Statistical process control analysis for patient-specific IMRT and VMAT QA.
Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd
2013-05-01
This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.
Poster - Thur Eve - 29: Detecting changes in IMRT QA using statistical process control.
Drever, L; Salomons, G
2012-07-01
Statistical process control (SPC) methods were used to analyze 239 measurement based individual IMRT QA events. The selected IMRT QA events were all head and neck (H&N) cases with 70Gy in 35 fractions, and all prostate cases with 76Gy in 38 fractions planned between March 2009 and 2012. The results were used to determine if the tolerance limits currently being used for IMRT QA were able to indicate if the process was under control. The SPC calculations were repeated for IMRT QA of the same type of cases that were planned after the treatment planning system was upgraded from Eclipse version 8.1.18 to version 10.0.39. The initial tolerance limits were found to be acceptable for two of the three metrics tested prior to the upgrade. After the upgrade to the treatment planning system the SPC analysis found that the a priori limits were no longer capable of indicating control for 2 of the 3 metrics analyzed. The changes in the IMRT QA results were clearly identified using SPC, indicating that it is a useful tool for finding changes in the IMRT QA process. Routine application of SPC to IMRT QA results would help to distinguish unintentional trends and changes from the random variation in the IMRT QA results for individual plans. © 2012 American Association of Physicists in Medicine.
Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A
2018-04-01
Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions. © 2018 American Association of Physicists in Medicine.
SU-G-TeP4-02: A Method for Evaluating the Direct Impact of Failed IMRT QAs On Patient Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geneser, S; Butkus, M
Purpose: We developed a method to calculate patient doses corresponding to IMRT QA measurements in order to determine and assess the actual dose delivered for plans with failed (or borderline) IMRT QA. This work demonstrates the feasibility of automatically computing delivered patient dose from portal dosimetry measurements in the Varian TPS system, which would provide a valuable and clinically viable IMRT QA tool for physicists and physicians. Methods: IMRT QA fluences were measured using portal dosimetry, processed using in-house matlab software, and imported back into Eclipse to calculate dose on the planning CT. To validate the proposed workflow, the Eclipsemore » calculated portal dose for a 5-field sliding window prostate boost plan was processed as described above. The resulting dose was compared to the planned dose and found to be within 0.5 Gy. Two IMRT QA results for the prostate boost plan (one that failed and one that passed) were processed and the resulting patient doses were evaluated. Results: The max dose difference between IMRT QA #1 and the original planned and approved dose is 4.5 Gy, while the difference between the planned and IMRT QA #2 dose is 4.0 Gy. The inferior portion of the PTV is slightly underdosed in both plans, and the superior portion is slightly overdosed. The patient dose resulting from IMRT QA #1 and #2 differs by only 0.5 Gy. With this new information, it may be argued that the evaluated plan alteration to obtain passing gamma analysis produced clinically irrelevant differences. Conclusion: Evaluation of the delivered QA dose on the planning CT provides valuable information about the clinical relevance of failed or borderline IMRT QAs. This particular workflow demonstrates the feasibility of pushing the measured IMRT QA portal dosimetry results directly back onto the patient planning CT within the Varian system.« less
Quality assurance of intensity-modulated radiation therapy.
Palta, Jatinder R; Liu, Chihray; Li, Jonathan G
2008-01-01
The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.
MO-FG-202-09: Virtual IMRT QA Using Machine Learning: A Multi-Institutional Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdes, G; Scheuermann, R; Solberg, T
Purpose: To validate a machine learning approach to Virtual IMRT QA for accurately predicting gamma passing rates using different QA devices at different institutions. Methods: A Virtual IMRT QA was constructed using a machine learning algorithm based on 416 IMRT plans, in which QA measurements were performed using diode-array detectors and a 3%local/3mm with 10% threshold. An independent set of 139 IMRT measurements from a different institution, with QA data based on portal dosimetry using the same gamma index and 10% threshold, was used to further test the algorithm. Plans were characterized by 90 different complexity metrics. A weighted poisonmore » regression with Lasso regularization was trained to predict passing rates using the complexity metrics as input. Results: In addition to predicting passing rates with 3% accuracy for all composite plans using diode-array detectors, passing rates for portal dosimetry on per-beam basis were predicted with an error <3.5% for 120 IMRT measurements. The remaining measurements (19) had large areas of low CU, where portal dosimetry has larger disagreement with the calculated dose and, as such, large errors were expected. These beams need to be further modeled to correct the under-response in low dose regions. Important features selected by Lasso to predict gamma passing rates were: complete irradiated area outline (CIAO) area, jaw position, fraction of MLC leafs with gaps smaller than 20 mm or 5mm, fraction of area receiving less than 50% of the total CU, fraction of the area receiving dose from penumbra, weighted Average Irregularity Factor, duty cycle among others. Conclusion: We have demonstrated that the Virtual IMRT QA can predict passing rates using different QA devices and across multiple institutions. Prediction of QA passing rates could have profound implications on the current IMRT process.« less
NASA Astrophysics Data System (ADS)
Lee, Rena; Kim, Kyubo; Cho, Samju; Lim, Sangwook; Lee, Suk; Shim, Jang Bo; Huh, Hyun Do; Lee, Sang Hoon; Ahn, Sohyun
2017-11-01
This study applied statistical process control to set and verify the quality assurances (QA) tolerance standard for our hospital's characteristics with the criteria standards that are applied to all the treatment sites with this analysis. Gamma test factor of delivery quality assurances (DQA) was based on 3%/3 mm. Head and neck, breast, prostate cases of intensity modulated radiation therapy (IMRT) or volumetric arc radiation therapy (VMAT) were selected for the analysis of the QA treatment sites. The numbers of data used in the analysis were 73 and 68 for head and neck patients. Prostate and breast were 49 and 152 by MapCHECK and ArcCHECK respectively. C p value of head and neck and prostate QA were above 1.0, C pml is 1.53 and 1.71 respectively, which is close to the target value of 100%. C pml value of breast (IMRT) was 1.67, data values are close to the target value of 95%. But value of was 0.90, which means that the data values are widely distributed. C p and C pml of breast VMAT QA were respectively 1.07 and 2.10. This suggests that the VMAT QA has better process capability than the IMRT QA. Consequently, we should pay more attention to planning and QA before treatment for breast Radiotherapy.
MO-G-BRE-02: A Survey of IMRT QA Practices for More Than 800 Institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulliam, K; Kerns, J; Howell, R
Purpose: A wide range of techniques and measurement devices are employed for IMRT QA, causing a large variation of accepted action limits and potential follow up for failing plans. Such procedures are not well established or accepted in the medical physics community. To achieve the goal of proving insight into current IMRT QA practices, we created an electronic IMRT QA survey. The survey was open to a variety of the most common QA devices and assessed the type of comparison to measurement, action limits, delivery methods, and clinical action for failing QA plans. Methods: We conducted an online survey throughmore » the Radiological Physics Center's (RPC) annual survey with the goal of ascertaining elements of routine patient-specific IMRT QA. A total of 874 institutions responded to the survey. The questions ranged from asking for action limits, dosimeter type(s) used, delivery techniques, and actions taken when a plan fails IMRT QA. Results: The most common (52%) planar gamma criteria was 3%/3 mm with a 95% of pixels passing criteria. The most common QA device were diode arrays (48%). The most common first response to a plan failing QA was to re-measure at the same point the point dose (89%), second was to re-measure at a new point (13%), and third was to analyze the plan in relative instead of absolute mode (10%) (Does not add to 100% as not all institutions placed a response for each QA follow-up option). Some institutions, however, claimed that they had never observed a plan failure. Conclusion: The survey provided insights into the way the community currently performs IMRT QA. This information will help in the push to standardize action limits among dosimeters.« less
SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, M; University of California, San Diego, La Jolla, CA; Graves, Y
Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazareth, D; Spaans, J
Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less
SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Higgins, P; Dusenbery, K
Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT)more » was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.« less
Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M
2009-07-01
The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.
WE-D-BRA-06: IMRT QA with ArcCHECK: The MD Anderson Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, M; Suh, Y; Chi, P
Purpose: The objective of this project was to report our initial IMRT QA results and experience with the SunNuclear ArcCHECK. Methods: Three thousand one-hundred and sixteen cases were treated with IMRT or VMAT at our institution between October 2013 and September 2014. All IMRT/VMAT treatment plans underwent Quality Assurance (QA) using ArcCHECK prior to therapy. For clinical evaluation, a Gamma analysis is performed following QA delivery using the SNC Patient software (Sun Nuclear Corp) at the 3%/3mm level. QA Gamma pass rates were analyzed based on categories of treatment site, technique, and type of MLCs. Our current clinical threshold formore » passing a QA (Tclin) is set at a Gamma pass rate greater than 90%. We recorded the percent of failures for each category, as well as the Gamma pass rate threshold that would Result in 95% of QAs to pass (T95). Results: Using Tclin a failure rate of 5.9% over all QAs was observed. The highest failure rate was observed for gynecological (22%) and the lowest for CNS (0.9%) treatments. T95 was 91% over all QAs and ranged from 73% (gynecological) to 96.5% (CNS) for individual treatments sites. T95 was lower for IMRT and non-HD (high definition) MLCs at 88.5% and 94.5%, respectively, compared to 92.4% and 97.1% for VMAT and HD MLC treatments, respectively. There was a statistically significant difference between the passing rates for IMRT vs. VMAT and for HD MLCs vs. non-HD MLCs (p-values << 0.01). Gynecological, IMRT, and HD MLC treatments typically include more plans with larger field sizes. Conclusion: On average, Tclin with ArcCHECK was consistent with T95, as well as the 90% action level reported in TG-119. However, significant variations between the examined categories suggest a link between field size and QA passing rates and may warrant field size-specific passing rate thresholds.« less
SU-F-T-274: Modified Dose Calibration Methods for IMRT QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, W; Westlund, S
2016-06-15
Purpose: To investigate IMRT QA uncertainties caused by dose calibration and modify widely used dose calibration procedures to improve IMRT QA accuracy and passing rate. Methods: IMRT QA dose measurement is calibrated using a calibration factor (CF) that is the ratio between measured value and expected value corresponding to the reference fields delivered on a phantom. Two IMRT QA phantoms were used for this study: a 30×30×30 cm3 solid water cube phantom (Cube), and the PTW Octavius phantom. CF was obtained by delivering 100 MUs to the phantoms with different reference fields ranging from 3×3 cm2 to 20×20 cm{sup 2}.more » For Cube, CFs were obtained using the following beam arrangements: 2-AP Field - chamber at dmax, 2-AP Field - chamber at isocenter, 4-beam box - chamber at isocenter, and 8 equally spaced fields and chamber at isocenter. The same plans were delivered on Octavius and CFs were derived for the dose at the isocenter using the above beam arrangements. The Octavius plans were evaluated with PTW-VeriSoft (Gamma criteria of 3%/3mm). Results: Four head and neck IMRT plans were included in this study. For point dose measurement with Cube, the CFs with 4-Field gave the best agreement between measurement and calculation within 4% for large field plans. All the measurement results agreed within 2% for a small field plan. Compared with calibration field sizes, 5×5 to 15×15 were more accurate than other field sizes. For Octavius, 4-Field calibration increased passing rate by up to 10% compared to AP calibration. Passing rate also increased by up to 4% with the increase of field size from 3×3 to 20×20. Conclusion: IMRT QA results are correlated with calibration methods used. The dose calibration using 4-beam box with field sizes from 5×5 to 20×20 can improve IMRT QA accuracy and passing rate.« less
Korevaar, Erik W; Wauben, David J L; van der Hulst, Peter C; Langendijk, Johannes A; Van't Veld, Aart A
2011-09-01
IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this could be achieved using a dose reconstruction method from 2D detector array measurements as available in the COMPASS system (IBA Dosimetry). The first step in the clinical introduction of this system instead of the currently used film QA procedures is to test the reliability of the dose reconstruction. In this paper we investigated the validation of the method in a homogeneous phantom with the film QA procedure as a reference. We tested whether COMPASS QA results correctly identified treatment plans that did or did not fulfil QA requirements in head and neck (H&N) IMRT. A total number of 24 treatments were selected from an existing database with more than 100 film based H&N IMRT QA results. The QA results were classified as either good, just acceptable or clinically rejected (mean gamma index <0.4, 0.4-0.5 or >0.5, respectively with 3%/3mm criteria). Film QA was repeated and compared to COMPASS QA with a MatriXX detector measurement performed on the same day. Good agreement was found between COMPASS reconstructed dose and film measured dose in a phantom (mean gamma 0.83±0.09, 1SD with 1%/1mm criteria, 0.33±0.04 with 3%/3mm criteria). COMPASS QA results correlated well with film QA, identifying the same patients with less good QA results. Repeated measurements with film and COMPASS showed changes in delivery after a modified MLC calibration, also visible in a standard MLC check in COMPASS. The time required for QA reduced by half by using COMPASS instead of film. Agreement of COMPASS QA results with film based QA supports its clinical introduction for a phantom geometry. A standard MLC calibration check is sensitive to <1mm changes that could be significant in H&N IMRT. These findings offer opportunities to further investigate the method based on a 2D detector array to 3D dose reconstruction in a patient anatomy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cotter, Christopher; Turcotte, Julie Catherine; Crawford, Bruce; Sharp, Gregory; Mah'D, Mufeed
2015-01-01
This work aims at three goals: first, to define a set of statistical parameters and plan structures for a 3D pretreatment thoracic and prostate intensity‐modulated radiation therapy (IMRT) quality assurance (QA) protocol; secondly, to test if the 3D QA protocol is able to detect certain clinical errors; and third, to compare the 3D QA method with QA performed with single ion chamber and 2D gamma test in detecting those errors. The 3D QA protocol measurements were performed on 13 prostate and 25 thoracic IMRT patients using IBA's COMPASS system. For each treatment planning structure included in the protocol, the following statistical parameters were evaluated: average absolute dose difference (AADD), percent structure volume with absolute dose difference greater than 6% (ADD6), and 3D gamma test. To test the 3D QA protocol error sensitivity, two prostate and two thoracic step‐and‐shoot IMRT patients were investigated. Errors introduced to each of the treatment plans included energy switched from 6 MV to 10 MV, multileaf collimator (MLC) leaf errors, linac jaws errors, monitor unit (MU) errors, MLC and gantry angle errors, and detector shift errors. QA was performed on each plan using a single ion chamber and 2D array of ion chambers for 2D and 3D QA. Based on the measurements performed, we established a uniform set of tolerance levels to determine if QA passes for each IMRT treatment plan structure: maximum allowed AADD is 6%; maximum 4% of any structure volume can be with ADD6 greater than 6%, and maximum 4% of any structure volume may fail 3D gamma test with test parameters 3%/3 mm DTA. Out of the three QA methods tested the single ion chamber performed the worst by detecting 4 out of 18 introduced errors, 2D QA detected 11 out of 18 errors, and 3D QA detected 14 out of 18 errors. PACS number: 87.56.Fc PMID:26699299
Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital
NASA Astrophysics Data System (ADS)
Tyler, M.; Vial, P.; Metcalfe, P.; Downes, S.
2013-06-01
In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.
A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA.
Calvo-Ortega, Juan F; Teke, Tony; Moragues, Sandra; Pozo, Miquel; Casals-Farran, Joan
2014-03-06
In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient-specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB-based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog-based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In-phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose-volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation (R² = 0.9993) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog-based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog-based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work (3%/3 mm). The DynaLog-based reconstruction method described in this study is a suitable tool to perform a patient-specific IMRT QA. This method allows us to perform patient-specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient DVH-based IMRT QA).
On the use of biomathematical models in patient-specific IMRT dose QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen Heming; Nelms, Benjamin E.; Tome, Wolfgang A.
2013-07-15
Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids,more » spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.« less
Technological Advancements and Error Rates in Radiation Therapy Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui
2011-11-15
Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.« less
WE-AB-201-03: TPS Commissioning and QA: Incorporating the Entire Planning Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutic, S.
Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in termsmore » of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar defects in the future. Finally, the Gamma test has become a popular metric for reporting TPS Commissioning and QA results. It simplifies complex testing into a numerical index, but noisy data and casual application can make it misleading. A brief review of the issues around the use of the Gamma test will be presented. TPS commissioning and QA: A process orientation and application of control charts (Michael Sharpe) A framework for commissioning a treatment planning system will be presented, focusing on preparations, practical aspects of configuration, priorities, specifications, and establishing performance. The complexity of the modern TPS make modular testing of features inadequate, and modern QA tools can provide “too much information” about the performance of techniques like IMRT and VMAT. We have adopted a process orientation and quality tools, like control charts, for ongoing TPS QA and assessment of patient-specific tests. The trending nature of these tools reveals the overall performance of the TPS system, and quantifies the variations that arise from individual plans, discrete calculations, and experimentation based on discrete measurements. Examples demonstrating application of these tools to TPS QA will be presented. TPS commissioning and QA: Incorporating the entire planning process (Sasa Mutic) The TPS and its features do not perform in isolation. Instead, the features and modules are key components in a complex process that begins with CT Simulation and extends to treatment delivery, along with image guidance and verification. Most importantly, the TPS is used by people working in a multi-disciplinary environment. It is very difficult to predict the outcomes of human interactions with software. Therefore, an interdisciplinary approach to training, commissioning and QA will be presented, along with an approach to the physics chart check and end-to-end testing as a tool for TPS QA. The role of standardization and automation in QA will also be discussed. The recommendations of MPPG #5 and practical implementation strategies (Jennifer Smilowitz) The recently published recommendations from Task Group No. 244, Medical Physics Practice Guideline on Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams will be presented. The recommendations focus on the validation of commissioning data and dose calculations. Tolerance values for non-IMRT beam configurations are summarized based on established criteria and data collected by the IROC. More stringent evaluation criteria for IMRT dose calculations are suggested to test the limitations of the TPS dose algorithms for advanced delivery conditions. The MPPG encourages users to create a suite of validation tests for dose calculation for various conditions for static photon beams, heterogeneities, IMRT/VMAT and electron beams. This test suite is intended to be used for subsequent testing, including TPS software upgrades. In the past, the recommendations of some reports have not been widely implemented due to practical limitations. Implementation strategies, tools and processes developed by multiple centers for efficient and “do-able” MPPG #5 testing will be presented, as well as a discussion on the overall validation experience. Learning Objectives: Identify some of the key documents relevant for TPS commissioning and QA Understand strategies for testing TPS software Gain a practical knowledge of the Gamma test criteria Increase familiarity with the process of commissioning a TPS Learn about the use of Control Charts for TPS QA Review the role of the TPS in the overall planning process Increase awareness of the link between TPS QA and chart checking Gain an increased appreciation for the importance of interdisciplinary communication Understand the new recommendations from MPPG #5 on TPS Dose Algorithm Commissioning and QC/QA Learn practical implementation processes and tools for MPPG #5 validation recommendations.« less
WE-AB-201-02: TPS Commissioning and QA: A Process Orientation and Application of Control Charts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, M.
Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in termsmore » of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar defects in the future. Finally, the Gamma test has become a popular metric for reporting TPS Commissioning and QA results. It simplifies complex testing into a numerical index, but noisy data and casual application can make it misleading. A brief review of the issues around the use of the Gamma test will be presented. TPS commissioning and QA: A process orientation and application of control charts (Michael Sharpe) A framework for commissioning a treatment planning system will be presented, focusing on preparations, practical aspects of configuration, priorities, specifications, and establishing performance. The complexity of the modern TPS make modular testing of features inadequate, and modern QA tools can provide “too much information” about the performance of techniques like IMRT and VMAT. We have adopted a process orientation and quality tools, like control charts, for ongoing TPS QA and assessment of patient-specific tests. The trending nature of these tools reveals the overall performance of the TPS system, and quantifies the variations that arise from individual plans, discrete calculations, and experimentation based on discrete measurements. Examples demonstrating application of these tools to TPS QA will be presented. TPS commissioning and QA: Incorporating the entire planning process (Sasa Mutic) The TPS and its features do not perform in isolation. Instead, the features and modules are key components in a complex process that begins with CT Simulation and extends to treatment delivery, along with image guidance and verification. Most importantly, the TPS is used by people working in a multi-disciplinary environment. It is very difficult to predict the outcomes of human interactions with software. Therefore, an interdisciplinary approach to training, commissioning and QA will be presented, along with an approach to the physics chart check and end-to-end testing as a tool for TPS QA. The role of standardization and automation in QA will also be discussed. The recommendations of MPPG #5 and practical implementation strategies (Jennifer Smilowitz) The recently published recommendations from Task Group No. 244, Medical Physics Practice Guideline on Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams will be presented. The recommendations focus on the validation of commissioning data and dose calculations. Tolerance values for non-IMRT beam configurations are summarized based on established criteria and data collected by the IROC. More stringent evaluation criteria for IMRT dose calculations are suggested to test the limitations of the TPS dose algorithms for advanced delivery conditions. The MPPG encourages users to create a suite of validation tests for dose calculation for various conditions for static photon beams, heterogeneities, IMRT/VMAT and electron beams. This test suite is intended to be used for subsequent testing, including TPS software upgrades. In the past, the recommendations of some reports have not been widely implemented due to practical limitations. Implementation strategies, tools and processes developed by multiple centers for efficient and “do-able” MPPG #5 testing will be presented, as well as a discussion on the overall validation experience. Learning Objectives: Identify some of the key documents relevant for TPS commissioning and QA Understand strategies for testing TPS software Gain a practical knowledge of the Gamma test criteria Increase familiarity with the process of commissioning a TPS Learn about the use of Control Charts for TPS QA Review the role of the TPS in the overall planning process Increase awareness of the link between TPS QA and chart checking Gain an increased appreciation for the importance of interdisciplinary communication Understand the new recommendations from MPPG #5 on TPS Dose Algorithm Commissioning and QC/QA Learn practical implementation processes and tools for MPPG #5 validation recommendations.« less
WE-A-BRE-01: Debate: To Measure or Not to Measure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, J; Miften, M; Mihailidis, D
2014-06-15
Recent studies have highlighted some of the limitations of patient-specific pre-treatment IMRT QA measurements with respect to assessing plan deliverability. Pre-treatment QA measurements are frequently performed with detectors in phantoms that do not involve any patient heterogeneities or with an EPID without a phantom. Other techniques have been developed where measurement results are used to recalculate the patient-specific dose volume histograms. Measurements continue to play a fundamental role in understanding the initial and continued performance of treatment planning and delivery systems. Less attention has been focused on the role of computational techniques in a QA program such as calculation withmore » independent dose calculation algorithms or recalculation of the delivery with machine log files or EPID measurements. This session will explore the role of pre-treatment measurements compared to other methods such as computational and transit dosimetry techniques. Efficiency and practicality of the two approaches will also be presented and debated. The speakers will present a history of IMRT quality assurance and debate each other regarding which types of techniques are needed today and for future quality assurance. Examples will be shared of situations where overall quality needed to be assessed with calculation techniques in addition to measurements. Elements where measurements continue to be crucial such as for a thorough end-to-end test involving measurement will be discussed. Operational details that can reduce the gamma tool effectiveness and accuracy for patient-specific pre-treatment IMRT/VMAT QA will be described. Finally, a vision for the future of IMRT and VMAT plan QA will be discussed from a safety perspective. Learning Objectives: Understand the advantages and limitations of measurement and calculation approaches for pre-treatment measurements for IMRT and VMAT planning Learn about the elements of a balanced quality assurance program involving modulated techniques Learn how to use tools and techniques such as an end-to-end test to enhance your IMRT and VMAT QA program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, J; School of Physics, University of Sydney; Vial, P
Purpose: A comprehensive survey of Australasian radiation oncology physics departments was undertaken to capture a snapshot of current usage, commissioning and QA practices for intensity-modulated therapies. Methods: An online survey was developed and advertised to Australian and New Zealand radiation oncology physicists through the local college (ACPSEM) in April 2015. The survey consisted of 147 questions in total, covering IMRT, VMAT and Tomotherapy, and details specific to different treatment planning systems. Questions captured detailed information on equipment, policies and procedures for the commissioning and QA of each treatment technique. Results: 41 partial or complete responses were collected, representing 59 departmentsmore » out of the 78 departments operational. 137 and 84 linacs from these departments were using IMRT and VMAT respectively, from a total 150 linacs. 100% and 78% of respondents were treating with IMRT and VMAT respectively. There are at least 8 different treatment planning systems being used for IMRT or VMAT, and large variations in all aspects of QA policies and procedures. 29 responses indicated 72 methods routinely used for pre-treatment QA, when breaking down by device and analysis type. Similar numbers of departments use field-by-field analysis compared to composite analysis (56% to 44%) while a majority use true gantry angle delivery compared to fixed gantry at 0° (72% to 28%). 19 different implementations of gamma index analysis parameters were reported from 33 responses. A follow-up one-day workshop to highlight the results, discuss the role of QA and share equipment-specific knowledge across users was conducted in November 2015. Conclusion: While IMRT and VMAT are almost universally available in Australasia, large variations in practice indicate a need for national or consensus guidelines.« less
NASA Astrophysics Data System (ADS)
Crowe, S. B.; Kairn, T.; Middlebrook, N.; Sutherland, B.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.
2015-03-01
This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as ‘small’) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.
WE-AB-201-00: Treatment Planning System Commissioning and QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in termsmore » of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar defects in the future. Finally, the Gamma test has become a popular metric for reporting TPS Commissioning and QA results. It simplifies complex testing into a numerical index, but noisy data and casual application can make it misleading. A brief review of the issues around the use of the Gamma test will be presented. TPS commissioning and QA: A process orientation and application of control charts (Michael Sharpe) A framework for commissioning a treatment planning system will be presented, focusing on preparations, practical aspects of configuration, priorities, specifications, and establishing performance. The complexity of the modern TPS make modular testing of features inadequate, and modern QA tools can provide “too much information” about the performance of techniques like IMRT and VMAT. We have adopted a process orientation and quality tools, like control charts, for ongoing TPS QA and assessment of patient-specific tests. The trending nature of these tools reveals the overall performance of the TPS system, and quantifies the variations that arise from individual plans, discrete calculations, and experimentation based on discrete measurements. Examples demonstrating application of these tools to TPS QA will be presented. TPS commissioning and QA: Incorporating the entire planning process (Sasa Mutic) The TPS and its features do not perform in isolation. Instead, the features and modules are key components in a complex process that begins with CT Simulation and extends to treatment delivery, along with image guidance and verification. Most importantly, the TPS is used by people working in a multi-disciplinary environment. It is very difficult to predict the outcomes of human interactions with software. Therefore, an interdisciplinary approach to training, commissioning and QA will be presented, along with an approach to the physics chart check and end-to-end testing as a tool for TPS QA. The role of standardization and automation in QA will also be discussed. The recommendations of MPPG #5 and practical implementation strategies (Jennifer Smilowitz) The recently published recommendations from Task Group No. 244, Medical Physics Practice Guideline on Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams will be presented. The recommendations focus on the validation of commissioning data and dose calculations. Tolerance values for non-IMRT beam configurations are summarized based on established criteria and data collected by the IROC. More stringent evaluation criteria for IMRT dose calculations are suggested to test the limitations of the TPS dose algorithms for advanced delivery conditions. The MPPG encourages users to create a suite of validation tests for dose calculation for various conditions for static photon beams, heterogeneities, IMRT/VMAT and electron beams. This test suite is intended to be used for subsequent testing, including TPS software upgrades. In the past, the recommendations of some reports have not been widely implemented due to practical limitations. Implementation strategies, tools and processes developed by multiple centers for efficient and “do-able” MPPG # 5 testing will be presented, as well as a discussion on the overall validation experience. Learning Objectives: Identify some of the key documents relevant for TPS commissioning and QA Understand strategies for testing TPS software Gain a practical knowledge of the Gamma test criteria Increase familiarity with the process of commissioning a TPS Learn about the use of Control Charts for TPS QA Review the role of the TPS in the overall planning process Increase awareness of the link between TPS QA and chart checking Gain an increased appreciation for the importance of interdisciplinary communication Understand the new recommendations from MPPG #5 on TPS Dose Algorithm Commissioning and QC/QA Learn practical implementation processes and tools for MPPG #5 validation recommendations.« less
WE-AB-201-01: Treatment Planning System Commissioning and QA: Challenges and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, G.
Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in termsmore » of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar defects in the future. Finally, the Gamma test has become a popular metric for reporting TPS Commissioning and QA results. It simplifies complex testing into a numerical index, but noisy data and casual application can make it misleading. A brief review of the issues around the use of the Gamma test will be presented. TPS commissioning and QA: A process orientation and application of control charts (Michael Sharpe) A framework for commissioning a treatment planning system will be presented, focusing on preparations, practical aspects of configuration, priorities, specifications, and establishing performance. The complexity of the modern TPS make modular testing of features inadequate, and modern QA tools can provide “too much information” about the performance of techniques like IMRT and VMAT. We have adopted a process orientation and quality tools, like control charts, for ongoing TPS QA and assessment of patient-specific tests. The trending nature of these tools reveals the overall performance of the TPS system, and quantifies the variations that arise from individual plans, discrete calculations, and experimentation based on discrete measurements. Examples demonstrating application of these tools to TPS QA will be presented. TPS commissioning and QA: Incorporating the entire planning process (Sasa Mutic) The TPS and its features do not perform in isolation. Instead, the features and modules are key components in a complex process that begins with CT Simulation and extends to treatment delivery, along with image guidance and verification. Most importantly, the TPS is used by people working in a multi-disciplinary environment. It is very difficult to predict the outcomes of human interactions with software. Therefore, an interdisciplinary approach to training, commissioning and QA will be presented, along with an approach to the physics chart check and end-to-end testing as a tool for TPS QA. The role of standardization and automation in QA will also be discussed. The recommendations of MPPG #5 and practical implementation strategies (Jennifer Smilowitz) The recently published recommendations from Task Group No. 244, Medical Physics Practice Guideline on Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams will be presented. The recommendations focus on the validation of commissioning data and dose calculations. Tolerance values for non-IMRT beam configurations are summarized based on established criteria and data collected by the IROC. More stringent evaluation criteria for IMRT dose calculations are suggested to test the limitations of the TPS dose algorithms for advanced delivery conditions. The MPPG encourages users to create a suite of validation tests for dose calculation for various conditions for static photon beams, heterogeneities, IMRT/VMAT and electron beams. This test suite is intended to be used for subsequent testing, including TPS software upgrades. In the past, the recommendations of some reports have not been widely implemented due to practical limitations. Implementation strategies, tools and processes developed by multiple centers for efficient and “do-able” MPPG #5 testing will be presented, as well as a discussion on the overall validation experience. Learning Objectives: Identify some of the key documents relevant for TPS commissioning and QA Understand strategies for testing TPS software Gain a practical knowledge of the Gamma test criteria Increase familiarity with the process of commissioning a TPS Learn about the use of Control Charts for TPS QA Review the role of the TPS in the overall planning process Increase awareness of the link between TPS QA and chart checking Gain an increased appreciation for the importance of interdisciplinary communication Understand the new recommendations from MPPG #5 on TPS Dose Algorithm Commissioning and QC/QA Learn practical implementation processes and tools for MPPG #5 validation recommendations.« less
MO-D-213-05: Sensitivity of Routine IMRT QA Metrics to Couch and Collimator Rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaei, P
Purpose: To assess the sensitivity of gamma index and other IMRT QA metrics to couch and collimator rotations. Methods: Two brain IMRT plans with couch and/or collimator rotations in one or more of the fields were evaluated using the IBA MatriXX ion chamber array and its associated software (OmniPro-I’mRT). The plans were subjected to routine QA by 1) Creating a composite planar dose in the treatment planning system (TPS) with the couch/collimator rotations and 2) Creating the planar dose after “zeroing” the rotations. Plan deliveries to MatriXX were performed with all rotations set to zero on a Varian 21ex linearmore » accelerator. This in effect created TPS-created planar doses with an induced rotation error. Point dose measurements for the delivered plans were also performed in a solid water phantom. Results: The IMRT QA of the plans with couch and collimator rotations showed clear discrepancies in the planar dose and 2D dose profile overlays. The gamma analysis, however, did pass with the criteria of 3%/3mm (for 95% of the points), albeit with a lower percentage pass rate, when one or two of the fields had a rotation. Similar results were obtained with tighter criteria of 2%/2mm. Other QA metrics such as percentage difference or distance-to-agreement (DTA) histograms produced similar results. The point dose measurements did not obviously indicate the error due to location of dose measurement (on the central axis) and the size of the ion chamber used (0.6 cc). Conclusion: Relying on Gamma analysis, percentage difference, or DTA to determine the passing of an IMRT QA may miss critical errors in the plan delivery due to couch/collimator rotations. A combination of analyses for composite QA plans, or per-beam analysis, would detect these errors.« less
WE-AB-201-04: The Recommendations of MPPG #5 and Practical Implementation Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smilowitz, J.
Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in termsmore » of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar defects in the future. Finally, the Gamma test has become a popular metric for reporting TPS Commissioning and QA results. It simplifies complex testing into a numerical index, but noisy data and casual application can make it misleading. A brief review of the issues around the use of the Gamma test will be presented. TPS commissioning and QA: A process orientation and application of control charts (Michael Sharpe) A framework for commissioning a treatment planning system will be presented, focusing on preparations, practical aspects of configuration, priorities, specifications, and establishing performance. The complexity of the modern TPS make modular testing of features inadequate, and modern QA tools can provide “too much information” about the performance of techniques like IMRT and VMAT. We have adopted a process orientation and quality tools, like control charts, for ongoing TPS QA and assessment of patient-specific tests. The trending nature of these tools reveals the overall performance of the TPS system, and quantifies the variations that arise from individual plans, discrete calculations, and experimentation based on discrete measurements. Examples demonstrating application of these tools to TPS QA will be presented. TPS commissioning and QA: Incorporating the entire planning process (Sasa Mutic) The TPS and its features do not perform in isolation. Instead, the features and modules are key components in a complex process that begins with CT Simulation and extends to treatment delivery, along with image guidance and verification. Most importantly, the TPS is used by people working in a multi-disciplinary environment. It is very difficult to predict the outcomes of human interactions with software. Therefore, an interdisciplinary approach to training, commissioning and QA will be presented, along with an approach to the physics chart check and end-to-end testing as a tool for TPS QA. The role of standardization and automation in QA will also be discussed. The recommendations of MPPG #5 and practical implementation strategies (Jennifer Smilowitz) The recently published recommendations from Task Group No. 244, Medical Physics Practice Guideline on Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams will be presented. The recommendations focus on the validation of commissioning data and dose calculations. Tolerance values for non-IMRT beam configurations are summarized based on established criteria and data collected by the IROC. More stringent evaluation criteria for IMRT dose calculations are suggested to test the limitations of the TPS dose algorithms for advanced delivery conditions. The MPPG encourages users to create a suite of validation tests for dose calculation for various conditions for static photon beams, heterogeneities, IMRT/VMAT and electron beams. This test suite is intended to be used for subsequent testing, including TPS software upgrades. In the past, the recommendations of some reports have not been widely implemented due to practical limitations. Implementation strategies, tools and processes developed by multiple centers for efficient and “do-able” MPPG #5 testing will be presented, as well as a discussion on the overall validation experience. Learning Objectives: Identify some of the key documents relevant for TPS commissioning and QA Understand strategies for testing TPS software Gain a practical knowledge of the Gamma test criteria Increase familiarity with the process of commissioning a TPS Learn about the use of Control Charts for TPS QA Review the role of the TPS in the overall planning process Increase awareness of the link between TPS QA and chart checking Gain an increased appreciation for the importance of interdisciplinary communication Understand the new recommendations from MPPG #5 on TPS Dose Algorithm Commissioning and QC/QA Learn practical implementation processes and tools for MPPG #5 validation recommendations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, R; Lee, C; Calvary Mater Newcastle, Newcastle
Purpose: To demonstrate an efficient and clinically relevant patient specific QA method by reconstructing 3D patient dose from 2D EPID images for IMRT plans. Also to determine the usefulness of 2D QA metrics when assessing 3D patient dose deviations. Methods: Using the method developed by King et al (Med Phys 39(5),2839–2847), EPID images of IMRT fields were acquired in air and converted to dose at 10 cm depth (SAD setup) in a flat virtual water phantom. Each EPID measured dose map was then divided by the corresponding treatment planning system (TPS) dose map calculated with an identical setup, to derivemore » a 2D “error matrix”. For each field, the error matrix was used to adjust the doses along the respective ray lines in the original patient 3D dose. All field doses were combined to derive a reconstructed 3D patient dose for quantitative analysis. A software tool was developed to efficiently implement the entire process and was tested with a variety of IMRT plans for 2D (virtual flat phantom) and 3D (in-patient) QA analysis. Results: The method was tested on 60 IMRT plans. The mean (± standard deviation) 2D gamma (2%,2mm) pass rate (2D-GPR) was 97.4±3.0% and the mean 2D gamma index (2D-GI) was 0.35±0.06. The 3D PTV mean dose deviation was 1.8±0.8%. The analysis showed very weak correlations between both the 2D-GPR and 2D-GI when compared with PTV mean dose deviations (R2=0.3561 and 0.3632 respectively). Conclusion: Our method efficiently calculates 3D patient dose from 2D EPID images, utilising all of the advantages of an EPID-based dosimetry system. In this study, the 2D QA metrics did not predict the 3D patient dose deviation. This tool allows reporting of the 3D volumetric dose parameters thus providing more clinically relevant patient specific QA.« less
IMRT QA: Selecting gamma criteria based on error detection sensitivity.
Steers, Jennifer M; Fraass, Benedick A
2016-04-01
The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.
Cardenas, Carlos E; Mohamed, Abdallah S R; Tao, Randa; Wong, Andrew J R; Awan, Mussadiq J; Kuruvila, Shirly; Aristophanous, Michalis; Gunn, G Brandon; Phan, Jack; Beadle, Beth M; Frank, Steven J; Garden, Adam S; Morrison, William H; Fuller, Clifton D; Rosenthal, David I
2017-07-01
Our department has a long-established comprehensive quality assurance (QA) planning clinic for patients undergoing radiation therapy (RT) for head and neck cancer. Our aim is to assess the impact of a real-time peer review QA process on the quantitative and qualitative radiation therapy plan changes in the era of intensity modulated RT (IMRT). Prospective data for 85 patients undergoing head and neck IMRT who presented at a biweekly QA clinic after simulation and contouring were collected. A standard data collection form was used to document alterations made during this process. The original pre-QA clinical target volumes (CTVs) approved by the treating-attending physicians were saved before QA and compared with post-QA consensus CTVs. Qualitative assessment was done according to predefined criteria. Dice similarity coefficients (DSC) and other volume overlap metrics were calculated for each CTV level and were used for quantitative comparison. Changes are categorized as major, minor, and trivial according to the degree of overlap. Patterns of failure were analyzed and correlated to plan changes. All 85 patients were examined by at least 1 head and neck subspecialist radiation oncologist who was not the treating-attending physician; 80 (94%) were examined by ≥3 faculty members. New clinical findings on physical examination were found in 12 patients (14%) leading to major plan changes. Quantitative DSC analysis revealed significantly better agreement in CTV1 (0.94 ± 0.10) contours than in CTV2 (0.82 ± 0.25) and CTV3 (0.86 ± 0.2) contours (P=.0002 and P=.03, respectively; matched-pair Wilcoxon test). The experience of the treating-attending radiation oncologist significantly affected DSC values when all CTV levels were considered (P=.012; matched-pair Wilcoxon text). After a median follow-up time of 38 months, only 10 patients (12%) had local recurrence, regional recurrence, or both, mostly in central high-dose areas. Comprehensive peer review planning clinic is an essential component of IMRT QA that led to major changes in one-third of the study population. This process ensured safety related to target definition and led to favorable disease control profiles, with no identifiable recurrences attributable to geometric misses or delineation errors. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miften, M.
2016-06-15
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
IMRT QA: Selecting gamma criteria based on error detection sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org
Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. Conclusions: We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.« less
Comparison of four commercial devices for RapidArc and sliding window IMRT QA
Chandraraj, Varatharaj; Manickam, Ravikumar; Esquivel, Carlos; Supe, Sanjay S.; Papanikolaou, Nikos
2011-01-01
For intensity‐modulated radiation therapy, evaluation of the measured dose against the treatment planning calculated dose is essential in the context of patient‐specific quality assurance. The complexity of volumetric arc radiotherapy delivery attributed to its dynamic and synchronization nature require new methods and potentially new tools for the quality assurance of such techniques. In the present study, we evaluated and compared the dosimetric performance of EDR2 film and three other commercially available quality assurance devices: IBA I'MatriXX array, PTW Seven29 array and the Delta 4 array. The evaluation of these dosimetric systems was performed for RapidArc and IMRT deliveries using a Varian NovalisTX linear accelerator. The plans were generated using the Varian Eclipse treatment planning system. Our results showed that all four QA techniques yield equivalent results. All patient QAs passed our institutional clinical criteria of gamma index based on a 3% dose difference and 3 mm distance to agreement. In addition, the Bland‐Altman analysis was performed which showed that all the calculated gamma values of all three QA devices were within 5% from those of the film. The results showed that the four QA systems used in this patient‐specific IMRT QA analysis are equivalent. We concluded that the dosimetric systems under investigation can be used interchangeably for routine patient specific QA. PACS numbers: 87.55.Qr, 87.56.Fc
Mei, X; Bracken, G; Kerr, A
2008-07-01
Experimental verification of calculated dose from a treatment planning system is often essential for quality assurance (QA) of intensity modulated radiation therapy (IMRT). Film dosimetry and single ion chamber measurements are commonly used for IMRT QA. Film dosimetry has very good spatial resolution, but is labor intensive and absolute dose is not reliable. Ion chamber measurements are still required for absolute dose after measurements using films. Dosimeters based on 2D detector arrays that can measure 2D dose in real-time are gaining wider use. These devices provide a much easier and reliable tool for IMRT QA. We report the evaluation of a commercial 2D ion chamber array, including its basic performance characteristics, such as linearity, reproducibility and uniformity of relative ion chamber sensitivities, and comparisons between measured 2D dose and calculated dose with a commercial treatment planning system. Our analysis shows this matrix has excellent linearity and reproducibility, but relative sensitivities are tilted such that the +Y region is over sensitive, while the -Y region is under sensitive. Despite this behavior, our results show good agreement between measured 2D dose profiles and Eclipse planned data for IMRT test plans and a few verification plans for clinical breast field-in-field plans. The gamma values (3% or 3 mm distance-to-agreement) are all less than 1 except for one or two pixels at the field edge This device provides a fast and reliable stand-alone dosimeter for IMRT QA. © 2008 American Association of Physicists in Medicine.
Catching errors with patient-specific pretreatment machine log file analysis.
Rangaraj, Dharanipathy; Zhu, Mingyao; Yang, Deshan; Palaniswaamy, Geethpriya; Yaddanapudi, Sridhar; Wooten, Omar H; Brame, Scott; Mutic, Sasa
2013-01-01
A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian. Using an in-house developed computer program called "Dynalog QA," we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams. Since clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein. It has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Analysis of the sources of uncertainty for EDR2 film‐based IMRT quality assurance
Shi, Chengyu; Papanikolaou, Nikos; Yan, Yulong; Weng, Xuejun; Jiang, gyu
2006-01-01
In our institution, patient‐specific quality assurance (QA) for intensity‐modulated radiation therapy (IMRT) is usually performed by measuring the dose to a point using an ion chamber and by measuring the dose to a plane using film. In order to perform absolute dose comparison measurements using film, an accurate calibration curve should be used. In this paper, we investigate the film response curve uncertainty factors, including film batch differences, film processor temperature effect, film digitization, and treatment unit. In addition, we reviewed 50 patient‐specific IMRT QA procedures performed in our institution in order to quantify the sources of error in film‐based dosimetry. Our study showed that the EDR2 film dosimetry can be done with less than 3% uncertainty. The EDR2 film response was not affected by the choice of treatment unit provided the nominal energy was the same. This investigation of the different sources of uncertainties in the film calibration procedure can provide a better understanding of the film‐based dosimetry and can improve quality control for IMRT QA. PACS numbers: 87.86.Cd, 87.53.Xd, 87.57.Nk PMID:17533329
SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazza, A; Perrin, D; Fontenot, J
Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration,more » at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.« less
A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA
NASA Astrophysics Data System (ADS)
Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia
2018-06-01
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.
Fuangrod, Todsaporn; Greer, Peter B; Simpson, John; Zwan, Benjamin J; Middleton, Richard H
2017-03-13
Purpose Due to increasing complexity, modern radiotherapy techniques require comprehensive quality assurance (QA) programmes, that to date generally focus on the pre-treatment stage. The purpose of this paper is to provide a method for an individual patient treatment QA evaluation and identification of a "quality gap" for continuous quality improvement. Design/methodology/approach A statistical process control (SPC) was applied to evaluate treatment delivery using in vivo electronic portal imaging device (EPID) dosimetry. A moving range control chart was constructed to monitor the individual patient treatment performance based on a control limit generated from initial data of 90 intensity-modulated radiotherapy (IMRT) and ten volumetric-modulated arc therapy (VMAT) patient deliveries. A process capability index was used to evaluate the continuing treatment quality based on three quality classes: treatment type-specific, treatment linac-specific, and body site-specific. Findings The determined control limits were 62.5 and 70.0 per cent of the χ pass-rate for IMRT and VMAT deliveries, respectively. In total, 14 patients were selected for a pilot study the results of which showed that about 1 per cent of all treatments contained errors relating to unexpected anatomical changes between treatment fractions. Both rectum and pelvis cancer treatments demonstrated process capability indices were less than 1, indicating the potential for quality improvement and hence may benefit from further assessment. Research limitations/implications The study relied on the application of in vivo EPID dosimetry for patients treated at the specific centre. Sampling patients for generating the control limits were limited to 100 patients. Whilst the quantitative results are specific to the clinical techniques and equipment used, the described method is generally applicable to IMRT and VMAT treatment QA. Whilst more work is required to determine the level of clinical significance, the authors have demonstrated the capability of the method for both treatment specific QA and continuing quality improvement. Practical implications The proposed method is a valuable tool for assessing the accuracy of treatment delivery whilst also improving treatment quality and patient safety. Originality/value Assessing in vivo EPID dosimetry with SPC can be used to improve the quality of radiation treatment for cancer patients.
TH-A-BRC-00: New Task Groups for External Beam QA: An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
TH-A-BRC-01: AAPM TG-135U1 QA for Robotic Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterich, S.
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
SU-F-T-295: MLCs Performance and Patient-Specific IMRT QA Using Log File Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, A; American University of Biuret Medical Center, Biuret; Maalej, N
2016-06-15
Purpose: To analyze the performance of the multi-leaf collimators (MLCs) from the log files recorded during the intensity modulated radiotherapy (IMRT) treatment and to construct the relative fluence maps and do the gamma analysis to compare the planned and executed MLCs movement. Methods: We developed a program to extract and analyze the data from dynamic log files (dynalog files) generated from sliding window IMRT delivery treatments. The program extracts the planned and executed (actual or delivered) MLCs movement, calculates and compares the relative planned and executed fluences. The fluence maps were used to perform the gamma analysis (with 3% dosemore » difference and 3 mm distance to agreement) for 3 IMR patients. We compared our gamma analysis results with those obtained from portal dose image prediction (PDIP) algorithm performed using the EPID. Results: For 3 different IMRT patient treatments, the maximum difference between the planned and the executed MCLs positions was 1.2 mm. The gamma analysis results of the planned and delivered fluences were in good agreement with the gamma analysis from portal dosimetry. The maximum difference for number of pixels passing the gamma criteria (3%/3mm) was 0.19% with respect to portal dosimetry results. Conclusion: MLC log files can be used to verify the performance of the MLCs. Patientspecific IMRT QA based on MLC movement log files gives similar results to EPID dosimetry results. This promising method for patient-specific IMRT QA is fast, does not require dose measurements in a phantom, can be done before the treatment and for every fraction, and significantly reduces the IMRT workload. The author would like to thank King Fahd University of petroleum and Minerals for the support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Guerrero, M; Zhang, B
Purpose: To implement a comprehensive non-measurement-based verification program for patient-specific IMRT QA Methods: Based on published guidelines, a robust IMRT QA program should assess the following components: 1) accuracy of dose calculation, 2) accuracy of data transfer from the treatment planning system (TPS) to the record-and-verify (RV) system, 3) treatment plan deliverability, and 4) accuracy of plan delivery. Results: We have implemented an IMRT QA program that consist of four components: 1) an independent re-calculation of the dose distribution in the patient anatomy with a commercial secondary dose calculation program: Mobius3D (Mobius Medical Systems, Houston, TX), with dose accuracy evaluationmore » using gamma analysis, PTV mean dose, PTV coverage to 95%, and organ-at-risk mean dose; 2) an automated in-house-developed plan comparison system that compares all relevant plan parameters such as MU, MLC position, beam iso-center position, collimator, gantry, couch, field size settings, and bolus placement, etc. between the plan and the RV system; 3) use of the RV system to check the plan deliverability and further confirm using “mode-up” function on treatment console for plans receiving warning; and 4) implementation of a comprehensive weekly MLC QA, in addition to routine accelerator monthly and daily QA. Among 1200 verifications, there were 9 cases of suspicious calculations, 5 cases of delivery failure, no data transfer errors, and no failure of weekly MLC QA. These 9 suspicious cases were due to the PTV extending to the skin or to heterogeneity correction effects, which would not have been caught using phantom measurement-based QA. The delivery failure was due to the rounding variation of MLC position between the planning system and RV system. Conclusion: A very efficient, yet comprehensive, non-measurement-based patient-specific QA program has been implemented and used clinically for about 18 months with excellent results.« less
SU-F-T-283: A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, A; Wu, Q; Adamson, J
Purpose: Varian’s electronic portal imaging device (EPID) based portal dosimetry tool is a popular and effective means of performing IMRT QA. EPIDs for older models of the TrueBeam accelerator utilize a 40cmx30cm Image Detection Unit (IDU) that saturates at the center for standard source to imager distances with high dose rate flattening filter free (FFF) beams. This makes portal dosimetry not possible and an alternative means of IMRT QA necessary. We developed a filter that would attenuate the beam to a dose rate measureable by the IDU for portal dosimetry IMRT QA. Methods: Multipurpose 304 stainless steel plates were placedmore » on an accessory tray to attenuate the beam. Profiles of an open field measured on the IDU were acquired with varying number of plates to assess the thickness needed to reduce the maximum dose rates of 6XFFF and 10XFFF beams to measurable levels. A new portal dose image prediction (PDIP) model was commissioned based on open field measurements with plates in position, and a modified beam profile was input to portal dosimetry calibration at the console to empirically correct for attenuation and scatter. The portal dosimetry tool was used to assess agreement between predicted and measured doses for open 25×25cm{sup 2} fields and intensity modulated fields using 6XFFF and 10XFFF beams. Results: Thicknesses of 2.5cm and 3.8cm of steel were required to reduce the highest dose rates to a measureable level for 6XFFF and 10XFFF, respectively. Gamma analysis using a 3%/3mm relative criterion with the filter in place and using the new PDIP model resulted in 98.2% and 93.6% of pixels passing while intensity modulated fields showed passing rates of 98.2% and 99.0%. Conclusion: Use of the filter allows for portal dosimetry to be used for IMRT QA of FFF plans in place of purchasing a second option for IMRT QA.« less
TH-A-BRC-02: AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetsch, S.
