were acquired with varying number of plates to assess the thickness needed to reduce the maximum dose rates of 6XFFF and 10XFFF beams to measurable levels. A new portal dose image prediction (PDIP) model was commissioned based on open field measurements with plates in position, and a modified beam profile was input to portal dosimetry calibration at the console to empirically correct for attenuation and scatter. The portal dosimetry tool was used to assess agreement between predicted and measured doses for open 25×25cm{sup 2} fields and intensity modulated fields using 6XFFF and 10XFFF beams. Results: Thicknesses of 2.5cm and 3.8cm of steel were required to reduce the highest dose rates to a measureable level for 6XFFF and 10XFFF, respectively. Gamma analysis using a 3%/3mm relative criterion with the filter in place and using the new PDIP model resulted in 98.2% and 93.6% of pixels passing while intensity modulated fields showed passing rates of 98.2% and 99.0%. Conclusion: Use of the filter allows for portal dosimetry to be used for IMRT QA of FFF plans in place of purchasing a second option for IMRT QA.« less

  5. Dosimetric Predictors of Radiation-induced Acute Nausea and Vomiting in IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Victor H.F., E-mail: vhflee@hku.hk; Ng, Sherry C.Y.; Leung, T.W.

    Purpose: We wanted to investigate dosimetric parameters that would predict radiation-induced acute nausea and vomiting in intensity-modulated radiation therapy (IMRT) for undifferentiated carcinoma of the nasopharynx (NPC). Methods and Materials: Forty-nine consecutive patients with newly diagnosed NPC were treated with IMRT alone in this prospective study. Patients receiving any form of chemotherapy were excluded. The dorsal vagal complex (DVC) as well as the left and right vestibules (VB-L and VB-R, respectively) were contoured on planning computed tomography images. A structure combining both the VB-L and the VB-R, named VB-T, was also generated. All structures were labeled organs at risk (OAR).more » A 3-mm three-dimensional margin was added to these structures and labeled DVC+3 mm, VB-L+3 mm, VB-R+3 mm, and VB-T+3 mm to account for physiological body motion and setup error. No weightings were given to these structures during optimization in treatment planning. Dosimetric parameters were recorded from dose-volume histograms. Statistical analysis of parameters' association with nausea and vomiting was performed using univariate and multivariate logistic regression. Results: Six patients (12.2%) reported Grade 1 nausea, and 8 patients (16.3%) reported Grade 2 nausea. Also, 4 patients (8.2%) complained of Grade 1 vomiting, and 4 patients (8.2%) experienced Grade 2 vomiting. No patients developed protracted nausea and vomiting after completion of IMRT. For radiation-induced acute nausea, V40 (percentage volume receiving at least 40Gy) to the VB-T and V40>=80% to the VB-T were predictors, using univariate analysis. On multivariate analysis, V40>=80% to the VB-T was the only predictor. There were no predictors of radiation-induced acute vomiting, as the number of events was too small for analysis. Conclusions: This is the first study demonstrating that a V40 to the VB-T is predictive of radiation-induced acute nausea. The vestibules should be labeled as sensitive OARs, and weightings should be considered for dose sparing during optimization in the treatment planning of IMRT.« less

  6. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm.

    PubMed

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use.

  7. SU-C-BRC-04: Efficient Dose Calculation Algorithm for FFF IMRT with a Simplified Bivariate Gaussian Source Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F; Park, J; Barraclough, B