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
Deep nets vs expert designed features in medical physics: An IMRT QA case study.
Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer
2018-03-30
The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.
SU-E-T-164: Clinical Implementation of ASi EPID Panels for QA of IMRT/VMAT Plans.
Hosier, K; Wu, C; Beck, K; Radevic, M; Asche, D; Bareng, J; Kroner, A; Lehmann, J; Logsdon, M; Dutton, S; Rosenthal, S
2012-06-01
To investigate various issues for clinical implementation of aSi EPID panels for IMRT/VMAT QA. Six linacs are used in our clinic for EPID-based plan QA; two Varian Truebeams, two Varian 2100 series, two Elekta Infiniti series. Multiple corrections must be accounted for in the calibration of each panel for dosimetric use. Varian aSi panels are calibrated with standard dark field, flood field, and 40×40 diagonal profile for beam profile correction. Additional corrections to account for off-axis and support arm backscatter are needed for larger field sizes. Since Elekta iViewGT system does not export gantry angle with images, a third-party inclinometer must be physically mounted to back of linac gantry and synchronized with data acquisition via iViewGT PC clock. A T/2 offset correctly correlates image and gantry angle for arc plans due to iView image time stamp at the end of data acquisition for each image. For both Varian and Elekta panels, a 5 MU 10×10 calibration field is used to account for the nonlinear MU to dose response at higher energies. Acquired EPID images are deconvolved via a high pass filter in Fourier space and resultant fluence maps are used to reconstruct a 3D dose 'delivered' to patient using DosimetryCheck. Results are compared to patient 3D dose computed by TPS using a 3D-gamma analysis. 120 IMRT and 100 VMAT cases are reported. Two 3D gamma quantities (Gamma(V10) and Gamma(PTV)) are proposed for evaluating QA results. The Gamma(PTV) is sensitive to MLC offsets while Gamma(V10) is sensitive to gantry rotations. When a 3mm/3% criteria and 90% or higher 3D gamma pass rate is used, all IMRT and 90% of VMAT QA pass QA. After appropriate calibration of aSi panels and setup of image acquisition systems, EPID based 3D dose reconstruction method is found clinically feasible. © 2012 American Association of Physicists in Medicine.
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun
Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system wasmore » designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Results: Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system’s ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. Conclusions: The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.« less
Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q
2015-01-01
An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system's ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.
Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2016-12-01
The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral direction, -0.1 ± 0.2 mm for the superior-inferior direction, and -0.1 ± 0.1 mm for the anterior-posterior direction. The dosimetric accuracy showed significant improvements, of 92.9% ± 4.0% with tracking versus 69.8% ± 7.4% without tracking, in the passing rates of γ with the criterion of 3%/1 mm (p < 0.001). Although the dosimetric accuracy of IMRT without tracking showed a significant negative correlation with the 3D motion range of the target (r = - 0.59, p < 0.05), there was no significant correlation for DTT-IMRT (r = 0.03, p = 0.464). The developed four-axis moving phantom had sufficient accuracy to reproduce patient respiratory motions, allowing patient-specific QA of the surrogate signal-based DTT-IMRT under realistic conditions. Although IMRT without tracking decreased the dosimetric accuracy as the target motion increased, the DTT-IMRT achieved high dosimetric accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S; Mazur, T; Li, H
Purpose: The aim of this paper was to demonstrate the feasibility and creditability of computing and verifying 3D fluencies to assure IMRT and VMAT treatment deliveries, by correlating the passing rates of the 3D fluence-based QA (P(ά)) to the passing rates of 2D dose measurementbased QA (P(Dm)). Methods: 3D volumetric primary fluencies are calculated by forward-projecting the beam apertures and modulated by beam MU values at all gantry angles. We first introduce simulated machine parameter errors (MU, MLC positions, jaw, gantry and collimator) to the plan. Using passing rates of voxel intensity differences (P(Ir)) and 3D gamma analysis (P(γ)), calculatedmore » 3D fluencies, calculated 3D delivered dose, and measured 2D planar dose in phantom from the original plan are then compared with those from corresponding plans with errors, respectively. The correlations of these three groups of resultant passing rates, i.e. 3D fluence-based QA (P(ά,Ir) and P(ά,γ)), calculated 3D dose (P(Dc,Ir) and P(Dc,γ)), and 2D dose measurement-based QA (P(Dm,Ir) and P(Dm,γ)), will be investigated. Results: 20 treatment plans with 5 different types of errors were tested. Spearman’s correlations were found between P(ά,Ir) and P(Dc,Ir), and also between P(ά,γ) and P(Dc,γ), with averaged p-value 0.037, 0.065, and averaged correlation coefficient ρ-value 0.942, 0.871 respectively. Using Matrixx QA for IMRT plans, Spearman’s correlations were also obtained between P(ά,Ir) and P(Dm,Ir) and also between P(ά,γ) and P(Dm,γ), with p-value being 0.048, 0.071 and ρ-value being 0.897, 0.779 respectively. Conclusion: The demonstrated correlations improve the creditability of using 3D fluence-based QA for assuring treatment deliveries for IMRT/VMAT plans. Together with advantages of high detection sensitivity and better visualization of machine parameter errors, this study further demonstrates the accuracy and feasibility of 3D fluence based-QA in pre-treatment QA and daily QA. Research reported in this study is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
SU-E-T-60: A Plan Quality Index in IMRT QA That Is Independent of the Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; Kang, S; Kim, T
2015-06-15
Purpose: In IMRT QA, plan quality evaluation is made based on pass rate under preset acceptance criteria, mostly using gamma-values. This method is convenient but, its Result highly depends on what the acceptance criteria are and suffers from the lack of sensitivity in judging how good the plan is. In this study, we introduced a simple but effective plan quality index of IMRT QA based on dose difference only to supplement such shortcomings, and investigated its validity. Methods: The proposed index is a single value which is calculated mainly based on point-by-point comparison between planned and measured dose distributions, andmore » it becomes “1” in an ideal case. A systematic evaluation was performed with one-dimensional test dose distributions. For 3 hypothetical dose profiles, various displacements (in both dose and space) were introduced, the proposed index was calculated for each case, and the behavior of obtained indices was analyzed and compared with that of gamma evaluation. In addition, the feasibility of the index was assessed with clinical IMRT/VMAT/SBRT QA cases for different sites (prostate, head & neck, liver, lung, spine, and abdomen). Results: The proposed index showed more robust correlation with the amount of induced displacement compared to the gamma evaluation method. No matter what the acceptance criteria are (e.g., whether 3%/3mm or 2%/2mm), it was possible to clearly rank every case with the proposed index while it was difficult to do with the gamma evaluation method. Conclusion: IMRT plan quality can be evaluated quantitatively by the proposed index. It is considered that the proposed index would provide useful information for better judging the level of goodness of each plan and its Result is independent of the acceptance criteria. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, Mark, E-mail: mark.oldham@duke.edu; Thomas, Andrew; O'Daniel, Jennifer
2012-10-01
Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution wasmore » measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient's anatomy. The latter step represents an important development that advances the clinical relevance of complex treatment QA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueorguiev, G; Cotter, C; Young, M
2016-06-15
Purpose: To present a 3D QA method and clinical results for 550 patients. Methods: Five hundred and fifty patient treatment deliveries (400 IMRT, 75 SBRT and 75 VMAT) from various treatment sites, planned on Raystation treatment planning system (TPS), were measured on three beam-matched Elekta linear accelerators using IBA’s COMPASS system. The difference between TPS computed and delivered dose was evaluated in 3D by applying three statistical parameters to each structure of interest: absolute average dose difference (AADD, 6% allowed difference), absolute dose difference greater than 6% (ADD6, 4% structure volume allowed to fail) and 3D gamma test (3%/3mm DTA,more » 4% structure volume allowed to fail). If the allowed value was not met for a given structure, manual review was performed. The review consisted of overlaying dose difference or gamma results with the patient CT, scrolling through the slices. For QA to pass, areas of high dose difference or gamma must be small and not on consecutive slices. For AADD to manually pass QA, the average dose difference in cGy must be less than 50cGy. The QA protocol also includes DVH analysis based on QUANTEC and TG-101 recommended dose constraints. Results: Figures 1–3 show the results for the three parameters per treatment modality. Manual review was performed on 67 deliveries (27 IMRT, 22 SBRT and 18 VMAT), for which all passed QA. Results show that statistical parameter AADD may be overly sensitive for structures receiving low dose, especially for the SBRT deliveries (Fig.1). The TPS computed and measured DVH values were in excellent agreement and with minimum difference. Conclusion: Applying DVH analysis and different statistical parameters to any structure of interest, as part of the 3D QA protocol, provides a comprehensive treatment plan evaluation. Author G. Gueorguiev discloses receiving travel and research funding from IBA for unrelated to this project work. Author B. Crawford discloses receiving travel funding from IBA for unrelated to this project work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez Quino, L; Huerta Hernandez, C; Morrow, A
2016-06-15
Purpose: To evaluate the use of MobiusFX as a pre-treatment verification IMRT QA tool and compare it with a commercial 4D detector array for VMAT plan QA. Methods: 15 VMAT plan QA of different treatment sites were delivered and measured by traditional means with the 4D detector array ArcCheck (Sun Nuclear corporation) and at the same time measurement in linac treatment logs (Varian Dynalogs files) were analyzed from the same delivery with MobiusFX software (Mobius Medical Systems). VMAT plan QAs created in Eclipse treatment planning system (Varian) in a TrueBeam linac machine (Varian) were delivered and analyzed with the gammamore » analysis routine from SNPA software (Sun Nuclear corporation). Results: Comparable results in terms of the gamma analysis with 99.06% average gamma passing with 3%,3mm passing rate is observed in the comparison among MobiusFX, ArcCheck measurements, and the Treatment Planning System dose calculated. When going to a stricter criterion (1%,1mm) larger discrepancies are observed in different regions of the measurements with an average gamma of 66.24% between MobiusFX and ArcCheck. Conclusion: This work indicates the potential for using MobiusFX as a routine pre-treatment patient specific IMRT method for quality assurance purposes and its advantages as a phantom-less method which reduce the time for IMRT QA measurement. MobiusFX is capable of produce similar results of those by traditional methods used for patient specific pre-treatment verification VMAT QA. Even the gamma results comparing to the TPS are similar the analysis of both methods show that the errors being identified by each method are found in different regions. Traditional methods like ArcCheck are sensitive to setup errors and dose difference errors coming from the linac output. On the other hand linac log files analysis record different errors in the VMAT QA associated with the MLCs and gantry motion that by traditional methods cannot be detected.« less
Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.
Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios
2015-05-08
The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.
Image processing for IMRT QA dosimetry.
Zaini, Mehran R; Forest, Gary J; Loshek, David D
2005-01-01
We have automated the determination of the placement location of the dosimetry ion chamber within intensity-modulated radiotherapy (IMRT) fields, as part of streamlining the entire IMRT quality assurance process. This paper describes the mathematical image-processing techniques to arrive at the appropriate measurement locations within the planar dose maps of the IMRT fields. A specific spot within the found region is identified based on its flatness, radiation magnitude, location, area, and the avoidance of the interleaf spaces. The techniques used include applying a Laplacian, dilation, erosion, region identification, and measurement point selection based on three parameters: the size of the erosion operator, the gradient, and the importance of the area of a region versus its magnitude. These three parameters are adjustable by the user. However, the first one requires tweaking in extremely rare occasions, the gradient requires rare adjustments, and the last parameter needs occasional fine-tuning. This algorithm has been tested in over 50 cases. In about 5% of cases, the algorithm does not find a measurement point due to the extremely steep and narrow regions within the fluence maps. In such cases, manual selection of a point is allowed by our code, which is also difficult to ascertain, since the fluence map does not yield itself to an appropriate measurement point selection.
Qi, Zhen-Yu; Deng, Xiao-Wu; Huang, Shao-Min; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas
2011-08-01
A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 × 20 cm(2), MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360°, and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wibowo, W. E.; Waliyyulhaq, M.; Pawiro, S. A.
2017-05-01
Patient-specific Quality Assurance (QA) technique in lung case Intensity-Modulated Radiation Therapy (IMRT) is traditionally limited to homogeneous material, although the fact that the planning is carried out with inhomogeneous material present. Moreover, the chest area has many of inhomogeneous material, such as lung, soft tissue, and bone, which inhomogeneous material requires special attention to avoid inaccuracies in dose calculation in the Treatment Planning System (TPS). Recent preliminary studies shown that the role of Cone Beam CT (CBCT) can be used not only to position the patient at the time prior to irradiation but also to serve as planning modality. Our study presented the influence of a homogeneous and inhomogeneous materials using Fan Beam CT and Cone Beam CT modalities in IMRT technique on the Gamma Index (GI) value. We used a variation of the segment and Calculation Grid Resolution (CGR). The results showed the deviation of averaged GI value to be between CGR 0.2 cm and 0.4 cm with homogeneous material ranging from -0.44% to 1.46%. For inhomogeneous material, the value was range from -1.74% to 0.98%. In performing patient-specific IMRT QA techniques for lung cancer, homogeneous material can be implemented in evaluating the gamma index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knill, Cory, E-mail: knillcor@gmail.com; Snyder, Michael; Rakowski, Joseph T.
Purpose: PTW’s Octavius 1000 SRS array performs IMRT quality assurance (QA) measurements with liquid-filled ionization chambers (LICs) to allow closer detector spacing and higher resolution, compared to air-filled QA devices. However, reduced ion mobility in LICs relative to air leads to increased ion recombination effects and reduced collection efficiencies that are dependent on Linac pulse frequency and pulse dose. These pulse parameters are variable during an IMRT delivery, which affects QA results. In this study, (1) 1000 SRS collection efficiencies were measured as a function of pulse frequency and pulse dose, (2) two methods were developed to correct changes inmore » collection efficiencies during IMRT QA measurements, and the effects of these corrections on QA pass rates were compared. Methods: To obtain collection efficiencies, the OCTAVIUS 1000 SRS was used to measure open fields of varying pulse frequency, pulse dose, and beam energy with results normalized to air-filled chamber measurements. Changes in ratios of 1000 SRS to chamber measured dose were attributed to changing collection efficiencies, which were then correlated to pulse parameters using regression analysis. The usefulness of the derived corrections was then evaluated using 6 MV and 10FFF SBRT RapidArc plans delivered to the OCTAVIUS 4D system using a TrueBeam (Varian Medical Systems) linear accelerator equipped with a high definition multileaf collimator. For the first correction, MATLAB software was developed that calculates pulse frequency and pulse dose for each detector, using measurement and DICOM RT Plan files. Pulse information is converted to collection efficiency, and measurements are corrected by multiplying detector dose by ratios of calibration to measured collection efficiencies. For the second correction the MU/min in the daily 1000 SRS calibration was chosen to match the average MU/min of the volumetric modulated arc therapy plan. Effects of the two corrections on QA results were examined by performing 3D gamma analysis comparing predicted to measured dose, with and without corrections. Results: Collection efficiencies correlated linearly to pulse dose, while correlations with pulse frequency were less defined, generally increasing as pulse frequency decreased. After complex MATLAB corrections, average 3D gamma pass rates improved by [0.07%,0.40%,1.17%] for 6 MV and [0.29%,1.40%,4.57%] for 10FFF using [3%/3 mm,2%/2 mm,1%/1 mm] criteria. Maximum changes in gamma pass rates were [0.43%,1.63%,3.05%] for 6 MV and [1.00%,4.80%,11.2%] for 10FFF using [3%/3 mm,2%/2 mm,1%/1 mm] criteria. On average, pass rates of simple daily calibration corrections were within 1% of complex MATLAB corrections. Conclusions: OCTAVIUS 1000 SRS ion recombination effects have little effect on 6 MV measurements. However, the effect could potentially be clinically significant for higher pulse dose unflattened beams when using tighter gamma tolerances, especially when small aperture sizes are used, as is common for SRS/SBRT. In addition, ion recombination effects are strongly correlated to changing MU/min, therefore MU/min used in daily 1000 SRS calibrations should be matched to the expected average MU/min of the IMRT plan.« less
Compensators: An alternative IMRT delivery technique
Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.
2004-01-01
Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937
SU-E-T-88: Comprehensive Automated Daily QA for Hypo- Fractionated Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuinness, C; Morin, O
2014-06-01
Purpose: The trend towards more SBRT treatments with fewer high dose fractions places increased importance on daily QA. Patient plan specific QA with 3%/3mm gamma analysis and daily output constancy checks may not be enough to guarantee the level of accuracy required for SBRT treatments. But increasing the already extensive amount of QA procedures that are required is a daunting proposition. We performed a feasibility study for more comprehensive automated daily QA that could improve the diagnostic capabilities of QA without increasing workload. Methods: We performed the study on a Siemens Artiste linear accelerator using the integrated flat panel EPID.more » We included square fields, a picket fence, overlap and representative IMRT fields to measure output, flatness, symmetry, beam center, and percent difference from the standard. We also imposed a set of machine errors: MLC leaf position, machine output, and beam steering to compare with the standard. Results: Daily output was consistent within +/− 1%. Change in steering current by 1.4% and 2.4% resulted in a 3.2% and 6.3% change in flatness. 1 and 2mm MLC leaf offset errors were visibly obvious in difference plots, but passed a 3%/3mm gamma analysis. A simple test of transmission in a picket fence can catch a leaf offset error of a single leaf by 1mm. The entire morning QA sequence is performed in less than 30 minutes and images are automatically analyzed. Conclusion: Automated QA procedures could be used to provide more comprehensive information about the machine with less time and human involvement. We have also shown that other simple tests are better able to catch MLC leaf position errors than a 3%/3mm gamma analysis commonly used for IMRT and modulated arc treatments. Finally, this information could be used to watch trends of the machine and predict problems before they lead to costly machine downtime.« less
NASA Astrophysics Data System (ADS)
Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan
2018-02-01
The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.
NASA Astrophysics Data System (ADS)
Fallone, B. G.
2004-01-01
This book represents the proceedings of the five day programme on IMRT techniques presented at the 2003 American Association of Physicists in Medicine (AAPM) Summer School held in Colorado Springs, Colorado. The book is essentially an overview of IMRT techniques, discussing the history, the mathematical processes involved in the planning stages, the biological indices for evaluations, the off-line and on-line medical imaging that is required, the various IMRT delivery techniques available, positioning and motion verification, shielding and QA issues, and some clinical applications. There is some additional discussion on modulated electron and proton therapy, views on the clinical and financial impact of IMRT, as well as some speculation on the future uses of IMRT. The fact that the book is an `overview' must be emphasized. Medical physicists who are well-read in IMRT, or have implemented IMRT, even partially, may be a little disappointed with the book. Although specific details were purposely omitted, the well-read physicist would have preferred to go right to the `heart of the matter', something this book fails to do. As is typical of many proceedings-type books, there is a certain level of inconsistency of writing styles, as well as some redundancy between the different chapters. It is unfortunate that such a large volume does not have an index to allow a reader to explore a particular subject pertaining to IMRT. The reader would have to guide himself/herself by the table of contents before each chapter which could be a problem if the reader requires some information quickly. It is interesting to note that the book lends itself to a variety of professionals interested in IMRT, including administrators. It may be a source of help for medical physicists who wish to discuss IMRT issues with higher level administration, for example. Some clinical applications are also reviewed. The lack of details concerning the advantages of IMRT with respect to clinical outcome is probably due to the fact that IMRT is a rather new technology, and there is not sufficient data to perform a comprehensive comparison to more conventional techniques. However, even a speculative discussion on the possible theoretical advantages of IMRT at the clinical or radiobiological level would have been interesting. It is unfortunate, but the question as to whether all of this technology is worth the clinical outcome has, unfortunately, not really been addressed. One can, however, appreciate the difficulties by admitting, again, that IMRT is still a rather novel technique and more time is required to consider these issues appropriately. The book is an obvious reference source for all practical aspects of IMRT implementations. In particular, there are some interesting discussions on some of the practical issues concerning the pitfalls in commissioning linacs and optimization systems for IMRT, the practical limitations to optimization, and IMRT QA issues and procedures. These discussions are crucial to the implementation of IMRT. Other discussions refer to patient-positioning issues, and the various techniques, albeit not all fully developed, with which these issues can be addressed. It would be very difficult, if not impossible, at the present time, to develop a `textbook' on IMRT because IMRT is such a novel technique. However, the present book can certainly be an aid to an instructor as it also contains a CD of the chapters in Acrobat format, some chapter figures in colour, and quite an interesting selection of movie clips to supplement one of the chapters. In summary, the book can be considered a worthwhile reference in the fast-changing field of IMRT, and should be part of any medical physics library as supplemental reading material for medical physics graduate students, medical physics residents studying for certification, and practising medical physicists who wish to implement IMRT in the clinic.
NASA Astrophysics Data System (ADS)
Feygelman, V.; Nelms, B.
2013-06-01
As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.
Li, H Harold; Rodriguez, Vivian L; Green, Olga L; Hu, Yanle; Kashani, Rojano; Wooten, H Omar; Yang, Deshan; Mutic, Sasa
2015-01-01
This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging-guided RT device. The program consisted of: (1) a 1-dimensional multipoint ionization chamber measurement using a customized 15-cm(3) cube-shaped phantom; (2) 2-dimensional (2D) radiographic film measurement using a 30- × 30- × 20-cm(3) phantom with multiple inserted ionization chambers; (3) quasi-3D diode array (ArcCHECK) measurement with a centrally inserted ionization chamber; (4) 2D fluence verification using machine delivery log files; and (5) 3D Monte Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Ionization chamber measurements agreed well with treatment planning system (TPS)-computed doses in all phantom geometries where the mean ± SD difference was 0.0% ± 1.3% (n=102; range, -3.0%-2.9%). Film measurements also showed excellent agreement with the TPS-computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30; range, 87.4%-100%). For ArcCHECK measurements, the mean ± SD passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34; range, 95.8%-100%). 2D fluence maps with a resolution of 1 × 1 mm(2) showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18; range, 97.0%-100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. We developed a dosimetry program for ViewRay's patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay's IMRT QA. Copyright © 2015 Elsevier Inc. All rights reserved.
SU-F-T-285: Evaluation of a Patient DVH-Based IMRT QA System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, H; Redler, G; Chu, J
2016-06-15
Purpose: To evaluate the clinical performance of a patient DVH-based QA system for prostate VMAT QA. Methods: Mobius3D(M3D) is a QA software with an independent beam model and dose engine. The MobiusFX(MFX) add-on predicts patient dose using treatment machine log files. We commissioned the Mobius beam model in two steps. First, the stock beam model was customized using machine commissioning data, then verified against the TPS with 12 simple phantom plans and 7 clinical 3D plans. Secondly, the Dosimetric Leaf Gap(DLG) in the Mobius model was fine-tuned for VMAT treatment based on ion chamber measurements for 6 clinical VMAT plans.more » Upon successful commissioning, we retrospectively performed IMRT QA for 12 VMAT plans with the Mobius system as well as the ArcCHECK-3DVH system. Selected patient DVH values (PTV D95, D50; Bladder D2cc, Dmean; Rectum D2cc) were compared between TPS, M3D, MFX, and 3DVH. Results: During the first commissioning step, TPS and M3D calculated target Dmean for 3D plans agree within 0.7%±0.7%, with 3D gamma passing rates of 98%±2%. In the second commissioning step, the Mobius DLG was adjusted by 1.2mm from the stock value, reducing the average difference between MFX calculation and ion chamber measurement from 3.2% to 0.1%. In retrospective prostate VMAT QA, 5 of 60 MFX calculated DVH values have a deviation greater than 5% compared to TPS. One large deviation at high dose level was identified as a potential QA failure. This echoes the 3DVH QA result, which identified 2 instances of large DVH deviation on the same structure. For all DVH’s evaluated, M3D and MFX show high level of agreement (0.1%±0.2%), indicating that the observed deviation is likely from beam modelling differences rather than delivery errors. Conclusion: Mobius system provides a viable solution for DVH based VMAT QA, with the capability of separating TPS and delivery errors.« less
SU-F-T-306: Validation of Mobius 3D and FX for Elekta Linear Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, C; Garcia, M; Calderon, E
2016-06-15
Purpose: Log file based IMRT and VMAT QA is a system that analyzes treatment log files and uses delivery parameters to compute the dose to the patient/phantom. This system was previously commissioned for Varian machines, the purpose of this work is to describe the process for commissioning Mobius for use with Elekta machines. Methods: Twelve IMRT and VMAT plans (6×) were planned and delivered and dose was measured using MapCheck, the results were compared to that computed by Mobius. For 10x and 18x, plans were generated, copied to a phantom and delivered, the dose was measured using a single ionmore » chamber. The difference in measured dose to computed dose (Mobius) was used to adjust the dynamic leaf gap (DLG) in Mobius to achieve optimal agreement between measurements, Mobius and treatment plans. Results: For the measured dose comparison, the average 3%/3mm gamma 97.1% of pixels passed criteria using MapCheck where Mobius computed 96.9% of voxels passing. For 10×, a DLG of −5.5 was determined to achieve optimal results for TPS and measured ion chamber data with an average 0.1% difference and −1.7% respectively. For 18×, a DLG of −3 was determined to achieve optimal results from the TPS and measured data with an average of −0.7% and −1.4% difference on average from a set of IMRT and VMAT plans. The 6x data needed no DLG correction to arrive at agreement with the TPS and the MapCheck measured data. Conclusion: We have validated with measurements for IMRT and VMAT cases the use of Mobius FX with Elekta treatment machines for IMRT and VMAT QA. For 6×, no adjustments to the DLG were required to obtain good results utilizing Mobius whereas for 10× and 18×, the DLG had to be adjusted to obtain optimum agreement with measured data and our TPS.« less
WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ger, R; Craft, DF; Burgett, EA
Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by anmore » ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between measured and calculated doses will improve.« less
QA procedures needed for advanced RT techniques and its impact on treatment outcome
NASA Astrophysics Data System (ADS)
Knöös, T.
2015-01-01
The radiotherapy process is reviewed briefly and potential risks or pitfalls are identified. The focus is on modern advanced modalities in radiation therapy such as IMRT, VMAT, gating and tracking and also for the unknown to come. Existing methods, or quality controls (QC), or with better word barriers, are introduced at important steps of process with the purpose of prohibiting errors to continue through the process and thus avoiding an unwanted erroneous irradiation of the patient. The soft branch of quality assurance (QA) such as peer-review is also a major component of today's process and its safety. The importance of knowing your QCs is pointed out. The role of dosimetry method i.e. 3D-dosimetry is reviewed. Staff have to be working with awareness and alertness that can reduce most of the risks. Having comprehensive protocols known by all involved together with well-trained staff at the department with dedicated functions and responsibilities will further reduce the risk for unintended irradiations of patient. Having a well-designed QA system with the appropriate barriers have the possibility of producing high quality radiotherapy, which will also result in better outcome for the patients. The international head and neck trial illustrates very well the importance of accurate radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L; Huang, B; Rowedder, B
Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were deliveredmore » using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otageri, P; Grant, E; Maricle, S
Purpose: To evaluate the effects of MLC modeling after commissioning the Varian TrueBeam LINAC in Pinnacle version 9.2. Methods: Stepand-shoot IMRT QAs were investigated when we observed our measured absolute dose results using ion chamber (Capintec PR-05P) were uncharacteristically low; about 4–5% compared to doses calculated by Pinnacle{sup 3} (Phillips, Madison, WI). This problem was predominant for large and highly modulated head and neck (HN) treatments. Intuitively we knew this had to be related to shortcomings in the MLC modeling in Pinnacle. Using film QA we were able to iteratively adjust the MLC parameters. We confirmed results by re-testing fivemore » failed IMRT QA patients; and ion chamber measurements were verified in Quasar anthropomorphic phantom. Results: After commissioning the LINAC in Pinnacle version 9.2, the MLC transmission for 6X, 10X and 15X were 2.0%, 1.7% and 2.0%, respectively, and additional Interleaf leakage for all three energies was 0.5%. These parameters were obtained from profiles scanned with an Edge detector (Sun Nuclear, Melbourne, FL) during machine commissioning. A Verification testing with radiographic EDR2 film (Kodak, Rochester, NY) measurement was performed by creating a closed MLC leaf pattern and analyzing using RIT software (RIT, Colorado Springs, CO). This reduced MLC transmission for 6X, 10X and 15X to 0.7%, 0.9% and 0.9%, respectively; while increasing additional Interleaf leakage for all three energies to 1.0%. Conclusion: Radiographic film measurements were used to correct MLC transmission values for step and shoot IMRT fields used in Pinnacle version 9.2. After adjusting the MLC parameters to correlate with the film QA, there was still very good agreement between the Pinnacle model and commissioning data. Using the same QA methodology, we were also able to improve the beam models for the Varian C-series linacs, Novalis-Tx, and TrueBeam M-120 linacs.« less
do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi
2015-01-01
Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306
Njeh, Christopher F; Salmon, Howard W; Schiller, Claire
2017-01-01
Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.
McKenzie, Elizabeth M.; Balter, Peter A.; Stingo, Francesco C.; Jones, Jimmy; Followill, David S.; Kry, Stephen F.
2014-01-01
Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. Conclusions: IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans. PMID:25471949
McKenzie, Elizabeth M; Balter, Peter A; Stingo, Francesco C; Jones, Jimmy; Followill, David S; Kry, Stephen F
2014-12-01
The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there was no significant difference in the performance of any device between gamma criteria of 2%/2 mm, 3%/3 mm, and 5%/3 mm. Finally, optimal cutoffs (e.g., percent of pixels passing gamma) were determined for each device and while clinical practice commonly uses a threshold of 90% of pixels passing for most cases, these results showed variability in the optimal cutoff among devices. IMRT QA devices have differences in their ability to accurately detect dosimetrically acceptable and unacceptable plans. Field-by-field analysis with a MapCheck device and use of the MapCheck with a MapPhan phantom while delivering at planned rotational gantry angles resulted in a significantly poorer ability to accurately sort acceptable and unacceptable plans compared with the other techniques examined. Patient-specific IMRT QA techniques in general should be thoroughly evaluated for their ability to correctly differentiate acceptable and unacceptable plans. Additionally, optimal agreement thresholds should be identified and used as common clinical thresholds typically worked very poorly to identify unacceptable plans.
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
Process-based quality management for clinical implementation of adaptive radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.
Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of twomore » clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.« less
Process-based quality management for clinical implementation of adaptive radiotherapy
Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa
2014-01-01
Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations. PMID:25086527
Process-based quality management for clinical implementation of adaptive radiotherapy.
Noel, Camille E; Santanam, Lakshmi; Parikh, Parag J; Mutic, Sasa
2014-08-01
Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Jen-San, E-mail: jen-san.tsai@verizon.net; Micaily, Bizhan; Miyamoto, Curtis
2012-10-01
To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotationalmore » axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was within {+-} 4.5 mm coordinates shifting. IGRT using XVIcbs is critical to IMRT for prostate and H and N, especially SRT, SRS, and SBRT. To optimize this modality of IGRT, a vigilant QA program is indispensable. Prostate IGRT reveals treatment accuracy as subject to coordinates' adjustments; otherwise a 4.5-mm margin is required to allow for full dose coverage of the clinical target volume, notwithstanding toxicity to normal tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, T; Koo, T
Purpose: To quantitatively investigate the planar dose difference and the γ value between the reference fluence map with the 1 mm detector-to-detector distance and the other fluence maps with less spatial resolution for head and neck intensity modulated radiation (IMRT) therapy. Methods: For ten head and neck cancer patients, the IMRT quality assurance (QA) beams were generated using by the commercial radiation treatment planning system, Pinnacle3 (ver. 8.0.d Philips Medical System, Madison, WI). For each beam, ten fluence maps (detector-to-detector distance: 1 mm to 10 mm by 1 mm) were generated. The fluence maps with larger than 1 mm detector-todetectormore » distance were interpolated using MATLAB (R2014a, the Math Works,Natick, MA) by four different interpolation Methods: for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. These interpolated fluence maps were compared with the reference one using the γ value (criteria: 3%, 3 mm) and the relative dose difference. Results: As the detector-to-detector distance increases, the dose difference between the two maps increases. For the fluence map with the same resolution, the cubic spline interpolation and the bicubic interpolation are almost equally best interpolation methods while the nearest neighbor interpolation is the worst.For example, for 5 mm distance fluence maps, γ≤1 are 98.12±2.28%, 99.48±0.66%, 99.45±0.65% and 82.23±0.48% for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. For 7 mm distance fluence maps, γ≤1 are 90.87±5.91%, 90.22±6.95%, 91.79±5.97% and 71.93±4.92 for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. Conclusion: We recommend that the 2-dimensional detector array with high spatial resolution should be used as an IMRT QA tool and that the measured fluence maps should be interpolated using by the cubic spline interpolation or the bicubic interpolation for head and neck IMRT delivery. This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
A calibration method for patient specific IMRT QA using a single therapy verification film
Shukla, Arvind Kumar; Oinam, Arun S.; Kumar, Sanjeev; Sandhu, I.S.; Sharma, S.C.
2013-01-01
Aim The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance. Background Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification. Materials and methods A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution. Results Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria. Conclusion The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification. PMID:24416558
SU-E-T-142: Automatic Linac Log File: Analysis and Reporting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gainey, M; Rothe, T
Purpose: End to end QA for IMRT/VMAT is time consuming. Automated linac log file analysis and recalculation of daily recorded fluence, and hence dose, distribution bring this closer. Methods: Matlab (R2014b, Mathworks) software was written to read in and analyse IMRT/VMAT trajectory log files (TrueBeam 1.5, Varian Medical Systems) overnight, and are archived on a backed-up network drive (figure). A summary report (PDF) is sent by email to the duty linac physicist. A structured summary report (PDF) for each patient is automatically updated for embedding into the R&V system (Mosaiq 2.5, Elekta AG). The report contains cross-referenced hyperlinks to easemore » navigation between treatment fractions. Gamma analysis can be performed on planned (DICOM RTPlan) and treated (trajectory log) fluence distributions. Trajectory log files can be converted into RTPlan files for dose distribution calculation (Eclipse, AAA10.0.28, VMS). Results: All leaf positions are within +/−0.10mm: 57% within +/−0.01mm; 89% within 0.05mm. Mean leaf position deviation is 0.02mm. Gantry angle variations lie in the range −0.1 to 0.3 degrees, mean 0.04 degrees. Fluence verification shows excellent agreement between planned and treated fluence. Agreement between planned and treated dose distribution, the derived from log files, is very good. Conclusion: Automated log file analysis is a valuable tool for the busy physicist, enabling potential treated fluence distribution errors to be quickly identified. In the near future we will correlate trajectory log analysis with routine IMRT/VMAT QA analysis. This has the potential to reduce, but not eliminate, the QA workload.« less
Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael
2007-08-21
Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach. The physical effects modelled in the dose calculation software MUV allow accurate dose calculations in individual verification points. Independent calculations may be used to replace experimental dose verification once the IMRT programme is mature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knill, C; Wayne State University School of Medicine, Detroit, MI; Snyder, M
Purpose: PTW’s Octavius 1000 SRS array performs IMRT QA measurements with liquid filled ionization chambers (LICs). Collection efficiencies of LICs have been shown to change during IMRT delivery as a function of LINAC pulse frequency and pulse dose, which affects QA results. In this study, two methods were developed to correct changes in collection efficiencies during IMRT QA measurements, and the effects of these corrections on QA pass rates were compared. Methods: For the first correction, Matlab software was developed that calculates pulse frequency and pulse dose for each detector, using measurement and DICOM RT Plan files. Pulse information ismore » converted to collection efficiency and measurements are corrected by multiplying detector dose by ratios of calibration to measured collection efficiencies. For the second correction, MU/min in daily 1000 SRS calibration was chosen to match average MU/min of the VMAT plan. Usefulness of derived corrections were evaluated using 6MV and 10FFF SBRT RapidArc plans delivered to the OCTAVIUS 4D system using a TrueBeam equipped with an HD- MLC. Effects of the two corrections on QA results were examined by performing 3D gamma analysis comparing predicted to measured dose, with and without corrections. Results: After complex Matlab corrections, average 3D gamma pass rates improved by [0.07%,0.40%,1.17%] for 6MV and [0.29%,1.40%,4.57%] for 10FFF using [3%/3mm,2%/2mm,1%/1mm] criteria. Maximum changes in gamma pass rates were [0.43%,1.63%,3.05%] for 6MV and [1.00%,4.80%,11.2%] for 10FFF using [3%/3mm,2%/2mm,1%/1mm] criteria. On average, pass rates of simple daily calibration corrections were within 1% of complex Matlab corrections. Conclusion: Ion recombination effects can potentially be clinically significant for OCTAVIUS 1000 SRS measurements, especially for higher pulse dose unflattened beams when using tighter gamma tolerances. Matching daily 1000 SRS calibration MU/min to average planned MU/min is a simple correction that greatly reduces ion recombination effects, improving measurements accuracy and gamma pass rates. This work was supported by PTW.« less
Li, H. Harold; Rodriguez, Vivian L.; Green, Olga L.; Hu, Yanle; Kashani, Rojano; Wooten, H. Omar; Yang, Deshan; Mutic, Sasa
2014-01-01
Purpose This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging guided radiation therapy device. Methods and materials The program consisted of the following components: 1) one-dimensional multipoint ionization chamber measurement using a customized 15 cm3 cubic phantom, 2) two-dimensional (2D) radiographic film measurement using a 30×30×20 cm3 phantom with multiple inserted ionization chambers, 3) quasi- three-dimensional (3D) diode array (ArcCHECK) measurement with a centrally inserted ionization chamber, 4) 2D fluence verification using machine delivery log files, and 5) 3D Monte-Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Results The ionization chamber measurements agreed well with treatment planning system (TPS) computed doses in all phantom geometries where the mean difference (mean ± SD) was 0.0% ± 1.3% (n=102, range, −3.0 % to 2.9%). The film measurements also showed excellent agreement with the TPS computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30, range, 87.4% to 100%). For ArcCHECK measurements, the mean passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34, range, 95.8% to 100%). 2D fluence maps with a resolution of 1×1 mm2 showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18, range, 97.0% to100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. Conclusions We have developed a dosimetry program for ViewRay’s patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay’s IMRT QA. PMID:25442343
Zakjevskii, Viatcheslav V.; Knill, Cory S.; Rakowski, Joseph. T.
2016-01-01
A comprehensive end‐to‐end test for head and neck IMRT treatments was developed using a custom phantom designed to utilize multiple dosimetry devices. Initial end‐to‐end test and custom H&N phantom were designed to yield maximum information in anatomical regions significant to H&N plans with respect to: (i) geometric accuracy, (ii) dosimetric accuracy, and (iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. The phantom was imaged on a CT simulator and the CT was reconstructed with 1 mm slice thickness and imported into Varian's Eclipse treatment planning system. OARs and the PTV were contoured with the aid of Smart Segmentation. A clinical template was used to create an eight‐field IMRT plan and dose was calculated with heterogeneity correction on. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end‐to‐end results were measured using film, ion chambers, and optically stimulated luminescent dosimeters (OSLDs). Ion chamber dose measurements were compared to the treatment planning system. Films were analyzed with FilmQA Pro using composite gamma index. OSLDs were read with a MicroStar reader using a custom calibration curve. Final phantom design incorporated two axial and one coronal film planes with 18 OSLD locations adjacent to those planes as well as four locations for IMRT ionization chambers below inferior film plane. The end‐to‐end test was consistently reproducible, resulting in average gamma pass rate greater than 99% using 3%/3 mm analysis criteria, and average OSLD and ion chamber measurements within 1% of planned dose. After initial calibration of OSLD and film systems, the end‐to‐end test provides next‐day results, allowing for integration in routine clinical QA. Preliminary trials have demonstrated that our end‐to‐end is a reproducible QA tool that enables the ongoing evaluation of dosimetric and geometric accuracy of clinical head and neck treatments. PACS number(s): 87.55.Qr PMID:27074453
IMRT plan verification with EBT2 and EBT3 films compared to PTW 2D-ARRAY seven29
NASA Astrophysics Data System (ADS)
Hanušová, Tereza; Horáková, Ivana; Koniarová, Irena
2017-11-01
The aim of this study was to compare dosimetry with Gafchromic EBT2 and EBT3 films to the ion chamber array PTW seven29 in terms of their performance in clinical IMRT plan verification. A methodology for film processing and calibration was developed. Calibration curves were obtained in MATLAB and in FilmQA Pro. The best calibration curve was then used to calibrate EBT2 and EBT3 films for IMRT plan verification measurements. Films were placed in several coronal planes into an RW3 slab phantom and irradiated with a clinical IMRT plan for prostate and lymph nodes using 18 MV photon beams. Individual fields were tested and irradiated with gantry at 0°. Results were evaluated using gamma analysis with 3%/3 mm criteria in OmniPro I'mRT version 1.7. The same measurements were performed with the ion chamber array PTW seven29 in RW3 slabs (different depths) and in the OCTAVIUS II phantom (isocenter depth only; both original and nominal gantry angles). Results were evaluated in PTW VeriSoft version 3.1 using the same criteria. Altogether, 45 IMRT planes were tested with film and 25 planes with the PTW 2D-ARRAY seven29. Film measuerements showed different results than ion chamber matrix measurements. With PTW 2D-ARRAY seven29, worse results were obtained when the detector was placed into the OCTAVIUS phantom than into the RW3 slab phantom, and the worst pass rates were seen for rotational measurements. EBT2 films showed inconsistent results and could differ significantly for different planes in one field. EBT3 films seemed to give the best results of all the tested configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhingran, Anuja, E-mail: ajhingra@mdanderson.org; Winter, Kathryn; Portelance, Lorraine
2012-09-01
Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had anmore » acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.« less
Grigorov, G; Chow, J; Foster, K
2012-06-01
The aims of this study is to (1) introduce a 2D field of possible rectal normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) plan, so that based on a given prescribed dose the rectal NTCP is merely a function of the rectal wall thickness and rectal motion; and (2) separate the 2D field of rectal NTCP into area of low risk and area of high risk for rectal toxicity < Grade II, based on the threshold rectal NTCP. The 2D field of NTCP model was developed using ten randomly selected prostate IMRT plans. The clinical rectal geometry was initially represented by the cylindrical contour in the treatment planning system. Different combinations of rectal motions, rectal wall thicknesses, planning target volume margins and prescribed doses were used to determine the NTCP in prostate IMRT plans. It was found that the functions bordering the 2D field for the given AP, LR and SI direction can be described as exponential, quadratic and linear equations, respectively. A ratio of the area of 2D field containing data of the low risk NTCP to the entire area of the field was introduced and calculated. Although our method is based on the Kutcher's dose response model and published tissue parameters, other mathematical models can be used in our approach. The 2D field of rectal NTCP is useful to estimate the rectal NTCP range in the prostate pre-treatment and treatment QA. Our method can determine the patient's threshold immobilization for a given rectal wall thickness so that prescribed dose can be delivered to the prostate to avoid rectal complication. Our method is also applicable to multi-phase prostate IMRT, and can be adapted to any treatment planning systems. © 2012 American Association of Physicists in Medicine.
Jia, Pengfei; Xu, Jun; Zhou, Xiaoxi; Chen, Jian; Tang, Lemin
2017-12-01
The aim of this study is to compare the planning quality and delivery efficiency between dynamic intensity modulated radiation therapy (d-IMRT) and dual arc volumetric modulated arc therapy (VMAT) systematically for nasopharyngeal carcinoma (NPC) patients with multi-prescribed dose levels, and to analyze the correlations between target volumes and plan qualities. A total of 20 patients of NPC with 4-5 prescribed dose levels to achieve simultaneous integrated boost (SIB) treated by sliding window d-IMRT in our department from 2014 to 2015 were re-planned with dual arc VMAT. All optimization objectives for each VMAT plan were as the same as the corresponding d-IMRT plan. The dose parameters for targets and organ at risk (OAR), the delivery time and monitor units (MU) in two sets of plans were compared respectively. The treatment accuracy was tested by three dimensional dose validation system. Finally, the correlations between the difference of planning quality and the volume of targets were discussed. The conform indexes (CIs) of planning target volumes (PTVs) in VMAT plans were obviously high than those in d-IMRT plans ( P < 0.05), but no significant correlations between the difference of CIs and the volume of targets were discovered ( P > 0.05). The target coverage and heterogeneity indexes (HIs) of PTV 1 and PGTV nd and PTV 3 in two sets of plans were consistent. The doses of PTV 2 decreased and HIs were worse in VMAT plans. VMAT could provide better spinal cord and brainstem sparing, but increase mean dose of parotids. The average number of MUs and delivery time for d-IMRT were 3.32 and 2.19 times of that for VMAT. The γ-index (3 mm, 3%) analysis for each plans was more than 97% in COMPASS ® measurement for quality assurance (QA). The results show that target dose coverages in d-IMRT and VMAT plans are similar for NPC with multi-prescribed dose levels. VMAT could improve the the CIs of targets, but reduce the dose to the target volume in neck except for PGTV nd . The biggest advantages of VMAT over d-IMRT are delivery efficiency and QA.
The impact of introducing intensity modulated radiotherapy into routine clinical practice.
Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M
2005-12-01
Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroom, J; Vieira, S; Greco, C
Purpose: Pre-treatment QA of individual treatment plans requires costly linac time and physics effort. Starting with IMRT breast treatments, we aim to replace pre-treatment QA with in-vivo portal dosimetry. Methods: Our IMRT breast cancer plans are routinely measured using the ArcCheck device (SunNuclear). 2D-Gamma analysis is performed with 3%/3mm criteria and the percentage of points with gamma<1 (nG1) is calculated within the 50% isodose surface. Following AAPM recommendations, plans with nG1<90% are approved; others need further inspection and might be rejected. For this study, we used invivo portal dosimetry (IPD) to measure the 3D back-projected dose of the first threemore » fractions for IMRT breast plans. Patient setup was online corrected before for all measured fractions. To reduce patient related uncertainties, the three IPD results were averaged and 3D-gamma analysis was applied with abovementioned criteria . For a subset of patients, phantom portal dosimetry (PPD) was also performed on a slab phantom. Results: Forty consecutive breast patients with plans that fitted the EPID were analysed. The average difference between planned and IPD dose in the reference point was −0.7+/−1.6% (1SD). Variation in nG1 between the 3 invivo fractions was about 6% (1SD). The average nG1 for IPD was 89+/−6%, worse than ArcCheck (95+/−3%). This can be explained by patient related factors such as changes in anatomy and/or model deficiencies due to e.g. inhomogeneities. For the 20 cases with PPD, mean nG1 was equal to ArcCheck values, which indicates that the two systems are equally accurate. These data therefore suggest that proper criteria for 3D invivo verification of breast treatments should be nG1>80% instead of nG1>90%, which, for our breast cases, would result in 5% (2/40) further inspections. Conclusion: First-fraction in-vivo portal dosimetry using new gamma-evaluation criteria will replace phantom measurements in our institution, saving resources and yielding 3D dosimetry of the actual patient treatment.« less
SU-E-T-367: Optimization of DLG Using TG-119 Test Cases and a Weighted Mean Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintay, B; Vanderstraeten, C; Terrell, J
2014-06-01
Purpose: Optimization of the dosimetric leaf gap (DLG) is an important step in commissioning the Eclipse treatment planning system for sliding window intensity-modulated radiation therapy (SW-IMRT) and RapidArc. Often the values needed for optimal dose delivery differ markedly from those measured at commissioning. We present a method to optimize this value using the AAPM TG-119 test cases. Methods: For SW-IMRT and RapidArc, TG-119 based test plans were created using a water-equivalent phantom. Dose distributions measured on film and ion chamber (IC) readings taken in low-gradient regions within the targets were analyzed separately. Since DLG is a single value per energy,more » SW-IMRT and RapidArc must be considered simultaneously. Plans were recalculated using a linear sweep from 0.02cm (the minimum DLG) to 0.3 cm. The calculated point doses were compared to the measured doses for each plan, and based on these comparisons an optimal DLG value was computed for each plan. TG-119 cases are designed to push the system in various ways, thus, a weighted mean of the DLG was computed where the relative importance of each type of plan was given a score from 0.0 to 1.0. Finally, SW-IMRT and RapidArc are assigned an overall weight based on clinical utilization. Our routine patient-QA (PQA) process was performed as independent validation. Results: For a Varian TrueBeam, the optimized DLG varied with σ = 0.044cm for SW-IMRT and σ = 0.035cm for RapidArc. The difference between the weighted mean SW-IMRT and RapidArc value was 0.038cm. We predicted utilization of 25% SW-IMRT and 75% RapidArc. The resulting DLG was ~1mm different than that found by commissioning and produced an average error of <1% for SW-IMRT and RapidArc PQA test cases separately. Conclusion: The weighted mean method presented is a useful tool for determining an optimal DLG value for commissioning Eclipse.« less
Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.
Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F
2005-03-07
IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre of the primary PTV and the approximations present in the dose calculation.
Novel, full 3D scintillation dosimetry using a static plenoptic camera.
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-08-01
Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm(3) EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle(3) was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions.
Novel, full 3D scintillation dosimetry using a static plenoptic camera
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-01-01
Purpose: Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm3 EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. Results: The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle3 was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Conclusions: Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions. PMID:25086549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgington, Samantha; Cotter, Christopher; Busse, Paul
Purpose: To report the first experiences and perspectives in using direct multicriteria optimization (MCO) on volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancer. Methods: Ten prior patients with tumors in representative H&N regions were selected to evaluate direct MCO-VMAT in RayStation v5.0 beta. The patients were previously treated by intensity-modulated radiation therapy (IMRT) with MCO on an Elekta linear accelerator with Agility multileaf collimator. To avoid radiating eyes and shoulders, MCO-VMAT required one to three partial-arc groups, with each group consisting of single or dual arcs. All MCO-VMAT plans were approved by a radiation oncologist. The MCO-VMAT andmore » MCO-IMRT plans were compared using V{sub 100}, D{sub 5}, homogeneity index (HI) and conformity index (CI) for planning target volume (PTV), D{sub mean} and D{sub 50} for six parallel organs and D{sub max} for five serial organs. Patient-specific quality assurance (QA) was performed using ArcCHECK for MCO-VMAT and Matrixx for MCO-IMRT with results analyzed using gamma criteria of 3%/3mm. Results: MCO-VMAT provided better V{sub 100} (+0.8%) lower D{sub 5}(− 0.3 Gy), lower HI (−0.27) and comparable CI (+0.05). MCO-VMAT decreased D{sub mean} and D{sub 50} for multiple parallel organs in seven of the ten patients. On average the reduction ranged from 2.1 (larynx) to 7.6 Gy (esophagus). For the nasal cavity and nasopharynx plans significant reduction in D{sub max} was observed for optics (up to 11 Gy) brainstem (6.4 Gy), cord (2.1 Gy) and mandible (6.7 Gy). All MCO-VMAT and -IMRT plans passed clinical QA. MCO-VMAT required slightly longer planning time due to the more complex VMAT optimization. The net beam-on time for the MCO-VMAT plans ranged from 80 to 242 seconds, up to 9 minutes shorter than MCO-IMRT. Conclusion: With similar target coverage, reduced organ dose, comparable planning time, and significantly faster treatment, MCO-VMAT is very likely to become the modality of choice in RayStation v5.0 for H&N cancer.« less
Monte Carlo-based QA for IMRT of head and neck cancers
NASA Astrophysics Data System (ADS)
Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.
2007-06-01
It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal mucosa for some treatments with heavily-weighted anterior fields.
Design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatments.
Grams, Michael P; de Los Santos, Luis E Fong
2018-06-01
To describe the design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatment plans using radiochromic film. A solid water cylindrical phantom was designed with separable upper and lower halves and rests on plastic bearings allowing for 360° rotation about its central axis. The phantom accommodates a half sheet of radiochromic film, and by rotating the cylinder, the film can be placed in any plane between coronal and sagittal. Calculated dose planes coinciding with rotated film measurements are exported by rotating the CT image and dose distribution within the treatment planning system. The process is illustrated with 2 rotated film measurements of an SRS treatment plan involving 4 separate targets. Additionally, 276 patient specific QA measurements were obtained with the phantom and analyzed with a 2%/2 mm gamma criterion. The average 2%/2 mm gamma passing rate for all 276 plans was 99.3%. Seventy-two of the 276 plans were measured with the plane of the film rotated between the coronal and sagittal planes and had an average passing rate of 99.4%. The rotational phantom allows for accurate film measurements in any plane. With this technique, regions of a dose distribution which might otherwise require multiple sagittal or coronal measurements can be verified with as few as a single measurement. This increases efficiency and, in combination with the high spatial resolution inherent to film dosimetry, makes the rotational technique an attractive option for patient-specific QA. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui
2017-01-01
The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.
Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.
Korol, R; Chen, J; Mosalaei, H; Karnas, S
2008-07-01
MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.
Dobler, Barbara; Lorenz, Friedlieb; Wertz, Hansjörg; Polednik, Martin; Wolff, Dirk; Steil, Volker; Lohr, Frank; Wenz, Frederik
2006-08-01
To compare different combinations of intensity-modulated radiation therapy (IMRT) system components with regard to quality assurance (QA), especially robustness against malfunctions and dosimetry. Three different treatment-planning systems (TPS), two types of linacs and three multileaf collimator (MLC) types were compared: commissioning procedures were performed for the combination of the TPS Corvus 5.0 (Nomos) and KonRad v2.1.3 (Siemens OCS) with the linacs KD2 (Siemens) and Synergy (Elekta). For PrecisePLAN 2.03 (Elekta) measurements were performed for Elekta Synergy only. As record and verify (R&V) system Multi-Access v7 (IMPAC) was used. The use of the serial tomotherapy system Peacock (Nomos) was investigated in combination with the Siemens KD2 linac. In the comparison of calculated to measured dose, problems were encountered for the combination of KonRad and Elekta MLC as well as for the Peacock system. Multi-Access failed to assign the collimator angle correctly for plans with multiple collimator angles per beam. Communication problems of Multi-Access with both linacs were observed, resulting in incorrect recording of the treatment. All reported issues were addressed by the manufacturers. For the commissioning of IMRT systems, the whole chain from the TPS to the linac has to be investigated. Components that passed the commissioning in another clinical environment can have severe malfunctions when used in a new environment. Therefore, not only single components but the whole chain from planning to delivery has to be evaluated in commissioning and checked regularly for QA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaddui, T; Li, N; Moore, K
Purpose: To establish a workflow for NRG-GY006 IMRT pre-treatment reviews, incorporating advanced radiotherapy technologies being evaluated as part of the clinical trial. Methods: Pre-Treatment reviews are required for every IMRT case as part of NRG-GY006 (a randomized phase II trial of radiation therapy and cisplatin alone or in combination with intravenous triapine in women with newly diagnosed bulky stage I B2, stage II, IIIB, or IVA cancer of the uterine cervix or stage II-IVA vaginal cancer. The pretreatment review process includes structures review and generating an active bone marrow(ABM)- to be used as an avoidance structure during IMRT optimization- andmore » evaluating initial IMRT plan quality using knowledgeengineering based planning (KBP). Institutions will initially submit their simulation CT scan, structures file and PET/CT to IROC QA center for generating ABM. The ABM will be returned to the institution for use in planning. Institutions will then submit an initial IMRT plan for review and will receive information back following implementation of a KBP algorithm, for use in re-optimization, before submitting the final IMRT used for treatment. Results: ABM structure is generated using MIM vista software (Version 6.5, MIM corporation, Inc.). Here, the planning CT and the diagnostic PET/CT are fused and a sub threshold structure is auto segmented above the mean value of the SUV of the bone marrow. The generated ABM were compared with those generated with other software system (e.g. Velocity, Varian) and Dice coefficient (reflects the overlap of structures) ranged between 80 – 90% was achieved. A KBP model was built in Varian Eclipse TPS using the RapidPlan KBP software to perform plan quality assurance. Conclusion: The workflow for IMRT pretreatment reviews has been established. It represents a major improvement of NRG Oncology clinical trial quality assurance and incorporates the latest radiotherapy technologies as part of NCI clinical trials. This project was supported by grants U24CA180803 (IROC), UG1CA189867 (NCORP), U10CA180868 (NRG Oncology Operations), U10CA180822 (NRG Oncology SDMC) from the National Cancer Institute (NCI) and PA CURE grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel
2016-10-01
Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less
Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique
NASA Astrophysics Data System (ADS)
Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge
2017-09-01
Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.
The NCS code of practice for the quality assurance and control for volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Mans, Anton; Schuring, Danny; Arends, Mark P.; Vugts, Cornelia A. J. M.; Wolthaus, Jochem W. H.; Lotz, Heidi T.; Admiraal, Marjan; Louwe, Rob J. W.; Öllers, Michel C.; van de Kamer, Jeroen B.
2016-10-01
In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.radiationdosimetry.org. After describing the transition from IMRT to VMAT, the paper addresses machine quality assurance (QA) and treatment planning system (TPS) commissioning for VMAT. The final section discusses patient specific QA issues such as the use of class solutions, measurement devices and dose evaluation methods.
SU-F-T-266: Dynalogs Based Evaluation of Different Dose Rate IMRT Using DVH and Gamma Index
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, S; Ahmed, S; Ahmed, F
2016-06-15
Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and planmore » quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.« less
Nakayama, Shinichi; Monzen, Hajime; Oonishi, Yuuichi; Mizote, Rika; Iramina, Hiraku; Kaneshige, Souichirou; Mizowaki, Takashi
2015-06-01
Photographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC). We evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis. The effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ± 1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual). The present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, J; Price, M; Brindle, J
Purpose: To evaluate the equivalence of spine SBRT treatment plans created in Eclipse for the TrueBeam STx (Varian Medical System, Palo Alto, CA) compared to plans using CyberKnife and MultiPlan (Accuray, Sunnyvale, CA). Methods: CT data and contours for 23 spine SBRT patients previously treated using CyberKnife (CK) were exported from MultiPlan treatment planning system into Eclipse where they were planned using static IMRT 6MV coplanar beams. Plans were created according to the original prescription dose and fractionation schedule while limiting spinal dose according to the RTOG 0631 protocol and maintaining target coverage comparable to the original CK plans. Plansmore » were evaluated using new conformity index (nCI), homogeneity index (HI), dose-volume histogram data, number of MU, and estimated treatment time. To ensure all Eclipse plans were deliverable, standard clinical IMRT QA was performed. The plan results were matched with their complimentary CK plans for paired statistical analysis. Results: Plans generated in Eclipse demonstrated statistically significant (p<0.01) improvements compared to complimentary CK plans in median values of maximum spinal cord dose (17.39 vs. 18.12 Gy), RTOG spinal cord constraint dose (14.50 vs. 16.93 Gy), nCI (1.28 vs. 1.54), HI (1.13 vs. 1.27), MU (3918 vs. 36416), and estimated treatment time (8 vs. 48 min). All Eclipse generated plans passed our clinically used protocols for IMRT QA. Conclusion: CK spine SBRT replanned utilizing Eclipse for LINAC delivery demonstrated dosimetric advantages. We propose improvements in plan quality metrics reviewed in this study may be attributed to dynamic MLCs that facilitate treatment of complicated geometries as well as posterior beams ideal for centrally located and/or posterior targets afforded by gantry-based RT delivery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, TKR; Sherif, M; Subramanian, N
Purpose: The complexity of IMRT delivery requires pre-treatment quality assurance and plan verification. KCCC has implemented IMRT clinically in few sites and will extend to all sites. Recently, our Varian linear accelerator and Eclipse planning system were upgraded from Millennium 80 to 120 Multileaf Collimator (MLC) and from v8.6 to 11.0 respectively. Our preliminary experience on the pre-treatment quality assurance verification is discussed. Methods: Eight Breast, Three Prostate and One Hypopharynx cancer patients were planned with step and shoot IMRT. All breast cases were planned before the upgrade with 60% cases treated. The ICRU 83 recommendations were followed for themore » dose prescription and constraints to OAR for all cases. Point dose measurement was done with CIRS cylindrical phantom and PTW 0.125 cc ionization chamber. Measured dose was compared with calculated dose at the point of measurement. Map CHECK diode array phantom was used for the plan verification. Planned and measured doses were compared by applying gamma index of 3% (dose difference) / 3 mm DTA (average distance to agreement). For all cases, a plan is considered to be successful if more than 95% of the tested diodes pass the gamma test. A prostate case was chosen to compare the plan verification before and after the upgrade. Results: Point dose measurement results were in agreement with the calculated doses. The maximum deviation observed was 2.3%. The passing rate of average gamma index was measured higher than 97% for the plan verification of all cases. Similar result was observed for plan verification of the chosen prostate case before and after the upgrade. Conclusion: Our preliminary experience from the obtained results validates the accuracy of our QA process and provides confidence to extend IMRT to all sites in Kuwait.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Jackson, J; Davies, G
2015-06-15
Purpose: SBRT shows excellent tumor control and toxicity rates for patients with locally advanced pancreatic cancer (PCA). Herein, we evaluate the feasibility of using VMAT with ABC for PCA SBRT. Methods: Nine PCA patients previously treated via SBRT utilizing 11-beam step-and-shoot IMRT technique in our center were retrospectively identified, among whom eight patients received 3300cGy in 5 fractions while one received 3000cGy in 5 fractions. A VMAT plan was generated on each patient’s planning CT in Pinnacle v9.8 on Elekta Synergy following the same PCA SBRT clinical protocol. Three partial arcs (182°–300°, 300°-60°, and 60°-180°) with 2°/4° control-point spacing weremore » used. The dosimetric difference between the VMAT and the original IMRT plans was analyzed. IMRT QA was performed for the VMAT plans using MapCheck2 in MapPHAN and the total delivery time was recorded. To mimic the treatment situation with ABC, where patients hold their breath for 20–30 seconds, the delivery was intentionally interrupted every 20–30 seconds. For each plan, the QA was performed with and without beam interruption. Gamma analysis (2%/2mm) was used to compare the planned and measured doses. Results: All VMAT plans with 2mm dose grid passed the clinic protocol with similar PTV coverage and OARs sparing, where PTV V-RxDose was 92.7±2.1% (VMAT) vs. 92.1±2.6% (IMRT), and proximal stomach V15Gy was 3.60±2.69 cc (VMAT) vs. 4.80±3.13 cc (IMRT). The mean total MU and delivery time of the VMAT plans were 2453.8±531.1 MU and 282.1±56.0 seconds. The gamma passing rates of absolute dose were 94.9±3.4% and 94.5±4.0% for delivery without and with interruption respectively, suggesting the dosimetry of VMAT delivery with ABC for SBRT won’t be compromised. Conclusion: This study suggests that PCA SBRT using VMAT with ABC is a feasible technique without compromising plan dosimetry. The combination of VMAT with ABC will potentially reduce the SBRT treatment time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, J; Gueorguiev, G; Prichard, H
Purpose: To demonstrate the commissioning of constant dose rate volumetric modulated arc therapy (VMAT) in the Raystation treatment planning system for a Varian Clinac iX with Exact couch. Methods: Constant dose rate (CDR) VMAT is an option in the Raystation treatment planning system, enabling VMAT delivery on Varian linacs without a RapidArc upgrade. Raystation 4.7 was used to commission CDR-VMAT for a Varian Clinac iX. Raystation arc model parameters were selected to match machine deliverability characteristics. A Varian Exact couch model was added to Raystation 4.7 and commissioned for use in VMAT optimization. CDR-VMAT commissioning checks were performed on themore » linac, including patient-specific QA measurements for 10 test patients using both the ArcCHECK from Sun Nuclear Corporation and COMPASS from IBA Dosimetry. Multi-criteria optimization (MCO) in Raystation was used for CDR-VMAT planning. Results: Raystation 4.7 generated clinically acceptable and deliverable CDR-VMAT plans for the Varian Clinac. VMAT plans were optimized including a model of the Exact couch with both rails in the out positions. CDR-VMAT plans generated with MCO in Raystation were dosimetrically comparable to Raystation MCO-generated IMRT plans. Patient-specific QA measurements with the ArcCHECK on the couch showed good agreement with the treatment planning system prediction. Patient-specific, structure-specific, multi-statistical parameter 3D QA measurements with gantry-mounted COMPASS also showed good agreement. Conclusion: Constant dose rate VMAT was successfully modeled in Raystation 4.7 for a Varian Clinac iX, and Raystation’s multicriteria optimization generated constant dose rate VMAT plans which were deliverable and dosimetrically comparable to IMRT plans.« less
Sjölin, Maria; Edmund, Jens Morgenthaler
2016-07-01
Dynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect. 16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated. The change in PTV and organs at risk DVH parameters were 0.4-4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3mm (per beam and composite plan) and 3%G/2mm (composite plan) for the diode array phantom and 2%G/2mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6. A DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3mm per beam gamma setting. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Image guided IMRT dosimetry using anatomy specific MOSFET configurations.
Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad
2008-06-23
We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Y; Black, P; Wuu, C
2016-06-15
Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter tomore » define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D dose information for small beams compared to what is currently available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenz, D; Narayanasamy, G; Cruz, W
2015-06-15
Purpose: The Versa HD incorporates a variety of upgrades, primarily including the Agility head. The distinct dosimetric properties of the head from its predecessors combined with flattening-filter-free (FFF) beams require a new investigation of modeling in planning systems and verification of modeling accuracy. Methods: A model was created in Pinnacle{sup 3} v9.8 with commissioned beam data. Leaf transmission was modeled as <0.5% with maximum leaf speed of 3 cm/s. Photon spectra were tuned for FFF beams, for which profiles were modeled with arbitrary profiles rather than with cones. For verification, a variety of plans with varied parameters were devised, andmore » point dose measurements were compared to calculated values. A phantom of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle{sup 3}. Beams of different field sizes, SSD, wedges, and gantry angles were created. All available photon energies (6 MV, 10 MV, 18 MV, 6 FFF, 10 FFF) as well four clinical electron energies (6, 9, 12, and 15 MeV) were investigated. The plans were verified at a calculation point (8 cm deep for photons, variable for electrons) by measurement with a PTW Semiflex ionization chamber. In addition, IMRT testing was performed with three standard plans (step and shoot IMRT, small and large field VMAT plans). The plans were delivered on the Delta4 IMRT QA phantom (ScandiDos, Uppsala, Sweden). Results: Homogeneous point dose measurement agreed within 2% for all photon and electron beams. Open field photon measurements along the central axis at 100 cm SSD passed within 1%. Gamma passing rates were >99.5% for all plans with a 3%/3mm tolerance criteria. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4±2.3%. Conclusion: The end-to-end testing ensured confidence in the ability of Pinnacle{sup 3} to model photon and electron beams with the Agility head.« less
Automating linear accelerator quality assurance.
Eckhause, Tobias; Al-Hallaq, Hania; Ritter, Timothy; DeMarco, John; Farrey, Karl; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Perez, Mario; Park, SungYong; Booth, Jeremy T; Thorwarth, Ryan; Moran, Jean M
2015-10-01
The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The standard deviation in MLC position, as determined by EPID measurements, across the consortium was 0.33 mm for IMRT fields. With respect to the log files, the deviations between expected and actual positions for parameters were small (<0.12 mm) for all Linacs. Considering both log files and EPID measurements, all parameters were well within published tolerance values. Variations in collimator angle, MLC position, and gantry sag were also evaluated for all Linacs. The performance of the TrueBeam Linac model was shown to be consistent based on automated analysis of trajectory log files and EPID images acquired during delivery of a standardized test suite. The results can be compared directly to tolerance thresholds. In addition, sharing of results from standard tests across institutions can facilitate the identification of QA process and Linac changes. These reference values are presented along with the standard deviation for common tests so that the test suite can be used by other centers to evaluate their Linac performance against those in this consortium.
Both, Stefan; Alecu, Ionut M; Stan, Andrada R; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M; Alecu, Rodica
2007-03-07
An effective patient quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria--that is, action limits. Based on dose measurements performed with a commercially available two-dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6-MV X-ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS,220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3-mm distance to agreement (DTA) criteria. We investigated the treatment-site dependency of PPP and PDE. The results show that, at 3% and 3-mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site.
Image guided IMRT dosimetry using anatomy specific MOSFET configurations
Norrlinger, Bern; Heaton, Robert; Islam, Mohammad
2008-01-01
We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobileMOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within −0.26±0.88% and 0.06±1.94% (1σ) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X‐Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47±2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PACS number: 87.55.Qr
SU-F-T-281: Monte Carlo Investigation of Sources of Dosimetric Discrepancies with 2D Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afifi, M; Deiab, N; El-Farrash, A
2016-06-15
Purpose: Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA). Understanding the limitations and use of dosimeters to measure these dose distributions is critical to safe IMRT implementation. In this work, we used Monte Carlo simulations to investigate the possible sources of discrepancy between our measurement with 2D array system and our dose calculation using our treatment planning system (TPS). Material and Methods: MCBEAM and MCSIM Monte Carlo codes were used for treatment head simulation and phantom dose calculation. Accurate modeling of a 6MV beam from Varian trilogy machine wasmore » verified by comparing simulated and measured percentage depth doses and profiles. Dose distribution inside the 2D array was calculated using Monte Carlo simulations and our TPS. Then Cross profiles for different field sizes were compared with actual measurements for zero and 90° gantry angle setup. Through the analysis and comparison, we tried to determine the differences and quantify a possible angular calibration factor. Results: Minimum discrepancies was seen in the comparison between the simulated and the measured profiles for the zero gantry angles at all studied field sizes (4×4cm{sup 2}, 10×10cm{sup 2}, 15×15cm{sup 2}, and 20×20cm{sup 2}). Discrepancies between our measurements and calculations increased dramatically for the cross beam profiles at the 90° gantry angle. This could ascribe mainly to the different attenuation caused by the layer of electronics at the base behind the ion chambers in the 2D array. The degree of attenuation will vary depending on the angle of beam incidence. Correction factors were implemented to correct the errors. Conclusion: Monte Carlo modeling of the 2D arrays and the derivation of angular dependence correction factors will allow for improved accuracy of the device for IMRT QA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinas Aranda, F; Suarez, V; Arbiser, S
2016-06-15
Purpose: To implement an end-to-end QA test of the radiation therapy imaging, planning and delivery process, aimed to assess the dosimetric agreement accuracy between planned and delivered treatment, in order to identify and correct possible sources of deviation. To establish an internal standard for machine commissioning acceptance. Methods: A test involving all steps of the radiation therapy: imaging, planning and delivery process was designed. The test includes analysis of point dose and planar dose distributions agreement between TPS calculated and measured dose. An ad hoc 16 cm diameter PMMA phantom was constructed with one central and four peripheral bores thatmore » can accommodate calibrated electron density inserts. Using Varian Eclipse 10.0 and Elekta XiO 4.50 planning systems, IMRT, RapidArc and 3DCRT with hard and dynamic wedges plans were planned on the phantom and tested. An Exradin A1SL chamber is used with a Keithley 35617EBS electrometer for point dose measurements in the phantom. 2D dose distributions were acquired using MapCheck and Varian aS1000 EPID.Gamma analysis was performed for evaluation of 2D dose distribution agreement using MapCheck software and Varian Portal Dosimetry Application.Varian high energy Clinacs Trilogy, 2100C/CD, 2000CR and low energy 6X/EX where tested.TPS-CT# vs. electron density table were checked for CT-scanners used. Results: Calculated point doses were accurate to 0.127% SD: 0.93%, 0.507% SD: 0.82%, 0.246% SD: 1.39% and 0.012% SD: 0.01% for LoX-3DCRT, HiX-3DCRT, IMRT and RapidArc plans respectively. Planar doses pass gamma 3% 3mm in all cases and 2% 2mm for VMAT plans. Conclusion: Implementation of a simple and reliable quality assurance tool was accomplished. The end-to-end proved efficient, showing excellent agreement between planned and delivered dose evidencing strong consistency of the whole process from imaging through planning to delivery. This test can be used as a first step in beam model acceptance for clinical use.« less
Loughery, Brian; Knill, Cory; Silverstein, Evan; Zakjevskii, Viatcheslav; Masi, Kathryn; Covington, Elizabeth; Snyder, Karen; Song, Kwang; Snyder, Michael
2018-03-20
We conducted a multi-institutional assessment of a recently developed end-to-end monthly quality assurance (QA) protocol for external beam radiation therapy treatment chains. This protocol validates the entire treatment chain against a baseline to detect the presence of complex errors not easily found in standard component-based QA methods. Participating physicists from 3 institutions ran the end-to-end protocol on treatment chains that include Imaging and Radiation Oncology Core (IROC)-credentialed linacs. Results were analyzed in the form of American Association of Physicists in Medicine (AAPM) Task Group (TG)-119 so that they may be referenced by future test participants. Optically stimulated luminescent dosimeter (OSLD), EBT3 radiochromic film, and A1SL ion chamber readings were accumulated across 10 test runs. Confidence limits were calculated to determine where 95% of measurements should fall. From calculated confidence limits, 95% of measurements should be within 5% error for OSLDs, 4% error for ionization chambers, and 4% error for (96% relative gamma pass rate) radiochromic film at 3% agreement/3 mm distance to agreement. Data were separated by institution, model of linac, and treatment protocol (intensity-modulated radiation therapy [IMRT] vs volumetric modulated arc therapy [VMAT]). A total of 97% of OSLDs, 98% of ion chambers, and 93% of films were within the confidence limits; measurements were found outside these limits by a maximum of 4%, < 1%, and < 1%, respectively. Data were consistent despite institutional differences in OSLD reading equipment and radiochromic film calibration techniques. Results from this test may be used by clinics for data comparison. Areas of improvement were identified in the end-to-end protocol that can be implemented in an updated version. The consistency of our data demonstrates the reproducibility and ease-of-use of such tests and suggests a potential role for their use in broad end-to-end QA initiatives. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Alecu, Ionut M.; Stan, Andrada R.; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M.; Alecu, Rodica
2007-01-01
An effective patient quality assurance (QA) program for intensity‐modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria—that is, action limits. Based on dose measurements performed with a commercially available two‐dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6‐MV X‐ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS, 220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3‐mm distance to agreement (DTA) criteria. We investigated the treatment‐site dependency of PPP and PDE. The results show that, at 3% and 3‐mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site. PACS Numbers: 87.53Dq, 87.53Tf, 87.53Xd, 87.56Fc PMID:17592459
A novel technique for VMAT QA with EPID in cine mode on a Varian TrueBeam linac
NASA Astrophysics Data System (ADS)
Liu, Bo; Adamson, Justus; Rodrigues, Anna; Zhou, Fugen; Yin, Fang-fang; Wu, Qiuwen
2013-10-01
Volumetric modulated arc therapy (VMAT) is a relatively new treatment modality for dynamic photon radiation therapy. Pre-treatment quality assurance (QA) is necessary and many efforts have been made to apply electronic portal imaging device (EPID)-based IMRT QA methods to VMAT. It is important to verify the gantry rotation speed during delivery as this is a new variable that is also modulated in VMAT. In this paper, we present a new technique to perform VMAT QA using an EPID. The method utilizes EPID cine mode and was tested on Varian TrueBeam in research mode. The cine images were acquired during delivery and converted to dose matrices after profile correction and dose calibration. A sub-arc corresponding to each cine image was extracted from the original plan and its portal image prediction was calculated. Several analyses were performed including 3D γ analysis (2D images + gantry angle axis), 2D γ analysis, and other statistical analyses. The method was applied to 21 VMAT photon plans of 3 photon energies. The accuracy of the cine image information was investigated. Furthermore, this method's sensitivity to machine delivery errors was studied. The pass rate (92.8 ± 1.4%) for 3D γ analysis was comparable to those from Delta4 system (99.9 ± 0.1%) under similar criteria (3%, 3 mm, 5% threshold and 2° angle to agreement) at 6 MV. The recorded gantry angle and start/stop MUs were found to have sufficient accuracy for clinical QA. Machine delivery errors can be detected through combined analyses of 3D γ, gantry angle, and percentage dose difference. In summary, we have developed and validated a QA technique that can simultaneously verify the gantry angle and delivered MLC fluence for VMAT treatment.This technique is efficient and its accuracy is comparable to other QA methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Followill, D; Kry, S; Molineu, A
Purpose: To describe the extent of IROC Houston’s (formerly the RPC) QA activities and audit results for radiotherapy institutions outside of North America (NA). Methods: The IROC Houston’s QA program components were designed to audit the radiation dose calculation chain from the NIST traceable reference beam calibration, to inclusion of dosimetry parameters used to calculate tumor doses, to the delivery of the radiation dose. The QA program provided to international institutions includes: 1) remote TLD/OSLD audit of machine output, 2) credentialing for advanced technologies, and 3) review of patient treatment records. IROC Houston uses the same standards and acceptance criteriamore » for all of its audits whether for North American or international sites. Results: IROC Houston’s QA program has reached out to radiotherapy sites in 43 different countries since 2013 through their participation in clinical trials. In the past two years, 2,778 international megavoltage beam outputs were audited with OSLD/TLD. While the average IROC/Inst ratio is near unity for all sites monitored, there are international regions whose results are significantly different from the NA region. In the past 2 years, 477 and 87 IMRT H&N phantoms were irradiated at NA and international sites, respectively. Regardless of the OSLD beam audit results, the overall pass rate (87 percent) for all international sites (no region separation) is equal to the NA sites. Of the 182 international patient charts reviewed, 10.7 percent of the dose calculation points did not meet our acceptance criterion as compared to 13.6 percent for NA sites. The lower pass rate for NA sites results from a much larger brachytherapy component which has been shown to be more error prone. Conclusion: IROC Houston has expanded its QA services worldwide and continues a long history of improving radiotherapy dose delivery in many countries. Funding received for QA audit services from the Korean GOG, DAHANCA, EORTC, ICON and CMIC Group.« less
Adams, Elizabeth J.; Jordan, Thomas J.; Clark, Catharine H.; Nisbet, Andrew
2013-01-01
Quality assurance (QA) for intensity‐ and volumetric‐modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to concerns about their sensitivity to errors. Understanding the limitations of these devices is therefore critical. In this study, the sensitivity and resolution of the PTW 2D‐ARRAY seven29 and OCTAVIUS II phantom combination was comprehensively characterized for use in dynamic sliding window IMRT and RapidArc verification. Measurement comparisons were made between single acquisition and a multiple merged acquisition techniques to improve the effective resolution of the 2D‐ARRAY, as well as comparisons against GAFCHROMIC EBT2 film and electronic portal imaging dosimetry (EPID). The sensitivity and resolution of the 2D‐ARRAY was tested using two gantry angle 0° modulated test fields. Deliberate multileaf collimator (MLC) errors of 1, 2, and 5 mm and collimator rotation errors were inserted into IMRT and RapidArc plans for pelvis and head & neck sites, to test sensitivity to errors. The radiobiological impact of these errors was assessed to determine the gamma index passing criteria to be used with the 2D‐ARRAY to detect clinically relevant errors. For gamma index distributions, it was found that the 2D‐ARRAY in single acquisition mode was comparable to multiple acquisition modes, as well as film and EPID. It was found that the commonly used gamma index criteria of 3% dose difference or 3 mm distance to agreement may potentially mask clinically relevant errors. Gamma index criteria of 3%/2 mm with a passing threshold of 98%, or 2%/2 mm with a passing threshold of 95%, were found to be more sensitive. We suggest that the gamma index passing thresholds may be used for guidance, but also should be combined with a visual inspection of the gamma index distribution and calculation of the dose difference to assess whether there may be a clinical impact in failed regions. PACS numbers: 87.55.Qr, 87.56.Fc PMID:24257288
Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louwe, Robert J. W., E-mail: rob.louwe@ccdbh.org.nz; Satherley, Thomas; Day, Rebecca A.
Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed softwaremore » was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This study showed that time-resolved dosimetry using an ionization chamber is feasible and can be largely automated which limits the required additional time compared to integrated dose measurements. It provides a unique QA method which enables identification and quantification of the contribution of various error sources during IMRT and VMAT delivery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad
Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to testmore » the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also found that criteria of 3%/3 mm for an IMRT QA plan and 3%/2 mm for a brachytherapy QA plan are passing 95% gamma function points. Conclusions: In this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.« less
SU-F-T-232: Monthly Quality Assurance in External Beam Radiation Therapy Using a Single System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, K; Ji, T; Department of Radiation Oncology, The First Hospital, China Medical University, Shenyang, Liaoning
Purpose: Monthly quality assurance (QA) is time consuming for external beam radiation therapy, taking as long as 6–8 hours for each machine. It is due to the use and setup of multiple devices for different QA procedures. We have developed a single system with rotational capability for the measurement of both optical light and radiation which significantly reduces the time spent on Monthly QA. Methods: A single system using mirrors, a phosphor screen and a CCD camera is housed on a cylindrical motor so that it can rotate 360 degrees. For monthly QA, the system is placed on the patientmore » couch of the medical accelerator with the plane of the phosphor screen at isocenter for all measurements. For optical QA such as optical distance indicator, room laser and light field, the optical image is collected directly with the camera. For radiation QA such as beam profile, MLC speed, picket-fence test, collimator rotation, table rotation and gantry rotation, a brass build-up plate is attached to the top of the phosphor screen. Two brass plates with islands of different thickness were designed for photon energy and electron energy constancy checks. Flex map, distortion map and uniformity map were developed to calibrate the motor bearing, camera/lens distortion, and the phosphor screen’s measured response across the field. Results: Following the TG142 guidelines for monthly QA with our system, the overall run time is reduced from 6–8 hours to 1.5 hours. Our system’s rotating design allows for quick testing of the gantry radiation isocenter test that is also independent of the sag of the gantry and the EPID. Conclusion: Our system significantly shortens the time needed for monthly QA by unifying the tests with a single system. Future work will be focused on extending the technology to Brachytherapy, IMRT and proton therapy QAs. This work is funded in part by a sponsor research grant from JPLC who owns the Raven technology. John Wong is a co-founder of JPLC.« less
Luo, Guang-Wen; Qi, Zhen-Yu; Deng, Xiao-Wu; Rosenfeld, Anatoly
2014-05-01
To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters for in vivo intensity modulated radiation therapy (IMRT) dosimetry. Several MOSFETs were irradiated at d(max) using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamio, Y; Bouchard, H
2014-06-15
Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
2015-06-15
Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) withmore » 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Yi, B; Wong, J
Purpose: The RavenQA system (LAP Laser, Germany) is a QA device with a phosphor screen detector for performing the QA tasks of TG-142. This study tested if it is feasible to use the system for the patient specific QA of the Volumetric Modulated Arc Therapy (VMAT). Methods: Water equivalent material (5cm) is attached to the front of the detector plate of the RavenQA for dosimetry purpose. Then the plate is attached to the gantry to synchronize the movement between the detector and the gantry. Since the detector moves together with gantry, The ’Reset gantry to 0’ function of the Eclipsemore » planning system (Varian, CA) is used to simulate the measurement situation when calculating dose of the detector plate. The same gantry setup is used when delivering the treatment beam for feasibility test purposes. Cumulative dose is acquired for each arc. The optical scatter component of each captured image from the CCD camera is corrected by deconvolving the 2D spatial invariant optical scatter kernel (OSK). We assume that the OSK is a 2D isotropic point spread function with inverse-squared decrease as a function of radius from the center. Results: Three cases of VMAT plans including head & neck, whole pelvis and abdomen-pelvis are tested. Setup time for measurements was less than 5 minutes. Passing rates of absolute gamma were 99.3, 98.2, 95.9 respectively for 3%/3mm criteria and 96.2, 97.1, 86.4 for 2%/2mm criteria. The abdomen-pelvis field has long treatment fields, 37cm, which are longer than the detector plate (25cm). This plan showed relatively lower passing rate than other plans. Conclusion: An algorithm for IMRT/VMAT verification using the RavenQA has been developed and tested. The model of spatially invariant OSK works well for deconvolution purpose. It is proved that the RavenQA can be used for the patient specific verification of VMAT. This work is funded in part by a Maryland Industrial Partnership Program grant to University of Maryland and to JPLC who owns the Raven technology. John Wong is a co-founder of JPLC.« less
MO-D-BRB-02: SBRT Treatment Planning and Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.
2016-06-15
Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (inmore » particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems.« less
Dosimetry investigation of MOSFET for clinical IMRT dose verification.
Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V
2013-06-01
In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy department.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Ozawa, S; Tsegmed, U
2014-06-01
Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantrymore » rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.« less
Chao, Pei‐Ju; Ting, Hui‐Min; Lo, Su‐Hua; Wang, Yu‐Wen; Tuan, Chiu‐Ching; Fang, Fu‐Min
2011-01-01
The purpose of this study was to evaluate and quantify the planning performance of SmartArc‐based volumetric‐modulated arc radiotherapy (VMAT) versus fixed‐beam intensity‐modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) using a sequential mode treatment plan. The plan quality and performance of dual arc‐VMAT (DA‐VMAT) using the Pinnacle3 Smart‐Arc system (clinical version 9.0; Philips, Fitchburg, WI, USA) were evaluated and compared with those of seven‐field (7F)‐IMRT in 18 consecutive NPC patients. Analysis parameters included the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), maximum and mean dose, normal tissue complication probability (NTCP) for the specified organs at risk (OARs), and comprehensive quality index (CQI) for an overall evaluation in the 11 OARs. Treatment delivery time, monitor units per fraction (MU/fr), and gamma (Γ3mm,3%) evaluations were also analyzed. DA‐VMAT achieved similar target coverage and slightly better homogeneity than conventional 7F‐IMRT with a similar CI and HI. NTCP values were only significantly lower in the left parotid gland (for xerostomia) for DA‐VMAT plans. The mean value of CQI at 0.98±0.02 indicated a 2% benefit in sparing OARs by DA‐VMAT. The MU/fr used and average delivery times appeared to show improved efficiencies in DA‐VMAT. Each technique demonstrated high accuracy in dose delivery in terms of a high‐quality assurance (QA) passing rate (>98%) of the (Γ3mm,3%) criterion. The major difference between DA‐VMAT and 7F‐IMRT using a sequential mode for treating NPC cases appears to be improved efficiency, resulting in a faster delivery time and the use of fewer MU/fr. PACS number: 87.53.Tf, 87.55.x, 87.55.D, 87.55.dk PMID:22089015
SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaei, P
Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24more » points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade.« less
Jacqmin, Dustin J; Bredfeldt, Jeremy S; Frigo, Sean P; Smilowitz, Jennifer B
2017-01-01
The AAPM Medical Physics Practice Guideline (MPPG) 5.a provides concise guidance on the commissioning and QA of beam modeling and dose calculation in radiotherapy treatment planning systems. This work discusses the implementation of the validation testing recommended in MPPG 5.a at two institutions. The two institutions worked collaboratively to create a common set of treatment fields and analysis tools to deliver and analyze the validation tests. This included the development of a novel, open-source software tool to compare scanning water tank measurements to 3D DICOM-RT Dose distributions. Dose calculation algorithms in both Pinnacle and Eclipse were tested with MPPG 5.a to validate the modeling of Varian TrueBeam linear accelerators. The validation process resulted in more than 200 water tank scans and more than 50 point measurements per institution, each of which was compared to a dose calculation from the institution's treatment planning system (TPS). Overall, the validation testing recommended in MPPG 5.a took approximately 79 person-hours for a machine with four photon and five electron energies for a single TPS. Of the 79 person-hours, 26 person-hours required time on the machine, and the remainder involved preparation and analysis. The basic photon, electron, and heterogeneity correction tests were evaluated with the tolerances in MPPG 5.a, and the tolerances were met for all tests. The MPPG 5.a evaluation criteria were used to assess the small field and IMRT/VMAT validation tests. Both institutions found the use of MPPG 5.a to be a valuable resource during the commissioning process. The validation testing in MPPG 5.a showed the strengths and limitations of the TPS models. In addition, the data collected during the validation testing is useful for routine QA of the TPS, validation of software upgrades, and commissioning of new algorithms. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisello, F; IBA Dosimetry, Schwarzenbruck, DE; McGlade, J
2015-06-15
Purpose: To study the suitability of a novel 1D silicon monolithic array for dosimetry of small radiation fields and for QA of high dose gradient treatment modalities (IMRT and SBRT). Methods: A 1D array composed of 4 monolithic silicon modules of 64 mm length and 1 mm pixel pitch was developed by IBA Dosimetry. Measurements were carried out for 6MV and 15MV photons on two commercial different linacs (TrueBeam and Clinac iX, Varian Medical Systems, Palo Alto, CA) and for a CyberKnife G4 (Accuray Inc., Sunnyvale, CA). The 1D array was used to measure output factors (OF), profiles and offmore » axis correction factors (OACF) for the Iris CyberKnife variable collimator (5–60 mm). In addition, dose profiles (at the isocenter plane) were measured for multiple IMRT and SBRT treatment plans and compared with those obtained using EDR2radiographic film (Carestream Health, Rochester NY), a commercial 2D diode array and with the dose distribution calculated using a commercial TPS (Eclipse, Varian Medical Systems, Palo Alto, CA). Results: Due to the small pixel pitch of the detector, IMRT and SBRT plan profiles deviate from film measurements by less than 2%. Similarly, the 1D array exhibits better performance than the 2D diode array due to the larger (7 mm) pitch of that device. Iris collimator OFs measured using the 1D silicon array are in good agreement with the commissioning values obtained using a commercial stereotactic diode as well as with published data. Maximum deviations are < 3% for the smallest field (5 and 7.5mm) and below 1% for all other dimensions. Conclusion: We have demonstrated good performances of the array for commissioning of small photon fields and in patient QA, compared with diodes and film typically used in these clinical applications. The technology compares favorably with existing commercial solutions The presenting author is founded by a Marie Curie Early Initial Training Network Fellowship of the European Communitys Seventh Framework Programme under contract number (PITN-GA-2011-289198-ARDENT). The research activity is hosted by IBA Dosimetry, Gmbh.« less
SU-E-T-184: Clinical VMAT QA Practice Using LINAC Delivery Log Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, H; Jacobson, T; Gu, X
2015-06-15
Purpose: To evaluate the accuracy of volumetric modulated arc therapy (VMAT) treatment delivery dose clouds by comparing linac log data to doses measured using an ionization chamber and film. Methods: A commercial IMRT quality assurance (QA) process utilizing a DICOM-RT framework was tested for clinical practice using 30 prostate and 30 head and neck VMAT plans. Delivered 3D VMAT dose distributions were independently checked using a PinPoint ionization chamber and radiographic film in a solid water phantom. DICOM RT coordinates were used to extract the corresponding point and planar doses from 3D log file dose distributions. Point doses were evaluatedmore » by computing the percent error between log file and chamber measured values. A planar dose evaluation was performed for each plan using a 2D gamma analysis with 3% global dose difference and 3 mm isodose point distance criteria. The same analysis was performed to compare treatment planning system (TPS) doses to measured values to establish a baseline assessment of agreement. Results: The mean percent error between log file and ionization chamber dose was 1.0%±2.1% for prostate VMAT plans and −0.2%±1.4% for head and neck plans. The corresponding TPS calculated and measured ionization chamber values agree within 1.7%±1.6%. The average 2D gamma passing rates for the log file comparison to film are 98.8%±1.0% and 96.2%±4.2% for the prostate and head and neck plans, respectively. The corresponding passing rates for the TPS comparison to film are 99.4%±0.5% and 93.9%±5.1%. Overall, the point dose and film data indicate that log file determined doses are in excellent agreement with measured values. Conclusion: Clinical VMAT QA practice using LINAC treatment log files is a fast and reliable method for patient-specific plan evaluation.« less
Quantitative measurement of MLC leaf displacements using an electronic portal image device
NASA Astrophysics Data System (ADS)
Yang, Yong; Xing, Lei
2004-04-01
The success of an IMRT treatment relies on the positioning accuracy of the MLC (multileaf collimator) leaves for both step-and-shoot and dynamic deliveries. In practice, however, there exists no effective and quantitative means for routine MLC QA and this has become one of the bottleneck problems in IMRT implementation. In this work we present an electronic portal image device (EPID) based method for fast and accurate measurement of MLC leaf positions at arbitrary locations within the 40 cm × 40 cm radiation field. The new technique utilizes the fact that the integral signal in a small region of interest (ROI) is a sensitive and reliable indicator of the leaf displacement. In this approach, the integral signal at a ROI was expressed as a weighted sum of the contributions from the displacements of the leaf above the point and the adjacent leaves. The weighting factors or linear coefficients of the system equations were determined by fitting the integral signal data for a group of pre-designed MLC leaf sequences to the known leaf displacements that were intentionally introduced during the creation of the leaf sequences. Once the calibration is done, the system can be used for routine MLC leaf positioning QA to detect possible leaf errors. A series of tests was carried out to examine the functionality and accuracy of the technique. Our results show that the proposed technique is potentially superior to the conventional edge-detecting approach in two aspects: (i) it deals with the problem in a systematic approach and allows us to take into account the influence of the adjacent MLC leaves effectively; and (ii) it may improve the signal-to-noise ratio and is thus capable of quantitatively measuring extremely small leaf positional displacements. Our results indicate that the technique can detect a leaf positional error as small as 0.1 mm at an arbitrary point within the field in the absence of EPID set-up error and 0.3 mm when the uncertainty is considered. Given its simplicity, efficiency and accuracy, we believe that the technique is ideally suitable for routine MLC leaf positioning QA. This work was presented at the 45th Annual Meeting of American Society of Therapeutic Radiology and Oncology (ASTRO), Salt Lake City, UT, 2003. A US Patent is pending (application no. 10/197,232).
MO-F-CAMPUS-T-02: An Electronic Whiteboard Platform to Manage Treatment Planning Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiCostanzo, D; Woollard, J; Gupta, N
2015-06-15
Purpose: In an effort to improve patient safety and streamline the radiotherapy treatment planning (TP) process, a software based whiteboard had been developed and put in use in our facility Methods: The electronic whiteboard developed using SQL database (DB) and PHP/JavaScript based web interface, is published via department intranet and login credentials. The DB stores data for each TP process such as patient information, plan type, simulation/start dates, physician, dosimetrist, QA and the current status in planning process. Users interact with the DB per plan and perform status updates in real time as the planning process progresses. All user interactionsmore » with the DB are recorded with timestamps so as to calculate statistical information for TP process management such as contouring times, planning and review times, dosimetry, physics and therapist QA times. External beam and brachytherapy plans are categorized according to complexity (ex: IMRT, 3D, HDR, LDR etc) and treatment types and applicators. Each plan category is assigned specific timelines for each planning process. When a plan approaches or passes the predetermined timeline, users are alerted via color coded graphical cues. When certain process items are not completed in time, pre-determined actions are triggered such as a delay in treatment start date. Results: Our institution has been using the electronic whiteboard for two years. Implementation of pre-determined actions based on the statistical information collected by the whiteboard improved our TP process. For example, the average time for normal tissue contouring decreased from 0.73±1.37 to 0.24±0.33 days. The average time for target volume contouring decreased from 3.2±2.84 to 2.37±2.54 days. This increase in efficiency allows more time for quality assurance processes, improving patient safety. Conclusion: The electronic whiteboard has been an invaluable tool for streamlining our TP processes. It facilitates timely and accurate communication between all parties involved in the TP process increasing patient safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J; Wang, J; Peng, J
Purpose: To implement an entire workflow quality assurance (QA) process in the radiotherapy department and to reduce the error rates of radiotherapy based on the entire workflow management in the developing country. Methods: The entire workflow QA process management starts from patient registration to the end of last treatment including all steps through the entire radiotherapy process. Error rate of chartcheck is used to evaluate the the entire workflow QA process. Two to three qualified senior medical physicists checked the documents before the first treatment fraction of every patient. Random check of the treatment history during treatment was also performed.more » A total of around 6000 patients treatment data before and after implementing the entire workflow QA process were compared from May, 2014 to December, 2015. Results: A systemic checklist was established. It mainly includes patient’s registration, treatment plan QA, information exporting to OIS(Oncology Information System), documents of treatment QAand QA of the treatment history. The error rate derived from the chart check decreases from 1.7% to 0.9% after our the entire workflow QA process. All checked errors before the first treatment fraction were corrected as soon as oncologist re-confirmed them and reinforce staff training was accordingly followed to prevent those errors. Conclusion: The entire workflow QA process improved the safety, quality of radiotherapy in our department and we consider that our QA experience can be applicable for the heavily-loaded radiotherapy departments in developing country.« less
NASA Astrophysics Data System (ADS)
Vazquez-Quino, L. A.; Huerta-Hernandez, C. I.; Rangaraj, D.
2017-05-01
MobiusFX, an add-on software module from Mobius Medical Systems for IMRT and VMAT QA, uses measurements in linac treatment logs to calculate and verify the 3D dose delivered to patients. In this study, 10 volumetric-modulated arc therapy (VMAT) prostate plans were planned and delivered in a Varian TrueBeam linac. The plans consisted of beams with 6 and 10 MV energy and 2 to 3 arcs per plan. The average gamma value with criterion of 3% and 3mm MobiusFX and TPS: 99.96%, 2% and 2mm MobiusFX and TPS: 98.70 %. Further comparison with ArcCheck measurements was conducted.
NASA Astrophysics Data System (ADS)
Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua
2015-08-01
The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to 99.3% with 3%/3 mm and from 79.2% to 95.2% with 2%/2 mm when compared with the CC13 beam model. These results show the effectiveness of the proposed method. Less inter-user variability can be expected of the final beam model. It is also found that the method can be easily integrated into model-based TPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, A; Andreozzi, J; Davis, S
Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a watermore » tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.« less
SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, F; Perez, C
2014-06-01
Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this systemmore » by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.« less
SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabat, C; Defoor, D; Alexandrian, A
2016-06-15
Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16more » fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.« less
Should image rotation be addressed during routine cone-beam CT quality assurance?
NASA Astrophysics Data System (ADS)
Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan
2013-02-01
The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.
Wang, Iris Z.; Kumaraswamy, Lalith K.; Podgorsak, Matthew B.
2016-01-01
Background This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. Materials and methods. Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as ‘standard’ plans, and the original plans were treated as the ‘slowing MLC’ plans for simulating ‘standard’ plans with leaves moving at relatively lower speed. The measurement of each ‘slowing MLC’ plan using MapCHECK®2 was compared with calculated planar dose of the ‘standard’ plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. Results All ‘slowing MLC’ plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between ‘standard’ and ‘slowing MLC’ plans demonstrated minimal dosimetric changes in targets and organs-at-risk. Conclusions For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans. PMID:27069458
A tool to include gamma analysis software into a quality assurance program.
Agnew, Christina E; McGarry, Conor K
2016-03-01
To provide a tool to enable gamma analysis software algorithms to be included in a quality assurance (QA) program. Four image sets were created comprising two geometric images to independently test the distance to agreement (DTA) and dose difference (DD) elements of the gamma algorithm, a clinical step and shoot IMRT field and a clinical VMAT arc. The images were analysed using global and local gamma analysis with 2 in-house and 8 commercially available software encompassing 15 software versions. The effect of image resolution on gamma pass rates was also investigated. All but one software accurately calculated the gamma passing rate for the geometric images. Variation in global gamma passing rates of 1% at 3%/3mm and over 2% at 1%/1mm was measured between software and software versions with analysis of appropriately sampled images. This study provides a suite of test images and the gamma pass rates achieved for a selection of commercially available software. This image suite will enable validation of gamma analysis software within a QA program and provide a frame of reference by which to compare results reported in the literature from various manufacturers and software versions. Copyright © 2015. Published by Elsevier Ireland Ltd.
SU-C-304-05: Use of Local Noise Power Spectrum and Wavelets in Comprehensive EPID Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Gopal, A; Yan, G
2015-06-15
Purpose: As EPIDs are increasingly used for IMRT QA and real-time treatment verification, comprehensive quality assurance (QA) of EPIDs becomes critical. Current QA with phantoms such as the Las Vegas and PIPSpro™ can fail in the early detection of EPID artifacts. Beyond image quality assessment, we propose a quantitative methodology using local noise power spectrum (NPS) to characterize image noise and wavelet transform to identify bad pixels and inter-subpanel flat-fielding artifacts. Methods: A total of 93 image sets including bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Quantitative metrics such asmore » modulation transform function (MTF), NPS and detective quantum efficiency (DQE) were computed for each image set. Local 2D NPS was calculated for each subpanel. A 1D NPS was obtained by radial averaging the 2D NPS and fitted to a power-law function. R-square and slope of the linear regression analysis were used for panel performance assessment. Haar wavelet transformation was employed to identify pixel defects and non-uniform gain correction across subpanels. Results: Overall image quality was assessed with DQE based on empirically derived area under curve (AUC) thresholds. Using linear regression analysis of 1D NPS, panels with acceptable flat fielding were indicated by r-square between 0.8 and 1, and slopes of −0.4 to −0.7. However, for panels requiring flat fielding recalibration, r-square values less than 0.8 and slopes from +0.2 to −0.4 were observed. The wavelet transform successfully identified pixel defects and inter-subpanel flat fielding artifacts. Standard QA with the Las Vegas and PIPSpro phantoms failed to detect these artifacts. Conclusion: The proposed QA methodology is promising for the early detection of imaging and dosimetric artifacts of EPIDs. Local NPS can accurately characterize the noise level within each subpanel, while the wavelet transforms can detect bad pixels and inter-subpanel flat fielding artifacts.« less
Virtual EPID standard phantom audit (VESPA) for remote IMRT and VMAT credentialing
NASA Astrophysics Data System (ADS)
Miri, Narges; Lehmann, Joerg; Legge, Kimberley; Vial, Philip; Greer, Peter B.
2017-06-01
A virtual EPID standard phantom audit (VESPA) has been implemented for remote auditing in support of facility credentialing for clinical trials using IMRT and VMAT. VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities are provided with comprehensive instructions and CT datasets to create treatment plans. They deliver the treatment directly to their EPID without any phantom or couch in the beam. In addition, they deliver a set of simple calibration fields per instructions. Collected EPID images are uploaded electronically. In the analysis, the dose is projected back into a virtual cylindrical phantom. 3D gamma analysis is performed. 2D dose planes and linear dose profiles are provided and can be considered when needed for clarification. In addition, using a virtual flat-phantom, 2D field-by-field or arc-by-arc gamma analyses are performed. Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Advantages of VESPA are (1) fast turnaround mainly driven by the facility’s capability of providing the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level I audit is still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. The implemented EPID based IMRT and VMAT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications.
Virtual EPID standard phantom audit (VESPA) for remote IMRT and VMAT credentialing.