    2016-06-15

    Purpose: To develop an efficient and accurate independent dose calculation algorithm with a simplified analytical source model for the quality assurance and safe delivery of Flattening Filter Free (FFF)-IMRT on an Elekta Versa HD. Methods: The source model consisted of a point source and a 2D bivariate Gaussian source, respectively modeling the primary photons and the combined effect of head scatter, monitor chamber backscatter and collimator exchange effect. The in-air fluence was firstly calculated by back-projecting the edges of beam defining devices onto the source plane and integrating the visible source distribution. The effect of the rounded MLC leaf end,more » tongue-and-groove and interleaf transmission was taken into account in the back-projection. The in-air fluence was then modified with a fourth degree polynomial modeling the cone-shaped dose distribution of FFF beams. Planar dose distribution was obtained by convolving the in-air fluence with a dose deposition kernel (DDK) consisting of the sum of three 2D Gaussian functions. The parameters of the source model and the DDK were commissioned using measured in-air output factors (Sc) and cross beam profiles, respectively. A novel method was used to eliminate the volume averaging effect of ion chambers in determining the DDK. Planar dose distributions of five head-and-neck FFF-IMRT plans were calculated and compared against measurements performed with a 2D diode array (MapCHECK™) to validate the accuracy of the algorithm. Results: The proposed source model predicted Sc for both 6MV and 10MV with an accuracy better than 0.1%. With a stringent gamma criterion (2%/2mm/local difference), the passing rate of the FFF-IMRT dose calculation was 97.2±2.6%. Conclusion: The removal of the flattening filter represents a simplification of the head structure which allows the use of a simpler source model for very accurate dose calculation. The proposed algorithm offers an effective way to ensure the safe delivery of FFF-IMRT.« less

  8. Development of an expanded-field irradiation technique using a gimbaled x-ray head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Tomohiro; Miyabe, Yuki, E-mail: miyabe@kuhp.kyoto-u.ac.jp; Yamada, Masahiro

    2014-10-15

    Purpose: The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Methods: Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left–right (LR) and superior–inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacentmore » regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured dose distribution. Results: The field sizes, penumbrae, flatness, and symmetry of the center- and off-adjacent expanded-fields were 230.2–232.1 mm, 6.8–10.7 mm, 2.3%–5.1%, and −0.5% to −0.4%, respectively, at a depth of 100 mm. Similarly, the field sizes, penumbrae, flatness, and symmetry of dynamic segment irradiation on the LR axis were 219.2 mm, 6.0–6.2 mm, 3.4%, and −0.1%, respectively, at a depth of 100 mm. In the area of expanded-IMRT dose distribution, the passing rate of 5% dose difference was 85.8% between measurements and simulation, and the 3%/3 mm gamma passing rate was 96.4%. Conclusions: Expanded-field irradiation techniques were developed using a gimbaled x-ray head. The techniques effectively extend target areas, as required when whole-breast irradiation or head-and-neck IMRT is contemplated.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Megan E.; Chen, Allen M.; Bucci, M. Kara

    Purpose: To report the clinical outcome of patients treated with intensity-modulated radiation therapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 1998 and 2004, 36 patients with malignancies of the sinonasal region were treated with IMRT. Thirty-two patients (89%) were treated in the postoperative setting after gross total resection. Treatment plans were designed to provide a dose of 70 Gy to 95% or more of the gross tumor volume (GTV) and 60 Gy to 95% or more of the clinical tumor volume (CTV) while sparing neighboring critical structures including the optic chiasm, optic nerves,more » eyes, and brainstem. The primary sites were: 13 ethmoid sinus, 10 maxillary sinus, 7 nasal cavity, and 6 other. Histology was: 12 squamous cell, 7 esthesioneuroblastoma, 5 adenoid cystic, 5 undifferentiated, 5 adenocarcinoma, and 2 other. Median follow-up was 51 months among surviving patients (range, 9-82 months). Results: The 2-year and 5-year estimates of local control were 62% and 58%, respectively. One patient developed isolated distant metastasis, and none developed isolated regional failure. The 5-year rates of disease-free and overall survival were 55% and 45%, respectively. The incidence of ocular toxicity was minimal with no patients reporting decreased vision. Late complications included xerophthalmia (1 patient), lacrimal stenosis (1 patient), and cataract (1 patient). Conclusion: Although IMRT for malignancies of the sinonasal region does not appear to lead to significant improvements in disease control, the low incidence of complications is encouraging.« less

  10. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer.

    PubMed

    Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M

    2009-07-01

    The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.

  11. Improved outcomes with intensity modulated radiation therapy combined with temozolomide for newly diagnosed glioblastoma multiforme.

    PubMed

    Aherne, Noel J; Benjamin, Linus C; Horsley, Patrick J; Silva, Thomaz; Wilcox, Shea; Amalaseelan, Julan; Dwyer, Patrick; Tahir, Abdul M R; Hill, Jacques; Last, Andrew; Hansen, Carmen; McLachlan, Craig S; Lee, Yvonne L; McKay, Michael J; Shakespeare, Thomas P

    2014-01-01

    Purpose. Glioblastoma multiforme (GBM) is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT) is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT) in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy) and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months). We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  12. Improved Outcomes with Intensity Modulated Radiation Therapy Combined with Temozolomide for Newly Diagnosed Glioblastoma Multiforme

    PubMed Central

    Aherne, Noel J.; Benjamin, Linus C.; Horsley, Patrick J.; Silva, Thomaz; Wilcox, Shea; Amalaseelan, Julan; Dwyer, Patrick; Tahir, Abdul M. R.; Hill, Jacques; Last, Andrew; Hansen, Carmen; McLachlan, Craig S.; Lee, Yvonne L.; McKay, Michael J.; Shakespeare, Thomas P.

    2014-01-01

    Purpose. Glioblastoma multiforme (GBM) is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT) is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT) in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy) and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months). We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM. PMID:24563782

  13. Dosimetric effect of Elekta Beam Modulator micromultileaf in three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carosi, Alessandra, E-mail: alessandra.carosi@katamail.com; Ingrosso, Gianluca; Ponti, Elisabetta

    2014-07-01

    The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular,more » we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.« less

  14. Implementation of a volumetric modulated arc therapy treatment planning solution for kidney and adrenal stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, Marcus, E-mail: Marcus.Sonier@bccancer.bc.ca; Chu, William; Department of Radiation Oncology, University of Toronto, Toronto, ON

    To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotacticmore » body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.« less

  15. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Michael, E-mail: mng@radoncvic.com.au; Leong, Trevor; University of Melbourne

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steeringmore » committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.« less

  16. Patterns of failure and survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy in Saudi Arabia.

    PubMed

    Maklad, Ahmed Marzouk; Bayoumi, Yasser; Senosy Hassan, Mohamed Abdalazez; Elawadi, AbuSaleh A; AlHussain, Hussain; Elyamany, Ashraf; Aldhahri, Saleh F; Al-Qahtani, Khalid Hussain; AlQahtani, Mubarak; Tunio, Mutahir A

    2016-01-01

    We aimed to investigate the patterns of failure (locoregional and distant metastasis), associated factors, and treatment outcomes in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy (IMRT) combined with chemotherapy. From April 2006 to December 2011, 68 nasopharyngeal carcinoma patients were treated with IMRT and chemotherapy at our hospital. Median radiation doses delivered to gross tumor volume and positive neck nodes were 66-70 Gy, 63 Gy to clinical target volume, and 50.4-56 Gy to clinically negative neck. The clinical toxicities, patterns of failures, locoregional control, distant metastasis control, disease-free survival, and overall survival were observed. The median follow-up time was 52.2 months (range: 11-87 months). Epstein-Barr virus infection was positive in 63.2% of patients. Overall disease failure developed in 21 patients, of whom 85.8% belonged to stage III/IV disease. Among these, there were seven locoregional recurrences, three regional recurrences with distant metastases, and eleven distant metastases. The median interval from the date of diagnosis to failure was 26.5 months (range: 16-50 months). Six of ten (60%) locoregional recurrences were treated with reirradiation ± concurrent chemotherapy. The 5-year locoregional control, distant metastasis control, disease-free survival, and overall survival rates of whole cohort were 81.1%, 74.3%, 60.1%, and 73.4%, respectively. Cox regression analyses revealed that neoadjuvant chemotherapy, age, and Epstein-Barr virus were independent predictors for disease-free survival. Neoadjuvant chemotherapy followed by IMRT with or without chemotherapy improves the long-term survival of Saudi patients with nasopharyngeal carcinoma. Distant metastasis was the main pattern of treatment failure. Neoadjuvant chemotherapy, age, and Epstein-Barr virus status before IMRT were important independent prognostic factors.

  17. Correlation of Osteoradionecrosis and Dental Events With Dosimetric Parameters in Intensity-Modulated Radiation Therapy for Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Estilo, Cherry L.; Wolden, Suzanne L.