Miri, Narges; Lehmann, Joerg; Legge, Kimberley; Vial, Philip; Greer, Peter B
2017-06-07
A virtual EPID standard phantom audit (VESPA) has been implemented for remote auditing in support of facility credentialing for clinical trials using IMRT and VMAT. VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities are provided with comprehensive instructions and CT datasets to create treatment plans. They deliver the treatment directly to their EPID without any phantom or couch in the beam. In addition, they deliver a set of simple calibration fields per instructions. Collected EPID images are uploaded electronically. In the analysis, the dose is projected back into a virtual cylindrical phantom. 3D gamma analysis is performed. 2D dose planes and linear dose profiles are provided and can be considered when needed for clarification. In addition, using a virtual flat-phantom, 2D field-by-field or arc-by-arc gamma analyses are performed. Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Advantages of VESPA are (1) fast turnaround mainly driven by the facility's capability of providing the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level I audit is still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. The implemented EPID based IMRT and VMAT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, J; University of Sydney, Sydney, NSW; Miri, N
Purpose: Report on implementation of a Virtual EPID Standard Phantom Audit (VESPA) for IMRT to support credentialing of facilities for clinical trials. Data is acquired by local facility staff and transferred electronically. Analysis is performed centrally. Methods: VESPA is based on published methods and a clinically established IMRT QA procedure, here extended to multi-vendor equipment. Facilities, provided with web-based comprehensive instructions and CT datasets, create IMRT treatment plans. They deliver the treatments directly to their EPID without phantom or couch in the beam. They also deliver a set of simple calibration fields. Collected EPID images are uploaded electronically. In themore » analysis, the dose is projected back into a virtual phantom and 3D gamma analysis is performed. 2D dose planes and linear dose profiles can be analysed when needed for clarification. Results: Pilot facilities covering a range of planning and delivery systems have performed data acquisition and upload successfully. Analysis showed agreement comparable to local experience with the method. Advantages of VESPA are (1) fast turnaround mainly driven by the facility’s capability to provide the requested EPID images, (2) the possibility for facilities performing the audit in parallel, as there is no need to wait for a phantom, (3) simple and efficient credentialing for international facilities, (4) a large set of data points, and (5) a reduced impact on resources and environment as there is no need to transport heavy phantoms or audit staff. Limitations of the current implementation of VESPA for trials credentialing are that it does not provide absolute dosimetry, therefore a Level 1 audit still required, and that it relies on correctly delivered open calibration fields, which are used for system calibration. Conclusion: The implemented EPID based IMRT audit system promises to dramatically improve credentialing efficiency for clinical trials and wider applications. VESPA for VMAT will follow soon.« less
SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, J Tonigan; Balter, P; Johnson, J
2015-06-15
Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and usedmore » for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokharel, S; Rana, S
Purpose: purpose of this study is to evaluate the effect of grid size in Eclipse AcurosXB dose calculation algorithm for SBRT lung. Methods: Five cases of SBRT lung previously treated have been chosen for present study. Four of the plans were 5 fields conventional IMRT and one was Rapid Arc plan. All five cases have been calculated with five grid sizes (1, 1.5, 2, 2.5 and 3mm) available for AXB algorithm with same plan normalization. Dosimetric indices relevant to SBRT along with MUs and time have been recorded for different grid sizes. The maximum difference was calculated as a percentagemore » of mean of all five values. All the plans were IMRT QAed with portal dosimetry. Results: The maximum difference of MUs was within 2%. The time increased was as high as 7 times from highest 3mm to lowest 1mm grid size. The largest difference of PTV minimum, maximum and mean dose were 7.7%, 1.5% and 1.6% respectively. The highest D2-Max difference was 6.1%. The highest difference in ipsilateral lung mean, V5Gy, V10Gy and V20Gy were 2.6%, 2.4%, 1.9% and 3.8% respectively. The maximum difference of heart, cord and esophagus dose were 6.5%, 7.8% and 4.02% respectively. The IMRT Gamma passing rate at 2%/2mm remains within 1.5% with at least 98% points passing with all grid sizes. Conclusion: This work indicates the lowest grid size of 1mm available in AXB is not necessarily required for accurate dose calculation. The IMRT passing rate was insignificant or not observed with the reduction of grid size less than 2mm. Although the maximum percentage difference of some of the dosimetric indices appear large, most of them are clinically insignificant in absolute dose values. So we conclude that 2mm grid size calculation is best compromise in light of dose calculation accuracy and time it takes to calculate dose.« less
NASA Astrophysics Data System (ADS)
Ulizio, Vincent Michael
With the advancement of technology there is an increasing ability for lesions to be treated with higher radiation doses each fraction. This also allows for low fractionated treatments. Because the patient is receiving a higher dose of radiation per fraction and because of the fast dose falloff in these targets there must be extreme accuracy in the delivery. The 6 DOF couch allows for extra rotational corrections and for a more accurate set-up. The movement of the couch needs to be verified to be accurate and because of this, end to end quality assurance tests for the couch have been made. After the set-up is known to be accurate then different treatment techniques can be studied. SBRT of the Spine has a very fast dose falloff near the spinal cord and was typically treated with IMRT. Treatment plans generated using this technique tend to have streaks of low dose radiation, so VMAT is being studied to determine if this treatment technique can reduce the low dose radiation volume as well as improve OAR sparing. For the 6 DOF couch QA, graph paper is placed on the anterior and right lateral sides of the VisionRT OSMS Cube Phantom. Each rotational shift is then applied individually, with a 3 degree shift in the positive and negative directions for pitch and roll. A mark is drawn on the paper to record each shift. A CBCT is then taken of the Cube and known shifts are applied and then an additional CBCT is taken to return the Cube to isocenter. The original IMRT plans for SBRT of the Spine are evaluated and then a plan is made utilizing VMAT. These plans are then compared for low dose radiation, OAR sparing, and conformity. If the original IMRT plan is determined to be an inferior treatment to what is acceptable, then this will be re-planned and compared to the VMAT plan. The 6 DOF couch QA tests have proven to be accurate and reproducible. The average deviations in the 3 degree and -3 degree pitch and roll directions were 0.197, 0.068, 0.091, and 0.110 degrees, respectively. The average CBCT shift errors all came out less than 0.05 cm in translational directions and less than 0.05 degrees in all rotational directions. The VMAT plans had similar OAR sparing, target coverage, and conformity. In all cases the 50% isodose volume was lower for the VMAT plans. All of the tests for the 6 DOF couch are accurate and good to use in our monthly tests. VMAT has shown to be better than IMRT for Spine SBRT and should be used in all cases, when treating the Spine.
An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.
Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero
2017-04-01
The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lah, J; Shin, D; Kim, G
Purpose: To show how tolerance design and tolerancing approaches can be used to predict and improve the site-specific range in patient QA process in implementing the Six Sigma. Methods: In this study, patient QA plans were selected according to 6 site-treatment groups: head &neck (94 cases), spine (76 cases), lung (89 cases), liver (53 cases), pancreas (55 cases), and prostate (121 cases), treated between 2007 and 2013. We evaluated a model of the Six Sigma that determines allowable deviations in design parameters and process variables in patient-specific QA, where possible, tolerance may be loosened, then customized if it necessary tomore » meet the functional requirements. A Six Sigma problem-solving methodology is known as DMAIC phases, which are used stand for: Define a problem or improvement opportunity, Measure process performance, Analyze the process to determine the root causes of poor performance, Improve the process by fixing root causes, Control the improved process to hold the gains. Results: The process capability for patient-specific range QA is 0.65 with only ±1 mm of tolerance criteria. Our results suggested the tolerance level of ±2–3 mm for prostate and liver cases and ±5 mm for lung cases. We found that customized tolerance between calculated and measured range reduce that patient QA plan failure and almost all sites had failure rates less than 1%. The average QA time also improved from 2 hr to less than 1 hr for all including planning and converting process, depth-dose measurement and evaluation. Conclusion: The objective of tolerance design is to achieve optimization beyond that obtained through QA process improvement and statistical analysis function detailing to implement a Six Sigma capable design.« less
SU-F-E-18: Training Monthly QA of Medical Accelerators: Illustrated Instructions for Self-Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Court, L; Wang, H; Aten, D
Purpose: To develop and test clear illustrated instructions for training of monthly mechanical QA of medical linear accelerators. Methods: Illustrated instructions were created for monthly mechanical QA with tolerance tabulated, and underwent several steps of review and refinement. Testers with zero QA experience were then recruited from our radiotherapy department (1 student, 2 computational scientists and 8 dosimetrists). The following parameters were progressively de-calibrated on a Varian C-series linac: Group A = gantry angle, ceiling laser position, X1 jaw position, couch longitudinal position, physical graticule position (5 testers); Group B = Group A + wall laser position, couch lateral andmore » vertical position, collimator angle (3 testers); Group C = Group B + couch angle, wall laser angle, and optical distance indicator (3 testers). Testers were taught how to use the linac, and then used the instructions to try to identify these errors. A physicist observed each session, giving support on machine operation, as necessary. The instructions were further tested with groups of therapists, graduate students and physics residents at multiple institutions. We have also changed the language of the instructions to simulate using the instructions with non-English speakers. Results: Testers were able to follow the instructions. They determined gantry, collimator and couch angle errors within 0.4, 0.3, and 0.9degrees of the actual changed values, respectively. Laser positions were determined within 1mm, and jaw positions within 2mm. Couch position errors were determined within 2 and 3mm for lateral/longitudinal and vertical errors, respectively. Accessory positioning errors were determined within 1mm. ODI errors were determined within 2mm when comparing with distance sticks, and 6mm when using blocks, indicating that distance sticks should be the preferred approach for inexperienced staff. Conclusion: Inexperienced users were able to follow these instructions, and catch errors within the criteria suggested by AAPM TG142 for linacs used for IMRT.« less
Optimizing Radiation Therapy Quality Assurance in Clinical Trials: A TROG 08.03 RAVES Substudy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trada, Yuvnik, E-mail: yuvnik@gmail.com; Kneebone, Andrew; Paneghel, Andrea
2015-12-01
Purpose: To explore site- and clinician-level factors associated with protocol violations requiring real-time-review (RTR) resubmission in a multicenter clinical trial to help tailor future quality assurance (QA) protocols. Methods and Materials: RAVES (Radiation Therapy–Adjuvant vs Early Salvage) (Trans-Tasman Radiation Oncology Group 08.03) is a randomized trial comparing adjuvant with early salvage radiation therapy in men with positive surgical margins or pT3 disease after prostatectomy. Quality assurance in RAVES required each clinician and site to submit a credentialing dummy run (DR) and for each patient's radiation therapy plan to undergo external RTR before treatment. Prospectively defined major violations from trial protocol requiredmore » remedy and resubmission. Site and clinician factors associated with RTR resubmission were examined using hierarchical modeling. Results: Data were collected from 171 consecutive patients, treated by 46 clinicians at 32 hospitals. There were 47 RTR resubmissions (27%) due to 65 major violations. The relative rate of resubmission decreased by 29% per year as the study progressed (odds ratio OR. 0.71, P=.02). The majority of resubmissions were due to contouring violations (39 of 65) and dosimetric violations (22 of 65). For each additional patient accrued, significant decreases in RTR resubmission were seen at both clinician level (OR 0.75, P=.02) and site level (OR 0.72, P=.01). The rate of resubmission due to dosimetric violations was only 1.6% after the first 5 patients. Use of IMRT was associated with lower rates of resubmission compared with 3-dimensional conformal radiation therapy (OR 0.38, P=.05). Conclusion: Several low- and high-risk factors that may assist with tailoring future clinical trial QA were identified. Because the real-time resubmission rate was largely independent of the credentialing exercise, some form of RTR QA is recommended. The greatest benefit from QA was derived early in trial activation and clinician experience.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, M; Knutson, N; University of Rhode Island, Kingston, RI
2016-06-15
Purpose: Development of an in-house program facilitates a workflow that allows Electronic Portal Imaging Device (EPID) patient specific quality assurance (QA) measurements to be acquired and analyzed in the Portal Dosimetry Application (Varian Medical Systems, Palo Alto, CA) using a non-Aria Record and Verify (R&V) system (MOSAIQ, Elekta, Crawley, UK) to deliver beams in standard clinical treatment mode. Methods: Initial calibration of an in-house software tool includes characterization of EPID dosimetry parameters by importing DICOM images of varying delivered MUs to determine linear mapping factors in order to convert image pixel values to Varian-defined Calibrated Units (CU). Using this information,more » the Portal Dose Image Prediction (PDIP) algorithm was commissioned by converting images of various field sizes to output factors using the Eclipse Scripting Application Programming Interface (ESAPI) and converting a delivered configuration fluence to absolute dose units. To verify the algorithm configuration, an integrated image was acquired, exported directly from the R&V client, automatically converted to a compatible, calibrated dosimetric image, and compared to a PDIP calculated image using Varian’s Portal Dosimetry Application. Results: For two C-Series and one TrueBeam Varian linear accelerators, gamma comparisons (global 3% / 3mm) of PDIP algorithm predicted dosimetric images and images converted via the inhouse system demonstrated agreement for ≥99% of all pixels, exceeding vendor-recommended commissioning guidelines. Conclusion: Combinations of a programmatic image conversion tool and ESAPI allow for an efficient and accurate method of patient IMRT QA incorporating a 3rd party R&V system.« less
Automated IMRT planning with regional optimization using planning scripts
Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.
2013-01-01
Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393
Rah, Jeong-Eun; Shin, Dongho; Oh, Do Hoon; Kim, Tae Hyun; Kim, Gwe-Ya
2014-09-01
To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. The authors established a customized tolerance level of ±2% for D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors' analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.
SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woollard, J; Ayan, A; DiCostanzo, D
2015-06-15
Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed onmore » each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterich, S; Trestrail, E; Holt, R
2015-06-15
Purpose: To assess if the TrueBeam HD120 collimator is delivering small IMRT fields accurately and consistently throughout the course of treatment using the SunNuclear PerFraction software. Methods: 7-field IMRT plans for 8 canine patients who passed IMRT QA using SunNuclear Mapcheck DQA were selected for this study. The animals were setup using CBCT image guidance. The EPID fluence maps were captured for each treatment field and each treatment fraction, with the first fraction EPID data serving as the baseline for comparison. The Sun Nuclear PerFraction Software was used to compare the EPID data for subsequent fractions using a Gamma (3%/3mm)more » pass rate of 90%. To simulate requirements for SRS, the data was reanalyzed using a Gamma (3%/1mm) pass rate of 90%. Low-dose, low- and high gradient thresholds were used to focus the analysis on clinically relevant parts of the dose distribution. Results: Not all fractions could be analyzed, because during some of the treatment courses the DICOM tags in the EPID images intermittently change from CU to US (unspecified), which would indicate a temporary loss of EPID calibration. This technical issue is still being investigated. For the remaining fractions, the vast majority (7/8 of patients, 95% of fractions, and 96.6% of fields) are passing the less stringent Gamma criteria. The more stringent Gamma criteria caused a drop in pass rate (90 % of fractions, 84% of fields). For the patient with the lowest pass rate, wet towel bolus was used. Another patient with low pass rates experienced masseter muscle wasting. Conclusion: EPID dosimetry using the PerFraction software demonstrated that the majority of fields passed a Gamma (3%/3mm) for IMRT treatments delivered with a TrueBeam HD120 MLC. Pass rates dropped for a DTA of 1mm to model SRS tolerances. PerFraction pass rates can flag missing bolus or internal shields. Sanjeev Saini is an employee of Sun Nuclear Corporation. For this study, a pre-release version of PerFRACTION 1.1 software from Sun Nuclear Corporation was used.« less
Anatomy-corresponding method of IMRT verification.
Winiecki, Janusz; Zurawski, Zbigniew; Drzewiecka, Barbara; Slosarek, Krzysztof
2010-01-01
During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume. The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to. The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification. Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed. It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.
SU-E-CAMPUS-T-04: Statistical Process Control for Patient-Specific QA in Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAH, J; SHIN, D; Kim, G
Purpose: To evaluate and improve the reliability of proton QA process, to provide an optimal customized level using the statistical process control (SPC) methodology. The aim is then to suggest the suitable guidelines for patient-specific QA process. Methods: We investigated the constancy of the dose output and range to see whether it was within the tolerance level of daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to suggest the suitable guidelines for patient-specific QA in proton beam by using process capability indices. In this study, patient QA plans were classifiedmore » into 6 treatment sites: head and neck (41 cases), spinal cord (29 cases), lung (28 cases), liver (30 cases), pancreas (26 cases), and prostate (24 cases). Results: The deviations for the dose output and range of daily QA process were ±0.84% and ±019%, respectively. Our results show that the patient-specific range measurements are capable at a specification limit of ±2% in all treatment sites except spinal cord cases. In spinal cord cases, comparison of process capability indices (Cp, Cpm, Cpk ≥1, but Cpmk ≤1) indicated that the process is capable, but not centered, the process mean deviates from its target value. The UCL (upper control limit), CL (center line) and LCL (lower control limit) for spinal cord cases were 1.37%, −0.27% and −1.89%, respectively. On the other hands, the range differences in prostate cases were good agreement between calculated and measured values. The UCL, CL and LCL for prostate cases were 0.57%, −0.11% and −0.78%, respectively. Conclusion: SPC methodology has potential as a useful tool to customize an optimal tolerance levels and to suggest the suitable guidelines for patient-specific QA in clinical proton beam.« less
Tolerance design of patient-specific range QA using the DMAIC framework in proton therapy.
Rah, Jeong-Eun; Shin, Dongho; Manger, Ryan P; Kim, Tae Hyun; Oh, Do Hoon; Kim, Dae Yong; Kim, Gwe-Ya
2018-02-01
To implement the DMAIC (Define-Measure-Analyze-Improve-Control) can be used for customizing the patient-specific QA by designing site-specific range tolerances. The DMAIC framework (process flow diagram, cause and effect, Pareto chart, control chart, and capability analysis) were utilized to determine the steps that need focus for improving the patient-specific QA. The patient-specific range QA plans were selected according to seven treatment site groups, a total of 1437 cases. The process capability index, C pm was used to guide the tolerance design of patient site-specific range. For prostate field, our results suggested that the patient range measurements were capable at the current tolerance level of ±1 mm in clinical proton plans. For other site-specific ranges, we analyzed that the tolerance tends to be overdesigned to insufficient process capability calculated by the patient-specific QA data. The customized tolerances were calculated for treatment sites. Control charts were constructed to simulate the patient QA time before and after the new tolerances were implemented. It is found that the total simulation QA time was decreased on average of approximately 20% after establishing new site-specific range tolerances. We simulated the financial impact of this project. The QA failure for whole process in proton therapy would lead up to approximately 30% increase in total cost. DMAIC framework can be used to provide an effective QA by setting customized tolerances. When tolerance design is customized, the quality is reasonably balanced with time and cost demands. © 2017 American Association of Physicists in Medicine.
Megias, Daniel; Phillips, Mark; Clifton-Hadley, Laura; Harron, Elizabeth; Eaton, David J; Sanghera, Paul; Whitfield, Gillian
2017-03-01
The HIPPO trial is a UK randomized Phase II trial of hippocampal sparing (HS) vs conventional whole-brain radiotherapy after surgical resection or radiosurgery in patients with favourable prognosis with 1-4 brain metastases. Each participating centre completed a planning benchmark case as part of the dedicated radiotherapy trials quality assurance programme (RTQA), promoting the safe and effective delivery of HS intensity-modulated radiotherapy (IMRT) in a multicentre trial setting. Submitted planning benchmark cases were reviewed using visualization for radiotherapy software (VODCA) evaluating plan quality and compliance in relation to the HIPPO radiotherapy planning and delivery guidelines. Comparison of the planning benchmark data highlighted a plan specified using dose to medium as an outlier by comparison with those specified using dose to water. Further evaluation identified that the reported plan statistics for dose to medium were lower as a result of the dose calculated at regions of PTV inclusive of bony cranium being lower relative to brain. Specification of dose to water or medium remains a source of potential ambiguity and it is essential that as part of a multicentre trial, consideration is given to reported differences, particularly in the presence of bone. Evaluation of planning benchmark data as part of an RTQA programme has highlighted an important feature of HS IMRT dosimetry dependent on dose being specified to water or medium, informing the development and undertaking of HS IMRT as part of the HIPPO trial. Advances in knowledge: The potential clinical impact of differences between dose to medium and dose to water are demonstrated for the first time, in the setting of HS whole-brain radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rah, Jeong-Eun; Oh, Do Hoon; Shin, Dongho
Purpose: To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. Methods: The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. Results: The authors established a customized tolerance level of ±2% formore » D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors’ analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. Conclusions: SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.« less
Evolution of Internal Quality Assurance at One University--A Case Study
ERIC Educational Resources Information Center
O'Sullivan, David
2017-01-01
Purpose: Quality assurance (QA) at one University has evolved over the past 15 years through emerging National and European standards, various leadership initiatives and through the engagement of key stakeholders in co-designing and implementing internal QA processes. In 2000, the QA process was focussed mainly on quality review (QR) that involved…
MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceberg, S.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Anatomic modeling using 3D printing: quality assurance and optimization.
Leng, Shuai; McGee, Kiaran; Morris, Jonathan; Alexander, Amy; Kuhlmann, Joel; Vrieze, Thomas; McCollough, Cynthia H; Matsumoto, Jane
2017-01-01
The purpose of this study is to provide a framework for the development of a quality assurance (QA) program for use in medical 3D printing applications. An interdisciplinary QA team was built with expertise from all aspects of 3D printing. A systematic QA approach was established to assess the accuracy and precision of each step during the 3D printing process, including: image data acquisition, segmentation and processing, and 3D printing and cleaning. Validation of printed models was performed by qualitative inspection and quantitative measurement. The latter was achieved by scanning the printed model with a high resolution CT scanner to obtain images of the printed model, which were registered to the original patient images and the distance between them was calculated on a point-by-point basis. A phantom-based QA process, with two QA phantoms, was also developed. The phantoms went through the same 3D printing process as that of the patient models to generate printed QA models. Physical measurement, fit tests, and image based measurements were performed to compare the printed 3D model to the original QA phantom, with its known size and shape, providing an end-to-end assessment of errors involved in the complete 3D printing process. Measured differences between the printed model and the original QA phantom ranged from -0.32 mm to 0.13 mm for the line pair pattern. For a radial-ulna patient model, the mean distance between the original data set and the scanned printed model was -0.12 mm (ranging from -0.57 to 0.34 mm), with a standard deviation of 0.17 mm. A comprehensive QA process from image acquisition to completed model has been developed. Such a program is essential to ensure the required accuracy of 3D printed models for medical applications.
IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases.
Wen, Ning; Zhao, Bo; Kim, Jinkoo; Chin-Snyder, Karen; Bellon, Maria; Glide-Hurst, Carri; Barton, Kenneth; Chen, Daiquan; Chetty, Indrin J
2014-09-08
The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017-0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high-dose region were 5.9 ± 2.7 (range, 1.4-8.6) and 3.9 ± 2.9 (range, 1.5-8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low-dose region were 5.3 ± 2.6 (range, 1.2-7.4) and 3.7 ± 2.8 (range, 1.8-8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.
NASA Astrophysics Data System (ADS)
Noufal, Manthala Padannayil; Abdullah, Kallikuzhiyil Kochunny; Niyas, Puzhakkal; Subha, Pallimanhayil Abdul Raheem
2017-12-01
Aim: This study evaluates the impacts of using different evaluation criteria on gamma pass rates in two commercially available QA methods employed for the verification of VMAT plans using different hypothetical planning target volumes (PTVs) and anatomical regions. Introduction: Volumetric modulated arc therapy (VMAT) is a widely accepted technique to deliver highly conformal treatment in a very efficient manner. As their level of complexity is high in comparison to intensity-modulated radiotherapy (IMRT), the implementation of stringent quality assurance (QA) before treatment delivery is of paramount importance. Material and Methods: Two sets of VMAT plans were generated using Eclipse planning systems, one with five different complex hypothetical three-dimensional PTVs and one including three anatomical regions. The verification of these plans was performed using a MatriXX ionization chamber array embedded inside a MultiCube phantom and a Varian EPID dosimetric system attached to a Clinac iX. The plans were evaluated based on the 3%/3 mm, 2%/2 mm, and 1%/1 mm global gamma criteria and with three low-dose threshold values (0%, 10%, and 20%). Results: The gamma pass rates were above 95% in all VMAT plans, when the 3%/3mm gamma criterion was used and no threshold was applied. In both systems, the pass rates decreased as the criteria become stricter. Higher pass rates were observed when no threshold was applied and they tended to decrease for 10% and 20% thresholds. Conclusion: The results confirm the suitability of the equipments used and the validity of the plans. The study also confirmed that the threshold settings greatly affect the gamma pass rates, especially for lower gamma criteria.
Feasibility study of an intensity-modulated radiation model for the study of erectile dysfunction.
Koontz, Bridget F; Yan, Hui; Kimura, Masaki; Vujaskovic, Zeljko; Donatucci, Craig; Yin, Fang-Fang
2011-02-01
Preclinical studies of radiotherapy (RT) induced erectile dysfunction (ED) have been limited by radiation toxicity when using large fields. To develop a protocol of rat prostate irradiation using techniques mimicking the current clinical standard of intensity modulated radiotherapy (IMRT). Quality assurance (QA) testing of plan accuracy, animal health 9 weeks after RT, and intracavernosal pressure (ICP) measurement on cavernosal nerve stimulation. Computed tomography-based planning was used to develop a stereotactic radiosurgery (SRS) treatment plan for five young adult male Sprague-Dawley rats. Two treatment planning strategies were utilized to deliver 20 Gy in a single fraction: three-dimensional dynamic conformal arc and intensity-modulated arc (RapidArc). QA testing was performed for each plan type. Treatment was delivered using a NovalisTX (Varian Medical Systems) with high-definition multi-leaf collimators using on-board imaging prior to treatment. Each animal was evaluated for ED 2 months after treatment by nerve stimulation and ICP measurement. The mean prostate volume and target volume (5 mm expansion of prostate) for the five animals was 0.36 and 0.66 cm3, respectively. Both conformal and RapidArc plans provided at least 95% coverage of the target volume, with rapid dose fall-off. QA plans demonstrated strong agreement between doses of calculated and delivered plans, although the conformal arc plan was more homogenous in treatment delivery. Treatment was well tolerated by the animals with no toxicity out to 9 weeks. Compared with control animals, significant reduction in ICP/mean arterial pressure, maximum ICP, and ICP area under the curve were noted. Tightly conformal dynamic arc prostate irradiation is feasible and results in minimal toxicity and measurable changes in erectile function. © 2010 International Society for Sexual Medicine.
Zhang, Yonghong; Sun, Weihong; Gutchell, Emily M; Kvecher, Leonid; Kohr, Joni; Bekhash, Anthony; Shriver, Craig D; Liebman, Michael N; Mural, Richard J; Hu, Hai
2013-01-01
In clinical and translational research as well as clinical trial projects, clinical data collection is prone to errors such as missing data, and misinterpretation or inconsistency of the data. A good quality assurance (QA) program can resolve many such errors though this requires efficient communications between the QA staff and data collectors. Managing such communications is critical to resolving QA problems but imposes a major challenge for a project involving multiple clinical and data processing sites. We have developed a QA issue tracking (QAIT) system to support clinical data QA in the Clinical Breast Care Project (CBCP). This web-based application provides centralized management of QA issues with role-based access privileges. It has greatly facilitated the QA process and enhanced the overall quality of the CBCP clinical data. As a stand-alone system, QAIT can supplement any other clinical data management systems and can be adapted to support other projects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailidis, D; Mallah, J; Zhu, D
2016-06-15
Purpose: The dosimetric leaf gap (DLG) is an important parameter to be measured for dynamic beam delivery of modern linacs, like the Varian Truebeam (TB). The clinical effects of DLG-values on IMRT and/or VMAT commissioning of two “matched” TB linacs will be presented.Methods and Materials: The DLG values on two TB linacs were measured for all energy modalities (filtered and FFF-modes) as part of the dynamic delivery mode commissioning (IMRT and/or VMAT. After the standard beam data was modeled in eclipse treatment planning system (TPS) and validated, IMRT validation was performed based on TG1191 benchmark, IROC Head-Neck (H&N) phantom andmore » sample of clinical cases, all measured on both linacs. Although there was a single-set of data entered in the TPS, a noticeable difference was observed for the DLG-values between the linacs. The TG119, IROC phantom and selected patient plans were furnished with DLG-values of TB1 for both linacs and the delivery was performed on both TB linacs for comparison. Results: The DLG values of TB1 was first used for both linacs to perform the testing comparisons. The QA comparison of TG119 plans revealed a great dependence of the results to the DLG-values used for the linac for all energy modalities studied, especially when moving from 3%/3mm to 2%/2mm γ-analysis. Conclusion: The DLG-values have a definite influence on the dynamic dose, delivery that increases with the plan complexity. We recommend that the measured DLG-values are assigned to each of the “matched” linacs, even if a single set of beam data describes multiple linacs. The user should perform a detail test of the dynamic delivery of each linac based on end-to-end benchmark suites like TG119 and IROC phantoms.1Ezzel G., et al., “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.” Med. Phys. 36:5359–5373 (2009). partly supported by CAMC Cancer Center and Alliance Oncology.« less
SU-E-T-593: Outcomes and Toxicities From a Clinical Trial of APBI Using MERT+IMRT with the Same XMLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez-Ortega, E.; Ureba, A.; Barbeiro, A.R.
2015-06-15
Purpose: We present the results from a clinical trial of accelerated partial breast irradiation (APBI), using mixed modulated photon and electron beams (MERT+IMRT) with the same photon multileaf collimator (xMLC). Methods: Seven patients were enrolled in the first year of the APBI clinical trial. Patients were selected following the conditions included in the NSABP B-39/RTOG 0413 protocol. The targets and clinically relevant normal structures were contoured on the CT images following this protocol for APBI-EBRT. All treatments were delivered using combined modulated electron and photon beams by means of the same xMLC installed in a SIEMENS Primus linac, with amore » reduced SSD equal to 60 cm for electron beams. The plans were performed with a treatment planning system based on full Monte Carlo simulations, called CARMEN, developed by our group. Simultaneously, an alternative IMRT plan was calculated with the commercial TPS PINNACLE v8.0m (Philips), and both plans were compared. An ad-hoc breast phantom with semi-spherical geometry called NAOMI was designed for a specific QA protocol. Patients received a total dose of 38.5 Gy, delivered in 10 fractions over 5 consecutive days, with a twice-a-day hypofractionated schema.Follow-up visits during 2.5 years on average were repeated at 1 month post-treatment, every 3 months for the first year, and every 6 months for the second year. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). Results: This APBI technique achieved high loco-regional control rates and showed low acute toxicity (grade 1 of CTCAE) and no toxicities from first month onwards. Photographic assessment of cosmesis showed skin excellent results. Conclusion: The clinical results achieved with MERT+IMRT by using the same xMLC are comparable or even better than those obtained with other APBI techniques, thanks to a software solution without any additional equipment or specific device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAH, J; Shin, D; Manger, R
Purpose: To show how the Six Sigma DMAIC (Define-Measure-Analyze-Improve-Control) can be used for improving and optimizing the efficiency of patient-specific QA process by designing site-specific range tolerances. Methods: The Six Sigma tools (process flow diagram, cause and effect, capability analysis, Pareto chart, and control chart) were utilized to determine the steps that need focus for improving the patient-specific QA process. The patient-specific range QA plans were selected according to 7 treatment site groups, a total of 1437 cases. The process capability index, Cpm was used to guide the tolerance design of patient site-specific range. We also analyzed the financial impactmore » of this project. Results: Our results suggested that the patient range measurements were non-capable at the current tolerance level of ±1 mm in clinical proton plans. The optimized tolerances were calculated for treatment sites. Control charts for the patient QA time were constructed to compare QA time before and after the new tolerances were implemented. It is found that overall processing time was decreased by 24.3% after establishing new site-specific range tolerances. The QA failure for whole process in proton therapy would lead up to a 46% increase in total cost. This result can also predict how costs are affected by changes in adopting the tolerance design. Conclusion: We often believe that the quality and performance of proton therapy can easily be improved by merely tightening some or all of its tolerance requirements. This can become costly, however, and it is not necessarily a guarantee of better performance. The tolerance design is not a task to be undertaken without careful thought. The Six Sigma DMAIC can be used to improve the QA process by setting optimized tolerances. When tolerance design is optimized, the quality is reasonably balanced with time and cost demands.« less
Should image rotation be addressed during routine cone-beam CT quality assurance?
Ayan, Ahmet S; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan
2013-02-21
The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olch, A
2015-06-15
Purpose: Systematic radiotherapy plan quality assessment promotes quality improvement. Software tools can perform this analysis by applying site-specific structure dose metrics. The next step is to similarly evaluate the quality of the dose delivery. This study defines metrics for acceptable doses to targets and normal organs for a particular treatment site and scores each plan accordingly. The input can be the TPS or the measurement-based 3D patient dose. From this analysis, one can determine whether the delivered dose distribution to the patient receives a score which is comparable to the TPS plan score, otherwise replanning may be indicated. Methods: Elevenmore » neuroblastoma patient plans were exported from Eclipse to the Quality Reports program. A scoring algorithm defined a score for each normal and target structure based on dose-volume parameters. Each plan was scored by this algorithm and the percentage of total possible points was obtained. Each plan also underwent IMRT QA measurements with a Mapcheck2 or ArcCheck. These measurements were input into the 3DVH program to compute the patient 3D dose distribution which was analyzed using the same scoring algorithm as the TPS plan. Results: The mean quality score for the TPS plans was 75.37% (std dev=14.15%) compared to 71.95% (std dev=13.45%) for the 3DVH dose distribution. For 3/11 plans, the 3DVH-based quality score was higher than the TPS score, by between 0.5 to 8.4 percentage points. Eight/11 plans scores decreased based on IMRT QA measurements by 1.2 to 18.6 points. Conclusion: Software was used to determine the degree to which the plan quality score differed between the TPS and measurement-based dose. Although the delivery score was generally in good agreement with the planned dose score, there were some that improved while there was one plan whose delivered dose quality was significantly less than planned. This methodology helps evaluate both planned and delivered dose quality. Sun Nuclear Corporation has provded a license for the software described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Penagaricano, J; Paudel, N
2015-06-15
Purpose: To study the potential of improving esophageal sparing for stereotactic body radiation therapy (SBRT) lung cancer patients by using biological optimization (BO) compared to conventional dose-volume based optimization (DVO) in treatment planning. Methods: Three NSCLC patients (PTV (62.3cc, 65.1cc, and 125.1cc) adjacent to the heart) previously treated with SBRT were re-planned using Varian Eclipse TPS (V11) using DVO and BO. The prescription dose was 60 Gy in 5 fractions normalized to 95% of the PTV volume. Plans were evaluated by comparing esophageal maximum doses, PTV heterogeneity (HI= D5%/D95%), and Paddick’s conformity (CI) indices. Quality of the plans was assessedmore » by clinically-used IMRT QA procedures. Results: By using BO, the maximum dose to the esophagus was decreased 1384 cGy (34.6%), 502 cGy (16.5%) and 532 cGy (16.2%) in patient 1, 2 and 3 respectively. The maximum doses to spinal cord and the doses to 1000 cc and 1500 cc of normal lung were comparable in both plans. The mean doses (Dmean-hrt) and doses to 15cc of the heart (V15-hrt) were comparable for patient 1 and 2. However for patient 3, with the largest PTV, Dmean-hrt and V15-hrt increased by 62.2 cGy (18.3%) and 549.9 cGy (24.9%) respectively for the BO plans. The mean target HI of BO plans (1.13) was inferior to the DVO plans (1.07). The same trend was also observed for mean CI in BO plans (0.77) versus DVO plans (0.83). The QA pass rates (3%, 3mm) were comparable for both plans. Conclusion: This study demonstrated that the use of biological models in treatment planning optimization can substantially improve esophageal sparing without compromising spinal cord and normal lung doses. However, for the large PTV case (125.1cc) we studied here, Dmean-hrt and V15-hrt increased substantially. The target HI and CI were inferior in the BO plans.« less
NASA Astrophysics Data System (ADS)
Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.
2007-03-01
The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.
Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y
2007-03-07
The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.
SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, C; Wessels, B; Hamilton, H
2014-06-01
Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of amore » number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT.« less
SU-F-T-236: Comparison of Two IMRT/VMAT QA Systems Using Gamma Index Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, N; Denissova, S
2016-06-15
Purpose: The goal of this study is to assess differences in the Gamma index pass rates when using two commercial QA systems and provide optimum Gamma index parameters for pre-treatment patient specific QA. Methods: Twenty-two VMAT cases that consisted of prostate, lung, head and neck, spine, brain and pancreas, were included in this study. The verification plans have been calculated using AcurosXB(V11) algorithm for different dose grids (1.5mm, 2.5mm, 3mm). The measurements were performed on TrueBeam(Varian) accelerator using both EPID(S1000) portal imager and ArcCheck(SunNuclearCorp) devices. Gamma index criteria variation of 3%/3mm, 2%/3mm, 2%/2mm and threshold (TH) doses of 5% tomore » 50% were used in analysis. Results: The differences in Gamma pass rates between two devices are not statistically significant for 3%/3mm, yielding pass rate higher than 95%. Increase of lower dose TH showed reduced pass rates for both devices. ArcCheck’s more pronounced effect can be attributed to higher contribution of lower dose region spread. As expected, tightening criteria to 2%/2mm (TH: 10%) decreased Gamma pass rates below 95%. Higher EPID (92%) pass rates compared to ArcCheck (86%) probably due to better spatial resolution. Portal Dosimetry results showed lower Gamma pass rates for composite plans compared to individual field pass rates. This may be due to the expansion in the analyzed region which includes pixels not included in the separate field analysis. Decreasing dose grid size from 2.5mm to 1.5mm did not show statistically significant (p<0.05) differences in Gamma pass rates for both QA devices. Conclusion: Overall, both system measurements agree well with calculated dose when using gamma index criteria of 3%/3mm for a variety of VMAT cases. Variability between two systems increases using different dose GRID, TH and tighter gamma criteria and must be carefully assessed prior to clinical use.« less
Rosca, Florin; Lorenz, Friedlieb; Hacker, Fred L; Chin, Lee M; Ramakrishna, Naren; Zygmanski, Piotr
2006-06-01
We have designed and implemented a new stereotactic linac QA test with stereotactic precision. The test is used to characterize gantry sag, couch wobble, cone placement, MLC offsets, and room lasers' positions relative to the radiation isocenter. Two MLC star patterns, a cone pattern, and the laser line patterns are recorded on the same imaging medium. Phosphor plates are used as imaging medium due to their sensitivity to red light. The red light of room lasers erases some of the irradiation information stored on the phosphor plates enabling accurate and direct measurements for the position of room lasers and radiation isocenter. Using film instead of the phosphor plate as imaging medium is possible, however, it is less practical. The QA method consists of irradiating four phosphor plates that record the gantry sag between the 0 degrees and 180 degrees gantry angles, the position and stability of couch rotational axis, the sag between the 90 degrees and 270 degrees gantry angles, the accuracy of cone placement on the collimator, the MLC offsets from the collimator rotational axis, and the position of laser lines relative to the radiation isocenter. The estimated accuracy of the method is +/- 0.2 mm. The observed reproducibility of the method is about +/- 0.1 mm. The total irradiation/ illumination time is about 10 min per image. Data analysis, including the phosphor plate scanning, takes less than 5 min for each image. The method characterizes the radiation isocenter geometry with the high accuracy required for the stereotactic radiosurgery. In this respect, it is similar to the standard ball test for stereotactic machines. However, due to the usage of the MLC instead of the cross-hair/ball, it does not depend on the cross-hair/ball placement errors with respect to the lasers and it provides more information on the mechanical integrity of the linac/couch/laser system. Alternatively, it can be used as a highly accurate QA procedure for the nonstereotactic machines. Noteworthy is its ability to characterize the MLC position accuracy, which is an important factor in IMRT delivery.
Quality assurance (QA) of information technology (IT) and Information Management (IM) systems help to ensure that the end product is of known quality and integrity. As the complexity of IT & IM processes increase, so does the need for regular QA evaluation.
The areas revi...
Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T. J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Timothy E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; Purdy, James
2012-01-01
Background In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute (NCI) sponsored a two day workshop to examine the challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. Lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities like proton beam therapy, and the international harmonization of clinical trial QA. Results Four recommendations were made: 1) Develop a tiered (and more efficient) system for radiotherapy QA and tailor intensity of QA to clinical trial objectives. Tiers include (i) general credentialing, (ii) trial specific credentialing, and (iii) individual case review; 2) Establish a case QA repository; 3) Develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and 4) Explore the feasibility of consolidating clinical trial QA in the United States. Conclusion Radiotherapy QA may impact clinical trial accrual, cost, outcomes and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based. PMID:22425219
The NCI Thesaurus quality assurance life cycle.
de Coronado, Sherri; Wright, Lawrence W; Fragoso, Gilberto; Haber, Margaret W; Hahn-Dantona, Elizabeth A; Hartel, Francis W; Quan, Sharon L; Safran, Tracy; Thomas, Nicole; Whiteman, Lori
2009-06-01
The National Cancer Institute Enterprise Vocabulary Services (NCI EVS) uses a wide range of quality assurance (QA) techniques to maintain and extend NCI Thesaurus (NCIt). NCIt is a reference terminology and biomedical ontology used in a growing number of NCI and other systems that extend from translational and basic research through clinical care to public information and administrative activities. Both automated and manual QA techniques are employed throughout the editing and publication cycle, which includes inserting and editing NCIt in NCI Metathesaurus. NCI EVS conducts its own additional periodic and ongoing content QA. External reviews, and extensive evaluation by and interaction with EVS partners and other users, have also played an important part in the QA process. There have always been tensions and compromises between meeting the needs of dependent systems and providing consistent and well-structured content; external QA and feedback have been important in identifying and addressing such issues. Currently, NCI EVS is exploring new approaches to broaden external participation in the terminology development and QA process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, F.C.
1992-05-01
Quality assurance and quality control (QA/QC) of analytical chemistry laboratory activities are essential to the validity and usefulness of resultant data. However, in themselves, conventional QA/QC measures will not always ensure that fraudulent data are not generated. Conventional QA/QC measures are based on the assumption that work will be done in good faith; to assure against fraudulent practices, QA/QC measures must be tailored to specific analyses protocols in anticipation of intentional misapplication of those protocols. Application of specific QA/QC measures to ensure against fraudulent practices result in an increased administrative burden being placed on the analytical process; accordingly, in keepingmore » with graded QA philosophy, data quality objectives must be used to identify specific points of concern for special control to minimize the administrative impact.« less
QA/QC in the laboratory. Session F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, F.C.
1992-05-01
Quality assurance and quality control (QA/QC) of analytical chemistry laboratory activities are essential to the validity and usefulness of resultant data. However, in themselves, conventional QA/QC measures will not always ensure that fraudulent data are not generated. Conventional QA/QC measures are based on the assumption that work will be done in good faith; to assure against fraudulent practices, QA/QC measures must be tailored to specific analyses protocols in anticipation of intentional misapplication of those protocols. Application of specific QA/QC measures to ensure against fraudulent practices result in an increased administrative burden being placed on the analytical process; accordingly, in keepingmore » with graded QA philosophy, data quality objectives must be used to identify specific points of concern for special control to minimize the administrative impact.« less
A practical implementation of physics quality assurance for photon adaptive radiotherapy.
Cai, Bin; Green, Olga L; Kashani, Rojano; Rodriguez, Vivian L; Mutic, Sasa; Yang, Deshan
2018-03-14
The fast evolution of technology in radiotherapy (RT) enabled the realization of adaptive radiotherapy (ART). However, the new characteristics of ART pose unique challenges for efficiencies and effectiveness of quality assurance (QA) strategies. In this paper, we discuss the necessary QAs for ART and introduce a practical implementation. A previously published work on failure modes and effects analysis (FMEA) of ART is introduced first to explain the risks associated with ART sub-processes. After a brief discussion of QA challenges, we review the existing QA strategies and tools that might be suitable for each ART step. By introducing the MR-guided online ART QA processes developed at our institute, we demonstrate a practical implementation. The limitations and future works to develop more robust and efficient QA strategies are discussed at the end. Copyright © 2018. Published by Elsevier GmbH.
A framework for institutionalizing quality assurance.
Silimperi, Diana R; Franco, Lynne Miller; Veldhuyzen van Zanten, Tisna; MacAulay, Catherine
2002-12-01
To develop a framework to support the institutionalization of quality assurance (QA). The framework for institutionalizing QA consists of a model of eight essential elements and a 'roadmap' for the process of institutionalization. The essential elements are the building blocks required for implementing and sustaining QA activities. Core QA activities include defining, measuring and improving quality. The essential elements are grouped under three categories: the internal enabling environment (internal to the organization or system), organizing for quality, and support functions. The enabling environment contains the essential elements of leadership, policy, core values, and resources. Organizing for quality includes the structure for implementing QA. Three essential elements are primarily support functions: capacity building, communication and information, and rewarding quality. The model can be applied at the level of an organization or a system. The paper also describes the process of institutionalizing QA, starting from a state of preawareness, passing through four phases (awareness, experiential, expansion, and consolidation), and culminating in a state of maturity. The process is not linear; an organization may regress, vacillate between phases, or even remain stagnant. Some phases (e.g. awareness and experiential) may occur simultaneously. The framework has been introduced in nearly a dozen countries in Latin America and Africa. The conceptual model has been used to support strategic planning and directing Ministry of Health work plans, and also as a resource for determining the elements necessary to strengthen and sustain QA. The next step will be the development and evaluation of an assessment tool to monitor developmental progress in the institutionalization of QA.
NASA Astrophysics Data System (ADS)
Jiang, Runqing
Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent uniform dose per fraction (EUDf) and NTCP. The dose distribution including geometric uncertainties was determined from integration of the convolution of the static dose gradient with the PDF. Integration of the convolution of the static dose and derivative of the PDF can also be used to determine the dose including geometric uncertainties although this method was not investigated in detail. Local maximum dose gradient (LMDG) was determined via optimization of dose objective function by manually adjusting DVH control points or selecting beam numbers and directions during IMRT treatment planning. Minimum SD (SDmin) is used when geometric uncertainty is corrected with verification imaging. Maximum SD (SDmax) is used when the geometric uncertainty is known to be large and difficult to manage. SDmax was 4.38 mm in anterior-posterior (AP) direction, 2.70 mm in left-right (LR) direction and 4.35 mm in superior-inferior (SI) direction; SDmin was 1.1 mm in all three directions if less than 2 mm threshold was used for uncorrected fractions in every direction. EUDf is a useful QA parameter for interpreting the biological impact of geometric uncertainties on the static dose distribution. The EUD f has been used as the basis for the time-course NTCP evaluation in the thesis. Relative NTCP values are useful for comparative QA checking by normalizing known complications (e.g. reported in the RTOG studies) to specific DVH control points. For prostate cancer patients, rectal complications were evaluated from specific RTOG clinical trials and detailed evaluation of the treatment techniques (e.g. dose prescription, DVH, number of beams, bean angles). Treatment plans that did not meet DVH constraints represented additional complication risk. Geometric uncertainties improved or worsened rectal NTCP depending on individual internal organ motion within patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu; Deye, James A.; Vikram, Bhadrasain
2012-07-01
Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such asmore » proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.« less
Bekelman, Justin E; Deye, James A; Vikram, Bhadrasain; Bentzen, Soren M; Bruner, Deborah; Curran, Walter J; Dignam, James; Efstathiou, Jason A; FitzGerald, T J; Hurkmans, Coen; Ibbott, Geoffrey S; Lee, J Jack; Merchant, Thomas E; Michalski, Jeff; Palta, Jatinder R; Simon, Richard; Ten Haken, Randal K; Timmerman, Robert; Tunis, Sean; Coleman, C Norman; Purdy, James
2012-07-01
In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based. Copyright © 2012 Elsevier Inc. All rights reserved.
Online adaptation and verification of VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Defraene, Gilles; Depuydt, Tom
2015-07-15
Purpose: This work presents a method for fast volumetric modulated arc therapy (VMAT) adaptation in response to interfraction anatomical variations. Additionally, plan parameters extracted from the adapted plans are used to verify the quality of these plans. The methods were tested as a prostate class solution and compared to replanning and to their current clinical practice. Methods: The proposed VMAT adaptation is an extension of their previous intensity modulated radiotherapy (IMRT) adaptation. It follows a direct (forward) planning approach: the multileaf collimator (MLC) apertures are corrected in the beam’s eye view (BEV) and the monitor units (MUs) are corrected usingmore » point dose calculations. All MLC and MU corrections are driven by the positions of four fiducial points only, without need for a full contour set. Quality assurance (QA) of the adapted plans is performed using plan parameters that can be calculated online and that have a relation to the delivered dose or the plan quality. Five potential parameters are studied for this purpose: the number of MU, the equivalent field size (EqFS), the modulation complexity score (MCS), and the components of the MCS: the aperture area variability (AAV) and the leaf sequence variability (LSV). The full adaptation and its separate steps were evaluated in simulation experiments involving a prostate phantom subjected to various interfraction transformations. The efficacy of the current VMAT adaptation was scored by target mean dose (CTV{sub mean}), conformity (CI{sub 95%}), tumor control probability (TCP), and normal tissue complication probability (NTCP). The impact of the adaptation on the plan parameters (QA) was assessed by comparison with prediction intervals (PI) derived from a statistical model of the typical variation of these parameters in a population of VMAT prostate plans (n = 63). These prediction intervals are the adaptation equivalent of the tolerance tables for couch shifts in the current clinical practice. Results: The proposed adaptation of a two-arc VMAT plan resulted in the intended CTV{sub mean} (Δ ≤ 3%) and TCP (ΔTCP ≤ 0.001). Moreover, the method assures the intended CI{sub 95%} (Δ ≤ 11%) resulting in lowered rectal NTCP for all cases. Compared to replanning, their adaptation is faster (13 s vs 10 min) and more intuitive. Compared to the current clinical practice, it has a better protection of the healthy tissue. Compared to IMRT, VMAT is more robust to anatomical variations, but it is also less sensitive to the different correction steps. The observed variations of the plan parameters in their database included a linear dependence on the date of treatment planning and on the target radius. The MCS is not retained as QA metric due to a contrasting behavior of its components (LSV and AAV). If three out of four plan parameters (MU, EqFS, AAV, and LSV) need to lie inside a 50% prediction interval (3/4—50%PI), all adapted plans will be accepted. In contrast, all replanned plans do not meet this loose criterion, mainly because they have no connection to the initially optimized and verified plan. Conclusions: A direct (forward) VMAT adaptation performs equally well as (inverse) replanning but is faster and can be extended to real-time adaptation. The prediction intervals for the machine parameters are equivalent to the tolerance tables for couch shifts in the current clinical practice. A 3/4—50%PI QA criterion accepts all the adapted plans but rejects all the replanned plans.« less
Woodford, Katrina; Panettieri, Vanessa; Ruben, Jeremy D; Senthi, Sashendra
2016-05-01
Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses.
Surgical quality assessment. A simplified approach.
DeLong, D L
1991-10-01
The current approach to QA primarily involves taking action when problems are discovered and designing a documentation system that records the deliverance of quality care. Involving the entire staff helps eliminate problems before they occur. By keeping abreast of current problems and soliciting input from staff members, the QA at our hospital has improved dramatically. The cross-referencing of JCAHO and AORN standards on the assessment form and the single-sheet reporting form expedite the evaluation process and simplify record keeping. The bulletin board increases staff members' understanding of QA and boosts morale and participation. A sound and effective QA program does not require reorganizing an entire department, nor should it invoke negative connotations. Developing an effective QA program merely requires rethinking current processes. The program must meet the department's specific needs, and although many departments concentrate on documentation, auditing charts does not give a complete picture of the quality of care delivered. The QA committee must employ a variety of data collection methods on multiple indicators to ensure an accurate representation of the care delivered, and they must not overlook any issues that directly affect patient outcomes.
Hilsden, Robert Jay; Rostom, Alaa; Dubé, Catherine; Pontifex, Darlene; McGregor, S Elizabeth; Bridges, Ronald J
2011-10-01
Quality assurance (QA) is a process that includes the systematic evaluation of a service, institution of improvements and ongoing evaluation to ensure that effective changes were made. QA is a fundamental component of any organized colorectal cancer screening program. However, it should play an equally important role in opportunistic screening. Establishing the processes and procedures for a comprehensive QA program can be a daunting proposition for an endoscopy unit. The present article describes the steps taken to establish a QA program at the Forzani & MacPhail Colon Cancer Screening Centre (Calgary, Alberta) - a colorectal cancer screening centre and nonhospital endoscopy unit that is dedicated to providing colorectal cancer screening-related colonoscopies. Lessons drawn from the authors' experience may help others develop their own initiatives. The Global Rating Scale, a quality assessment and improvement tool developed for the gastrointestinal endoscopy services of the United Kingdom's National Health Service, was used as the framework to develop the QA program. QA activities include monitoring the patient experience through surveys, creating endoscopist report cards on colonoscopy performance, tracking and evaluating adverse events and monitoring wait times.
TU-G-BRD-05: Results From Multi-Institutional Measurements with An Anthropomorphic Spine Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molineu, A; Hernandez, N; Alvarez, P
Purpose: To analyze the results from an anthropomorphic spine phantom used for credentialing institutions for National Cancer Institute (NCI) sponsored clinical trial. Methods: An anthropomorphic phantom that contains left and right lungs, a heart, an esophagus, spinal cord, bony material and a PTV was sent to institutions wishing to be credentialed for NCI trials. The PTV holds 4 TLD and radiochromic film in the axial and sagittal planes. The heart holds one TLD. Institutions created IMRT plans to cover ≥90% of the PTV with 6 Gy and limit the cord dose to <0.35cc receiving 3.75 Gy and <1.2cc receiving 2.63more » Gy. They were instructed to treat the phantom as they would a patient, including making plan specific IMRT/SBRT QA measurements before treatment. The TLD results in the PTV were required to be within ±7% of the plan dose. A gamma calculation was performed using the film results and the submitted DICOM plan. ≥85% of the analyzed region was required to pass a 5%/3 mm criteria. Results: 176 institutions irradiated the spine phantom for a total of 255 results. The pass rate was 73% (187 irradiations) overall. 44 irradiations failed only the gamma criteria, 2 failed only the dose criteria and 22 failed both. The most used planning systems were Eclipse (116) and Pinnacle (52) and they had pass rates of 76% and 71%, respectively. The AAA algorithm had a pass rate of 77% while superposition type algorithms had a 71% pass rate. The average TLD measurement to institution calculation ratio was 0.99 (0.04 std dev.). The average percent pixels passing the gamma criteria for films was 89% (12% std dev.) Conclusion: Results show that this phantom is an important part of credentialing and that we have room for improvement in IMRT/SBRT spine treatments. This work was supported by PHS CA180803 and CA037422 awarded by NCI, DHHS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Ellen; Daskalov, George; Nedialkova, Lucy
Intensity-modulated radiotherapy (IMRT) treatment plan verification is often done using Kodak EDR2 film and a Vidar Dosimetry PRO trade mark sign film digitizer. However, since many hospitals are moving towards a filmless environment, access to a film processor may not be available. Therefore, we have investigated a newly available Gafchromic[reg] EBT film for IMRT dosimetry. Planar IMRT dose distributions are delivered to both EBT and EDR2 film and scanned with the Vidar VXR-16 as well as an Epson Expression 1680 flatbed scanner. The measured dose distributions are then compared to those calculated with a Pinnacle treatment planning system. The IMRTmore » treatments consisted of 7-9 6 MV beams for treatment of prostate, head and neck, and a few other sites. The films were analyzed using FilmQA trade mark sign (3cognition LLC) software. Comparisons between measured and calculated dose distributions are reported as dose difference (DD) (pixels within {+-}5%), distance to agreement (DTA) (3 mm), as well as gamma values ({gamma}) (dose={+-}3%, dist.=2 mm). Using EDR2 with the Vidar scanner is an established technique and agreement between calculated and measured dose distributions was better than 90% in all indices (DD, DTA, and {gamma}). However, agreement with calculations deteriorated reaching the lower 80% for EBT film scans with the Vidar scanner in logarithmic mode. The EBT Vidar scans obtained in linear mode showed an improved agreement to the upper 80% range, but artifacts were still observed across the scan. These artifacts were very distinct in all EBT scans and can be attributed to the way the film is transported through the scanner. In the Epson scanner both films are rigidly immobilized and the light source scans over the film. It was found that the Epson scanner performed equally well with both types of film giving agreement to better than 90% in all indices.« less
SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.
Yuan, Y; Duan, J; Popple, R; Brezovich, I
2012-06-01
To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.
Daily QA of linear accelerators using only EPID and OBI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Baozhou, E-mail: bsun@radonc.wustl.edu; Goddu, S. Murty; Yaddanapudi, Sridhar
2015-10-15
Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI.more » The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D ion-chamber array agree within ±0.5% and ±1.2% for crossline and inline profiles, respectively. MLC position errors of 0.5 mm can be detected using a picket fence test. The field size and phantom positioning accuracy can be determined within 0.5 mm. The entire daily QA process takes ∼15 min to perform tests for 5 photon beams, MLC tests, and imaging checks. Conclusions: The exclusive use of EPID-based QA tools, including a QA phantom and simultaneous analysis software tools, has been demonstrated as a viable, efficient, and comprehensive process for daily evaluation of LINAC performance.« less
NASA Astrophysics Data System (ADS)
Baker, Jameson Todd
The complex dose patterns that result in Intensity Modulated Radiation Therapy make the typical QA of a second calculation insufficient for ensuring safe treatment of patients. Many facilities choose to deliver the treatment to film inserted in a phantom and calculate the dose delivered as an additional check of the treatment plan. Radiochromic films allow for measurements without the use of a processor in the current digital age. International Specialty Products developed Gafchromic EBT film, which is a radiochromic film having a useful range of 1 -- 800 cGy. EBT film properties are fully analyzed including studies of uniformity, spectral absorption, exposure sensitivity, energy dependence and post exposure density growth. Dosimetric performance on commercially available digitizers is studied with specific attention on the shortcomings. Finally, a custom designed scanner is built specifically for EBT film and its unique properties. Performance of the EBT digitizer is analyzed and compared against currently available scanners.
Automatic planning on hippocampal avoidance whole-brain radiotherapy.
Wang, Shuo; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A; Zhou, Sumin
2017-01-01
Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle 3 Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle 3 Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle 3 Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D 2% and D 98% of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D 100% and D max of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle 3 Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by Auto-Planning (AP) may facilitate protocol enrollment of patients to further investigate the hippocampal-sparing effect and be used to ensure timely start of palliative treatment in future clinical practice. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Automatic planning on hippocampal avoidance whole-brain radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo, E-mail: shuo0220@gmail.com; Zheng, Dandan; Zhang, Chi
Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle{sup 3} Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present studymore » is to evaluate the performance of the Pinnacle{sup 3} Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle{sup 3} Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D{sub 2%} and D{sub 98%} of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D{sub 100%} and D{sub max} of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle{sup 3} Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by Auto-Planning (AP) may facilitate protocol enrollment of patients to further investigate the hippocampal-sparing effect and be used to ensure timely start of palliative treatment in future clinical practice.« less
SU-F-T-399: Migration of Treatment Planning Systems Without Beam Data Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolakanahalli, R; Tewatia, D
2016-06-15
Purpose: Data acquisition for commissioning is steered by Treatment Planning System (TPS) requirements which can be cumbersome and time consuming involving significant clinic downtime. The purpose of this abstract is to answer if we could circumvent this by extracting data from existing TPS and speed up the process. Methods: Commissioning beam data was obtained from a clinically commissioned TPS (Pinnacle™) using Matlab™ generated Pinnacle™ executable scripts to commission a secondary 3D dose verification TPS (Eclipse™). Profiles and output factors for commissioning as required by Eclipse™ were computed on a 50 cm{sup 3} water phantom at a dose grid resolution ofmore » 2mm3. Verification doses were computed and compared to clinical TPS dose profiles as per TG-106 guidelines. Standard patient plans from Pinnacle™ including IMRT and VMAT plans were re-computed keeping the same monitor units (in order to perform true comparison) using Eclipse™. Computed dose was exported back to Pinnacle for comparison to original plans. This methodology enables us to alleviate all ambiguities that arise in such studies. Results: Profile analysis using in-house software for 6x, showed that for all field sizes including small MLC generated fields, 100% of infield and penumbra data points of Eclipse™ match Pinnacle™ generated and measured profiles with 2%/2 mm gamma criteria. Excellent agreement was observed in the penumbra regions, with all data points passing DTA criteria for complex C-shaped and S-shaped profiles. Patient plan dose volume histograms (DVHs) and isodose lines agreed well to within a 1.5% for target coverage. Conclusion: Secondary 3D dose checking is of utmost importance with advanced techniques such as IMRT and VMAT. Migration of TPS is possible without compromising accuracy or enduring the cumbersome measurement of commissioning data. Economizing time for commissioning such a verification system or for migration of TPS can add great QA value and minimize downtime.« less
Breaking down the communication barrier.
Hawkins, R A
1991-01-01
Dr. Hawkins addresses the problem of how QA managers can best persuade physicians of the importance of QA programs. Since communication is the basis of educating clinicians, the author analyzes the diametrically opposite perspectives of QA managers and physicians even as they pursue the common goal of quality healthcare. While doctors are primarily loyal to patients and peers with an immediate care focus, process-oriented QA managers emphasize the institution and its longer-term goals. To overcome physician resistance to change, Dr. Hawkins offers an adult learner model that stresses understanding the medical staff's viewpoint, negotiation and respect. Physicians are enthusiastic about QA when it helps solve "the endemic daily system problems." The author concludes by recommending that QA managers join physicians on their clinical rounds to bridge the gap between their different approaches.
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Beekwilder, N.; Chan, S.; Cheah, Y. W.; Chu, H.; Dengel, S.; O'Brien, F.; Pastorello, G.; Sandesh, M.; Torn, M. S.; Agarwal, D.
2017-12-01
AmeriFlux is a network of scientists who independently collect eddy covariance and related environmental observations at over 250 locations across the Americas. As part of the AmeriFlux Management Project, the AmeriFlux Data Team manages standardization, collection, quality assurance / quality control (QA/QC), and distribution of data submitted by network members. To generate data products that are timely, QA/QC'd, and repeatable, and have traceable provenance, we developed a semi-automated data processing pipeline. The new pipeline consists of semi-automated format and data QA/QC checks. Results are communicated via on-line reports as well as an issue-tracking system. Data processing time has been reduced from 2-3 days to a few hours of manual review time, resulting in faster data availability from the time of data submission. The pipeline is scalable to the network level and has the following key features. (1) On-line results of the format QA/QC checks are available immediately for data provider review. This enables data providers to correct and resubmit data quickly. (2) The format QA/QC assessment includes an automated attempt to fix minor format errors. Data submissions that are formatted in the new AmeriFlux FP-In standard can be queued for the data QA/QC assessment, often with minimal delay. (3) Automated data QA/QC checks identify and communicate potentially erroneous data via online, graphical quick views that highlight observations with unexpected values, incorrect units, time drifts, invalid multivariate correlations, and/or radiation shadows. (4) Progress through the pipeline is integrated with an issue-tracking system that facilitates communications between data providers and the data processing team in an organized and searchable fashion. Through development of these and other features of the pipeline, we present solutions to challenges that include optimizing automated with manual processing, bridging legacy data management infrastructure with various software tools, and working across interdisciplinary and international science cultures. Additionally, we discuss results from community member feedback that helped refine QA/QC communications for efficient data submission and revision.
SU-F-T-345: Quasi-Dead Beams: Clinical Relevance and Implications for Automatic Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, R; Veltchev, I; Lin, T
Purpose: Beam direction selection for fixed-beam IMRT planning is typically a manual process. Severe dose-volume limits on critical structures in the thorax often result in atypical selection of beam directions as compared to other body sites. This work demonstrates the potential consequences as well as clinical relevance. Methods: 21 thoracic cases treated with 5–7 beam directions, 6 cases including non-coplanar arrangements, with fractional doses of 150–411cGy were analyzed. Endpoints included per-beam modulation scaling factor (MSF), variation from equal weighting, and delivery QA passing rate. Results: During analysis of patient-specific delivery QA a sub-standard passing rate was found for a singlemore » 5-field plan (90.48% of pixels evaluated passing 3% dose, 3mm DTA). During investigation it was found that a single beam demonstrated a MSF of 34.7 and contributed only 2.7% to the mean dose of the target. In addition, the variation from equal weighting for this beam was 17.3% absolute resulting in another beam with a MSF of 4.6 contributing 41.9% to the mean dose to the target; a variation of 21.9% from equal weighting. The average MSF for the remaining 20 cases was 4.0 (SD 1.8) with an average absolute deviation of 2.8% from equal weighting (SD 3.1%). Conclusion: Optimization in commercial treatment planning systems typically results in relatively equally weighted beams. Extreme variation from this can result in excessively high MSFs (very small segments) and potential decreases in agreement between planned and delivered dose distributions. In addition, the resultant beam may contribute minimal dose to the target (quasi-dead beam); a byproduct being increased treatment time and associated localization uncertainties. Potential ramifications exist for automatic planning algorithms should they allow for user-defined beam directions. Additionally, these quasi-dead beams may be embedded in the libraries for model-based systems potentially resulting in inefficient and less accurate deliveries.« less
SU-E-P-02: Imaging and Radiation Oncology Core (IROC) Houston QA Center (RPC) Credentialing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amador, C; Keith, T; Nguyen, T
2014-06-01
Purpose: To provide information pertaining to IROC Houston QA Center's (RPC) credentialing process for institutions participating in NCI-sponsored clinical trials. Methods: IROC Houston issues credentials for NCI sponsored study groups. Requirements for credentialing might include any combination of questionnaires, knowledge assessment forms, benchmarks, or phantom irradiations. Credentialing requirements for specific protocols can be found on IROC Houston's website (irochouston.mdanderson.org). The website also houses the credentialing status inquiry (CSI) form. Once an institution has reviewed the protocol's credentialing requirements, a CSI form should be completed and submitted to IROC Houston. This form is used both to request whether requirements have beenmore » met as well as to notify IROC Houston that the institution requests credentialing for a specific protocol. IROC Houston will contact the institution to discuss any delinquent requirements. Once the institution has met all requirements IROC Houston issues a credentialing letter to the institution and will inform study groups and other IROC offices of the credentials. Institutions can all phone the IROC Houston office to initiate credentialing or ask any credentialing related questions. Results: Since 2010 IROC has received 1313 credentialing status inquiry forms. We received 317 in 2010, 266 in 2011, 324 in 2012, and 406 in 2013. On average we receive 35 phone calls per week with multiple types of credentialing questions. Decisions regarding credentialing status are based on the protocol specifications and previous completed credentialing by the institution. In some cases, such as for general IMRT credentialing, up to 5 sites may be credentialed based on the credentialing of one main center. Each of these situations is handled individually. Conclusion: IROC Houston will issue radiation therapy credentials for the NCI trials in the National Clinical Trials Network. Credentialing requirements and the CSI form can be found online at the IROC Houston's website. Work supported by PHS grant CA10953 and CA081647 (NCI, DHHS)« less
An open source automatic quality assurance (OSAQA) tool for the ACR MRI phantom.
Sun, Jidi; Barnes, Michael; Dowling, Jason; Menk, Fred; Stanwell, Peter; Greer, Peter B
2015-03-01
Routine quality assurance (QA) is necessary and essential to ensure MR scanner performance. This includes geometric distortion, slice positioning and thickness accuracy, high contrast spatial resolution, intensity uniformity, ghosting artefact and low contrast object detectability. However, this manual process can be very time consuming. This paper describes the development and validation of an open source tool to automate the MR QA process, which aims to increase physicist efficiency, and improve the consistency of QA results by reducing human error. The OSAQA software was developed in Matlab and the source code is available for download from http://jidisun.wix.com/osaqa-project/. During program execution QA results are logged for immediate review and are also exported to a spreadsheet for long-term machine performance reporting. For the automatic contrast QA test, a user specific contrast evaluation was designed to improve accuracy for individuals on different display monitors. American College of Radiology QA images were acquired over a period of 2 months to compare manual QA and the results from the proposed OSAQA software. OSAQA was found to significantly reduce the QA time from approximately 45 to 2 min. Both the manual and OSAQA results were found to agree with regard to the recommended criteria and the differences were insignificant compared to the criteria. The intensity homogeneity filter is necessary to obtain an image with acceptable quality and at the same time keeps the high contrast spatial resolution within the recommended criterion. The OSAQA tool has been validated on scanners with different field strengths and manufacturers. A number of suggestions have been made to improve both the phantom design and QA protocol in the future.
Boiras, C; Bourland, J; Gonzalez, L Brualla; Bulychkin, P; Ford, E; Kazantsev, P; Krylova, T; Medina, A Lopez; Prusova, M; Romanov, D; Ferrando, J Rosello; Willoughby, T; Yan, D; Yu, C; Zvereva, A
2012-06-01
The AAPM has signed two formal Educational Exchange Agreements with the Spanish (SEFM) and the Russian (AMPR) medical physics societies. While the primary purpose of the Agreements is to provide educational opportunities for young medical physicists, the Agreements also contemplate holding joint sessions at scientific congresses. The purpose of this professional AAPM/SEFM/AMPR Joint Symposium is to explore the challenges that medical physicists in the three countries face when new external beam radiotherapy technologies are introduced in their facilities and to suggest potential solutions to limitations in testing equipment and lack of familiarity with protocols. Speakers from the three societies will present reviews of the technical aspects of IMRT, Arc EVIRT (IMAT/VMAT/Rapid Arc), SRS/SRBT, and IGRT/Adaptive radiotherapy, and will describe the status of these technologies in their countries, including the challenges found in tasks such as developing anatomical and biological dose optimization techniques and implementing QA management, risk assessment and patient safety programs. The SEFM will offer AAPM and AMPR members the possibility to participate in collaborative proposals for future research bids in UE and USA based on an ongoing Spanish project for adaptive radiotherapy using functional imaging. A targeted discussion will debate three propositions: the cost/benefit ratio of IGRT, whether IMRT requires IGRT, and the use of non-ionizing radiation technologies for realtime monitoring of prostate IGRT. For these debates, each society has designated one speaker to present and defend either "For" or "Against" the proposition, followed by discussion by all participants. The Symposium presentations and the country-tailored recommendations drawn will be made available to each society for inclusion in their websites. The WGNIMP, the AAPM Work Group charged with executing the AAPM/SEFM and AAPM/AMPR Agreements, will follow up on the commitments made by the AAPM.Di Yan's research on adaptive radiotherapy has been financially supported by: 1) NIH Research Grants, 2) Elekta Research Grants 3) Philips Research GrantConflicts of interest for Cedric X Yu: 1) Board Member of Prowess, Inc., 2) Shareholder of Xcision Medical Systems, LLC, 3) Inventor on patents licensed by Varian Medical Systems, Inc. 1. Describe fundamental aspects for four advanced radiotherapy techniques: IMRT, IGRT, SBRT, and adaptive radiotherapy. 2. Review technical and professional challenges for implementation of advanced techniques as a function of resources and capabilities available within each scientific society: AAPM, SEFM, and AMPR. 3. Discuss and plan a proposal for an international trial on IMRT/IGRT based on functional imaging. 4. Debate important implementation aspects of IMRT and IGRT according to country-specific resources. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purdie, Thomas G., E-mail: Tom.Purdie@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Techna Institute, University Health Network, Toronto, Ontario
Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to definemore » and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented improvements in care for breast cancer patients, using technologies that are widely available and already in clinical use.« less
Purdie, Thomas G; Dinniwell, Robert E; Fyles, Anthony; Sharpe, Michael B
2014-11-01
To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented improvements in care for breast cancer patients, using technologies that are widely available and already in clinical use. Copyright © 2014 Elsevier Inc. All rights reserved.
Involving mental health service users in quality assurance
Weinstein, Jenny
2006-01-01
Abstract Objective This study compares the process and outcomes of two approaches to engaging mental health (MH) service users in the quality assurance (QA) process. Background QA plays a significant role in health and care services, including those delivered in the voluntary sector. The importance of actively, rather than passively, involving service users in evaluation and service development has been increasingly recognized during the last decade. Design This retrospective small‐scale study uses document analysis to compare two QA reviews of a MH Day Centre, one that took place in 1998 as a traditional inspection‐type event and one that took place in 2000 as a collaborative process with a user‐led QA agenda. Setting and participants The project was undertaken with staff, volunteers and service users in a voluntary sector MH Day Centre. Intervention The study compares the management, style, evaluation tools and service user responses for the two reviews; it considers staff perspectives and discusses the implications of a collaborative, user‐led QA process for service development. Results The first traditional top–down inspection‐type QA event had less ownership from service users and staff and served the main purpose of demonstrating that services met organizational standards. The second review, undertaken collaboratively with a user‐led agenda focused on different priorities, evolving a new approach to seeking users’ views and achieving a higher response rate. Conclusions Because both users and staff had participated in most aspects of the second review they were more willing to work together and action plan to improve the service. It is suggested that the process contributed to an evolving ethos of more effective quality improvement and user involvement within the organization. PMID:16677189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y; Tan, J; Jiang, S
Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this systemmore » for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.« less
SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, R; Grelewicz, Z; Belcher, A
Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods:more » A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system.« less
Quality assurance and quality control in mammography: a review of available guidance worldwide.
Reis, Cláudia; Pascoal, Ana; Sakellaris, Taxiarchis; Koutalonis, Manthos
2013-10-01
Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources. •An effective QA program should be practical to implement in a clinical setting. •QA should address the various stages of the imaging chain: acquisition, processing and display. •AEC system QC testing is simple to implement and provides information on equipment performance.
Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haksoo; Welford, Scott; Fabien, Jeffrey
2014-02-15
Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less
Keyes, Mira; Morris, William James; Spadinger, Ingrid; Araujo, Cynthia; Cheung, Arthur; Chng, Nick; Crook, Juanita; Halperin, Ross; Lapointe, Vince; Miller, Stacy; Pai, Howard; Pickles, Tom
2013-01-01
To describe in detail British Columbia (BC) Cancer Agency (BCCA) Provincial Prostate Brachytherapy (PB) Quality Assurance (QA) Program. The BCCA PB Program was established in 1997. It operates as one system, unified and supported by electronic and information systems, making it a single PB treatment provider for province of BC and Yukon. To date, >4000 patients have received PB (450 implants in 2011), making it the largest program in Canada. The Program maintains a large provincial prospective electronic database with records on all patients, including disease characteristics, risk stratification, pathology, preplan and postimplant dosimetric data, follow-up of prostate-specific antigen, and toxicity outcomes. QA was an integral part of the program since its inception. A formal QA Program was established in 2002, with key components that include: unified eligibility criteria and planning system, comprehensive database, physics and oncologist training and mentorship programs, peer review process, individual performance outcomes and feedback process, structured continuing education and routine assessment of the program's dosimetry, toxicity and prostate-specific antigen outcomes, administration and program leadership that promotes a strong culture of patient safety. The emphasis on creating a robust, broad-based network of skilled providers has been achieved by the program's requirements for training, education, and the QA process. The formal QA process is considered a key factor for the success of cancer control outcomes achieved at BCCA. Although this QA model may not be wholly transferable to all PB programs, some of its key components may be applicable to other programs to ensure quality in PB and patient safety. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Palta, Jatinder R; Liu, Chihray; Li, Jonathan G
2008-01-01
The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this "one-size-fits-all" prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes.
MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, G.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Quality assurance guides health reform in Jordan.
Abubaker, W; Abdulrahman, M
1996-01-01
In November 1995, a World Bank mission went to Jordan to conduct a study of the health sector. The study recommended three strategies to reform the health sector: decentralization of Ministry of Health (MOH) management; improvement of clinical practices, quality of care, and consumer satisfaction; and adoption of treatment protocols and standards. The MOH chose quality assurance (QA) methods and quality management (QM) techniques to accomplish these reforms. The Monitoring and QA Directorate oversees QA applications within MOH. It also institutes and develops the capacity of local QA units in the 12 governorates. The QA units implement and monitor day-to-day QA activities. The QM approach encompasses quality principles: establish objectives; use a systematic approach; teach lessons learned and applicable research; use QA training to teach quality care, quality improvement, and patient satisfaction; educate health personnel about QM approaches; use assessment tools and interviews; measure the needs and expectations of local health providers and patients; ensure feedback on QA improvement projects; ensure valid and reliable data; monitor quality improvement efforts; standardize systemic data collection and outcomes; and establish and disseminate QA standards and performance improvement efforts. The Jordan QA Project has helped with the successful institutionalization of a QA system at both the central and local levels. The bylaws of the QA councils and committees require team participation in the decision-making process. Over the last two years, the M&QA Project has adopted 21 standards for nursing, maternal and child health care centers, pharmacies, and medications. The Balqa pilot project has developed 44 such protocols. Quality improvement (COUGH) studies have examined hyper-allergy, analysis of patient flow rate, redistribution of nurses, vaccine waste, and anemic pregnant women. There are a considerable number of on-going clinical and non-clinical COUGH studies. Four epidemiological studies are examining maternal mortality, causes of death, morbidity, and perinatal mortality.
Technical aspects of quality assurance in radiation oncology
Saw, CB; Ferenci, MS; Wanger, H
2008-01-01
The technical aspects of quality assurance (QA) in radiation oncology as practice in the United States will be reviewed and updated in the spirit of offering the experience to the radiation oncology communities in the Asia-Pacific region. The word “technical” is used to express the organisational components or processes and not the materials within the QA program. A comprehensive QA program in radiation oncology will have an official statement declaring the quality plan for effective patient care services it provides in a document. The QA program will include all aspects of patient care: physical, clinical, and medical aspects of the services. The document will describe the organisational structure, responsibilities, checks and procedures, and resources allocated to ensure the successful implementation of the quality of patient management. Regulatory guidelines and guidelines from accreditation agencies should be incorporated in the QA program to ensure compliance. The organisational structure will have a multidisciplinary QA committee that has the authority to evaluate continuously the effectiveness of the QA program to provide prompt corrective recommendations and to request feedback as needed to monitor the response. The continuous monitoring aspects require meetings to be held at regular intervals with the minutes of the meetings officially recorded and documented. To ensure that a QA program is effective, the program itself should be audited for quality at regular intervals at least annually. It has been recognised that the current QA program has not kept abreast with the rapid implementation of new and advanced radiation therapy technologies with the most recent in image-based radiation therapy technology. The societal bodies (ASTRO and AAPM) and federal agency (NCI) acknowledge this inadequacy and have held workshops to address this issue. The challenges for the societal bodies and federal agency are numerous that include (a) the prescriptive methodology used may not be appropriate for currently implemented new technologies, (b) resources are becoming scarce, (c) advanced radiation therapy technologies have been introduced too rapidly, (d) advances in radiation therapy technologies have become too sophisticated and specialised with each therapy modality having its own separate set of equipment, for example its own dose planning software, computer system and dose delivery systems requiring individualised QA procedures. At the present time, industrial engineers are being recruited to assist in devising a methodology that is broad-based and more process-oriented risk-based formulation of QA in radiation oncology. PMID:21611011
Hubble Space Telescope: SRM/QA observations and lessons learned
NASA Technical Reports Server (NTRS)
Rodney, George A.
1990-01-01
The Hubble Space Telescope (HST) Optical Systems Board of Investigation was established on July 2, 1990 to review, analyze, and evaluate the facts and circumstances regarding the manufacture, development, and testing of the HST Optical Telescope Assembly (OTA). Specifically, the board was tasked to ascertain what caused the spherical aberration and how it escaped notice until on-orbit operation. The error that caused the on-orbit spherical aberration in the primary mirror was traced to the assembly process of the Reflective Null Corrector, one of the three Null Correctors developed as special test equipment (STE) to measure and test the primary mirror. Therefore, the safety, reliability, maintainability, and quality assurance (SRM&QA) investigation covers the events and the overall product assurance environment during the manufacturing phase of the primary mirror and Null Correctors (from 1978 through 1981). The SRM&QA issues that were identified during the HST investigation are summarized. The crucial product assurance requirements (including nonconformance processing) for the HST are examined. The history of Quality Assurance (QA) practices at Perkin-Elmer (P-E) for the period under investigation are reviewed. The importance of the information management function is discussed relative to data retention/control issues. Metrology and other critical technical issues also are discussed. The SRM&QA lessons learned from the investigation are presented along with specific recommendations. Appendix A provides the MSFC SRM&QA report. Appendix B provides supplemental reference materials. Appendix C presents the findings of the independent optical consultants, Optical Research Associates (ORA). Appendix D provides further details of the fault-tree analysis portion of the investigation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haksoo; Welford, Scott; Fabien, Jeffrey
Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less
Effect of Processed Onions on the Plasma Concentration of Quercetin in Rats and Humans.
Kashino, Yasuaki; Murota, Kaeko; Matsuda, Namiko; Tomotake, Muneaki; Hamano, Takuya; Mukai, Rie; Terao, Junji
2015-11-01
Onion is a major dietary source of the bioactive flavonoid, quercetin. Quercetin aglycone (QA) is exclusively distributed in the onion peel, although quercetin-4'-β-O-glucoside (Q4'G) is present in both the peel and the bulb, and quercetin-3,4'-β-O-diglucoside (Q3,4'diG) is present only the bulb. The bioavailability of flavonoids from fruits and vegetables is frequently affected by the manufacturing process and related conditions. The present study aimed to estimate the effect of food processing on the bioavailability of onion QA and its glucosides, Q4'G and Q3,4'diG, provided through the consumption of onion products. Rats were fed onion peel and onion bulb products-mixed meal or pure QA/Q4'G+Q3,4'diG-mixed meal at 5 mg QA equivalent/kg body weight. A comparison of the blood plasma concentrations strongly suggested that quercetin glucosides (Q4'G and Q3,4'diG) are superior or at least equal to QA in their bioavailability, when each purified compound is mixed with the meal. The intake of a peel powder-containing meal provided a significantly higher increase of plasma quercetin concentration than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals at each period tested. A human ingestion study confirmed the superiority of onion peel powder to onion peel extract. The difference of log P for QA between peel powder and peel extract indicated that a food matrix improves the bioavailability of QA in onion peel products. These results demonstrated that the bioavailability of quercetin provided by not the onion bulb but the onion peel is significantly affected by food processing. Onion is a popular source of antioxidative flavonoid quercetin and its vascular function attracts considerable attention in relation to anti-atherosclerotic effect. The present study estimated the effect of food processing on the bioavailability of onion quercetin aglycone and its glucosides provided through the consumption of onion products. The intake of a peel powder-containing meal showed a significantly higher bioavailability than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals. Hence, food processing of onion peel may enhance the health impact of onion quercetin by elevating its bioavailability. © 2015 Institute of Food Technologists®
Quality Assurance Results for a Commercial Radiosurgery System: A Communication.
Ruschin, Mark; Lightstone, Alexander; Beachey, David; Wronski, Matt; Babic, Steven; Yeboah, Collins; Lee, Young; Soliman, Hany; Sahgal, Arjun
2015-10-01
The purpose of this communication is to inform the radiosurgery community of quality assurance (QA) results requiring attention in a commercial FDA-approved linac-based cone stereo-tactic radiosurgery (SRS) system. Standard published QA guidelines as per the American Association of Physics in Medicine (AAPM) were followed during the SRS system's commissioning process including end-to-end testing, cone concentricity testing, image transfer verification, and documentation. Several software and hardware deficiencies that were deemed risky were uncovered during the process and QA processes were put in place to mitigate these risks during clinical practice. In particular, the present work focuses on daily cone concentricity testing and commissioning-related findings associated with the software. Cone concentricity/alignment is measured daily using both optical light field inspection, as well as quantitative radiation field tests with the electronic portal imager. In 10 out of 36 clini-cal treatments, adjustments to the cone position had to be made to align the cone with the collimator axis to less than 0.5 mm and on two occasions the pre-adjustment measured offset was 1.0 mm. Software-related errors discovered during commissioning included incorrect transfer of the isocentre in DICOM coordinates, improper handling of non-axial image sets, and complex handling of beam data, especially for multi-target treatments. QA processes were established to mitigate the occurrence of the software errors. With proper QA processes, the reported SRS system complies with tolerances set out in established guidelines. Discussions with the vendor are ongoing to address some of the hardware issues related to cone alignment. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M; Ramaseshan, R
2016-06-15
Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less
SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J; Yang, C; Morris, B
2016-06-15
Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less
Seco, J; Clark, C H; Evans, P M; Webb, S
2006-05-01
This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.
Chavez, Sofia; Viviano, Joseph; Zamyadi, Mojdeh; Kingsley, Peter B; Kochunov, Peter; Strother, Stephen; Voineskos, Aristotle
2018-02-01
To develop a quality assurance (QA) tool (acquisition guidelines and automated processing) for diffusion tensor imaging (DTI) data using a common agar-based phantom used for fMRI QA. The goal is to produce a comprehensive set of automated, sensitive and robust QA metrics. A readily available agar phantom was scanned with and without parallel imaging reconstruction. Other scanning parameters were matched to the human scans. A central slab made up of either a thick slice or an average of a few slices, was extracted and all processing was performed on that image. The proposed QA relies on the creation of two ROIs for processing: (i) a preset central circular region of interest (ccROI) and (ii) a signal mask for all images in the dataset. The ccROI enables computation of average signal for SNR calculations as well as average FA values. The production of the signal masks enables automated measurements of eddy current and B0 inhomogeneity induced distortions by exploiting the sphericity of the phantom. Also, the signal masks allow automated background localization to assess levels of Nyquist ghosting. The proposed DTI-QA was shown to produce eleven metrics which are robust yet sensitive to image quality changes within site and differences across sites. It can be performed in a reasonable amount of scan time (~15min) and the code for automated processing has been made publicly available. A novel DTI-QA tool has been proposed. It has been applied successfully on data from several scanners/platforms. The novelty lies in the exploitation of the sphericity of the phantom for distortion measurements. Other novel contributions are: the computation of an SNR value per gradient direction for the diffusion weighted images (DWIs) and an SNR value per non-DWI, an automated background detection for the Nyquist ghosting measurement and an error metric reflecting the contribution of EPI instability to the eddy current induced shape changes observed for DWIs. Copyright © 2017 Elsevier Inc. All rights reserved.
Key Performance Indicators in Radiology: You Can't Manage What You Can't Measure.
Harvey, H Benjamin; Hassanzadeh, Elmira; Aran, Shima; Rosenthal, Daniel I; Thrall, James H; Abujudeh, Hani H
2016-01-01
Quality assurance (QA) is a fundamental component of every successful radiology operation. A radiology QA program must be able to efficiently and effectively monitor and respond to quality problems. However, as radiology QA has expanded into the depths of radiology operations, the task of defining and measuring quality has become more difficult. Key performance indicators (KPIs) are highly valuable data points and measurement tools that can be used to monitor and evaluate the quality of services provided by a radiology operation. As such, KPIs empower a radiology QA program to bridge normative understandings of health care quality with on-the-ground quality management. This review introduces the importance of KPIs in health care QA, a framework for structuring KPIs, a method to identify and tailor KPIs, and strategies to analyze and communicate KPI data that would drive process improvement. Adopting a KPI-driven QA program is both good for patient care and allows a radiology operation to demonstrate measurable value to other health care stakeholders. Copyright © 2015 Mosby, Inc. All rights reserved.
40 CFR 98.164 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.164 Monitoring and QA/QC requirements. The GHG emissions data for hydrogen production process units must be quality-assured as specified in... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekelman, Justin E.; Yahalom, Joachim
2009-02-01
Purpose: Standards for the reporting of radiotherapy details in randomized controlled trials (RCTs) are lacking. Although radiotherapy (RT) is an important component of curative therapy for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), we postulated that RT reporting may be inadequate in Phase III HL and NHL trials. Methods and Materials: We searched PubMed and the Cochrane registry for reports of RCTs involving RT and either HL or NHL published between 1998 and 2007. We screened 133 titles and abstracts to identify relevant studies. We included a total of 61 reports. We assessed these reports for the presence of sixmore » quality measures: target volume, radiation dose, fractionation, radiation prescription, quality assurance (QA) process use, and adherence to QA (i.e., reporting of major or minor deviations). Results: Of 61 reports, 23 (38%) described the target volume. Of the 42 reports involving involved-field RT alone, only 8 (19%) adequately described the target volume. The radiation dose and fractionation was described in most reports (54 reports [89%] and 39 reports [64%], respectively). Thirteen reports specified the RT prescription point (21%). Only 12 reports (20%) described using a RT QA process, and 7 reports (11%) described adherence to the QA process. Conclusion: Reporting of RT in HL and NHL RCTs is deficient. Because the interpretation, replication, and application of RCT results depend on adequate description and QA of therapeutic interventions, consensus standards for RT reporting should be developed and integrated into the peer-review process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran Nair, C; Hoffman, D; Wright, C
Purpose: We aim to evaluate a new commercial dose mimicking inverse-planning application that was designed to provide cross-platform treatment planning, for its dosimetric quality and efficiency. The clinical benefit of this application allows patients treated on O-shaped linac to receive an equivalent plan on conventional L-shaped linac as needed for workflow or machine downtime. Methods: The dose mimicking optimization process seeks to create a similar DVH of an O-shaped linac-based plans with an alternative treatment technique (IMRT or VMAT), by maintaining target conformity, and penalizing dose falloff outside the target. Ten head and neck (HN) helical delivery plans, including simplemore » and complex cases were selected for re-planning with the dose mimicking application. All plans were generated for a 6 MV beam model, using 7-field/ 9-field IMRT and VMAT techniques. PTV coverage (D1, D99 and homogeneity index [HI]), and OARs avoidance (Dmean / Dmax) were compared. Results: The resulting dose mimicked HN plans achieved acceptable PTV coverage for HI (VMAT 7.0±2.3, 7-fld 7.3±2.4, and 9-fld 7.0±2.4), D99 (98.0%±0.7%, 97.8%±0.7%, and 98.0%±0.7%), as well as D1 (106.4%±2.1%, 106.5%±2.2%, and 106.4%±2.1%), respectively. The OAR dose discrepancy varied: brainstem (2% to 4%), cord (3% to 6%), esophagus (−4% to −8%), larynx (−4% to 2%), and parotid (4% to 14%). Mimicked plans would typically be needed for 1–5 fractions of a treatment course, and we estimate <1% variance would be introduced in target coverage while maintaining comparable low dose to OARs. All mimicked plans were approved by independent physician and passed patient specific QA within our established tolerance. Conclusion: Dose mimicked plans provide a practical alternative for responding to clinical workflow issues, and provide reliability for patient treatment. The quality of dose mimicking for HN patients highly depends on the delivery technique, field numbers and angles, as well as user selection of structures.« less
Quality control and assurance for validation of DOS/I measurements
NASA Astrophysics Data System (ADS)
Cerussi, Albert; Durkin, Amanda; Kwong, Richard; Quang, Timothy; Hill, Brian; Tromberg, Bruce J.; MacKinnon, Nick; Mantulin, William W.
2010-02-01
Ongoing multi-center clinical trials are crucial for Biophotonics to gain acceptance in medical imaging. In these trials, quality control (QC) and assurance (QA) are key to success and provide "data insurance". Quality control and assurance deal with standardization, validation, and compliance of procedures, materials and instrumentation. Specifically, QC/QA involves systematic assessment of testing materials, instrumentation performance, standard operating procedures, data logging, analysis, and reporting. QC and QA are important for FDA accreditation and acceptance by the clinical community. Our Biophotonics research in the Network for Translational Research in Optical Imaging (NTROI) program for breast cancer characterization focuses on QA/QC issues primarily related to the broadband Diffuse Optical Spectroscopy and Imaging (DOS/I) instrumentation, because this is an emerging technology with limited standardized QC/QA in place. In the multi-center trial environment, we implement QA/QC procedures: 1. Standardize and validate calibration standards and procedures. (DOS/I technology requires both frequency domain and spectral calibration procedures using tissue simulating phantoms and reflectance standards, respectively.) 2. Standardize and validate data acquisition, processing and visualization (optimize instrument software-EZDOS; centralize data processing) 3. Monitor, catalog and maintain instrument performance (document performance; modularize maintenance; integrate new technology) 4. Standardize and coordinate trial data entry (from individual sites) into centralized database 5. Monitor, audit and communicate all research procedures (database, teleconferences, training sessions) between participants ensuring "calibration". This manuscript describes our ongoing efforts, successes and challenges implementing these strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boddu, S; Morrow, A; Krishnamurthy, N
Purpose: Our goal is to implement lean methodology to make our current process of CT simulation to treatment more efficient. Methods: In this study, we implemented lean methodology and tools and employed flowchart in excel for process-mapping. We formed a group of physicians, physicists, dosimetrists, therapists and a clinical physics assistant and huddled bi-weekly to map current value streams. We performed GEMBA walks and observed current processes from scheduling patient CT Simulations to treatment plan approval. From this, the entire workflow was categorized into processes, sub-processes, and tasks. For each process we gathered data on touch time, first time quality,more » undesirable effects (UDEs), and wait-times from relevant members of each task. UDEs were binned per frequency of their occurrence. We huddled to map future state and to find solutions to high frequency UDEs. We implemented visual controls, hard stops, and documented issues found during chart checks prior to treatment plan approval. Results: We have identified approximately 64 UDEs in our current workflow that could cause delays, re-work, compromise the quality and safety of patient treatments, or cause wait times between 1 – 6 days. While some UDEs are unavoidable, such as re-planning due to patient weight loss, eliminating avoidable UDEs is our goal. In 2015, we found 399 issues with patient treatment plans, of which 261, 95 and 43 were low, medium and high severity, respectively. We also mapped patient-specific QA processes for IMRT/Rapid Arc and SRS/SBRT, involving 10 and 18 steps, respectively. From these, 13 UDEs were found and 5 were addressed that solved 20% of issues. Conclusion: We have successfully implemented lean methodology and tools. We are further mapping treatment site specific workflows to identify bottlenecks, potential breakdowns and personnel allocation and employ tools like failure mode effects analysis to mitigate risk factors to make this process efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
Purpose: The purpose of this study was to compare the dosimetric differences between intensitymodulated radiation therapy (IMRT) and intensity modulated arc therapy (IMAT) for malignant pleural mesothelioma (MPM) patients with regard to the sparing effect on organs at risk (OARs), plan quality, and delivery efficiency. Methods: Ten MPM patients were recruited in this study. To avoid the inter-operator variability, IMRT and IMAT plans for each patient were performed by one experienced dosimetrist. The treatment planning optimization process was carried out using the Eclipse 13.0 software. For a fair comparison, the planning target volume (PTV) coverage of the two plans wasmore » normalized to the same level. The treatment plans were evaluated on the following dosimetric variables: conformity index (CI) and homogeneity index (HI) for PTV, OARs dose, and the delivery efficiency for each plan. Results: All plans satisfied clinical requirements. The IMAT plans gained better CI and HI. The IMRT plans performed better sparing for heart and lung. Less MUs and control points were found in the IMAT plans. IMAT shortened delivery time compared with IMRT. Conclusion: For MPM, IMAT gains better conformity and homogeneity for PTV with IMRT, but increases the irradiation dose for OARs. IMAT shows an advantage in delivery efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, C; Ju, S; Ahn, Y
2015-06-15
Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less
Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A
2012-07-01
Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.
The hidden KPI registration accuracy.
Shorrosh, Paul
2011-09-01
Determining the registration accuracy rate is fundamental to improving revenue cycle key performance indicators. A registration quality assurance (QA) process allows errors to be corrected before bills are sent and helps registrars learn from their mistakes. Tools are available to help patient access staff who perform registration QA manually.
Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taggart, J.; Sikora, J.; Wiehagen, J.
2011-12-01
This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.
Dutta, Sunil W; Bauer-Nilsen, Kristine; Sanders, Jason C; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N
To evaluate the delivery cost of frequently used radiotherapy options offered to patients with intermediate- to high-risk prostate cancer using time-driven activity-based costing and compare the results with Medicare reimbursement and relative value units (RVUs). Process maps were created to represent each step of prostate radiotherapy treatment at our institution. Salary data, equipment purchase costs, and consumable costs were factored into the cost analysis. The capacity cost rate was determined for each resource and calculated for each treatment option from initial consultation to its completion. Treatment options included low-dose-rate brachytherapy (LDR-BT), combined high-dose-rate brachytherapy single fraction boost with 25-fraction intensity-modulated radiotherapy (HDR-BT-IMRT), moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost. The total cost to deliver LDR-BT, HDR-BT-IMRT, moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost was $2719, $6517, $4173, $5507, and $5663, respectively. Total reimbursement for each course was $3123, $10,156, $7862, $9725, and $10,377, respectively. Radiation oncology attending time was 1.5-2 times higher for treatment courses incorporating BT. Attending radiation oncologist's time consumed per RVU was higher with BT (4.83 and 2.56 minutes per RVU generated for LDR-BT and HDR-BT-IMRT, respectively) compared to without BT (1.41-1.62 minutes per RVU). Time-driven activity-based costing analysis identified higher delivery costs associated with prostate BT compared with IMRT alone. In light of recent guidelines promoting BT for intermediate- to high-risk disease, re-evaluation of payment policies is warranted to encourage BT delivery. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Yang, Z; Hu, W
2015-06-15
Purpose: This study was to investigate the dosimetric benefit of a novel intensity modulated radiation therapy (IMRT) technique for irradiating the left breast and regional lymph node (RLN). Methods: The breast and RLN (internal mammary node and periclavicular node) and normal tissue were contoured for 16 consecutive left-sided breast cancer patients previously treated with RT after lumpectomy. Nine equi-spaced fields IMRT (9 -field IMRT), tangential multi-beam IMRT (tangential-IMRT) and IMRT with fixed-jaw technique (FJT-IMRT) were developed and compared with three-dimensional conformal RT (3DCRT). Prescribed dose was 50 Gy in 25 fractions. Dose distributions and dose volume histograms were used tomore » evaluate plans. Results: All IMRTs achieved similar target coverage and substantially reduced heart V30 and V20 compared to the 3DCRT. The average heart mean dose had different changes, which were 9.0Gy for 9-field IMRT, 5.7Gy for tangential-IMRT and 4.2Gy for FJT-IMRT. For the contralateral lung and breast, the 9-field IMRT has the highest mean dose; and the FJT-IMRT and tangential-IMRT had similar lower value. For the thyroid, both 9-field IMRT and FJT-IMRT had similar V30 (20% and 22%) and were significantly lower than that of 3DCRT (34%) and tangential-IMRT (46%). Moreover, the thyroid mean dose of FJT-IMRT is the lowest. For cervical esophagus and humeral head, the FJT-IMRT also had the best sparing. Conclusion: All 9-field IMRT, tangential-IMRT and FJT-IMRT had superiority for targets coverage and substantially reduced the heart volume of high dose irradiation. The FJT-IMRT showed advantages of avoiding the contralateral breast and lung irradiation and decreasing the thyroid, humeral head and cervical esophagus radiation dose at the expense of a slight monitor units (MUs) increasing.« less
Mackin, Dennis; Li, Yupeng; Taylor, Michael B; Kerr, Matthew; Holmes, Charles; Sahoo, Narayan; Poenisch, Falk; Li, Heng; Lii, Jim; Amos, Richard; Wu, Richard; Suzuki, Kazumichi; Gillin, Michael T; Zhu, X Ronald; Zhang, Xiaodong
2013-12-01
The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework. The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses. Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the αβγ transformation as a way to more easily compare gamma scores. The authors compared measured and calculated dose planes using the relative depth, z∕R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, -0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipse's calculation had exceeded the tolerance levels of 3% for dose and 3 mm for distance-to-agreement. The authors found HPlusQA to be reasonably effective (79% ± 10%) in determining when the comparison between measured dose planes and the dose planes calculated by the Eclipse treatment planning system had exceeded the acceptable tolerance levels. When used as described in this study, HPlusQA can reduce the need for patient specific quality assurance measurements by 64%. The authors believe that the use of HPlusQA as a dose calculation second check can increase the efficiency and effectiveness of the QA process.
Quality assurance of the gene ontology using abstraction networks.
Ochs, Christopher; Perl, Yehoshua; Halper, Michael; Geller, James; Lomax, Jane
2016-06-01
The gene ontology (GO) is used extensively in the field of genomics. Like other large and complex ontologies, quality assurance (QA) efforts for GO's content can be laborious and time consuming. Abstraction networks (AbNs) are summarization networks that reveal and highlight high-level structural and hierarchical aggregation patterns in an ontology. They have been shown to successfully support QA work in the context of various ontologies. Two kinds of AbNs, called the area taxonomy and the partial-area taxonomy, are developed for GO hierarchies and derived specifically for the biological process (BP) hierarchy. Within this framework, several QA heuristics, based on the identification of groups of anomalous terms which exhibit certain taxonomy-defined characteristics, are introduced. Such groups are expected to have higher error rates when compared to other terms. Thus, by focusing QA efforts on anomalous terms one would expect to find relatively more erroneous content. By automatically identifying these potential problem areas within an ontology, time and effort will be saved during manual reviews of GO's content. BP is used as a testbed, with samples of three kinds of anomalous BP terms chosen for a taxonomy-based QA review. Additional heuristics for QA are demonstrated. From the results of this QA effort, it is observed that different kinds of inconsistencies in the modeling of GO can be exposed with the use of the proposed heuristics. For comparison, the results of QA work on a sample of terms chosen from GO's general population are presented.
Quality assurance and ergonomics in the mammography department.
Reynolds, April
2014-01-01
Quality assurance (QA) in mammography is a system of checks that helps ensure the proper functioning of imaging equipment and processes. Ergonomics is a scientific approach to arranging the work environment to reduce the risk of work-related injuries while increasing staff productivity and job satisfaction. This article reviews both QA and ergonomics in mammography and explains how they work together to create a safe and healthy environment for radiologic technologists and their patients. QA and quality control requirements in mammography are discussed, along with ergonomic best practices in the mammography setting.
40 CFR 98.164 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.164 Monitoring and QA/QC requirements. The GHG emissions data for hydrogen production process units must be quality-assured as specified in..., Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated by reference, see § 98.7). (xi...