    Purpose: Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. Methods and Materials: From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845more » cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. Results: With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. Conclusions: ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions.« less

  18. A detailed evaluation of TomoDirect 3DCRT planning for whole-breast radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Emma C.; Rabinovitch, Rachel; Ryan, Nicole E.

    2013-01-01

    The goal of this work was to develop planning strategies for whole-breast radiotherapy (WBRT) using TomoDirect three-dimensional conformal radiation therapy (TD-3DCRT) and to compare TD-3DCRT with conventional 3DCRT and TD intensity-modulated radiation therapy (TD-IMRT) to evaluate differences in WBRT plan quality. Computed tomography (CT) images of 10 women were used to generate 150 WBRT plans, varying in target structures, field width (FW), pitch, and number of beams. Effects on target and external maximum doses (EMD), organ-at-risk (OAR) doses, and treatment time were assessed for each parameter to establish an optimal planning technique. Using this technique, TD-3DCRT plans were generated andmore » compared with TD-IMRT and standard 3DCRT plans. FW 5.0 cm with pitch = 0.250 cm significantly decreased EMD without increasing lung V20 Gy. Increasing number of beams from 2 to 6 and using an additional breast planning structure decreased EMD though increased lung V20 Gy. Changes in pitch had minimal effect on plan metrics. TD-3DCRT plans were subsequently generated using FW 5.0 cm, pitch = 0.250 cm, and 2 beams, with additional beams or planning structures added to decrease EMD when necessary. TD-3DCRT and TD-IMRT significantly decreased target maximum dose compared to standard 3DCRT. FW 5.0 cm with 2 to 6 beams or novel planning structures or both allow for TD-3DCRT WBRT plans with excellent target coverage and OAR doses. TD-3DCRT plans are comparable to plans generated using TD-IMRT and provide an alternative to conventional 3DCRT for WBRT.« less

  19. A new plan quality index for nasopharyngeal cancer SIB IMRT.

    PubMed

    Jin, X; Yi, J; Zhou, Y; Yan, H; Han, C; Xie, C

    2014-02-01

    A new plan quality index integrating dosimetric and radiobiological indices was proposed to facilitate the evaluation and comparison of simultaneous integrated boost (SIB) intensity modulated radiotherapy (IMRT) plans for nasopharyngeal cancer (NPC) patients. Ten NPC patients treated by SIB-IMRT were enrolled in the study. Custom software was developed to read dose-volume histogram (DVH) curves from the treatment planning system (TPS). A plan filtering matrix was introduced to filter plans that fail to satisfy treatment protocol. Target plan quality indices and organ at risk (OAR) plan quality indices were calculated for qualified plans. A unique composite plan quality index (CPQI) was proposed based on the relative weight of these indices to evaluate and compare competing plans. Plan ranking results were compared with detailed statistical analysis, radiation oncology quality system (ROQS) scoring results and physician's evaluation results to verify the accuracy of this new plan quality index. The average CPQI values for plans with OAR priority of low, normal, high, and PTV only were 0.22 ± 0.08, 0.49 ± 0.077, 0.71 ± 0.062, and -0.21 ± 0.16, respectively. There were significant differences among these plan quality indices (One-way ANOVA test, p < 0.01). This was consistent with statistical analysis, ROQS results and physician's ranking results in which 90% OAR high plans were selected. Plan filtering matrix was able to speed up the plan evaluation process. The new matrix plan quality index CPQI showed good consistence with physician ranking results. It is a promising index for NPC SIB-IMRT plan evaluation. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Correlation of osteoradionecrosis and dental events with dosimetric parameters in intensity-modulated radiation therapy for head-and-neck cancer.

    PubMed

    Gomez, Daniel R; Estilo, Cherry L; Wolden, Suzanne L; Zelefsky, Michael J; Kraus, Dennis H; Wong, Richard J; Shaha, Ashok R; Shah, Jatin P; Mechalakos, James G; Lee, Nancy Y

    2011-11-15

    Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845 cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions. Copyright © 2011 Elsevier Inc. All rights reserved.

Top