NASA Technical Reports Server (NTRS)
Cameron, Kenneth D.; Gentz, Steven J.; Beil, Robert J.; Minute, Stephen A.; Currie, Nancy J.; Scott, Steven S.; Thomas, Walter B., III; Smiles, Michael D.; Schafer, Charles F.; Null, Cynthia H.;
2009-01-01
At the request of the Exploration Systems Mission Directorate (ESMD) and the Constellation Program (CxP) Safety, Reliability; and Quality Assurance (SR&QA) Requirements Director, the NASA Engineering and Safety Center (NESC) participated in the Cx SR&QA Requirements forum. The Requirements Forum was held June 24-26; 2008, at GRC's Plum Brook Facility. The forums purpose was to gather all stakeholders into a focused meeting to help complete the process of refining the CxP to refine its Level II SR&QA requirements or defining project-specific requirements tailoring. Element prime contractors had raised specific questions about the wording and intent of many requirements in areas they felt were driving costs without adding commensurate value. NESC was asked to provide an independent and thorough review of requirements that contractors believed were driving Program costs, by active participation in the forum. This document contains information from the forum.
USGS QA Plan: Certification of digital airborne mapping products
Christopherson, J.
2007-01-01
To facilitate acceptance of new digital technologies in aerial imaging and mapping, the US Geological Survey (USGS) and its partners have launched a Quality Assurance (QA) Plan for Digital Aerial Imagery. This should provide a foundation for the quality of digital aerial imagery and products. It introduces broader considerations regarding processes employed by aerial flyers in collecting, processing and delivering data, and provides training and information for US producers and users alike.
Transportable Manned and Robotic Digital Geophysical Mapping Tow Vehicle, Phase 1
2007-08-01
by using the UX PROCESS QC/QA tools to evaluate quality. Areas evaluated included induced noise, position and track accuracy, synchronization/latency... tools . To gain additional data on productivity and the effect of alternate direction of travel we mapped an unobstructed subset of the Grid 1-4 area...independently evaluated by using the UX PROCESS QC/QA tools to evaluate quality. Areas evaluated included induced noise, position and track
MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, M; Wiesmeyer, M
2014-06-15
Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142.more » All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation will be to establish and solidify these connections. Our talk will be motivated by the Standard Imaging, Inc. phantom and software solutions. We will present and explain each of the image quality metrics in TG-142 in terms of the theory, mathematics, and algorithms used to implement them in the Standard Imaging PIPSpro software. In the process, we will identify the regions of phantom images that are analyzed by each algorithm. We then will discuss the process of the creation of baselines and typical ranges of acceptable values for each imaging quality metric.« less
The Annemarie Roeper Method of Qualitative Assessment: My Journey
ERIC Educational Resources Information Center
Beneventi, Anne
2016-01-01
The Annemarie Roeper Method of Qualitative Assessment (QA) establishes an extremely rich set of procedures for revealing students' strengths as well as opportunities for the development of bright young people. This article explores the ways in which the QA process serves as a sterling example of a holistic, authentic system for recognizing…
Quality Assurance in Online Education: The Universitas 21 Global Approach
ERIC Educational Resources Information Center
Chua, Alton; Lam, Wing
2007-01-01
Despite the proliferation of online education, concerns remain about the quality of online programmes. Quality assurance (QA) has become a prominent issue, not only for educational institutions and accreditors, but also for students and employers alike. This paper describes some of the rather unique QA processes used at Universitas 21 Global…
NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FORM QA/QC CHECKS (UA-C-2.0)
The purpose of this SOP is to outline the process of Field Quality Assurance and Quality Control checks. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Border" study. Keywords: custody; QA/QC; field checks.
The Nation...
The Recognition of Prior Learning. Quality Assurance in Education and Training.
ERIC Educational Resources Information Center
New Zealand Qualifications Authority, Wellington.
As this booklet describes, New Zealand's Education Amendment Act of 1990 made the country's Qualifications Authority (QA) responsible for developing and implementing a process for recognition of prior learning (RPL) that would enable individuals to receive formal recognition for skills and knowledge they already possess. As of 1993, the QA had…
Poster — Thur Eve — 19: Performance assessment of a 160-leaf beam collimation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, E. S. M.; La Russa, D. J.; Vandervoort, E.
2014-08-15
In this study, the performance of the new beam collimation system with 160 leaves, each with a 5 mm leaf width projected at isocenter, is evaluated in terms of positional accuracy and plan/delivery quality. Positional accuracy was evaluated using a set of static and dynamic MLC/jaw delivery patterns at different gantry angles, dose rates, and MLC/jaw speeds. The impact on IMRT plan quality was assessed by comparing against a previous generation collimation system using the same optimization parameters, while delivery quality was quantified using a combination of patient-specific QA measurements with ion chambers, film, and a bi-planar diode array. Positionalmore » accuracy for four separate units was comparable. The field size accuracy, junction width, and total displacement over 16 cm leaf travel are 0.3 ± 0.2 mm, 0.4 ± 0.3 mm, and 0.5 ± 0.2 mm, respectively. The typical leaf minor offset is 0.05 ± 0.04 mm, and MLC hysteresis effects are 0.2 ± 0.1 mm over 16 cm travel. The dynamic output is linear with MU and MLC/jaw speed, and is within 0.7 ± 0.3 % of the planning system value. Plan quality is significantly improved both in terms of target coverage and OAR sparing due, in part, to the larger allowable MLC and jaw speeds. γ-index pass rates for the patient-specific QA measurements exceeded 97% using criteria of 2%/2 mm. In conclusion, the performance of the Agility system is consistent among four separate installations, and is superior to its previous generations of collimation systems.« less
Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-05-06
Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two-arc plans. The comparison of VMATI with fixed-field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p = 0.47), PTV mean (p = 0.12), PTV D95 and PTV V9547.5Gy (95%) (p = 0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p = 0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p = 0.04). VMATI achieved lower lung V20 (p = 0.05), whereas lung V5 (p = 0.35) and mean lung dose (p = 0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p = 5.8E-10) and MUs reduced by up to 16% (p = 0.001). Integral dose was not statistically different between the two planning techniques (p = 0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p = 0.76), PTV D95 (p = 0.95), mean PTV dose (p = 0.78), conformation number (CN) (p = 0.26), and MUs (p = 0.1). However, the treatment delivery time for VMATII increased significantly by two-fold (p = 3.0E-11) compared to VMATI. VMAT-based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single-arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI.
SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J; Xiao, Y; Wang, J
2014-06-15
Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range ofmore » 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future.« less
Effects of quisqualic acid on retinal ZENK expression induced by imposed defocus in the chick eye.
Bitzer, Michaela; Schaeffel, Frank
2004-02-01
Expression of the transcription factor ZENK in glucagon amacrine cells of the chicken retina is enhanced after treatment with positive spectacle lenses and reduced after treatment with negative lenses. ZENK may, therefore, have an important role in emmetropization. To learn more about its regulation, we have studied its expression after retinal intoxication with quisqualic acid (QA, a glutamatergic excitotoxin). Lenses of either +7 or -7 D power were placed in front of the eyes of young chickens 6 days after intravitreal QA injections. By this time, QA had caused severe damage to the retina. After 2 hours of lens wearing, changes in ZENK immunoreactivity were measured by means of double staining. In another experiment, lenses were worn for 4 days to study the residual function of emmetropization. QA injections caused a massive loss of cells in the inner nuclear layer and the ganglion cell layer but left the numbers of glucagon cells unchanged. Four of six QA-injected eyes became more myopic in response to wearing positive lenses, and all eyes with negative lenses also became myopic. QA caused a general reduction in ZENK expression, and there was no clear evidence that ZENK expression was still controlled by the sign of imposed defocus. After severe destruction of the inner retina by QA, retinal image processing appeared to be reduced to blur detection with no sign, causing myopia with both types of lenses. QA must remove synaptic input to the glucagon cells, which is necessary to transmit the information on the sign of imposed defocus.
Breton, J; Bibikova, M; Oesterhelt, D; Nabedryk, E
1999-08-31
The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.
WE-G-BRA-02: SafetyNet: Automating Radiotherapy QA with An Event Driven Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, S; Kessler, M; Litzenberg, D
2015-06-15
Purpose: Quality assurance is an essential task in radiotherapy that often requires many manual tasks. We investigate the use of an event driven framework in conjunction with software agents to automate QA and eliminate wait times. Methods: An in house developed subscription-publication service, EventNet, was added to the Aria OIS to be a message broker for critical events occurring in the OIS and software agents. Software agents operate without user intervention and perform critical QA steps. The results of the QA are documented and the resulting event is generated and passed back to EventNet. Users can subscribe to those eventsmore » and receive messages based on custom filters designed to send passing or failing results to physicists or dosimetrists. Agents were developed to expedite the following QA tasks: Plan Revision, Plan 2nd Check, SRS Winston-Lutz isocenter, Treatment History Audit, Treatment Machine Configuration. Results: Plan approval in the Aria OIS was used as the event trigger for plan revision QA and Plan 2nd check agents. The agents pulled the plan data, executed the prescribed QA, stored the results and updated EventNet for publication. The Winston Lutz agent reduced QA time from 20 minutes to 4 minutes and provided a more accurate quantitative estimate of radiation isocenter. The Treatment Machine Configuration agent automatically reports any changes to the Treatment machine or HDR unit configuration. The agents are reliable, act immediately, and execute each task identically every time. Conclusion: An event driven framework has inverted the data chase in our radiotherapy QA process. Rather than have dosimetrists and physicists push data to QA software and pull results back into the OIS, the software agents perform these steps immediately upon receiving the sentinel events from EventNet. Mr Keranen is an employee of Varian Medical Systems. Dr. Moran’s institution receives research support for her effort for a linear accelerator QA project from Varian Medical Systems. Other quality projects involving her effort are funded by Blue Cross Blue Shield of Michigan, Breast Cancer Research Foundation, and the NIH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackin, Dennis; Li, Yupeng; Taylor, Michael B.
Purpose: The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework.Methods: The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses.more » Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the αβγ transformation as a way to more easily compare gamma scores.Results: The authors compared measured and calculated dose planes using the relative depth, z/R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, −0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipse's calculation had exceeded the tolerance levels of 3% for dose and 3 mm for distance-to-agreement.Conclusions: The authors found HPlusQA to be reasonably effective (79%± 10%) in determining when the comparison between measured dose planes and the dose planes calculated by the Eclipse treatment planning system had exceeded the acceptable tolerance levels. When used as described in this study, HPlusQA can reduce the need for patient specific quality assurance measurements by 64%. The authors believe that the use of HPlusQA as a dose calculation second check can increase the efficiency and effectiveness of the QA process.« less
QA4, a language for artificial intelligence.
NASA Technical Reports Server (NTRS)
Derksen, J. A. C.
1973-01-01
Introduction of a language for problem solving and specifically robot planning, program verification, and synthesis and theorem proving. This language, called question-answerer 4 (QA4), embodies many features that have been found useful for constructing problem solvers but have to be programmed explicitly by the user of a conventional language. The most important features of QA4 are described, and examples are provided for most of the material introduced. Language features include backtracking, parallel processing, pattern matching, set manipulation, and pattern-triggered function activation. The language is most convenient for use in an interactive way and has extensive trace and edit facilities.
Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C
2012-07-01
DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.
SU-E-J-78: Adaptive Planning Workflow in a Pencil Beam Scanning Proton Therapy Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakey, M; Price, S; Robison, B
Purpose: The susceptibility of proton therapy to changes in patient setup and anatomy necessitates an adaptive planning process. With the right planning tools and clinical workflow, an adaptive plan can be created in a timely manner without adding significant workload to the treatment planning staff. Methods: In our center, a weekly QA CT is performed on most patients to assess setup, anatomy change, and tumor response. The QA CT is fused to the treatment planning CT, the contours are transferred via deformable registration, and the plan dose is recalculated on the QA CT. A physicist assesses the dose distribution, andmore » an adaptive plan is requested based on tumor coverage or OAR dose changes. After the physician confirms or alters the deformed contours, a dosimetrist develops an adaptive plan using our TPS adaptation module. The plan is assessed for robustness and is then reviewed by the physician. Patient QA is performed within three days following the first adapted treatment. Results: Of the patients who received QA CTs, 19% required at least one adaptive plan (18.5% H&N, 18.5% brain, 11.1% breast, 14.8% chestwall, 14.8% lung, 18.5% pelvis and 3.8% abdomen). Of these patients, 14% went on a break, while the remainder was treated with the previous plan during the re-planning process. Adaptive plans were performed based on tumor shrinkage, anatomy change or positioning uncertainties for 37.9%, 44.8%, and 17.3% of the patients, respectively. On average, 3 full days are required between the QA CT and the first adapted plan treatment. Conclusion: Adaptive planning is a crucial component of proton therapy and should be applied to any site when the QA CT shows significant deviation from the plan. With an efficient workflow, an adaptive plan can be applied without delaying patient treatment or burdening the dosimetry and medical physics team.« less
Walking the Line: Quality Assurance Policy Development and Implementation in Vi?t Nam
ERIC Educational Resources Information Center
Madden, Meggan
2014-01-01
Although Vi?t Nam's experiences with quality assurance (QA) policy development have been influenced by its relationships with, and funding from, the World Bank and regional organizations, the state-centric values of the Socialist Republic of Vi?t Nam still navigate the implementation process. The development of QA in Vietnamese higher education…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal
2014-08-15
Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dosemore » differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.« less
Purdie, Thomas G; Dinniwell, Robert E; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B
2011-10-01
To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle(3)) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lambert, Jean-Christopher; Bojkov, Bojan
The Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration and Validation (WGCV) is developing a global data quality strategy for the Global Earth Obser-vation System of Systems (GEOSS). In this context, CEOS WGCV elaborated the GEOSS Quality Assurance framework for Earth Observation (QA4EO, http://qa4eo.org). QA4EO en-compasses a documentary framework and a set of ten guidelines, which describe the top-level approach of QA activities and key requirements that drive the QA process. QA4EO is appli-cable virtually to all Earth Observation data. Calibration and validation activities are a cornerstone of the GEOSS data quality strategy. Proper uncertainty assessment of the satellite measurements and their derived data products is essential, and needs to be continuously monitored and traceable to standards. As a practical application of QA4EO, CEOS WGCV has undertaken to establish a set of best practices, methodologies and guidelines for satellite calibration and validation. The present paper reviews current developments of best practices and guidelines for the vali-dation of atmospheric composition satellites. Aimed as a community effort, the approach is to start with current practices that could be improved with time. The present review addresses current validation capabilities, achievements, caveats, harmonization efforts, and challenges. Terminologies and general principles of validation are reminded. Going beyond elementary def-initions of validation like the assessment of uncertainties, the specific GEOSS context requires considering also the validation of individual service components and against user requirements.
Latif-Hernandez, Amira; Shah, Disha; Ahmed, Tariq; Lo, Adrian C.; Callaerts-Vegh, Zsuzsanna; Van der Linden, Annemie; Balschun, Detlef; D’Hooge, Rudi
2016-01-01
Intracerebral injection of the excitotoxic, endogenous tryptophan metabolite, quinolinic acid (QA), constitutes a chemical model of neurodegenerative brain disease. Complementary techniques were combined to examine the consequences of QA injection into medial prefrontal cortex (mPFC) of C57BL6 mice. In accordance with the NMDAR-mediated synapto- and neurotoxic action of QA, we found an initial increase in excitability and an augmentation of hippocampal long-term potentiation, converting within two weeks into a reduction and impairment, respectively, of these processes. QA-induced mPFC excitotoxicity impaired behavioral flexibility in a reversal variant of the hidden-platform Morris water maze (MWM), whereas regular, extended MWM training was unaffected. QA-induced mPFC damage specifically affected the spatial-cognitive strategies that mice use to locate the platform during reversal learning. These behavioral and cognitive defects coincided with changes in cortical functional connectivity (FC) and hippocampal neuroplasticity. FC between various cortical regions was assessed by resting-state fMRI (rsfMRI) methodology, and mice that had received QA injection into mPFC showed increased FC between various cortical regions. mPFC and hippocampus (HC) are anatomically as well as functionally linked as part of a cortical network that controls higher-order cognitive functions. Together, these observations demonstrate the central functional importance of rodent mPFC as well as the validity of QA-induced mPFC damage as a preclinical rodent model of the early stages of neurodegeneration. PMID:27819338
Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.
2012-01-01
Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659
Dysfunction and Decline: Lessons Learned from Inside Al-Qa’ida in Iraq
2009-03-16
facilitated AQI’s decline by killing and capturing key leadership, disrupting communications and logistics processes , and giving the local tribes a legitimate...dysfunctional politics will create space for al‐Qa`ida than that al‐Qa`ida will unilaterally upset the political process . AQI’s setbacks have created a...jihadists that became AQI—offering little more than its reputation and brand name. The lessons of AQI’s failure are only partially applicable elsewhere
Capturing, using, and managing quality assurance knowledge for shuttle post-MECO flight design
NASA Technical Reports Server (NTRS)
Peters, H. L.; Fussell, L. R.; Goodwin, M. A.; Schultz, Roger D.
1991-01-01
Ascent initialization values used by the Shuttle's onboard computer for nominal and abort mission scenarios are verified by a six degrees of freedom computer simulation. The procedure that the Ascent Post Main Engine Cutoff (Post-MECO) group uses to perform quality assurance (QA) of the simulation is time consuming. Also, the QA data, checklists and associated rationale, though known by the group members, is not sufficiently documented, hindering transfer of knowledge and problem resolution. A new QA procedure which retains the current high level of integrity while reducing the time required to perform QA is needed to support the increasing Shuttle flight rate. Documenting the knowledge is also needed to increase its availability for training and problem resolution. To meet these needs, a knowledge capture process, embedded into the group activities, was initiated to verify the existing QA checks, define new ones, and document all rationale. The resulting checks were automated in a conventional software program to achieve the desired standardization, integrity, and time reduction. A prototype electronic knowledge base was developed with Macintosh's HyperCard to serve as a knowledge capture tool and data storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, Emily; Seuntjens, Jan; Sheikh-Bagheri, Daryoush
2004-10-01
In this work we dosimetrically evaluated the clinical implementation of a commercial Monte Carlo treatment planning software (PEREGRINE, North American Scientific, Cranberry Township, PA) intended for quality assurance (QA) of intensity modulated radiation therapy treatment plans. Dose profiles calculated in homogeneous and heterogeneous phantoms using this system were compared to both measurements and simulations using the EGSnrc Monte Carlo code for the 6 MV beam of a Varian CL21EX linear accelerator. For simple jaw-defined fields, calculations agree within 2% of the dose at d{sub max} with measurements in homogeneous phantoms with the exception of the buildup region where the calculationsmore » overestimate the dose by up to 8%. In heterogeneous lung and bone phantoms the agreement is within 3%, on average, up to 5% for a 1x1 cm{sup 2} field. We tested two consecutive implementations of the MLC model. After matching the calculated and measured MLC leakage, simulations of static and dynamic MLC-defined fields using the most recent MLC model agreed to within 2% with measurements.« less
Mu, Shuhua; Wu, Jiajia; Chen, Si; OuYang, Lisi; Lei, Wanlong
2014-01-01
Huntington's disease (HD) is a neurological degenerative disease and quinolinic acid (QA) has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD) rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv)+ and neuropeptide Y (NPY)+ interneurons were both significantly reduced while those of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD. PMID:24632560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Z; Tang, X; Song, Y
Purpose: To investigate the long term stability and viability of using EPID-based daily output QA via in-house and vendor driven protocol, to replace conventional QA tools and improve QA efficiency. Methods: Two Varian TrueBeam machines (TB1&TB2) equipped with electronic portal imaging devices (EPID) were employed in this study. Both machines were calibrated per TG-51 and used clinically since Oct 2014. Daily output measurement for 6/15 MV beams were obtained using SunNuclear DailyQA3 device as part of morning QA. In addition, in-house protocol was implemented for EPID output measurement (10×10 cm fields, 100 MU, 100cm SID, output defined over an ROImore » of 2×2 cm around central axis). Moreover, the Varian Machine Performance Check (MPC) was used on both machines to measure machine output. The EPID and DailyQA3 based measurements of the relative machine output were compared and cross-correlated with monthly machine output as measured by an A12 Exradin 0.65cc Ion Chamber (IC) serving as ground truth. The results were correlated using Pearson test. Results: The correlations among DailyQA3, in-house EPID and Varian MPC output measurements, with the IC for 6/15 MV were similar for TB1 (0.83–0.95) and TB2 (0.55–0.67). The machine output for the 6/15MV beams on both machines showed a similar trend, namely an increase over time as indicated by all measurements, requiring a machine recalibration after 6 months. This drift is due to a known issue with pressurized monitor chamber which tends to leak over time. MPC failed occasionally but passed when repeated. Conclusion: The results indicate that the use of EPID for daily output measurements has the potential to become a viable and efficient tool for daily routine LINAC QA, thus eliminating weather (T,P) and human setup variability and increasing efficiency of the QA process.« less
MO-A-16A-01: QA Procedures and Metrics: In Search of QA Usability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiaseelan, V; Thomadsen, B
Radiation therapy has undergone considerable changes in the past two decades with a surge of new technology and treatment delivery methods. The complexity of radiation therapy treatments has increased and there has been increased awareness and publicity about the associated risks. In response, there has been proliferation of guidelines for medical physicists to adopt to ensure that treatments are delivered safely. Task Group recommendations are copious, and clinical physicists' hours are longer, stretched to various degrees between site planning and management, IT support, physics QA, and treatment planning responsibilities.Radiation oncology has many quality control practices in place to ensure themore » delivery of high-quality, safe treatments. Incident reporting systems have been developed to collect statistics about near miss events at many radiation oncology centers. However, tools are lacking to assess the impact of these various control measures. A recent effort to address this shortcoming is the work of Ford et al (2012) who recently published a methodology enumerating quality control quantification for measuring the effectiveness of safety barriers. Over 4000 near-miss incidents reported from 2 academic radiation oncology clinics were analyzed using quality control quantification, and a profile of the most effective quality control measures (metrics) was identified.There is a critical need to identify a QA metric to help the busy clinical physicists to focus their limited time and resources most effectively in order to minimize or eliminate errors in the radiation treatment delivery processes. In this symposium the usefulness of workflows and QA metrics to assure safe and high quality patient care will be explored.Two presentations will be given:Quality Metrics and Risk Management with High Risk Radiation Oncology ProceduresStrategies and metrics for quality management in the TG-100 Era Learning Objectives: Provide an overview and the need for QA usability metrics: Different cultures/practices affecting the effectiveness of methods and metrics. Show examples of quality assurance workflows, Statistical process control, that monitor the treatment planning and delivery process to identify errors. To learn to identify and prioritize risks and QA procedures in radiation oncology. Try to answer the question: Can a quality assurance program aided by quality assurance metrics help minimize errors and ensure safe treatment delivery. Should such metrics be institution specific.« less
NASA Astrophysics Data System (ADS)
Willett, D. J.
1993-04-01
In this document, the author presents his observations on the topic of quality assurance (QA). Traditionally the focus of quality management has been on QA organizations, manuals, procedures, audits, and assessments; quality was measured by the degree of conformance to specifications or standards. Today quality is defined as satisfying user needs and is measured by user satisfaction. The author proposes that quality is the responsibility of line organizations and staff and not the responsibility of the QA group. This work outlines an effective Conduct of Operations program. The author concludes his observations with a discussion of how quality is analogous to leadership.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark
2012-03-01
Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be done to correlate the clinical significance of these findings.« less
From field notes to data portal - An operational QA/QC framework for tower networks
NASA Astrophysics Data System (ADS)
Sturtevant, C.; Hackley, S.; Meehan, T.; Roberti, J. A.; Holling, G.; Bonarrigo, S.
2016-12-01
Quality assurance and control (QA/QC) is one of the most important yet challenging aspects of producing research-quality data. This is especially so for environmental sensor networks collecting numerous high-frequency measurement streams at distributed sites. Here, the quality issues are multi-faceted, including sensor malfunctions, unmet theoretical assumptions, and measurement interference from the natural environment. To complicate matters, there are often multiple personnel managing different sites or different steps in the data flow. For large, centrally managed sensor networks such as NEON, the separation of field and processing duties is in the extreme. Tower networks such as Ameriflux, ICOS, and NEON continue to grow in size and sophistication, yet tools for robust, efficient, scalable QA/QC have lagged. Quality control remains a largely manual process relying on visual inspection of the data. In addition, notes of observed measurement interference or visible problems are often recorded on paper without an explicit pathway to data flagging during processing. As such, an increase in network size requires a near-proportional increase in personnel devoted to QA/QC, quickly stressing the human resources available. There is a need for a scalable, operational QA/QC framework that combines the efficiency and standardization of automated tests with the power and flexibility of visual checks, and includes an efficient communication pathway from field personnel to data processors to end users. Here we propose such a framework and an accompanying set of tools in development, including a mobile application template for recording tower maintenance and an R/shiny application for efficiently monitoring and synthesizing data quality issues. This framework seeks to incorporate lessons learned from the Ameriflux community and provide tools to aid continued network advancements.
The purpose of this SOP is to outline the process of field quality assurance and quality control checks. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the Border study. Keywords: custody; QA/QC; field checks.
The U.S.-Mex...
Design of a Low-Cost Adaptive Question Answering System for Closed Domain Factoid Queries
ERIC Educational Resources Information Center
Toh, Huey Ling
2010-01-01
Closed domain question answering (QA) systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. We propose a "query-based" model for indexing answers in a closed domain factoid QA system. Further, we use a phrase term inference method for improving the ranking order of related questions.…
Using the CER Hub to ensure data quality in a multi-institution smoking cessation study.
Walker, Kari L; Kirillova, Olga; Gillespie, Suzanne E; Hsiao, David; Pishchalenko, Valentyna; Pai, Akshatha Kalsanka; Puro, Jon E; Plumley, Robert; Kudyakov, Rustam; Hu, Weiming; Allisany, Art; McBurnie, MaryAnn; Kurtz, Stephen E; Hazlehurst, Brian L
2014-01-01
Comparative effectiveness research (CER) studies involving multiple institutions with diverse electronic health records (EHRs) depend on high quality data. To ensure uniformity of data derived from different EHR systems and implementations, the CER Hub informatics platform developed a quality assurance (QA) process using tools and data formats available through the CER Hub. The QA process, implemented here in a study of smoking cessation services in primary care, used the 'emrAdapter' tool programmed with a set of quality checks to query large samples of primary care encounter records extracted in accord with the CER Hub common data framework. The tool, deployed to each study site, generated error reports indicating data problems to be fixed locally and aggregate data sharable with the central site for quality review. Across the CER Hub network of six health systems, data completeness and correctness issues were prevalent in the first iteration and were considerably improved after three iterations of the QA process. A common issue encountered was incomplete mapping of local EHR data values to those defined by the common data framework. A highly automated and distributed QA process helped to ensure the correctness and completeness of patient care data extracted from EHRs for a multi-institution CER study in smoking cessation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Songthong, Anussara P; Kannarunimit, Danita; Chakkabat, Chakkapong; Lertbutsayanukul, Chawalit
2015-08-08
To investigate acute and late toxicities comparing sequential (SEQ-IMRT) versus simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) in nasopharyngeal carcinoma (NPC) patients. Newly diagnosed stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT, with or without chemotherapy. SEQ-IMRT consisted of two sequential radiation treatment plans: 2 Gy x 25 fractions to low-risk planning target volume (PTV-LR) followed by 2 Gy x 10 fractions to high-risk planning target volume (PTV-HR). In contrast, SIB-IMRT consisted of only one treatment plan: 2.12 Gy and 1.7 Gy x 33 fractions to PTV-HR and PTV-LR, respectively. Toxicities were evaluated according to CTCAE version 4.0. Between October 2010 and November 2013, 122 eligible patients were randomized between SEQ-IMRT (54 patients) and SIB-IMRT (68 patients). With median follow-up time of 16.8 months, there was no significant difference in toxicities between the two IMRT techniques. During chemoradiation, the most common grade 3-5 acute toxicities were mucositis (15.4% vs 13.6%, SEQ vs SIB, p = 0.788) followed by dysphagia (9.6% vs 9.1%, p = 1.000) and xerostomia (9.6% vs 7.6%, p = 0.748). During the adjuvant chemotherapy period, 25.6% and 32.7% experienced grade 3 weight loss in SEQ-IMRT and SIB-IMRT (p = 0.459). One-year overall survival (OS) and progression-free survival (PFS) were 95.8% and 95.5% in SEQ-IMRT and 98% and 90.2% in SIB-IMRT, respectively (p = 0.472 for OS and 0.069 for PFS). This randomized, phase II/III trial comparing SIB-IMRT versus SEQ-IMRT in NPC showed no statistically significant difference between both IMRT techniques in terms of acute adverse events. Short-term tumor control and survival outcome were promising.
Country experience in organizing for quality: Niger.
Marquez, L; Madubuike, C
1999-01-01
This article describes the efforts of Niger's Ministry of Health Tahoua Quality Assurance Project (QAP) since 1994. QAP aims to improve the delivery of critical primary health care (PHC) services by integrating and institutionalizing the QA approach in the PHC system in 1 demonstration site (Tahoua) and eventually, countrywide. The QAP selected 8 clinical interventions in its package of minimum services. The QAP project provided training, clarified and communicated clinical and management standards, and monitored and initiated a process for preventing and correcting problems. During 1994-96, QAP collaborated with BASICS to assist all 7 District Health Management Teams (DHMTs) in developing data collection tools for rapid performance assessments of the Integrated Management of Childhood Illnesses program. The pilot program proved that measurable gains in QA were possible, even with limited resources. DHMTs will have oversight of QA activities. A special unit within the MOH is not yet fully staffed. The central strategy has been to train teams of health staff at the regional and district level. A multilevel team developed manuals for norms and standards for vaccinations and for managerial operating procedures. The Quality Council redesigned the supervision system. Performance is monitored at quarterly regional and district meetings. A quarterly bulletin is the main dissemination tool. The loss of USAID support led to the loss of technical support from the QAP. The MOH is committed to QA and plans to institutionalize the process. The World Bank and UNICEF agreed to support QA projects in 1999.
The Lung Image Database Consortium (LIDC): ensuring the integrity of expert-defined "truth".
Armato, Samuel G; Roberts, Rachael Y; McNitt-Gray, Michael F; Meyer, Charles R; Reeves, Anthony P; McLennan, Geoffrey; Engelmann, Roger M; Bland, Peyton H; Aberle, Denise R; Kazerooni, Ella A; MacMahon, Heber; van Beek, Edwin J R; Yankelevitz, David; Croft, Barbara Y; Clarke, Laurence P
2007-12-01
Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish "truth" for algorithm development, training, and testing. The integrity of this "truth," however, must be established before investigators commit to this "gold standard" as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the "truth" collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the "blinded read phase"), radiologists independently identified and annotated lesions, assigning each to one of three categories: "nodule >or=3 mm," "nodule <3 mm," or "non-nodule >or=3 mm." For the second read (the "unblinded read phase"), the same radiologists independently evaluated the same CT scans, but with all of the annotations from the previously performed blinded reads presented; each radiologist could add to, edit, or delete their own marks; change the lesion category of their own marks; or leave their marks unchanged. The post-unblinded read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of identification of potential errors introduced during the complete image annotation process and correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. The establishment of "truth" must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems.
Fontseré, Néstor; Blasco, Miquel; Maduell, Francisco; Vera, Manel; Arias-Guillen, Marta; Herranz, Sandra; Blanco, Teresa; Barrufet, Marta; Burrel, Marta; Montaña, Javier; Real, Maria Isabel; Mestres, Gaspar; Riambau, Vicenç; Campistol, Josep M
2011-01-01
Access blood flow (Qa) measurements are recommended by the current guidelines as one of the most important components in vascular access maintenance programs. This study evaluates the efficiency of Qa measurement with on-line conductivity (OLC-Qa) and blood temperature monitoring (BTM-Qa) in comparison with the gold standard saline dilution method (SDM-Qa). 50 long-term hemodialysis patients (42 arteriovenous fistulas/8 arteriovenous grafts) were studied. Bland-Altman and Lin's coefficient (ρ(c)) were used to study accuracy and precision. Mean values were 1,021.7 ± 502.4 ml/min SDM-Qa, 832.8 ± 574.3 ml/min OLC-Qa (p = 0.007) and 1,094.9 ± 491.9 ml/min with BTM-Qa (p = NS). Biases and ρ(c) obtained were -188.8 ml/min (ρ(c) 0.58) OLC-Qa and 73.2 ml/min (ρ(c) 0.89) BTM-Qa. The limits of agreement (bias ± 1.96 SD) obtained were from -1,119 to 741.3 ml/min (OLC-Qa) and -350.6 to 497.2 ml/min (BTM-Qa). BTM-Qa and OLC-Qa are valid noninvasive and practical methods to estimate Qa, although BTM-Qa was more accurate and had better concordance than OLC-Qa compared with SDM-Qa. Copyright © 2010 S. Karger AG, Basel.
Wasson, Katherine; Parsi, Kayhan; McCarthy, Michael; Siddall, Viva Jo; Kuczewski, Mark
2016-06-01
The American Society for Bioethics and Humanities has created a quality attestation (QA) process for clinical ethics consultants; the pilot phase of reviewing portfolios has begun. One aspect of the QA process which is particularly challenging is assessing the interpersonal skills of individual clinical ethics consultants. We propose that using case simulation to evaluate clinical ethics consultants is an approach that can meet this need provided clear standards for assessment are identified. To this end, we developed the Assessing Clinical Ethics Skills (ACES) tool, which identifies and specifies specific behaviors that a clinical ethics consultant should demonstrate in an ethics case simulation. The aim is for the clinical ethics consultant or student to use a videotaped case simulation, along with the ACES tool scored by a trained rater, to demonstrate their competence as part of their QA portfolio. The development and piloting of the tool is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
Utilizing a structural meta-ontology for family-based quality assurance of the BioPortal ontologies.
Ochs, Christopher; He, Zhe; Zheng, Ling; Geller, James; Perl, Yehoshua; Hripcsak, George; Musen, Mark A
2016-06-01
An Abstraction Network is a compact summary of an ontology's structure and content. In previous research, we showed that Abstraction Networks support quality assurance (QA) of biomedical ontologies. The development of an Abstraction Network and its associated QA methodologies, however, is a labor-intensive process that previously was applicable only to one ontology at a time. To improve the efficiency of the Abstraction-Network-based QA methodology, we introduced a QA framework that uses uniform Abstraction Network derivation techniques and QA methodologies that are applicable to whole families of structurally similar ontologies. For the family-based framework to be successful, it is necessary to develop a method for classifying ontologies into structurally similar families. We now describe a structural meta-ontology that classifies ontologies according to certain structural features that are commonly used in the modeling of ontologies (e.g., object properties) and that are important for Abstraction Network derivation. Each class of the structural meta-ontology represents a family of ontologies with identical structural features, indicating which types of Abstraction Networks and QA methodologies are potentially applicable to all of the ontologies in the family. We derive a collection of 81 families, corresponding to classes of the structural meta-ontology, that enable a flexible, streamlined family-based QA methodology, offering multiple choices for classifying an ontology. The structure of 373 ontologies from the NCBO BioPortal is analyzed and each ontology is classified into multiple families modeled by the structural meta-ontology. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fua, Tsien F.; Corry, June; Milner, Alvin D.
2007-03-15
Purpose: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. Methods and Materials: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteralmore » feeding requirements. Results: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. Conclusions: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.
2015-03-15
Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan Wenyong; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan; Liu Dong
Purpose: We investigated whether the heart could be replaced by the anterior myocardial territory (AMT) as the organ at risk (OAR) in intensity-modulated radiotherapy (IMRT) of the breast for patients with left-sided breast cancer. Methods and Materials: Twenty-three patients with left-sided breast cancer who received postoperative radiation after breast-conserving surgery were studied. For each patient, we generated five IMRT plans including heart (H), left ventricle (LV), AMT, LV+AMT, and H+LV as the primary OARs, respectively, except both lungs and right breast, which corresponded to IMRT(H), IMRT(LV), IMRT(AMT), IMRT(LV+AMT), and IMRT(H+LV). For the planning target volumes and OARs, the parameters ofmore » dose-volume histograms were compared. Results: The homogeneity index, conformity index, and coverage index were not compromised significantly in IMRT(AMT), IMRT(LV) and IMRT(LV+ AMT), respectively, when compared with IMRT(H). The mean dose to the heart, LV, and AMT decreased 5.3-21.5% (p < 0.05), 19.9-29.5% (p < 0.05), and 13.3-24.5% (p < 0.05), respectively. Similarly, the low (e.g., V5%), middle (e.g., V20%), and high (e.g., V30%) dose-volume of the heart, LV, and AMT decreased with different levels. The mean dose and V10% of the right lung increased by 9.2% (p < 0.05) and 27.6% (p < 0.05), respectively, in IMRT(LV), and the mean dose and V5% of the right breast decreased significantly in IMRT(AMT) and IMRT(LV+AMT). IMRT(AMT) was the preferred plan and was then compared with IMRT(H+LV); the majority of dose-volume histogram parameters of OARs including the heart, LV, AMT, both lungs, and the right breast were not statistically different. However, the low dose-volume of LV increased and the middle dose-volume decreased significantly (p < 0.05) in IMRT(AMT). Also, those of the right lung (V10%, V15%) and right breast (V5%, V10%) decreased significantly (p < 0.05). Conclusions: The AMT may replace the heart as the OAR in left-sided breast IMRT after breast-conserving surgery to decrease the radiation dose to the heart.« less
A new Tla region antigen Qa-11, similar to Qa-2 and associated with B-type beta 2-microglobulin.
van de Meugheuvel, W; van Seventer, G; Demant, P
1985-04-01
A new antigen, Qa-11, is detected as a 40,000 dalton band in the SDS-PAGE of immunoprecipitates of radiolabeled lymphocyte membrane preparations. In C57BL H-2 congenic strains, its presence is controlled by a gene in the Tla region. In strains with genetic background other than C57BL it is not expressed. Tests with recombinant inbred strains and with H-3 congenic strains show that, in addition to the Tla region, a gene linked to or identical with the beta 2-microglobulin-b-allele is required for the expression of Qa-11 as well. The mobility of the Qa-11 antigen in SDS-PAGE and in isoelectrofocusing is the same as that of Qa-2 antigen. The Cleveland peptide maps of Qa-2 and Qa-11 are identical as well. This finding, that the Tla region controlled Qa-11 antigen is structurally very similar to the Qa-2 antigen, contrasts with the fact that Tla region products do not react with anti-Qa-2 sera. This paradox could be explained by a separate Qa-11 region between Qa-2 and Tla. Alternatively, it is possible that the Qa-11 antigen is the result of the action of a modifying gene in the Tla region upon a Qa-2 gene product, or that the structural gene for Qa-11 is located in the Qa-2 region and a Tla region gene controls its expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Elyn H.; Mougalian, Sarah S.; Yale Cancer Center, New Haven, Connecticut
Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base frommore » 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Cebe, M; Mabhouti, H
Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less
Rational use of intensity-modulated radiation therapy: the importance of clinical outcome.
De Neve, Wilfried; De Gersem, Werner; Madani, Indira
2012-01-01
During the last 2 decades, intensity-modulated radiation therapy (IMRT) became a standard technique despite its drawbacks of volume delineation, planning, robustness of delivery, challenging quality assurance, and cost as compared with non-IMRT. The theoretic advantages of IMRT dose distributions are generally accepted, but the clinical advantages remain debatable because of the lack of clinical assessment of the effort that is required to overshadow the disadvantages. Rational IMRT use requires a positive advantage/drawback balance. Only 5 randomized clinical trials (RCTs), 3 in the breast and 2 in the head and neck, which compare IMRT with non-IMRT (2-dimensional technique in four fifths of the trials), have been published (as of March 2011), and all had toxicity as the primary endpoint. More than 50 clinical trials compared results of IMRT-treated patients with a non-IMRT group, mostly historical controls. RCTs systematically showed a lower toxicity in IMRT-treated patients, and the non-RCTs confirmed these findings. Toxicity reduction, counterbalancing the drawbacks of IMRT, was convincing for breast and head and neck IMRT. For other tumor sites, the arguments favoring IMRT are weaker because of the inability to control bias outside the randomized setting. For anticancer efficacy endpoints, like survival, disease-specific survival, or locoregional control, the balance between advantages and drawbacks is fraught with uncertainties because of the absence of robust clinical data. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Jeong, Seonghoon; Jo, Yunhui; Yoon, Myonggeun
2015-07-01
Quality assurance (QA) for medical linear accelerators is indispensable for appropriate cancer treatment. Some international organizations and advanced Western countries have provided QA guidelines for linear accelerators. Currently, QA regulations for linear accelerators in Korean hospitals specify a system in which each hospital stipulates its independent hospital-based protocols for QA procedures (HP_QAPs) and conducts QA based on those HP_QAPs while regulatory authorities verify whether items under those HP_QAPs have been performed. However, because this regulatory method cannot guarantee the quality of universal treatment and QA items with tolerance criteria are different in many hospitals, the presentation of standardized QA items and tolerance criteria is essential. In this study, QA items in HP_QAPs from various hospitals and those presented by international organizations, such as the International Atomic Energy Agency, the European Union, and the American Association of Physicist in Medicine, and by advanced Western countries, such as the USA, the UK, and Canada, were compared. Concordance rates between QA items for linear accelerators that were presented by the aforementioned organizations and those currently being implemented in Korean hospitals were shown to exhibit a daily QA of 50%, a weekly QA of 22%, a monthly QA of 43%, and an annual QA of 65%, and the overall concordance rates of all QA items were approximately 48%. In the comparison between QA items being implemented in Korean hospitals and those being implemented in advanced Western countries, concordance rates were shown to exhibit a daily QA of 50%, a weekly QA of 33%, a monthly QA of 60%, and an annual QA of 67%, and the overall concordance rates of all QA items were approximately 57%. The results of this study indicate that the HP_QAPs currently implemented by Korean hospitals as QA standards for linear accelerators used in radiation therapy do not meet international standards. If this problem is to be solved, national standardized QA items and procedures for linear accelerators need to be developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan
2013-04-01
Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less
Ishikura, Satoshi
2008-11-01
The process of radiotherapy (RT) is complex and involves understanding of the principles of medical physics, radiobiology, radiation safety, dosimetry, radiation treatment planning, simulation and interaction of radiation with other treatment modalities. Each step in the integrated process of RT needs quality control and quality assurance (QA) to prevent errors and to give high confidence that patients will receive the prescribed treatment correctly. Recent advances in RT, including intensity-modulated and image-guided RT, focus on the need for a systematic RTQA program that balances patient safety and quality with available resources. It is necessary to develop more formal error mitigation and process analysis methods, such as failure mode and effect analysis, to focus available QA resources optimally on process components. External audit programs are also effective. The International Atomic Energy Agency has operated both an on-site and off-site postal dosimetry audit to improve practice and to assure the dose from RT equipment. Several countries have adopted a similar approach for national clinical auditing. In addition, clinical trial QA has a significant role in enhancing the quality of care. The Advanced Technology Consortium has pioneered the development of an infrastructure and QA method for advanced technology clinical trials, including credentialing and individual case review. These activities have an impact not only on the treatment received by patients enrolled in clinical trials, but also on the quality of treatment administered to all patients treated in each institution, and have been adopted globally; by the USA, Europe and Japan also.
Integral radiation dose to normal structures with conformal external beam radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoyama, Hidefumi; Westerly, David Clark; Mackie, Thomas Rockwell
2006-03-01
Background: This study was designed to evaluate the integral dose (ID) received by normal tissue from intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-five radiation treatment plans including IMRT using a conventional linac with both 6 MV (6MV-IMRT) and 20 MV (20MV-IMRT), as well as three-dimensional conformal radiotherapy (3DCRT) using 6 MV (6MV-3DCRT) and 20 MV (20MV-3DCRT) and IMRT using tomotherapy (6MV) (Tomo-IMRT), were created for 5 patients with localized prostate cancer. The ID (mean dose x tissue volume) received by normal tissue (NTID) was calculated from dose-volume histograms. Results: The 6MV-IMRT resulted in 5.0% lower NTID thanmore » 6MV-3DCRT; 20 MV beam plans resulted in 7.7%-11.2% lower NTID than 6MV-3DCRT. Tomo-IMRT NTID was comparable to 6MV-IMRT. Compared with 6MV-3DCRT, 6MV-IMRT reduced IDs to the rectal wall and penile bulb by 6.1% and 2.7%, respectively. Tomo-IMRT further reduced these IDs by 11.9% and 16.5%, respectively. The 20 MV did not reduce IDs to those structures. Conclusions: The difference in NTID between 3DCRT and IMRT is small. The 20 MV plans somewhat reduced NTID compared with 6 MV plans. The advantage of tomotherapy over conventional IMRT and 3DCRT for localized prostate cancer was demonstrated in regard to dose sparing of rectal wall and penile bulb while slightly decreasing NTID as compared with 6MV-3DCRT.« less
A method of setting limits for the purpose of quality assurance
NASA Astrophysics Data System (ADS)
Sanghangthum, Taweap; Suriyapee, Sivalee; Kim, Gwe-Ya; Pawlicki, Todd
2013-10-01
The result from any assurance measurement needs to be checked against some limits for acceptability. There are two types of limits; those that define clinical acceptability (action limits) and those that are meant to serve as a warning that the measurement is close to the action limits (tolerance limits). Currently, there is no standard procedure to set these limits. In this work, we propose an operational procedure to set tolerance limits and action limits. The approach to establish the limits is based on techniques of quality engineering using control charts and a process capability index. The method is different for tolerance limits and action limits with action limits being categorized into those that are specified and unspecified. The procedure is to first ensure process control using the I-MR control charts. Then, the tolerance limits are set equal to the control chart limits on the I chart. Action limits are determined using the Cpm process capability index with the requirements that the process must be in-control. The limits from the proposed procedure are compared to an existing or conventional method. Four examples are investigated: two of volumetric modulated arc therapy (VMAT) point dose quality assurance (QA) and two of routine linear accelerator output QA. The tolerance limits range from about 6% larger to 9% smaller than conventional action limits for VMAT QA cases. For the linac output QA, tolerance limits are about 60% smaller than conventional action limits. The operational procedure describe in this work is based on established quality management tools and will provide a systematic guide to set up tolerance and action limits for different equipment and processes.
Letter to the Editor on 'Single-Arc IMRT?'.
Otto, Karl
2009-04-21
In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).
Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells.
Chen, John Jun-An; Chen, Teresa L; Kim, BongSoo; Poulsen, Daniel A; Mynar, Justin L; Fréchet, Jean M J; Ma, Biwu
2010-09-01
New soluble quinacridone-based molecules have been developed as electron donor materials for solution-processed organic solar cells. By functionalizing the pristine pigment core of quinacridone with solubilizing alkyl chains and light absorbing/charge transporting thiophene units, i.e., bithiophene (BT) and thienylbenzo[c][1,2,5]thiadiazolethienyl (BTD), we prepared a series of multifunctional quinacridone-based molecules. These molecular donors show intense absorption in the visible spectral region, and the absorption range and intensity are well-tuned by the interaction between the quinacridone core and the incorporated thiophene units. The thin film absorption edge extends with the expansion of molecular conjugation, i.e., 552 nm for N,N'-di(2-ethylhexyl)quinacridone (QA), 592 nm for 2,9-Bis(5'-hexyl-2,2'-bithiophene)-N,N'-di(2-ethylhexyl)quinacridone (QA-BT), and 637 nm for 4-(5-hexylthiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (QA-BTD). The change of molecular structure also influences the electrochemical properties. Observed from cyclic voltammetry measurements, the oxidation and reduction potentials (vs ferrocene) are 0.7 and -1.83 V for QA, 0.54 and -1.76 V for QA-BT, and 0.45 and -1.68 V for QA-BTD. Uniform thin films can be generated from both single component molecular solutions and blend solutions of these molecules with [6,6]-phenyl C70-butyric acid methyl ester (PC70BM). The blend films exhibit space-charge limited current (SCLC) hole mobilities on the order of 1×10(-4) cm(2) V(-1) S(-1). Bulk heterojunction (BHJ) solar cells using these soluble molecules as donors and PC70BM as the acceptor were fabricated. Power conversion efficiencies (PCEs) of up to 2.22% under AM 1.5 G simulated 1 sun solar illumination have been achieved and external quantum efficiencies (EQEs) reach as high as ∼45%.
Smartphone application for mechanical quality assurance of medical linear accelerators
NASA Astrophysics Data System (ADS)
Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon
2017-06-01
Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05 ± 0.05° and 0.25 ± 0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05 ± 0.04° and 0.05 ± 0.04°, respectively. The MAE in QA measurements of light field was 0.39 ± 0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40 ± 0.35 mm and 0.41 ± 0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.
Smartphone application for mechanical quality assurance of medical linear accelerators.
Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon
2017-06-07
Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05 ± 0.05° and 0.25 ± 0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05 ± 0.04° and 0.05 ± 0.04°, respectively. The MAE in QA measurements of light field was 0.39 ± 0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40 ± 0.35 mm and 0.41 ± 0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.
Kallur, Therése; Blomberg, Pontus; Stenfelt, Sonya; Tryggvason, Kristian; Hovatta, Outi
2017-01-01
For quality assurance (QA) in stem cell banking, a planned system is needed to ensure that the banked products, stem cells, meet the standards required for research, clinical use, and commercial biotechnological applications. QA is process oriented, avoids, or minimizes unacceptable product defects, and particularly encompasses the management and operational systems of the bank, as well as the ethical and legal frameworks. Quality control (QC ) is product oriented and therefore ensures the stem cells of a bank are what they are expected to be. Testing is for controlling, not assuring, product quality, and is therefore a part of QC , not QA. Like QA, QC is essential for banking cells for quality research and translational application (Schwartz et al., Lancet 379:713-720, 2012). Human embryonic stem cells (hESCs), as cells derived from donated supernumerary embryos from in vitro fertilization (IVF) therapy, are different from other stem cell types in resulting from an embryo that has had two donors . This imposes important ethical and legal constraints on the utility of the cells, which, together with quite specific culture conditions, require special attention in the QA system. Importantly, although the origin and derivation of induced pluripotent stem cells (iPSCs ) differ from that of hESCs, many of the principles of QA for hESC banking are applicable to iPSC banking (Stacey et al., Cell Stem Cell 13:385-388, 2013). Furthermore, despite differences between the legal and regulatory frameworks for hESC and iPSC banking between different countries, the requirements for QA are being harmonized (Stacey et al., Cell Stem Cell 13:385-388, 2013; International Stem Cell Banking Initiative, Stem Cell Rev 5:301-314, 2009).
Summary Report for the Evaluation of Current QA Processes Within the FRMAC FAL and EPA MERL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanks, Sonoya T.; Redding, Ted; Jaussi, Lynn
The Federal Radiological Monitoring and Assessment Center (FRMAC) relies on accurate and defensible analytical laboratory data to support its mission. Therefore, FRMAC must ensure that the environmental analytical laboratories providing analytical services maintain an ongoing capability to provide accurate analytical results to DOE. It is undeniable that the more Quality Assurance (QA) and Quality Control (QC) measures required of the laboratory, the less resources that are available for analysis of response samples. Being that QA and QC measures in general are understood to comprise a major effort related to a laboratory’s operations, requirements should only be considered if they aremore » deemed “value-added” for the FRMAC mission. This report provides observations of areas for improvement and potential interoperability opportunities in the areas of Batch Quality Control Requirements, Written Communications, Data Review Processes, Data Reporting Processes, along with the lessons learned as they apply to items in the early phase of a response that will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.« less
Developing a quality assurance program for online services.
Humphries, A W; Naisawald, G V
1991-01-01
A quality assurance (QA) program provides not only a mechanism for establishing training and competency standards, but also a method for continuously monitoring current service practices to correct shortcomings. The typical QA cycle includes these basic steps: select subject for review, establish measurable standards, evaluate existing services using the standards, identify problems, implement solutions, and reevaluate services. The Claude Moore Health Sciences Library (CMHSL) developed a quality assurance program for online services designed to evaluate services against specific criteria identified by research studies as being important to customer satisfaction. These criteria include reliability, responsiveness, approachability, communication, and physical factors. The application of these criteria to the library's existing online services in the quality review process is discussed with specific examples of the problems identified in each service area, as well as the solutions implemented to correct deficiencies. The application of the QA cycle to an online services program serves as a model of possible interventions. The use of QA principles to enhance online service quality can be extended to other library service areas. PMID:1909197
Developing a quality assurance program for online services.
Humphries, A W; Naisawald, G V
1991-07-01
A quality assurance (QA) program provides not only a mechanism for establishing training and competency standards, but also a method for continuously monitoring current service practices to correct shortcomings. The typical QA cycle includes these basic steps: select subject for review, establish measurable standards, evaluate existing services using the standards, identify problems, implement solutions, and reevaluate services. The Claude Moore Health Sciences Library (CMHSL) developed a quality assurance program for online services designed to evaluate services against specific criteria identified by research studies as being important to customer satisfaction. These criteria include reliability, responsiveness, approachability, communication, and physical factors. The application of these criteria to the library's existing online services in the quality review process is discussed with specific examples of the problems identified in each service area, as well as the solutions implemented to correct deficiencies. The application of the QA cycle to an online services program serves as a model of possible interventions. The use of QA principles to enhance online service quality can be extended to other library service areas.
Strøman, Per; Reinert, William; Case, Mary E.; Giles, Norman H.
1979-01-01
In Neurospora crassa, the enzyme quinate (shikimate) dehydrogenase catalyzes the first reaction in the inducible quinic acid catabolic pathway and is encoded in the qa-3 gene of the qa cluster. In this cluster, the order of genes has been established as qa-1 qa-3 qa-4 qa-2. Amino-terminal sequences have been determined for purified quinate dehydrogenase from wild type and from UV-induced revertants in two different qa-3 mutants. These two mutants (M16 and M45) map at opposite ends of the qa-3 locus. In addition, mapping data (Case et al. 1978) indicate that the end of the qa-3 gene specified by M45 is closer to the adjacent qa-1 gene than is the end specified by the M16 mutant site. In one of the revertants (R45 from qa-3 mutant M45), the aminoterminal sequence for the first ten amino acids is identical to that of wild type. The other revertant (R1 from qa-3 mutant M16) differs from wild type at the amino-terminal end by a single altered residue at position three in the sequence. The observed change involves the substitution of an isoleucine in M16-R1 for a proline in wild type. This substitution requires a two-nucleotide change in the corresponding wild-type codon.——The combined genetic and biochemical data indicate that the qa-3 mutants M16 and M45 carry amino acid substitutions near the amino-terminal and carboxyl-terminal ends of the quinate dehydrogenase enzyme, respectively. On this basis we conclude that transcription of the qa-3 gene proceeds from the end specified by the M16 mutant site in the direction of the qa-1 gene. It appears probable that transcription is initiated from a promoter site within the qa cluster, possibly immediately adjacent to the qa-3 gene. PMID:159203
Whittaker, P J; Gollins, H J; Roaf, E J
2014-03-01
Infant male circumcision is practised by many groups for religious and cultural reasons. Prompted by a desire to minimize the complication rate and to help parents identify good quality providers, a quality assurance (QA) process for infant male circumcision providers has been developed in Greater Manchester. Local stakeholders agreed a set of minimum standards, and providers were invited to submit evidence of their practice in relation to these standards. In participation with parents, community groups, faith groups, healthcare staff and safeguarding partners, an information leaflet for parents was produced. Engagement work with local community groups, faith groups, providers and healthcare staff was vital to ensure that the resources are accessible to parents and that providers continue to engage in the process. Providers that met the QA standards have been listed on a local website. Details of the website are included in the information leaflet distributed by maternity services, health visitors, primary care and community and faith groups. The leaflet is available in seven languages. Local QA processes can be used to encourage and identify good practice and to support parents who need to access services outside the remit of the National Health Service.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... DEPARTMENT OF STATE [Public Notice 8054] The Amendment of the Designation of Al-Qa'ida in the Arabian Peninsula, aka Al-Qa'ida of Jihad Organization in the Arabian Peninsula, aka Tanzim Qa'idat al-Jihad fi Jazirat al-Arab, aka Al- Qa'ida in Yemen, aka Al-Qa'ida in the South Arabian Peninsula, as a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... DEPARTMENT OF STATE [Public Notice 8055] The Review and Amendment of the Designation of Al-Qa'ida in the Arabian Peninsula, aka Al-Qa'ida of Jihad Organization in the Arabian Peninsula, aka Tanzim Qa'idat al-Jihad fi Jazirat al-Arab, aka Al- Qa'ida in Yemen, aka Al-Qa'ida in the South Arabian Peninsula...
Helical tomotherapy quality assurance with ArcCHECK.
Chapman, David; Barnett, Rob; Yartsev, Slav
2014-01-01
To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquid and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ~2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Helical tomotherapy quality assurance with ArcCHECK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, David; Barnett, Rob; Yartsev, Slav, E-mail: slav.yartsev@lhsc.on.ca
2014-07-01
To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10 cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquidmore » and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ∼2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe
This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X
2014-01-01
To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.
Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-01-01
Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two‐arc plans. The comparison of VMATI with fixed‐field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p=0.47), PTV mean (p=0.12), PTV D95 and PTV V9547.5Gy (95%) (p=0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p=0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p=0.04). VMATI achieved lower lung V20 (p=0.05), whereas lung V5 (p=0.35) and mean lung dose (p=0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p=5.8E−10) and MUs reduced by up to 16% (p=0.001). Integral dose was not statistically different between the two planning techniques (p=0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p=0.76), PTV D95 (p=0.95), mean PTV dose (p=0.78), conformation number (CN) (p=0.26), and MUs (p=0.1). However, the treatment delivery time for VMATII increased significantly by two‐fold (p=3.0E−11) compared to VMATI. VMAT‐based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single‐arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI. PACS number: 87.53.Kn, 87.55.‐x PMID:23652258
Herwiningsih, Sri; Hanlon, Peta; Fielding, Andrew
2014-12-01
A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3 %/3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10 % overshoot errors.
Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming
2017-12-01
The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (P<0.001). The median follow-up time was 29.5 months. The 3-year overall survival (OS) rates of EF-IMRT and pelvic IMRT were 79.4 and 82.3% (P=0.45), respectively, and the 3-year disease-free survival (DFS) rates of EF-IMRT and pelvic IMRT were 61.0 and 73.7% (P=0.55), respectively. Cox's regression analysis revealed that EF irradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range.
Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming
2017-01-01
The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (P<0.001). The median follow-up time was 29.5 months. The 3-year overall survival (OS) rates of EF-IMRT and pelvic IMRT were 79.4 and 82.3% (P=0.45), respectively, and the 3-year disease-free survival (DFS) rates of EF-IMRT and pelvic IMRT were 61.0 and 73.7% (P=0.55), respectively. Cox's regression analysis revealed that EF irradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range. PMID:29344136
Nakamura, Satoshi; Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Kobayashi, Kazuma; Takahashi, Kana; Okamoto, Hiroyuki; Umezawa, Rei; Morota, Madoka; Sumi, Minako; Igaki, Hiroshi; Ito, Yoshinori; Itami, Jun
2016-05-03
The study aimed to compare urinary symptoms in patients with clinically localized prostate cancer after a combination of either low-dose-rate or high-dose-rate interstitial brachytherapy along with intensity-modulated radiation therapy (LDR-ISBT + IMRT or HDR-ISBT + IMRT). From June 2009 to April 2014, 16 and 22 patients were treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT, respectively. No patient from these groups was excluded from this study. The prescribed dose of LDR-ISBT, HDR-ISBT, and IMRT was 115 Gy, 20 Gy in 2 fractions, and 46 Gy in 23 fractions, respectively. Obstructive and irritative urinary symptoms were assessed by the International Prostate Symptom Score (IPSS) examined before and after treatments. After ISBT, IPSS was evaluated in the 1st and 4th weeks, then every 2-3 months for the 1st year, and every 6 months thereafter. The median follow-up of the patients treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT was 1070.5 days and 1048.5 days, respectively (p = 0.321). The IPSS-increment in the LDR-ISBT + IMRT group was greater than that in the HDR-ISBT + IMRT between 91 and 180 days after ISBT (p = 0.015). In the LDR-ISBT + IMRT group, the IPSS took longer time to return to the initial level than in the HDR-ISBT + IMRT group (in LDR-ISBT + IMRT group, the recovery time was 90 days later). The dose to urethra showed a statistically significant association with the IPSS-increment in the irritative urinary symptoms (p = 0.011). Clinical outcomes were comparable between both the groups. Both therapeutic modalities are safe and well suited for patients with clinically localized prostate cancer; however, it took patients longer to recover from LDR-ISBT + IMRT than from HDR-ISBT + IMRT. It is possible that fast dose delivery induced early symptoms and early recovery, while gradual dose delivery induced late symptoms and late recovery. Urethral dose reductions were associated with small increments in IPSS.
Lamiman, Kelly; Wong, Kenneth K; Tamrazi, Benita; Nosrati, Jason D; Olch, Arthur; Chang, Eric L; Kiehna, Erin N
2016-12-01
OBJECTIVE When complete resection of craniopharyngioma is not achievable or the sequelae are prohibitive, limited surgery and radiation therapy have demonstrated excellent local disease control while minimizing treatment-related sequelae. When residual tissue exists, there is a propensity for further cyst development and expansion during and after radiation therapy. This can result in obstructive hydrocephalus, visual changes, and/or clinical decline. The authors present a quantitative analysis of cyst expansion during and after radiotherapy and examine how it affected subsequent management. METHODS The authors performed an institutional review board-approved retrospective study of patients with histologically confirmed craniopharyngioma treated between 2000 and 2015 with surgery and intensity-modulated radiation therapy (IMRT) at a single institution. Volumetric measurements of cyst contours were generated by radiation oncology treatment planning software postoperatively, during IMRT, and up to 12 months after IMRT. Patient, tumor, and treatment-related variables were collected until the last known follow-up and were analyzed. RESULTS Twenty-seven patients underwent surgery and IMRT. The median total radiation dose was 54 Gy. Of the 27 patients, 11 patients (40.7%) demonstrated cyst expansions within 1 year of IMRT. Of note, all tumors with cyst expansion were radiographically Puget Grade 2. Maximal cyst expansion peaked at 4.27 months following radiation therapy, with a median volume growth of 4.1 cm 3 (mean 9.61 cm 3 ) above the postoperative cyst volume. Eight patients experienced spontaneous cyst regression without therapeutic intervention. Three patients experienced MRI-confirmed cyst enlargement during IMRT, all of whom required adaptive planning to ensure adequate coverage of the entire tumor volume. Two of these 3 patients required ventriculoperitoneal shunt placement and additional intervention. One underwent additional resection, and the other had placement of an intracystic catheter for aspiration and delivery of intracystic interferon within 12 months of completing IMRT. All 3 patients now have stable disease. CONCLUSIONS Craniopharyngioma cyst expansion occurred in approximately 40% of the patients during or after radiotherapy. In the majority of patients, cyst expansion was a self-limiting process and did not confer a worse outcome. During radiotherapy, cyst expansion may be apparent on image-guided radiation therapy. Adaptive IMRT planning may be required to ensure that the intended IMRT dose covers the entire tumor and cyst volume. The sequelae of cyst expansion include progressive hydrocephalus, which may be treated with a shunt. For patients with solitary cyst expansion, cyst aspiration and/or intracystic interferon may result in disease control.
Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine.
Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois
2013-01-01
Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, - 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3mm criteria. The mean and standard deviation of pixels passing gamma tolerance for XiO-generated IMRT plans was 96.1 ± 1.3, 96.6 ± 1.2, and 96.0 ± 1.5 in axial, coronal, and sagittal planes respectively. Corresponding results for Pinnacle-generated IMRT plans were 97.1 ± 1.5, 96.4 ± 1.2, and 96.5 ± 1.3 in axial, coronal, and sagittal planes respectively. © 2013 American Association of Medical Dosimetrists.
MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, D; Popple, R; Balter, P
2014-06-15
A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMATmore » has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.« less
SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Herzog, B; Sauer, O
2016-06-15
Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent highermore » doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.« less
TU-D-201-05: Validation of Treatment Planning Dose Calculations: Experience Working with MPPG 5.a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, J; Park, J; Kim, L
2016-06-15
Purpose: Newly published medical physics practice guideline (MPPG 5.a.) has set the minimum requirements for commissioning and QA of treatment planning dose calculations. We present our experience in the validation of a commercial treatment planning system based on MPPG 5.a. Methods: In addition to tests traditionally performed to commission a model-based dose calculation algorithm, extensive tests were carried out at short and extended SSDs, various depths, oblique gantry angles and off-axis conditions to verify the robustness and limitations of a dose calculation algorithm. A comparison between measured and calculated dose was performed based on validation tests and evaluation criteria recommendedmore » by MPPG 5.a. An ion chamber was used for the measurement of dose at points of interest, and diodes were used for photon IMRT/VMAT validations. Dose profiles were measured with a three-dimensional scanning system and calculated in the TPS using a virtual water phantom. Results: Calculated and measured absolute dose profiles were compared at each specified SSD and depth for open fields. The disagreement is easily identifiable with the difference curve. Subtle discrepancy has revealed the limitation of the measurement, e.g., a spike at the high dose region and an asymmetrical penumbra observed on the tests with an oblique MLC beam. The excellent results we had (> 98% pass rate on 3%/3mm gamma index) on the end-to-end tests for both IMRT and VMAT are attributed to the quality beam data and the good understanding of the modeling. The limitation of the model and the uncertainty of measurement were considered when comparing the results. Conclusion: The extensive tests recommended by the MPPG encourage us to understand the accuracy and limitations of a dose algorithm as well as the uncertainty of measurement. Our experience has shown how the suggested tests can be performed effectively to validate dose calculation models.« less
A grid to facilitate physics staffing justification.
Klein, Eric E
2009-12-03
Justification of clinical physics staffing levels is difficult due to the lack of direction as how to equate clinical needs with the staffing levels and competency required. When a physicist negotiates staffing requests to administration, she/he often refers to American College of Radiology staffing level suggestions, and resources such as the Abt studies. This approach is often met with questions as to how to fairly derive the time it takes to perform tasks. The result is often insufficient and/or inexperienced staff handling complex and cumbersome tasks. We undertook development of a staffing justification grid to equate the clinical needs to the quantity and quality of staffing required. The first step is using the Abt study, customized to the clinical setting, to derive time per task multiplied by the anticipated number of such tasks. Inclusion of vacation, meeting, and developmental time may be incorporated along with allocated time for education and administration. This is followed by mapping the tasks to the level of competency/experience needed. For example, in an academic setting the faculty appointment levels correlate with experience. Non-staff personnel, such as IMRT QA technicians or clerical staff, should also be part of the equation. By using the staffing justification grid, we derived strong documentation to justify a substantial budget increase. The grid also proved useful when our clinical demands changed. Justification for physics staffing can be significantly strengthened with a properly developed data-based time and work analysis. A staffing grid is presented, along with a development methodology that facilitated our justification. Though our grid is for a large academic facility, the methodology can be extended to a non-academic setting, and to a smaller scale. This grid method not only equates the clinical needs with the quantity of staffing, but can also help generate the personnel budget, based on the type of staff and personnel required. The grid is easily adaptable when changes to the clinical environment change, such as an increase in IMRT or IGRT applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Peng, J; Xie, J
2015-06-15
Purpose: The purpose of this study is to investigate the sensitivity of the planar quality assurance to MLC errors with different beam complexities in intensity-modulate radiation therapy. Methods: sixteen patients’ planar quality assurance (QA) plans in our institution were enrolled in this study, including 10 dynamic MLC (DMLC) IMRT plans measured by Portal Dosimetry and 6 static MLC (SMLC) IMRT plans measured by Mapcheck. The gamma pass rate was calculated using vender’s software. The field numbers were 74 and 40 for DMLC and SMLC, respectively. A random error was generated and introduced to these fields. The modified gamma pass ratemore » was calculated by comparing the original measured fluence and modified fields’ fluence. A decreasing gamma pass rate was acquired using the original gamma pass rate minus the modified gamma pass rate. Eight complexity scores were calculated in MATLAB based on the fluence and MLC sequence of these fields. The complexity scores include fractal dimension, monitor unit of field, modulation index, fluence map complexity, weighted average of field area, weighted average of field perimeter, and small aperture ratio ( <5cm{sup 2} and <50cm{sup 2}). The Spearman’s rank correlation coefficient was implemented to analyze the correlation between these scores and decreasing gamma rate. Results: The relation between the decreasing gamma pass rate and field complexity was insignificant for most complexity scores. The most significant complexity score was fluence map complexity for SMLC, which have ρ =0.4274 (p-value=0.0063). For DMLC, the most significant complex score was fractal dimension, which have ρ=−0.3068 (p-value=0.0081). Conclusions: According to the primarily Result of this study, the sensitivity gamma pass rate was not strongly relate to the field complexity.« less
Deep Question Answering for protein annotation
Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick
2015-01-01
Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/ PMID:26384372
Deep Question Answering for protein annotation.
Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick
2015-01-01
Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/. © The Author(s) 2015. Published by Oxford University Press.
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-process phosphoric acid process line. You can use existing plant procedures that are used for accounting... the process line. Conduct the representative bulk sampling using the applicable standard method in the...
Dosimetry for audit and clinical trials: challenges and requirements
NASA Astrophysics Data System (ADS)
Kron, T.; Haworth, A.; Williams, I.
2013-06-01
Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.
NASA Astrophysics Data System (ADS)
Kron, T.; Ungureanu, E.; Antony, R.; Hardcastle, N.; Clements, N.; Ukath, J.; Fox, C.; Lonski, P.; Wanigaratne, D.; Haworth, A.
2017-01-01
Stereotactic Ablative Body Radiotherapy (SABR) is an extension of the concepts of Stereotactic Radiosurgery from intracranial procedures to extracranial targets. This brings with it new technological challenges for set-up of a SABR program and continuing quality assurance. Compared with intracranial procedures SABR requires consideration of motion and inhomogeneities and has to deal with a much larger variety of targets ranging from lung to liver, kidney and bone. To meet many of the challenges virtually all advances in modern radiotherapy, such as Intensity Modulated and Image Guided Radiation Therapy (IMRT and IGRT) are used. Considering the few fractions and high doses per fraction delivered to complex targets it is not surprising that patient specific quality control is considered essential for safe delivery. Given the variety of targets and clinical scenarios we employ different strategies for different patients to ensure that the most important aspects of the treatment are appropriately tested, be it steep dose gradients, inhomogeneities or the delivery of dose in the presence of motion. The current paper reviews the different approaches and phantoms utilised at Peter MacCallum Cancer Centre for SABR QA.
Towards a Fuzzy Expert System on Toxicological Data Quality Assessment.
Yang, Longzhi; Neagu, Daniel; Cronin, Mark T D; Hewitt, Mark; Enoch, Steven J; Madden, Judith C; Przybylak, Katarzyna
2013-01-01
Quality assessment (QA) requires high levels of domain-specific experience and knowledge. QA tasks for toxicological data are usually performed by human experts manually, although a number of quality evaluation schemes have been proposed in the literature. For instance, the most widely utilised Klimisch scheme1 defines four data quality categories in order to tag data instances with respect to their qualities; ToxRTool2 is an extension of the Klimisch approach aiming to increase the transparency and harmonisation of the approach. Note that the processes of QA in many other areas have been automatised by employing expert systems. Briefly, an expert system is a computer program that uses a knowledge base built upon human expertise, and an inference engine that mimics the reasoning processes of human experts to infer new statements from incoming data. In particular, expert systems have been extended to deal with the uncertainty of information by representing uncertain information (such as linguistic terms) as fuzzy sets under the framework of fuzzy set theory and performing inferences upon fuzzy sets according to fuzzy arithmetic. This paper presents an experimental fuzzy expert system for toxicological data QA which is developed on the basis of the Klimisch approach and the ToxRTool in an effort to illustrate the power of expert systems to toxicologists, and to examine if fuzzy expert systems are a viable solution for QA of toxicological data. Such direction still faces great difficulties due to the well-known common challenge of toxicological data QA that "five toxicologists may have six opinions". In the meantime, this challenge may offer an opportunity for expert systems because the construction and refinement of the knowledge base could be a converging process of different opinions which is of significant importance for regulatory policy making under the regulation of REACH, though a consensus may never be reached. Also, in order to facilitate the implementation of Weight of Evidence approaches and in silico modelling proposed by REACH, there is a higher appeal of numerical quality values than nominal (categorical) ones, where the proposed fuzzy expert system could help. Most importantly, the deriving processes of quality values generated in this way are fully transparent, and thus comprehensible, for final users, which is another vital point for policy making specified in REACH. Case studies have been conducted and this report not only shows the promise of the approach, but also demonstrates the difficulties of the approach and thus indicates areas for future development. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GIS scientists and QA Professionals have combined their efforts to create this one day course that provides the QA community with a basic understanding of Geographic Information Systems (GIS). The course emphasizes the QA Aspects of GIS so that the QA Professional is better prep...
Evaluation of Larynx-Sparing Techniques With IMRT When Treating the Head and Neck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, Gareth J.; Rowbottom, Carl G.; Ho, Kean F.
2008-10-01
Purpose: Concern exists that widespread implementation of whole-field intensity-modulated radiotherapy (IMRT) for the treatment of head-and-neck cancer has resulted in increased levels of dysphagia relative to those seen with conventional planning. Other investigators have suggested an alternative junctioned-IMRT (J-IMRT) method, which matches an IMRT plan to a centrally blocked neck field to restrict the laryngeal dose and reduce dysphagia. The effect on target coverage and sparing of organs at risk, including laryngeal sparing, in the optimization was evaluated and compared with that achieved using a J-IMRT technique. Methods and Materials: A total of 13 oropharyngeal cancer whole-field IMRT plans weremore » planned with and without including laryngeal sparing in the optimization. A comparison of the target coverage and sparing of organs at risk was made using the resulting dose-volume histograms and dose distribution. The nine plans with disease located superior to the level of the larynx were replanned using a series of J-IMRT techniques to compare the two laryngeal-sparing techniques. Results: An average mean larynx dose of 29.1 Gy was achieved if disease did not extend to the level of the larynx, with 38.8 Gy for disease extending inferiorly and close to the larynx (reduced from 46.2 and 47.7 Gy, respectively, without laryngeal sparing). Additional laryngeal sparing could be achieved with J-IMRT (mean dose 24.4 Gy), although often at the expense of significantly reduced coverage of the target volume and with no improvement to other areas of the IMRT plan. Conclusion: The benefits of J-IMRT can be achieved with whole-field IMRT if laryngeal sparing is incorporated into the class solution. Inclusion of laryngeal sparing had no effect on other parameters in the plan.« less
Template for updating regulations in QA manuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.; Banerjee, B.
1992-01-01
Recently, the U.S. Department of Energy (DOE) issued new quality assurance (QA) orders to reflect current policies for conduct and operation of DOE-authorized programs and facilities. Establishing traceability to new QA criteria and requirements from former multidraft orders, QA manuals, and guidance documentation for DOE-funded work can be confusing. Identified critical considerations still must be addressed. Most of the newly stated QA criteria can be cross referenced, where applicable, to former QA plans and manuals. Where additional criteria occur, new procedures may be required, together with revisions in QA plans and manuals.
SU-E-J-125: A Novel IMRT Planning Technique to Spare Sacral Bone Marrow in Pelvic Cancer Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, S; Bhatia, S; Sun, W
Purpose: Develop an IMRT planning technique that can preferentially spare sacral bone marrow for pelvic cancer patients. Methods: Six pelvic cancer patients (two each with anal, cervical, and rectal cancer) were enrolled in an IRB approved protocol to obtain FLT PET images at simulation, during, and post chemoradiation therapy. Initially, conventional IMRT plans were created to maintain target coverage and reduce dose to OARs such as bladder, bowel, rectum, and femoral heads. Simulation FLT PET images were used to create IMRT plans to spare bone marrow identified as regions with SUV of 2 or greater (IMRT-BMS) within the pelvic bonesmore » from top of L3 to 5mm below the greater trochanter without compromising PTV coverage or OAR sparing when compared to the initial IMRT plan. IMRT-BMS plans used 8–10 beam angles that surrounded the subject. These plans were used for treatment. Retrospectively, the same simulation FLT PET images were used to create IMRT plans that spared bone marrow located in the sacral pelvic bone region (IMRT-FAN) also without compromising PTV coverage or OAR sparing. IMRT-FAN plans used 16 beam angles every 12° anteriorly from 90° – 270°. Optimization objectives for the sacral bone marrow avoidance region were weighted to reduce ≥V10. Results: IMRT-FAN reduced dose to the sacral bone marrow for all six subjects. The average V5, V10, V20, and V30 differences from the IMRT-BMS plan were −2.2 ± 1.7%, −11.4 ± 3.6%, −17.6 ± 5.1%, and −19.1 ± 8.1% respectively. Average PTV coverage change was 0.5% ± 0.8% from the conventional IMRT plan. Conclusion: An IMRT planning technique that uses beams from the anterior and lateral directions reduced the volume of sacral bone marrow that receives ≤10Gy while maintaining PTV coverage and OAR sparing. Additionally, the volume of sacral bone marrow that received 20 or 30 Gy was also reduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J; Yoon, M; Nam, T
2014-06-01
Purpose: The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. Methods: The 4DCT data for 10 patients who had been treated with Gate-IMRT for liver cancer were selected to create ITV-IMRT plans. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The period and range of respiratory motion were recorded in allmore » patients from 4DCT-generated movie data, and the same period and range were applied when operating the dynamic phantom to realize coincident respiratory conditions in each patient. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array and compared with the DVHs calculated for the Gate-IMRT plan. Results: Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Conclusion: Because Gate-IMRT cannot always be considered an ideal method with which to correct the respiratory motional effect, given the dosimetric variations in the gating system application and the increased treatment time, a prior analysis for optimal IMRT method selection should be performed while considering the patient's respiratory condition and IMRT plan results.« less
SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, S; Peng, J; Li, K
2016-06-15
Purpose: To investigate the dose volume histogram (DVH) prediction varieties based on intensity modulate radiotherapy (IMRT) plan or volume arc modulate radiotherapy (VMAT) plan models on the RapidPlan. Methods: Two DVH prediction models were generated in this study, including an IMRT model trained from 83 IMRT rectum plans and a VMAT model trained from 60 VMAT rectum plans. In the internal validation, 20 plans from each training database were selected to verify the clinical feasibility of the model. Then, 10 IMRT plans (PIMRT-by-IMRT-model) generated from IMRT model and 10 IMRT plans generated from VMAT model (PIMRT-by-VMAT-model) were compared on themore » dose to organs at risk (OAR), which included bladder, left and right femoral heads. The similar comparison was also performed on the VMAT plans generated from IMRT model (PVMAT-by-IMRT-model) and VMAT plans generated from VMAT (PVMAT-by-VMAT-model) model. Results: For the internal validation, all plans from IMRT or VMAT model shows significantly improvement on OAR sparing compared with the corresponded clinical ones. Compared to the PIMRT-by-VMAT-model, the PIMRT-by-IMRT-model has a reduction of 6.90±3.87%(p<0.001) on V40 6.63±3.62%(p<0.001) on V45 and 4.74±2.26%(p<0.001) on V50 in bladder; and a mean dose reduction of 2.12±1.75Gy(p=0.004) and 2.84±1.53Gy(p<0.001) in right and left femoral head, respectively. There was no significant difference on OAR sparing between PVMAT-by-IMRT-model and PVMAT-by-VMAT-model. Conclusion: The IMRT model for the rectal cancer in the RapidPlan can be applied to for VMAT planning. However, the VMAT model is not suggested to use in the IMRT planning. Cautions should be taken that the planning model based on some technique may not feasible to other planning techniques.« less
Hussein, Mohammad; Clementel, Enrico; Eaton, David J; Greer, Peter B; Haworth, Annette; Ishikura, Satoshi; Kry, Stephen F; Lehmann, Joerg; Lye, Jessica; Monti, Angelo F; Nakamura, Mitsuhiro; Hurkmans, Coen; Clark, Catharine H
2017-12-01
Quality assurance (QA) for clinical trials is important. Lack of compliance can affect trial outcome. Clinical trial QA groups have different methods of dose distribution verification and analysis, all with the ultimate aim of ensuring trial compliance. The aim of this study was to gain a better understanding of different processes to inform future dosimetry audit reciprocity. Six clinical trial QA groups participated. Intensity modulated treatment plans were generated for three different cases. A range of 17 virtual 'measurements' were generated by introducing a variety of simulated perturbations (such as MLC position deviations, dose differences, gantry rotation errors, Gaussian noise) to three different treatment plan cases. Participants were blinded to the 'measured' data details. Each group analysed the datasets using their own gamma index (γ) technique and using standardised parameters for passing criteria, lower dose threshold, γ normalisation and global γ. For the same virtual 'measured' datasets, different results were observed using local techniques. For the standardised γ, differences in the percentage of points passing with γ < 1 were also found, however these differences were less pronounced than for each clinical trial QA group's analysis. These variations may be due to different software implementations of γ. This virtual dosimetry audit has been an informative step in understanding differences in the verification of measured dose distributions between different clinical trial QA groups. This work lays the foundations for audit reciprocity between groups, particularly with more clinical trials being open to international recruitment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sturtevant, C.; Hackley, S.; Lee, R.; Holling, G.; Bonarrigo, S.
2017-12-01
Quality assurance and control (QA/QC) is one of the most important yet challenging aspects of producing research-quality data. Data quality issues are multi-faceted, including sensor malfunctions, unmet theoretical assumptions, and measurement interference from humans or the natural environment. Tower networks such as Ameriflux, ICOS, and NEON continue to grow in size and sophistication, yet tools for robust, efficient, scalable QA/QC have lagged. Quality control remains a largely manual process heavily relying on visual inspection of data. In addition, notes of measurement interference are often recorded on paper without an explicit pathway to data flagging. As such, an increase in network size requires a near-proportional increase in personnel devoted to QA/QC, quickly stressing the human resources available. We present a scalable QA/QC framework in development for NEON that combines the efficiency and standardization of automated checks with the power and flexibility of human review. This framework includes fast-response monitoring of sensor health, a mobile application for electronically recording maintenance activities, traditional point-based automated quality flagging, and continuous monitoring of quality outcomes and longer-term holistic evaluations. This framework maintains the traceability of quality information along the entirety of the data generation pipeline, and explicitly links field reports of measurement interference to quality flagging. Preliminary results show that data quality can be effectively monitored and managed for a multitude of sites with a small group of QA/QC staff. Several components of this framework are open-source, including a R-Shiny application for efficiently monitoring, synthesizing, and investigating data quality issues.
A methodology for automatic intensity-modulated radiation treatment planning for lung cancer
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Li, Xiaoqiang; Quan, Enzhuo M.; Pan, Xiaoning; Li, Yupeng
2011-07-01
In intensity-modulated radiotherapy (IMRT), the quality of the treatment plan, which is highly dependent upon the treatment planner's level of experience, greatly affects the potential benefits of the radiotherapy (RT). Furthermore, the planning process is complicated and requires a great deal of iteration, and is often the most time-consuming aspect of the RT process. In this paper, we describe a methodology to automate the IMRT planning process in lung cancer cases, the goal being to improve the quality and consistency of treatment planning. This methodology (1) automatically sets beam angles based on a beam angle automation algorithm, (2) judiciously designs the planning structures, which were shown to be effective for all the lung cancer cases we studied, and (3) automatically adjusts the objectives of the objective function based on a parameter automation algorithm. We compared treatment plans created in this system (mdaccAutoPlan) based on the overall methodology with plans from a clinical trial of IMRT for lung cancer run at our institution. The 'autoplans' were consistently better, or no worse, than the plans produced by experienced medical dosimetrists in terms of tumor coverage and normal tissue sparing. We conclude that the mdaccAutoPlan system can potentially improve the quality and consistency of treatment planning for lung cancer.
NASA Astrophysics Data System (ADS)
Nguyen, T. T. C.; Nguyen, B. T.; Mai, N. V.
2018-03-01
In this work, we made the comparison between IMRT plan and IMPT plan for a head and neck case. We used Prowess Panther to perform IMRT plan and LAP- CERR for IMPT plan. The result showed that IMPT plan had better coverage than IMRT plan. In the IMRT plan, normal structures received higher dose with higher volume. Especially, the maximum dose of spinal cord is 31.5 Gy (RBE) using IMRT technique compared to 13.5 Gy (RBE) using IMPT technique. These results showed that IMPT is beneficial for head and neck cancer compared to IMRT technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W
2015-06-15
Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, T; Kumaraswamy, L
Purpose: Detection of treatment delivery errors is important in radiation therapy. However, accurate quantification of delivery errors is also of great importance. This study aims to evaluate the 3DVH software’s ability to accurately quantify delivery errors. Methods: Three VMAT plans (prostate, H&N and brain) were randomly chosen for this study. First, we evaluated whether delivery errors could be detected by gamma evaluation. Conventional per-beam IMRT QA was performed with the ArcCHECK diode detector for the original plans and for the following modified plans: (1) induced dose difference error up to ±4.0% and (2) control point (CP) deletion (3 to 10more » CPs were deleted) (3) gantry angle shift error (3 degree uniformly shift). 2D and 3D gamma evaluation were performed for all plans through SNC Patient and 3DVH, respectively. Subsequently, we investigated the accuracy of 3DVH analysis for all cases. This part evaluated, using the Eclipse TPS plans as standard, whether 3DVH accurately can model the changes in clinically relevant metrics caused by the delivery errors. Results: 2D evaluation seemed to be more sensitive to delivery errors. The average differences between ECLIPSE predicted and 3DVH results for each pair of specific DVH constraints were within 2% for all three types of error-induced treatment plans, illustrating the fact that 3DVH is fairly accurate in quantifying the delivery errors. Another interesting observation was that even though the gamma pass rates for the error plans are high, the DVHs showed significant differences between original plan and error-induced plans in both Eclipse and 3DVH analysis. Conclusion: The 3DVH software is shown to accurately quantify the error in delivered dose based on clinically relevant DVH metrics, where a conventional gamma based pre-treatment QA might not necessarily detect.« less
SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, A; Johnson, C; Bartlett, G
2016-06-15
Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at anmore » interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.« less
Wang, W; Meng, Y T; Song, Y F; Sun, T; Xu, M; Shao, Q; Zhang, Y J; Li, J B
2018-05-23
Objective: To evaluated the unplanned coverage dose to the internal mammary chain (IMC) in patient treated with postmastectomy radiotherapy (PMRT). Methods: One hundred and thirty eight patients with breast cancer receiving radiotherapy (RT) in our hospital were retrospectively analyzed. Patients were divided into three groups: three-dimensional conformal radiotherapy (3D-CRT) group, forward intensity-modulated radiotherapy (F-IMRT) group and inverse IMRT (I-IMRT) group. The IMC were contoured according to Radiation Therapy Oncology Group (RTOG) consensus, and were not include into the planning target volume (PTV). The incidental irradiation dose to IMC among the three groups and the first three intercostal spaces IMC (ICS-IMC 1-3) were all compared, and explored the relationship between the mean doses (Dmean) of IMC and the OARs (ipsilateral lung and heart). Results: The dose delivered to IMC showed no difference in CRT, F-IMRT and I-IMRT(33.80 Gy, 29.65 Gy and 32.95 Gy). And 10.42%, 2.04%, and 9.76% patients achieved ≥45 Gy when treated with CRT, F-IMRT and I-IMRT. For the IMC dose in the first three intercostal spaces (ICS1-3), there was no difference to the three treatment plannings. The Dmean, V(20), V(30), V(40) and V(50) of the ICS-IMC2 and ICS-IMC3 were all obviously superior than ICS-IMC1 for all these three plannings. Moderate positive correlation was founded between Dmean for IMC and Dmean for heart for left breast cancer patients underwent CRT ( r =0.338, P =0.01). Whereas for F-IMRT and I-IMRT groups, positive correlation were founded between Dmean for IMC and Dmean and V(20) for ipsilateral lung for all patients (F-IMRT: r =0.366, P =0.010; r =0.318, P =0.026; I-IMRT: r =0.427, P =0.005; r =0.411, P =0.008). Conclusions: In 3D-CRT, F-IMRT and I-IMRT planning methods, partial patients get IMC irradiated doses that could achieve therapeutic doses. Compared with 3D-CRT, F-IMRT and I-IMRT further reduced the dose of irradiated organs. However, there is no difference in the dose coverage of IMC for the three planned approaches when the IMC made an unplanned target.
Wang, Henry; Xing, Lei
2016-11-08
An autopilot scheme of volumetric-modulated arc therapy (VMAT)/intensity-modulated radiation therapy (IMRT) planning with the guidance of prior knowl-edge is established with recorded interactions between a planner and a commercial treatment planning system (TPS). Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines. The TPS used in this study is a Windows-based Eclipse system. The interactions of our application program with Eclipse TPS are realized through a series of subrou-tines obtained by prerecording the mouse clicks or keyboard strokes of a planner in operating the TPS. A strategy to autopilot Eclipse VMAT/IMRT plan selection process is developed as a specific example of the proposed "scripting" method. The autopiloted planning is navigated by a decision function constructed with a reference plan that has the same prescription and similar anatomy with the case at hand. The calculation proceeds by alternating between the Eclipse optimization and the outer-loop optimization independent of the Eclipse. In the C# program, the dosimetric characteristics of a reference treatment plan are used to assess and modify the Eclipse planning parameters and to guide the search for a clinically sensible treatment plan. The approach is applied to plan a head and neck (HN) VMAT case and a prostate IMRT case. Our study demonstrated the feasibility of application programming method in C# environment with recorded interactions of planner-TPS. The process mimics a planner's planning process and automatically provides clinically sensible treatment plans that would otherwise require a large amount of manual trial and error of a planner. The proposed technique enables us to harness a commercial TPS by application programming via the use of recorded human computer interactions and provides an effective tool to greatly facilitate the treatment planning process. © 2016 The Authors.
Wang, Henry
2016-01-01
An autopilot scheme of volumetric‐modulated arc therapy (VMAT)/intensity‐modulated radiation therapy (IMRT) planning with the guidance of prior knowledge is established with recorded interactions between a planner and a commercial treatment planning system (TPS). Microsoft (MS) Visual Studio Coded UI is applied to record some common planner‐TPS interactions as subroutines. The TPS used in this study is a Windows‐based Eclipse system. The interactions of our application program with Eclipse TPS are realized through a series of subroutines obtained by prerecording the mouse clicks or keyboard strokes of a planner in operating the TPS. A strategy to autopilot Eclipse VMAT/IMRT plan selection process is developed as a specific example of the proposed “scripting” method. The autopiloted planning is navigated by a decision function constructed with a reference plan that has the same prescription and similar anatomy with the case at hand. The calculation proceeds by alternating between the Eclipse optimization and the outer‐loop optimization independent of the Eclipse. In the C# program, the dosimetric characteristics of a reference treatment plan are used to assess and modify the Eclipse planning parameters and to guide the search for a clinically sensible treatment plan. The approach is applied to plan a head and neck (HN) VMAT case and a prostate IMRT case. Our study demonstrated the feasibility of application programming method in C# environment with recorded interactions of planner‐TPS. The process mimics a planner's planning process and automatically provides clinically sensible treatment plans that would otherwise require a large amount of manual trial and error of a planner. The proposed technique enables us to harness a commercial TPS by application programming via the use of recorded human computer interactions and provides an effective tool to greatly facilitate the treatment planning process. PACS number(s): 87.55.D‐, 87.55.kd, 87.55.de PMID:27929493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J; Wang, J; Zhang, Z
2014-06-01
Purpose: The purpose of this study is to compare the dosimetric differences among volumetric modulated arc therapy (VMAT), fixed-field intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for the preoperative locally advanced rectal cancer (LARC). Methods: Ten LARC patients treated in our department using the simultaneous escalate strategy were retrospectively analyzed in this study. All patients had T3 with N+/− and were treated with IMRT. Two additional VMAT and 3DCRT plans were created for each patient. Both IMRT and VMAT had similar optimization objectives. The prescription was 50Gy to the PTV and 55Gy to the GTV. The target coveragemore » and organs at risk were compared for all the techniques.The paired, two-tailed Wilcoxcon signed-rank test was applied for statistical analysis. Results: IMRT and VMAT plans achieved comparable tumor response except for the conformality index (1.07 vs 1.19 and 1.08 vs 1.03 of IMRT vs VMAT for PTV-G and PTV-C respectively). Compared to VMAT, IMRT showed superior or similar dose sparing in the small bowel, bladder, femoral head. Both IMRT and VMAT had better organs at risk sparing and homogeneity index of PTV-G. Conclusion: All 3DCRT, IMRT and VMAT meet the prescript. The IMRT and VMAT provided comparable dosemitric parameters for target volume. IMRT shows better sparing for small bowel, bladder, femoral heads and normal tissue to 3DCRT and VMAT.« less
Kalina, Tomas; Flores-Montero, Juan; Lecrevisse, Quentin; Pedreira, Carlos E; van der Velden, Vincent H J; Novakova, Michaela; Mejstrikova, Ester; Hrusak, Ondrej; Böttcher, Sebastian; Karsch, Dennis; Sędek, Łukasz; Trinquand, Amelie; Boeckx, Nancy; Caetano, Joana; Asnafi, Vahid; Lucio, Paulo; Lima, Margarida; Helena Santos, Ana; Bonaccorso, Paola; van der Sluijs-Gelling, Alita J; Langerak, Anton W; Martin-Ayuso, Marta; Szczepański, Tomasz; van Dongen, Jacques J M; Orfao, Alberto
2015-02-01
Flow cytometric immunophenotyping has become essential for accurate diagnosis, classification, and disease monitoring in hemato-oncology. The EuroFlow Consortium has established a fully standardized "all-in-one" pipeline consisting of standardized instrument settings, reagent panels, and sample preparation protocols and software for data analysis and disease classification. For its reproducible implementation, parallel development of a quality assurance (QA) program was required. Here, we report on the results of four consecutive annual rounds of the novel external QA EuroFlow program. The novel QA scheme aimed at monitoring the whole flow cytometric analysis process (cytometer setting, sample preparation, acquisition and analysis) by reading the median fluorescence intensities (MedFI) of defined lymphocytes' subsets. Each QA participant applied the predefined reagents' panel on blood cells of local healthy donors. A uniform gating strategy was applied to define lymphocyte subsets and to read MedFI values per marker. The MedFI values were compared with reference data and deviations from reference values were quantified using performance score metrics. In four annual QA rounds, we analyzed 123 blood samples from local healthy donors on 14 different instruments in 11 laboratories from nine European countries. The immunophenotype of defined cellular subsets appeared sufficiently standardized to permit unified (software) data analysis. The coefficient of variation of MedFI for 7 of 11 markers performed repeatedly below 30%, average MedFI in each QA round ranged from 86 to 125% from overall median. Calculation of performance scores was instrumental to pinpoint standardization failures and their causes. Overall, the new EuroFlow QA system for the first time allowed to quantify the technical variation that is introduced in the measurement of fluorescence intensities in a multicentric setting over an extended period of time. EuroFlow QA is a proficiency test specific for laboratories that use standardized EuroFlow protocols. It may be used to complement, but not replace, established proficiency tests. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Beri, A. C.; Doll, C. E.
1990-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.
1989-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, S; Joosten, A; Fix, MK
Purpose: To estimate the dosimetric potential of mixed beam radiotherapy (MBRT) by using a single process optimizing the shape and weight of photon and electron apertures simultaneously based on Monte Carlo beamlet dose distributions. Methods: A simulated annealing based direct aperture optimization capable to perform simultaneous optimization was developed to generate treatment plans for MERT, photon-IMRT and MBRT. Both photon and electron apertures are collimated with the photon-MLC and are delivered in a segmented manner. For dosimetric comparison and for investigating the dependency on the number of apertures, photon-IMRT, MERT and MBRT plans were generated for an academic case consistingmore » of a water phantom containing two shallow PTVs differing in the maximal depth of 5 and 7 cm, respectively and two OARs in distal and lateral direction to the PTVs. Results: For the superficial PTV, the dose homogeneity (V95%–V107%) and the mean dose (in percent of the prescribed dose) to the distal and the lateral OARs of the MBRT plan (94.9%, 16.9%, 17.8%) are superior or comparable to those for the MERT (74%, 18.4%, 15.4%) and the photon-IMRT plan (89.4%, 20.8%, 24.7%). For the enlarged PTV, the dosimetric superiority of MBRT compared to MERT and photon-IMRT is even more pronounced. Furthermore, an MBRT plan with 12 electron and 10 photon apertures lead to an objective function value 38% lower than that of a photon-IMRT plan with 40 apertures. Conclusion: The results of simultaneous optimization for MBRT are promising with regards to further OAR sparing and improved dose coverage to the PTV compared to photon-IMRT and MERT. Especially superficial targets with deeper subparts (>5 cm) could substantially benefit. Moreover, MBRT seems to be a possible solution of two downsides of photon-IMRT, namely the extended low dose bath and the requirement of numerous apertures. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less
Chen, Guang-Pei; Ahunbay, Ergun; Li, X Allen
2016-04-01
To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data are accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose-volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Ahunbay, Ergun; Li, X. Allen
Purpose: To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. Methods: The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data aremore » accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose–volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. Conclusions: The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.« less
The treatment of extensive scalp lesions combining electrons with intensity-modulated photons.
Chan, Maria F; Song, Yulin; Burman, Chandra; Chui, Chen S; Schupak, Karen
2006-01-01
This study was to investigate the feasibility and potential benefits of combining electrons with intensity modulated photons (IMRT+e) for patients with extensive scalp lesions. A case of a patient with an extensive scalp lesion, in which the target volume covered the entire front half of the scalp, is presented. This approach incorporated the electron dose into the inverse treatment planning optimization. The resulting doses to the planning target volume (PTV) and relevant critical structures were compared. Thermoluminescent dosimeters (TLD), diodes, and GAFCHROMIC EBT films were used to verify the accuracy of the techniques. The IMRT+e plan produced a superior dose distribution to the patient as compared to the IMRT plan in terms of reduction of the dose to the brain with the same dose conformity and homogeneity in the target volumes. This study showed that IMRT+e is a viable treatment modality for extensive scalp lesions patients. It provides a feasible alternative to existing treatment techniques, resulting in improved homogeneity of dose to the PTV compared to conventional electron techniques and a decrease in dose to the brain compared to photon IMRT alone.
Zemplényi, A T; Kaló, Z; Kovács, G; Farkas, R; Beöthe, T; Bányai, D; Sebestyén, Z; Endrei, D; Boncz, I; Mangel, L
2018-01-01
The aim of our analysis was to compare the cost-effectiveness of high-dose intensity-modulated radiation therapy (IMRT) and hypofractionated intensity-modulated radiation therapy (HF-IMRT) versus conventional dose three-dimensional radiation therapy (3DCRT) for the treatment of localised prostate cancer. A Markov model was constructed to calculate the incremental quality-adjusted life years and costs. Transition probabilities, adverse events and utilities were derived from relevant systematic reviews. Microcosting in a large university hospital was applied to calculate cost vectors. The expected mean lifetime cost of patients undergoing 3DCRT, IMRT and HF-IMRT were 7,160 euros, 6,831 euros and 6,019 euros respectively. The expected quality-adjusted life years (QALYs) were 5.753 for 3DCRT, 5.956 for IMRT and 5.957 for HF-IMRT. Compared to 3DCRT, both IMRT and HF-IMRT resulted in more health gains at a lower cost. It can be concluded that high-dose IMRT is not only cost-effective compared to the conventional dose 3DCRT but, when used with a hypofractionation scheme, it has great cost-saving potential for the public payer and may improve access to radiation therapy for patients. © 2016 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... Known as Tanzim Qa'idat al-Jihad fi Jazirat al- Arab, Also Known as al-Qa'ida Organization in the... Tanzim Qa'idat al- Jihad fi Jazirat al-Arab, also known as al-Qa'ida Organization in the Arabian...
Ionization chamber-based reference dosimetry of intensity modulated radiation beams.
Bouchard, Hugo; Seuntjens, Jan
2004-09-01
The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zwahlen, Daniel R.; Department of Radiation Oncology, University Hospital Zurich, Zurich; Ruben, Jeremy D.
2009-06-01
Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the Internationalmore » Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.« less
Superior sulcus non-small cell lung carcinoma: A comparison of IMRT and 3D-RT dosimetry.
Truntzer, Pierre; Antoni, Delphine; Santelmo, Nicola; Schumacher, Catherine; Falcoz, Pierre-Emmanuel; Quoix, Elisabeth; Massard, Gilbert; Noël, Georges
2016-01-01
A dosimetric study comparing intensity modulated radiotherapy (IMRT) by TomoTherapy to conformational 3D radiotherapy (3D-RT) in patients with superior sulcus non-small cell lung cancer (NSCLC). IMRT became the main technique in modern radiotherapy. However it was not currently used for lung cancers. Because of the need to increase the dose to control lung cancers but because of the critical organs surrounding the tumors, the gains obtainable with IMRT is not still demonstrated. A dosimetric comparison of the planned target and organs at risk parameters between IMRT and 3D-RT in eight patients who received preoperative or curative intent irradiation. In the patients who received at least 66 Gy, the mean V95% was significantly better with IMRT than 3D-RT (p = 0.043). IMRT delivered a lower D2% compared to 3D-RT (p = 0.043). The IH was significantly better with IMRT (p = 0.043). The lung V 5 Gy and V 13 Gy were significantly higher in IMRT than 3D-RT (p = 0.043), while the maximal dose (D max) to the spinal cord was significantly lower in IMRT (p = 0.043). The brachial plexus D max was significantly lower in IMRT than 3D-RT (p = 0.048). For patients treated with 46 Gy, no significant differences were found. Our study showed that IMRT is relevant for SS-NSCLC. In patients treated with a curative dose, it led to a reduction of the exposure of critical organs, allowing a better dose distribution in the tumor. For the patients treated with a preoperative schedule, our results provide a basis for future controlled trials to improve the histological complete response by increasing the radiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollom, Erqi L., E-mail: erqiliu@stanford.edu; Wang, Guanying; Harris, Jeremy P.
Purpose: We examined the impact of intensity modulated radiation therapy (IMRT) on hospitalization rates in the Surveillance, Epidemiology, and End Results (SEER)–Medicare population with anal squamous cell carcinoma (SCC). Methods and Materials: We performed a retrospective cohort study using the SEER-Medicare database. We identified patients with nonmetastatic anal SCC diagnosed between 2001 and 2011 and treated with chemoradiation therapy. We assessed the relation between IMRT and first hospitalization by use of a multivariate competing-risk model, as well as instrumental variable analysis, using provider IMRT affinity as our instrument. Results: Of the 1165 patients included in our study, 458 (39%) receivedmore » IMRT. IMRT use increased over time and was associated more with regional and provider characteristics than with patient characteristics. The 3- and 6-month cumulative incidences of first hospitalization were 41.9% (95% confidence interval [CI], 37.3%-46.4%) and 47.6% (95% CI, 43.0%-52.2%), respectively, for the IMRT cohort and 46.7% (95% CI, 43.0%-50.4%) and 52.1% (95% CI, 48.4%-55.7%), respectively, for the non-IMRT cohort. IMRT was associated with a decreased hazard of first hospitalization compared with 3-dimensional radiation techniques (hazard ratio, 0.70; 95% CI, 0.58-0.84; P=.0002). Instrumental variable analysis suggested an even greater reduction in hospitalizations with IMRT after controlling for unmeasured confounders. There was a trend toward improved overall survival with IMRT, with an adjusted hazard ratio of 0.77 (95% CI, 0.59-1.00; P=.05). Conclusions: The use of IMRT is associated with reduced hospitalizations in elderly patients with anal SCC. Further work is warranted to understand the long-term health and cost impact of IMRT, particularly for patient subgroups most at risk of toxicity and hospitalization.« less
Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao
2017-05-16
The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.
Simeonova, Anna; Abo-Madyan, Yasser; El-Haddad, Mostafa; Welzel, Grit; Polednik, Martin; Boggula, Ramesh; Wenz, Frederik; Lohr, Frank
2012-02-01
IMRT allows dose escalation for large lung tumors, but respiratory motion may compromise delivery. A treatment plan that modulates fluence predominantly in the transversal direction and leaves the fluence identical in the direction of the breathing motion may reduce this problem. Planning-CT-datasets of 20 patients with Stage I-IV non small cell lung cancer (NSCLC) formed the basis of this study. A total of two IMRT plans and one 3D plan were created for each patient. Prescription dose was 60 Gy to the CTV and 70 Gy to the GTV. For the 3D plans an energy of 18 MV photons was used. IMRT plans were calculated for 6 MV photons with 13 coplanar and with 17 noncoplanar beams. Robustness of the used method of anisotropic modulation toward breathing motion was tested in a 13-field IMRT plan. As a consequence of identical prescription doses, mean target doses were similar for 3D and IMRT. Differences between 3D and 13- and 17-field IMRT were significant for CTV Dmin (43 Gy vs. 49.1 Gy vs. 48.6 Gy; p<0.001) and CTV D(95) (53.2 Gy vs. 55.0 Gy vs. 55.4 Gy; p=0.001). The D(mean) of the contralateral lung was significantly lower in the 17-field plans (17-field IMRT vs. 13- vs. 3D: 12.5 Gy vs. 14.8 Gy vs. 15.8 Gy: p<0.05). The spinal cord dose limit of 50 Gy was always respected in IMRT plans and only in 17 of 20 3D-plans. Heart D(max) was only marginally reduced with IMRT (3D vs. 13- vs. 17-field IMRT: 38.2 Gy vs. 36.8 Gy vs. 37.8 Gy). Simulated breathing motion caused only minor changes in the IMRT dose distribution (~0.5-1 Gy). Anisotropic modulation of IMRT improves dose delivery over 3D-RT and renders IMRT plans robust toward breathing induced organ motion, effectively preventing interplay effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, B; Sun, B; Yaddanapudi, S
Purpose: To describe the clinical use of a Linear Accelerator (Linac) DailyQA system with only EPID and OBI. To assess the reliability over an 18-month period and improve the robustness of this system based on QA failure analysis. Methods: A DailyQA solution utilizing an in-house designed phantom, combined EPID and OBI image acquisitions, and a web-based data analysis and reporting system was commissioned and used in our clinic to measure geometric, dosimetry and imaging components of a Varian Truebeam Linac. During an 18-month period (335 working days), the Daily QA results, including the output constancy, beam flatness and symmetry, uniformity,more » TPR20/10, MV and KV imaging quality, were collected and analyzed. For output constancy measurement, an independent monthly QA system with an ionization chamber (IC) and annual/incidental TG51 measurements with ADCL IC were performed and cross-compared to Daily QA system. Thorough analyses were performed on the recorded QA failures to evaluate the machine performance, optimize the data analysis algorithm, adjust the tolerance setting and improve the training procedure to prevent future failures. Results: A clinical workflow including beam delivery, data analysis, QA report generation and physics approval was established and optimized to suit daily clinical operation. The output tests over the 335 working day period cross-correlated with the monthly QA system within 1.3% and TG51 results within 1%. QA passed with one attempt on 236 days out of 335 days. Based on the QA failures analysis, the Gamma criteria is revised from (1%, 1mm) to (2%, 1mm) considering both QA accuracy and efficiency. Data analysis algorithm is improved to handle multiple entries for a repeating test. Conclusion: We described our 18-month clinical experience on a novel DailyQA system using only EPID and OBI. The long term data presented demonstrated the system is suitable and reliable for Linac daily QA.« less
Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan
2011-06-08
A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT), to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT) in standard, preoperative treatment for rectal cancer. Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1) or node-positive (N = 9), and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005), bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005), pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005), and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005), with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005). We found that the IMRT treatment volumes were typically larger than that covered by classic bony landmark-derived fields, without incurring penalty with respect to adjacent organs-at-risk. For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.
Clary, Karen M; Davey, Diane D; Naryshkin, Sonya; Austin, R Marshall; Thomas, Nicole; Chmara, Beth Anne; Sugrue, Chiara; Tworek, Joseph
2013-02-01
The College of American Pathologists (CAP) conducted a national survey of gynecologic cytology quality assurance (QA) practices. Experts in gynecologic cytology were asked to join 5 working groups that studied the survey data on different aspects of QA. Evaluating the survey data and follow-up questions online, together with a review of pertinent literature, the working groups developed a series of preliminary statements on good laboratory practices in cytology QA. These were presented at a consensus conference and electronic voting occurred. To evaluate a set of QA monitors in gynecologic cytology. Working group 1 evaluated (1) monitoring interpretive rate categories for Papanicolaou tests (Pap tests), (2) concordance of cytotechnologist and pathologist interpretations before sign-out, and (3) turnaround time for Pap tests. The statements are based on a survey of gynecologic cytology QA practice patterns and of opinions from working group members and consensus conference attendees. The outcomes of this process demonstrate the current state of practice patterns in gynecologic cytology QA. Monitoring interpretive rates for all Bethesda System categories is potentially useful, and it is most useful to monitor interpretive rates for cytotechnologists individually and in comparison to the entire laboratory. Laboratories need to determine what level of discrepancy between cytotechnologist and pathologist interpretations of Pap tests is important to track. Laboratories should consider formalizing procedures and policies to adjudicate such discrepant interpretations. Turnaround time should be monitored in gynecologic cytology, but individual laboratories should determine how to measure and use turnaround time internally.
Jansen-Schmidt, V; Paschen, U; Kröger, S; Bohuslavizki, K H; Clausen, M
2001-12-01
In 1995, the management of the University Clinic Hamburg-Eppendorf proposed to establish a total quality assurance (QA) system. A revised QA-system has been introduced stepwise in the department of nuclear medicine since 1997, and certification was achieved in accordance with DIN EN ISO 9001:2000 on February 14, 2001. The QA-handbook is divided into two parts. The first part contains operational (diagnostic and therapeutic) procedures in so-called standard operating procedures (SOP). They describe the indication of procedures as well as the competences and time necessary in a standardized manner. Up to now, more than 70 SOPs have been written as a collaborative approach between technicians and physicians during daily clinical routine after analysing and discussing the procedures. Thus, the results were more clearly defined processes and more satisfied employees. The second part consists of general rules and directions concerning the security of work and equipment as well as radiation protection tasks, hygiene etc. as it is required by the law. This part was written predominantly by the management of the department of nuclear-medicine and the QA-coordinator. Detailed information for the patients, documentation of the work-flows as well as the medical report was adopted to the QM-system. Although in the introduction phase of a QA-system a vast amount of time is necessary, some months later a surplus for the clinical workday will become available. The well defined relations of competences and procedures will result in a gain of time, a reduction of costs and a help to ensure the legal demands. Last but not least, the QA-system simply helps to build up confidence and acceptance both by the patients and the referring physicians.
Guidance for Quality Assurance Project Plans, EPA QA/G-5
provides guidance to EPA employees and other organizations involved in developing Quality Assurance (QA) Project Plans that address the specifications listed in EPA Requirements for QA Project Plans (QA/R-5)
The Lung Image Database Consortium (LIDC): Ensuring the integrity of expert-defined “truth”
Armato, Samuel G.; Roberts, Rachael Y.; McNitt-Gray, Michael F.; Meyer, Charles R.; Reeves, Anthony P.; McLennan, Geoffrey; Engelmann, Roger M.; Bland, Peyton H.; Aberle, Denise R.; Kazerooni, Ella A.; MacMahon, Heber; van Beek, Edwin J.R.; Yankelevitz, David; Croft, Barbara Y.; Clarke, Laurence P.
2007-01-01
Rationale and Objectives Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish “truth” for algorithm development, training, and testing. The integrity of this “truth,” however, must be established before investigators commit to this “gold standard” as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the “truth” collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. Materials and Methods One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the “blinded read phase”), radiologists independently identified and annotated lesions, assigning each to one of three categories: “nodule ≥ 3mm,” “nodule < 3mm,” or “non-nodule ≥ 3mm.” For the second read (the “unblinded read phase”), the same radiologists independently evaluated the same CT scans but with all of the annotations from the previously performed blinded reads presented; each radiologist could add marks, edit or delete their own marks, change the lesion category of their own marks, or leave their marks unchanged. The post-unblinded-read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of (1) identification of potential errors introduced during the complete image annotation process (such as two marks on what appears to be a single lesion or an incomplete nodule contour) and (2) correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. Results A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. Conclusion The establishment of “truth” must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems. PMID:18035275
Software tool for portal dosimetry research.
Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C
2008-09-01
This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.
Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging
Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.
2013-01-01
Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible. PMID:23637895
PFLOTRAN Verification: Development of a Testing Suite to Ensure Software Quality
NASA Astrophysics Data System (ADS)
Hammond, G. E.; Frederick, J. M.
2016-12-01
In scientific computing, code verification ensures the reliability and numerical accuracy of a model simulation by comparing the simulation results to experimental data or known analytical solutions. The model is typically defined by a set of partial differential equations with initial and boundary conditions, and verification ensures whether the mathematical model is solved correctly by the software. Code verification is especially important if the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment [Oberkampf and Trucano (2007)]. Justified confidence in a particular computational tool requires clarity in the exercised physics and transparency in its verification process with proper documentation. We present a quality assurance (QA) testing suite developed by Sandia National Laboratories that performs code verification for PFLOTRAN, an open source, massively-parallel subsurface simulator. PFLOTRAN solves systems of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport processes in porous media. PFLOTRAN's QA test suite compares the numerical solutions of benchmark problems in heat and mass transport against known, closed-form, analytical solutions, including documentation of the exercised physical process models implemented in each PFLOTRAN benchmark simulation. The QA test suite development strives to follow the recommendations given by Oberkampf and Trucano (2007), which describes four essential elements in high-quality verification benchmark construction: (1) conceptual description, (2) mathematical description, (3) accuracy assessment, and (4) additional documentation and user information. Several QA tests within the suite will be presented, including details of the benchmark problems and their closed-form analytical solutions, implementation of benchmark problems in PFLOTRAN simulations, and the criteria used to assess PFLOTRAN's performance in the code verification procedure. References Oberkampf, W. L., and T. G. Trucano (2007), Verification and Validation Benchmarks, SAND2007-0853, 67 pgs., Sandia National Laboratories, Albuquerque, NM.
Simultaneous analysis and quality assurance for diffusion tensor imaging.
Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A
2013-01-01
Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Lee, H; Choi, K
Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantrymore » and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations.« less
Quality Assessment of Collection 6 MODIS Atmospheric Science Products
NASA Astrophysics Data System (ADS)
Manoharan, V. S.; Ridgway, B.; Platnick, S. E.; Devadiga, S.; Mauoka, E.
2015-12-01
Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth's atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the recently processed C6 products. We will also describe the various tools and approaches developed to verify and assess the algorithm changes implemented by the science team to address known issues in the products and improve the quality of the products.
Experience-based quality control of clinical intensity-modulated radiotherapy planning.
Moore, Kevin L; Brame, R Scott; Low, Daniel A; Mutic, Sasa
2011-10-01
To incorporate a quality control tool, according to previous planning experience and patient-specific anatomic information, into the intensity-modulated radiotherapy (IMRT) plan generation process and to determine whether the tool improved treatment plan quality. A retrospective study of 42 IMRT plans demonstrated a correlation between the fraction of organs at risk (OARs) overlapping the planning target volume and the mean dose. This yielded a model, predicted dose = prescription dose (0.2 + 0.8 [1 - exp(-3 overlapping planning target volume/volume of OAR)]), that predicted the achievable mean doses according to the planning target volume overlap/volume of OAR and the prescription dose. The model was incorporated into the planning process by way of a user-executable script that reported the predicted dose for any OAR. The script was introduced to clinicians engaged in IMRT planning and deployed thereafter. The script's effect was evaluated by tracking δ = (mean dose-predicted dose)/predicted dose, the fraction by which the mean dose exceeded the model. All OARs under investigation (rectum and bladder in prostate cancer; parotid glands, esophagus, and larynx in head-and-neck cancer) exhibited both smaller δ and reduced variability after script implementation. These effects were substantial for the parotid glands, for which the previous δ = 0.28 ± 0.24 was reduced to δ = 0.13 ± 0.10. The clinical relevance was most evident in the subset of cases in which the parotid glands were potentially salvageable (predicted dose <30 Gy). Before script implementation, an average of 30.1 Gy was delivered to the salvageable cases, with an average predicted dose of 20.3 Gy. After implementation, an average of 18.7 Gy was delivered to salvageable cases, with an average predicted dose of 17.2 Gy. In the prostate cases, the rectum model excess was reduced from δ = 0.28 ± 0.20 to δ = 0.07 ± 0.15. On surveying dosimetrists at the end of the study, most reported that the script both improved their IMRT planning (8 of 10) and increased their efficiency (6 of 10). This tool proved successful in increasing normal tissue sparing and reducing interclinician variability, providing effective quality control of the IMRT plan development process. Copyright © 2011 Elsevier Inc. All rights reserved.
Exploring the Learning Mechanism of Web-Based Question-Answering Systems and Their Design
ERIC Educational Resources Information Center
Zhang, Yin
2010-01-01
In recent years, a number of models concerning question-answering (QA) systems have been put forward. But many of them stress technology and neglect the research of QA itself. In this paper, we analyse the essence of QA and discuss the relationship between technology and QA. On that basis, we propose that when designing web-based QA systems, more…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Mariana; Li, X. Allen; Ma Lijun
2005-07-01
Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for themore » IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered. This finding suggests that the IMRT SIB has a better therapeutic ratio. Three IMRT SIB plans with 25 x 1.8 Gy to the pelvic nodes and 25 x 2.4 Gy (60 Gy), 25 x 2.8 Gy (70 Gy), and 25 x 3.2 Gy (80 Gy) to the tumor site were generated for the example patient case. The target coverage ranged from 94% to 95.5%. The sparing of bladder and rectum is significantly improved with the 60 to 70 Gy SIB treatments, as compared with the conventional treatments. The proposed SIB treatment can reduce the treatment time to 5 weeks. Conclusions: An IMRT simultaneous integrated boost to replace the conventional two-phase treatments (whole pelvic irradiation followed by brachytherapy or EBRT boost) is radiobiologically and dosimetricaly feasible for locally advanced gynecological cancers that may not be amenable to brachytherapy for anatomic or medical reasons. In addition to its shorter treatment time, the proposed IMRT SIB can provide significant sparing to normal structures, which offers potential for dose escalation. Issues such as organ motion and changing anatomy as tumor responds still must be addressed.« less
Taxonomy-Based Approaches to Quality Assurance of Ontologies
Perl, Yehoshua; Ochs, Christopher
2017-01-01
Ontologies are important components of health information management systems. As such, the quality of their content is of paramount importance. It has been proven to be practical to develop quality assurance (QA) methodologies based on automated identification of sets of concepts expected to have higher likelihood of errors. Four kinds of such sets (called QA-sets) organized around the themes of complex and uncommonly modeled concepts are introduced. A survey of different methodologies based on these QA-sets and the results of applying them to various ontologies are presented. Overall, following these approaches leads to higher QA yields and better utilization of QA personnel. The formulation of additional QA-set methodologies will further enhance the suite of available ontology QA tools. PMID:29158885
IMRT delivers lower radiation doses to dental structures than 3DRT in head and neck cancer patients.
Fregnani, Eduardo Rodrigues; Parahyba, Cláudia Joffily; Morais-Faria, Karina; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Mendes; de Moraes, Fábio Yone; da Conceição Vasconcelos, Karina Gondim Moutinho; Menegussi, Gisela; Santos-Silva, Alan Roger; Brandão, Thais B
2016-09-07
Radiotherapy (RT) is frequently used in the treatment of head and neck cancer, but different side-effects are frequently reported, including a higher frequency of radiation-related caries, what may be consequence of direct radiation to dental tissue. The intensity-modulated radiotherapy (IMRT) was developed to improve tumor control and decrease patient's morbidity by delivering radiation beams only to tumor shapes and sparing normal tissue. However, teeth are usually not included in IMRT plannings and the real efficacy of IMRT in the dental context has not been addressed. Therefore, the aim of this study is to assess whether IMRT delivers lower radiation doses to dental structures than conformal 3D radiotherapy (3DRT). Radiation dose delivery to dental structures of 80 patients treated for head and neck cancers (oral cavity, tongue, nasopharynx and oropharynx) with IMRT (40 patients) and 3DRT (40 patients) were assessed by individually contouring tooth crowns on patients' treatment plans. Clinicopathological data were retrieved from patients' medical files. The average dose of radiation to teeth delivered by IMRT was significantly lower than with 3DRT (p = 0.007); however, only patients affected by nasopharynx and oral cavity cancers demonstrated significantly lower doses with IMRT (p = 0.012 and p = 0.011, respectively). Molars received more radiation with both 3DRT and IMRT, but the latter delivered significantly lower radiation in this group of teeth (p < 0.001), whereas no significant difference was found for the other dental groups. Maxillary teeth received lower doses than mandibular teeth, but only IMRT delivered significantly lower doses (p = 0.011 and p = 0.003). Ipsilateral teeth received higher doses than contralateral teeth with both techniques and IMRT delivered significantly lower radiation than 3DRT for contralateral dental structures (p < 0.001). IMRT delivered lower radiation doses to teeth than 3DRT, but only for some groups of patients and teeth, suggesting that this decrease was more likely due to the protection of other high risk organs, and was not enough to remove teeth from the zone of high risk for radiogenic disturbance (>30Gy).
Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.
Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua
2014-05-08
This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of radiotherapy techniques for upper esophageal carcinoma.
Chen, Huixiao; Winey, Brian A; Daartz, Juliane; Oh, Kevin S; Shin, John H; Gierga, David P
2015-01-01
To evaluate plan quality and delivery efficiency gains of volumetric modulated arc therapy (VMAT) versus a multicriteria optimization-based intensity modulated radiation therapy (MCO-IMRT) for stereotactic radiosurgery of spinal metastases. MCO-IMRT plans (RayStation V2.5; RaySearch Laboratories, Stockholm, Sweden) of 10 spinal radiosurgery cases using 7-9 beams were developed for clinical delivery, and patients were replanned using VMAT with partial arcs. The prescribed dose was 18 Gy, and target coverage was maximized such that the maximum dose to the planning organ-at-risk volume (PRV) of the spinal cord was 10 or 12 Gy. Dose-volume histogram (DVH) constraints from the clinically acceptable MCO-IMRT plans were utilized for VMAT optimization. Plan quality and delivery efficiency with and without collimator rotation for MCO-IMRT and VMAT were compared and analyzed based upon DVH, planning target volume coverage, homogeneity index, conformity number, cord PRV sparing, total monitor units (MU), and delivery time. The VMAT plans were capable of matching most DVH constraints from the MCO-IMRT plans. The ranges of MU were 4808-7193 for MCO-IMRT without collimator rotation, 3509-5907 for MCO-IMRT with collimator rotation, 4444-7309 for VMAT without collimator rotation, and 3277-5643 for VMAT with collimator of 90 degrees. The MU for the VMAT plans were similar to their corresponding MCO-IMRT plans, depending upon the complexity of the target and PRV geometries, but had a larger range. The delivery times of the MCO-IMRT and VMAT plans, both with collimator rotation, were 18.3 ± 2.5 minutes and 14.2 ± 2.0 minutes, respectively (P < .05). The MCO-IMRT and VMAT can create clinically acceptable plans for spinal radiosurgery. The MU for MCO-IMRT and VMAT can be reduced significantly by utilizing a collimator rotation following the orientation of the spinal cord. Plan quality for VMAT is similar to MCO-IMRT, with similar MU for both modalities. Delivery times can be reduced by nominally 25% with VMAT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.
2008-11-01
Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Syam; Aswathi, C.P.
Purpose: To evaluate the directional dependency of 2D seven 29 ion chamber array clinically with different IMRT plans. Methods: 25 patients already treated with IMRT plans were selected for the study. Verification plans were created for each treatment plan in eclipse 10 treatment planning system using the AAA algorithm with the 2D array and the Octavius CT phantom. Verification plans were done 2 times for a single patient. First plan with real IMRT (plan-related approach) and second plan with zero degree gantry angle (field-related approach). Measurements were performed on a Varian Clinac-iX, linear accelerator equipped with a millennium 120 multileafmore » collimator. Fluence was measured for all the delivered plans and analyzed using the verisoft software. Comparison was done by selecting the fluence delivered in static gantry (zero degree gantry) versus IMRT with real gantry angles. Results: The gamma pass percentage is greater than 97 % for all IMRT delivered with zero gantry angle and between 95%–98% for real gantry angles. Dose difference between the TPS calculated and measured for IMRT delivered with zero gantry angle was found to be between (0.03 to 0.06Gy) and with real gantry angles between (0.02 to 0.05Gy). There is a significant difference between the gamma analysis between the zero degree and true angle with a significance of 0.002. Standard deviation of gamma pass percentage between the IMRT plans with zero gantry angle was 0.68 and for IMRT with true gantry angle was found to be 0.74. Conclusion: The gamma analysis for IMRT with zero degree gantry angles shows higher pass percentage than IMRT delivered with true gantry angles. Verification plans delivered with true gantry angles lower the verification accuracy when 2D array is used for measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Hiraoka, Masahiro
Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping themore » minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose-volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.« less
A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment
QUAN, ENZHUO M.; LI, XIAOQIANG; LI, YUPENG; WANG, XIAOCHUN; KUDCHADKER, RAJAT J.; JOHNSON, JENNIFER L.; KUBAN, DEBORAH A.; LEE, ANDREW K.; ZHANG, XIAODONG
2013-01-01
Purpose We performed a comprehensive comparative study of the plan quality between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of prostate cancer. Methods and Materials Eleven patients with prostate cancer treated at our institution were randomly selected for this study. For each patient, a VMAT plan and a series of IMRT plans using an increasing number of beams (8, 12, 16, 20, and 24 beams) were examined. All plans were generated using our in-house-developed automatic inverse planning (AIP) algorithm. An existing 8-beam clinical IMRT plan, which was used to treat the patient, was used as the reference plan. For each patient, all AIP-generated plans were optimized to achieve the same level of planning target volume (PTV) coverage as the reference plan. Plan quality was evaluated by measuring mean dose to and dose-volume statistics of the organs-at-risk, especially the rectum, from each type of plan. Results For the same PTV coverage, the AIP-generated VMAT plans had significantly better plan quality in terms of rectum sparing than the 8-beam clinical and AIP-generated IMRT plans (p < 0.0001). However, the differences between the IMRT and VMAT plans in all the dosimetric indices decreased as the number of beams used in IMRT increased. IMRT plan quality was similar or superior to that of VMAT when the number of beams in IMRT was increased to a certain number, which ranged from 12 to 24 for the set of patients studied. The superior VMAT plan quality resulted in approximately 30% more monitor units than the 8-beam IMRT plans, but the delivery time was still less than 3 minutes. Conclusions Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating prostate cancer. PMID:22704703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William; Filion, Edith; Roberge, David
2007-09-01
Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less
Social Milieu Oriented Routing: A New Dimension to Enhance Network Security in WSNs.
Liu, Lianggui; Chen, Li; Jia, Huiling
2016-02-19
In large-scale wireless sensor networks (WSNs), in order to enhance network security, it is crucial for a trustor node to perform social milieu oriented routing to a target a trustee node to carry out trust evaluation. This challenging social milieu oriented routing with more than one end-to-end Quality of Trust (QoT) constraint has proved to be NP-complete. Heuristic algorithms with polynomial and pseudo-polynomial-time complexities are often used to deal with this challenging problem. However, existing solutions cannot guarantee the efficiency of searching; that is, they can hardly avoid obtaining partial optimal solutions during a searching process. Quantum annealing (QA) uses delocalization and tunneling to avoid falling into local minima without sacrificing execution time. This has been proven a promising way to many optimization problems in recently published literatures. In this paper, for the first time, with the help of a novel approach, that is, configuration path-integral Monte Carlo (CPIMC) simulations, a QA-based optimal social trust path (QA_OSTP) selection algorithm is applied to the extraction of the optimal social trust path in large-scale WSNs. Extensive experiments have been conducted, and the experiment results demonstrate that QA_OSTP outperforms its heuristic opponents.
Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S
2010-01-01
To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.
Koshy, Matthew; Malik, Renuka; Spiotto, Michael; Mahmood, Usama; Rusthoven, Chad G; Sher, David J
2017-06-01
To determine the effect of radiotherapy (RT) technique on treatment compliance and overall survival (OS) in patients with stage III non-small lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). This study included patients with stage III NSCLC in the National Cancer Database treated between 2003 and 2011 with definitive CRT to 60-63 Gray (Gy). Radiation treatment interruption (RTI) was defined as a break of ≥4 days. Treatment technique was dichotomized as intensity modulated (IMRT) or non-IMRT techniques. Out of the cohort of 7492, 35% had a RTI and 10% received IMRT. With a median follow-up of surviving patients of 32 months, the median survival for those with non-IMRT vs. IMRT was 18.2 months vs. 20 months (p<0.0001). Median survival for those with and without an RTI≥4 days was 16.1 months vs. 19.8 months (p<0.0001). Use of IMRT predicted for a decreased likelihood of RTI (odds ratio, 0.84, p=0.04). On multivariable analysis for OS, IMRT had a HR of 0.89 (95% CI: 0.80-0.98, p=0.01) and RTI had a HR of 1.2 (95% confidence interval (CI): 1.14-1.27, p=0.001). IMRT was associated with small but significant survival advantage for patients with stage III NSCLC treated with CRT. A RTI led to inferior survival, and both IMRT and RTI were independently associated with OS. Additional research should investigate whether improved tolerability, reduced normal tissue exposure, or superior coverage drives the association between IMRT and improved survival. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van
2011-12-01
Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques.more » Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Yin, Y
Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less
Managed care and the diffusion of intensity-modulated radiotherapy for prostate cancer.
Jacobs, Bruce L; Zhang, Yun; Skolarus, Ted A; Wei, John T; Montie, James E; Schroeck, Florian R; Hollenbeck, Brent K
2012-12-01
To better understand associations between managed care penetration in health care markets and the adoption of intensity-modulated radiotherapy (IMRT). We used Surveillance, Epidemiology, and End Results-Medicare data to identify men diagnosed with prostate cancer between 2001 and 2007 who were treated with radiotherapy (n = 55,162). We categorized managed care penetration in Health Service Areas (HSAs) as low (<3%), intermediate (3%-10%), and high (>10%), and assessed our main outcomes (ie, probability of IMRT adoption, which is the ability of a health care market to deliver IMRT, and IMRT utilization in HSA markets) using a Cox proportional hazards model and Poisson regression model, respectively. Compared with markets with low managed care penetration, populations in highly penetrated HSAs were more racially diverse (25% vs 15% non-white, P <.01), densely populated (2110 vs 145 people/square mile, P <.01), and wealthier (median income, $48,500 vs $31,900, P <.01). The probability of IMRT adoption was greatest in markets with the highest managed care penetration (eg, 0.82 [high] vs 0.72 [low] in 2007, P = .05). Among adopting markets, the use of IMRT increased in all HSA categories. However, relative to markets with low managed care penetration, IMRT use was constrained in markets with the highest penetration (0.69 [high] vs 0.76 [low] in 2007, P <.01). Markets with higher managed care penetration demonstrated a greater propensity for acquiring IMRT technology. However, after adopting IMRT, more highly penetrated markets had roughly 7% slower growth in IMRT use during the study period. These findings provide insight into the implications of delivery system reforms for cancer-related technologies. Copyright © 2012 Elsevier Inc. All rights reserved.
Quality assurance testing of acoustic doppler current profiler transform matrices
Armstrong, Brandy; Fulford, Janice M.; Thibodeaux, Kirk G.
2015-01-01
The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) is nationally responsible for the design, testing, evaluation, repair, calibration, warehousing, and distribution of hydrologic instrumentation in use within the USGS Water Mission Area (WMA). The HIF's Hydraulic Laboratory has begun routine quality assurance (QA) testing and documenting the performance of every USGS WMA acoustic Doppler current profiler (ADCP) used for making velocity and discharge measurements. All existing ADCPs are being registered and tracked in a database maintained by the HIF, and called for QA checks in the HIF's Hydraulic Laboratory on a 3- year cycle. All new ADCPs purchased directly from the manufacturer as well as ADCPs sent to the HIF or the manufacturer for repair are being registered and tracked in the database and QA checked in the laboratory before being placed into service. Meters failing the QA check are sent directly to the manufacturer for repairs and rechecked by HIF or removed from service. Although this QA program is specific to the SonTek1 and Teledyne RD Instruments1, ADCPs most commonly used within the WMA, it is the intent of the USGS Office of Surface Water and the HIF to expand this program to include all bottom tracking ADCPs as they become available and more widely used throughout the WMA. As part of the HIF QA process, instruments are inspected for physical damage, the instrument must pass the ADCP diagnostic self-check tests, the temperature probe must be within ± 2 degrees Celsius of a National Institute of Standards and Technology traceable reference thermometer and the distance made good over a fixed distance must meet the manufacturer's specifications (+/-0.25% or +/-1% difference). The transform matrix is tested by conducting distance-made-good (DMG) tests comparing the straight-line distance from bottom tracking to the measured tow-track distance. The DMG test is conducted on each instrument twice in the forward and reverse directions (4 tows) at four orientations (16 total tows); with beam 1 orientated 0 degrees to the towing direction; turned 45 degrees to the towing direction; turned 90 degrees to the towing direction; and turned 135 degrees to the towing direction. All QA data files and summary results are archived. This paper documents methodology, participation and preliminary results of WMA ADCP QA testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, JP; Deufel, CL
Purpose: Bile duct cancer affects 2–3 thousand people annually in the United States. Radiation therapy has been shown to double median survival, with combined external beam and intraluminal high dose-rate (HDR) brachytherapy being most effective. Endoscopic retrograde cholangiopancreatography (ERCP) biliary HDR, a less-invasive alternative to trans-hepatic brachytherapy, is delivered through a catheter that travels a tortuous path from nose to bile duct, requiring wire drive force and dexterity beyond typical afterloader performance specifications. Thus, specific afterloader quality assurance(QA) is recommended for this procedure. Our aim was to create a device and process for Varisource afterloader clearance QA with objectives thatmore » it be quantitative and can monitor afterloader performance over time, compare performance between two distinct afterloaders and potentially Result in a predictive nomogram for patient-specific clearance. Methods: Based on retrospective reconstruction of 20 ERCP patient anatomies, we designed a phantom to test afterloader ability to drive the source wire along an intended treatment path. The ability of the afterloader to fully extend the intended treatment path is a function of number and diameters of turns. We have determined experimentally that relative position of the turns does not impact performance. Results: Both patient and QA paths involve three common turns/loops: a large turn representing the stomach(10.8cm±2.0cm), an elliptical loop representing the duodenum(7.3cm±1.5cmx4.8cm±0.7cm), and a final turn at the end of the bile duct that may be tight for some patient-specific anatomies and absent in others(3.7cm±0.7cm, where present). Our phantom design uses anatomical average turn diameters for the stomach and duodenum then terminates in a turn of quantitatively selectable diameter. The smallest final turn diameter that an afterloader can pass is recorded as the QA parameter. Conclusion: With this device and QA process, we have the ability to quantitatively evaluate and track our afterloader performance for a technically challenging ERCP brachytherapy procedure.« less
NASA Astrophysics Data System (ADS)
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-01
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-16
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of [Formula: see text] in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko
2005-12-01
To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.
Kraft, Jennifer R.; Vance, Russell E.; Pohl, Jan; Martin, Amy M.; Raulet, David H.; Jensen, Peter E.
2000-01-01
The major histocompatibility complex class Ib protein, Qa-1b, serves as a ligand for murine CD94/NKG2A natural killer (NK) cell inhibitory receptors. The Qa-1b peptide-binding site is predominantly occupied by a single nonameric peptide, Qa-1 determinant modifier (Qdm), derived from the leader sequence of H-2D and L molecules. Five anchor residues were identified in this study by measuring the peptide-binding affinities of substituted Qdm peptides in experiments with purified recombinant Qa-1b. A candidate peptide-binding motif was determined by sequence analysis of peptides eluted from Qa-1 that had been folded in the presence of random peptide libraries or pools of Qdm derivatives randomized at specific anchor positions. The results indicate that Qa-1b can bind a diverse repertoire of peptides but that Qdm has an optimal primary structure for binding Qa-1b. Flow cytometry experiments with Qa-1b tetramers and NK target cell lysis assays demonstrated that CD94/NKG2A discriminates between Qa-1b complexes containing peptides with substitutions at nonanchor positions P4, P5, or P8. Our findings suggest that it may be difficult for viruses to generate decoy peptides that mimic Qdm and raise the possibility that competitive replacement of Qdm with other peptides may provide a novel mechanism for activation of NK cells. PMID:10974028
Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning.
Sharfo, Abdul Wahab M; Voet, Peter W J; Breedveld, Sebastiaan; Mens, Jan Willem M; Hoogeman, Mischa S; Heijmen, Ben J M
2015-03-01
In a published study on cervical cancer, 5-beam IMRT was inferior to single arc VMAT. Here we compare 9, 12, and 20 beam IMRT with single and dual arc VMAT. For each of 10 patients, automated plan generation with the in-house Erasmus-iCycle optimizer was used to assist an expert planner in generating the five plans with the clinical TPS. For each patient, all plans were clinically acceptable with a high and similar PTV coverage. OAR sparing increased when going from 9 to 12 to 20 IMRT beams, and from single to dual arc VMAT. For all patients, 12 and 20 beam IMRT were superior to single and dual arc VMAT, with substantial variations in gain among the study patients. As expected, delivery of VMAT plans was significantly faster than delivery of IMRT plans. Often reported increased plan quality for VMAT compared to IMRT has not been observed for cervical cancer. Twenty and 12 beam IMRT plans had a higher quality than single and dual arc VMAT. For individual patients, the optimal delivery technique depends on a complex trade-off between plan quality and treatment time that may change with introduction of faster delivery systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jacobs, Bruce L.; Zhang, Yun; Skolarus, Ted A.; Hollenbeck, Brent K.
2012-01-01
To study the impact of new, expensive, and unproven therapies to treat prostate cancer, we investigated the dissemination of intensity-modulated radiotherapy (IMRT). IMRT is an innovative treatment for prostate cancer that delivers higher doses of radiation with improved precision compared to alternative radiotherapies. We observed rapid adoption of this new treatment among men diagnosed with prostate cancer from 2001 through 2007, despite uncertainty about its relative effectiveness. We compared patient and disease characteristics of those receiving IMRT and the previous radiation standard of care, three-dimensional conformal therapy; assessed intermediate-term outcomes; and examined potential factors associated with the increased use of IMRT. We found that in the early period of IMRT adoption (2001–03) men with high-risk disease were more likely to receive IMRT, whereas after IMRT’s initial dissemination (2004–07) men with low-risk disease had fairly similar likelihoods of receiving IMRT as men with high-risk disease. This raises concerns about overtreatment, as well as considerable health care costs, because treatment with IMRT costs $15,000–$20,000 more than other standard therapies. As health care delivery reforms gain traction, policy makers must balance the promotion of new, yet unproven, technology with the risk of overuse. PMID:22492892
Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice.
Lima, Leandro Ceotto Freitas; Saliba, Soraya Wilke; Andrade, João Marcus Oliveira; Cunha, Maria Luisa; Cassini-Vieira, Puebla; Feltenberger, John David; Barcelos, Lucíola Silva; Guimarães, André Luiz Sena; de-Paula, Alfredo Mauricio Batista; de Oliveira, Antônio Carlos Pinheiro; Santos, Sérgio Henrique Sousa
2017-07-01
Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.
Automatic learning-based beam angle selection for thoracic IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amit, Guy; Marshall, Andrea; Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca
Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationallymore » efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume coverage and organ at risk sparing and were superior over plans produced with fixed sets of common beam angles. The great majority of the automatic plans (93%) were approved as clinically acceptable by three radiation therapy specialists. Conclusions: The results demonstrated the feasibility of utilizing a learning-based approach for automatic selection of beam angles in thoracic IMRT planning. The proposed method may assist in reducing the manual planning workload, while sustaining plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu; Elliott, David A.; Chen, Yiyi
Purpose: To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). Methods and Materials: A sample of 5979 treatment site–specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Results: Of 601 evaluablemore » responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Conclusion: Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices.« less
Nabavizadeh, Nima; Elliott, David A; Chen, Yiyi; Kusano, Aaron S; Mitin, Timur; Thomas, Charles R; Holland, John M
2016-03-15
To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). A sample of 5979 treatment site-specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Of 601 evaluable responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices. Copyright © 2016 Elsevier Inc. All rights reserved.
SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Zhu, T
2014-06-01
Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, C; Ju, S; Ahn, Y
2014-06-01
Purpose: We investigated the dosimetric benefit and treatment efficiency of carotid-sparing TomoHelical (TH) three-dimensional conformal radiotherapy (3DCRT) for early glottic cancer. Methods: Computed tomography (CT) simulation was performed for 10 patients with early-stage (T1N0M0) glottic squamous cell carcinoma. The clinical target volume, planning target volume (PTV), carotid artery (CA), and spinal cord (SP) were delineated for each CT data set. Two-field 3DCRT (2F-3DCRT), three-field intensity-modulated radiation therapy (IMRT) (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated, with a total prescribed dose of 67.5 Gy in 30 fractions to the PTV for each patient. In order to evaluate plan quality, dosimetricmore » characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the PTV, V35, V50, and V63 for the CAs and in terms of the maximum dose for the SP. Additionally, treatment planning and delivery times were compared to evaluate treatment efficiency. Results: The CIs for 3F-IMRT (0.650±0.05), TH-IMRT (0.643±0.03), and TH-3DCRT (0.631±0.03) were much better than that for 2F-3DCRT (0.318±0.03). The HIs for TH-IMRT (1.053±0.01) and TH-3DCRT (1.055±0.01) were slightly better than those for 2F-3DCRT (1.062±0.01) and 3F-IMRT (1.091±0.007). 2F-3DCRT showed poor CA sparing in terms of the V35, V50, and V63 compared to 3F-IMRT, TH-IMRT, and TH-3DCRT (p<0.05), whereas there was no significant dose difference between 3F-IMRT, TH-IMRT, and TH-3DCRT (p>0.05). The maximum dose to the SP with all plans was below 45 Gy. The treatment planning times for 2F-3DCRT (5.9±0.66 min) and TH-3DCRT (7.32±0.94 min) were much lower than those for 3F-IMRT (45.51±2.76 min) and TH-IMRT (35.58±4.41 min), whereas the delivery times with all plans was below 3 minutes. Conclusion: TH-3DCRT showed excellent carotid sparing capability, comparable to that with TH-IMRT, with high treatment efficiency and short planning and treatment times, comparable to those for 2F-3DCRT, while maintaining good PTV coverage. This work was supported by the Technology Innovation Program, 10040362, Development of an integrated management solution for radiation therapy funded by the Ministry of Knowledge Economy (MKE, Korea)« less
2013-06-01
08-1-0358 TITLE: Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes PRINCIPAL...AND SUBTITLE Multi-Adaptive Plan (MAP) IMRT to Accommodate Independent 5a. CONTRACT NUMBER W81XWH-08-1-0358 Movement of the Prostate and...multi-adaptive plan (MAP) IMRT to accommodate independent movement of the two targeted tumor volumes. In this project, we evaluated two adaptive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Han, B; Xing, L
2016-06-15
Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less
SU-F-T-558: ArcCheck for Patient Specific QA in Stereotactic Ablative Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, P; RMIT University, Bundoora; Tajaldeen, A
2016-06-15
Purpose: Stereotactic Ablative Radiotherapy (SABR) is one of the most preferred treatment techniques for early stage lung cancer. This technique has been extended to other treatment sites like Spine, Liver, Scapula, Sternum etc., This has resulted in increased physics QA time on machine. In this study, we’ve tested the feasibility of using ArcCheck as an alternative method to replace film dosimetry. Methods: Twelve patients with varied diagnosis of Lung, Liver, scapula, sternum and Spine undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients which include ionization chamber and film dosimetry. The required gamma criteriamore » for each SABR plan to pass QA and proceed to treatment is 95% (3%,1mm). In addition to this routine process, the treatment plans were exported on to an ArcCheck phantom. The planned and measured dose from the ArcCheck device were compared using four different gamma criteria: 2%,2 mm, 3%,2 mm, 3%,1 mm and 3%, 3 mm. In addition to this, we’ve also introduced errors to gantry, collimator and couch angle to assess sensitivity of the ArcCheck with potential delivery errors. Results: The ArcCheck mean passing rates for all twelve cases were 76.1%±9.7% for gamma criteria 3%,1 mm, 89.5%±5.3% for 2%,2 mm, 92.6%±4.2% for 3%,2 mm, and 97.6%±2.4% for 3%,3 mm gamma criteria. When SABR spine cases are excluded, we observe ArcCheck passing rates higher than 95% for all the studied cases with 3%, 3mm, and ArcCheck results in acceptable agreement with the film gamma results. Conclusion: Our ArcCheck results at 3%, 3 mm were found to correlate well with our non-SABR spine routine patient specific QA results (3%,1 mm). We observed significant reduction in QA time on using ArcCheck for SABR QA. This study shows that ArcCheck could replace film dosimetry for all sites except SABR spine.« less
Huang, Shih-Han S; Heidenheim, Paul A; Gallo, Kerri; Jayakumar, Saumya; Lindsay, Robert M
2011-01-01
Access blood water flow rate (Qaw) can be measured during hemodialysis using an online effective ionic dialysance (EID) methodology. Fresenius employ this methodology in their 2008K dialysis machine. The machine computer converts Qaw to an access blood flow rate (Fresenius Qa) using a generic blood water constant (BWC). We wished to validate this BWC. 18 patients had Fresenius Qa measurements using the EID and these were compared with a 'gold standard' ultrasound dilution methodology (Transonic Qa). Qa values were also obtained by removing the BWC from Fresenius Qa values to obtain the Qaw and recorrecting it with individualized patient factors using hematocrit and total protein values (HctTp Qa). The measurements were repeated after 1 h. There were no significant differences between Fresenius and Transonic, nor between HctTp and Transonic Qa values (p > 0.17). There were strong correlations between both sets of values (r > 0.856; p < 0.001). There was a significant correlation between the pairs of Transonic Qa values (r = 0.823; p < 0.007), but not for Fresenius Qa pairs (r = 0.573; p > 0.07). It was surmised that the BWC was not valid post-dialysis. The generic BWC is comparable to individualized blood water correction factors when Qa measures are made early in dialysis and prior to ultrafiltration treatment. Copyright © 2011 S. Karger AG, Basel.
MO-B-BRB-00: Three Dimensional Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, T.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, L.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
E-Learning Quality Assurance: A Process-Oriented Lifecycle Model
ERIC Educational Resources Information Center
Abdous, M'hammed
2009-01-01
Purpose: The purpose of this paper is to propose a process-oriented lifecycle model for ensuring quality in e-learning development and delivery. As a dynamic and iterative process, quality assurance (QA) is intertwined with the e-learning development process. Design/methodology/approach: After reviewing the existing literature, particularly…
Impact of gastric filling on radiation dose delivered to gastroesophageal junction tumors.
Bouchard, Myriam; McAleer, Mary Frances; Starkschall, George
2010-05-01
This study examined the impact of gastric filling variation on target coverage of gastroesophageal junction (GEJ) tumors in three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), or IMRT with simultaneous integrated boost (IMRT-SIB) plans. Eight patients previously receiving radiation therapy for esophageal cancer had computed tomography (CT) datasets acquired with full stomach (FS) and empty stomach (ES). We generated treatment plans for 3DCRT, IMRT, or IMRT-SIB for each patient on the ES-CT and on the FS-CT datasets. The 3DCRT and IMRT plans were planned to 50.4 Gy to the clinical target volume (CTV), and the same for IMRT-SIB plus 63.0 Gy to the gross tumor volume (GTV). Target coverage was evaluated using dose-volume histogram data for patient treatments simulated with ES-CT sets, assuming treatment on an FS for the entire course, and vice versa. FS volumes were a mean of 3.3 (range, 1.7-7.5) times greater than ES volumes. The volume of the GTV receiving >or=50.4 Gy (V(50.4Gy)) was 100% in all situations. The planning GTV V(63Gy) became suboptimal when gastric filling varied, regardless of whether simulation was done on the ES-CT or the FS-CT set. Stomach filling has a negligible impact on prescribed dose delivered to the GEJ GTV, using either 3DCRT or IMRT planning. Thus, local relapses are not likely to be related to variations in gastric filling. Dose escalation for GEJ tumors with IMRT-SIB may require gastric filling monitoring.
THE IMPORTANCE OF A SUCCESSFUL QUALITY ASSURANCE (QA) PROGRAM FROM A RESEARCH MANAGER'S PERSPECTIVE
The paper discusses the Air Pollution Prevention and Control Division's Quality Assurance (QA) program and the approaches used to meet QA requirements in the Division. The presentation is a technical manager's perspective of the Division's requirements for and approach to QA in i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.
2013-10-01
Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacingmore » between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage. These findings suggest clinical situations where each technique may be most useful if DS constraints are to be employed.« less
Static beam tomotherapy as an optimisation method in whole-breast radiation therapy (WBRT).
Squires, Matthew; Hu, Yunfei; Byrne, Mikel; Archibald-Heeren, Ben; Cheers, Sonja; Bosco, Bruno; Teh, Amy; Fong, Andrew
2017-12-01
TomoTherapy (Accuray, Sunnyvale, CA) has recently introduced a static form of tomotherapy: TomoDirect™ (TD). This study aimed to evaluate TD against a contemporary intensity modulated radiation therapy (IMRT) alternative through comparison of target and organ at risk (OAR) doses in breast cancer cases. A secondary objective was to evaluate planning efficiency by measuring optimisation times. Treatment plans of 27 whole-breast radiation therapy (WBRT) patients optimised with a tangential hybrid IMRT technique were replanned using TD. Parameters included a dynamic field width of 2.5 cm, a pitch of 0.251 and a modulation factor of 2.000; 50 Gy in 25 fractions was prescribed and planning time recorded. The planning metrics used in analysis were ICRU based, with the mean PTV minimum (D 99 ) used as the point of comparison. Both modalities met ICRU50 target heterogeneity objectives (TD D 99 = 48.0 Gy vs. IMRT = 48.1 Gy, P = 0.26; TD D 1 = 53.5 Gy vs. IMRT = 53.0 Gy, P = 0.02; Homogeneity index TD = 0.11 vs. IMRT = 0.10, P = 0.03), with TD plans generating higher median doses (TD D 50 = 51.1 Gy vs. IMRT = 50.9 Gy, P = 0.03). No significant difference was found in prescription dose coverage (TD V 50 = 85.5% vs. IMRT = 82.0%, P = 0.09). TD plans produced a statistically significant reduction in V 5 ipsilateral lung doses (TD V 5 = 23.2% vs. IMRT = 27.2%, P = 0.04), while other queried OARs remained comparable (TD ipsilateral lung V 20 = 13.2% vs. IMRT = 14.6%, P = 0.30; TD heart V 5 = 2.7% vs. IMRT = 2.8%, P = 0.47; TD heart V 10 = 1.7% vs. IMRT = 1.8%, P = 0.44). TD reduced planning time considerably (TD = 9.8 m vs. IMRT = 27.6 m, P < 0.01), saving an average planning time of 17.8 min per patient. TD represents a suitable WBRT treatment approach both in terms of plan quality metrics and planning efficiency. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
Martin, Spencer; Chen, Jeff Z; Rashid Dar, A; Yartsev, Slav
2011-12-01
To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT & Arc technique (IMRT & Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT&Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT&Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p=0.001) and dose homogeneity (p=0.002) to planning target volume (PTV), while IMRT&Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V(10) of the lungs was significantly reduced by the RA2 plans compared to IMRT&Arc (40.3%, p=0.001) and HT (66.2%, p<0.001) techniques. Mean V(15) of the lungs for the RA2 plans also showed significant improvement over the IMRT&Arc (25.2%, p=0.042) and HT (34.8%, p=0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT&Arc techniques. Mean lung dose (MLD) for the IMRT&Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p=0.004), RA1 (23.3%, p=0.028), and RA2 (23.2%, p=0.017) techniques. The IMRT&Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2 technique provided for improved treatment plans using additional arcs with low doses to the lungs at the cost of increased heart dose. Plan quality could still be improved through the use of additional arcs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The cost of radiotherapy in a decade of technology evolution.
Van de Werf, Evelyn; Verstraete, Jan; Lievens, Yolande
2012-01-01
To quantify changes in radiotherapy costs occurring in a decade of medical-technological evolution. The activity-based costing (ABC) model of the University Hospitals Leuven (UHL) radiotherapy (RT) department was adapted to current RT standards. It allocated actual resource costs to the treatments based on the departmental work-flow and patient mix in 2009. A benchmark with the former model analyzed the cost increases related to changes in RT infrastructure and practice over 10 years. A considerable increase in total RT costs was observed, resulting from higher capital investments (96%) and personnel cost (103%), the latter dominating the total picture. Treatment delivery remains the most costly activity, boosted by the cost of improved quality assurance (QA), 23% of total product costs, coming along with more advanced RT techniques. Hence, cost increases at the product level are most obvious for complex treatments, such as intensity-modulated radiotherapy (IMRT), representing cost increases ranging between 38% and 88% compared to conformal approaches. The ABC model provides insight into the financial consequences of evolving technology and practice. Such data are a mandatory first step in our strive to prove RT cost-effectiveness and thus support optimal reimbursement and provision of radiotherapy departments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Intensity Modulated Radiotherapy (IMRT) in head and neck cancers - an overview.
Nutting, C M
2012-07-01
Radiotherapy (RT) is effective in head and neck cancers. Following RT, dryness and dysphagia are the 2 major sequelae which alter the quality of life (QOL) significantly in these patients. There is randomized evidence that Intensity Modulated Radiotherapy (IMRT) effectively spares the parotid glands. IMRT has been attempted in all head and neck subsites with encouraging results (discussed below). Role of IMRT in swallowing structure (constrictor muscles) sparing is less clear.Further improvement in results may be possible by using functional imaging at the time of RT planning and by image guidance/verification at the time of treatment delivery. The following text discusses these issues in detail. Head and neck cancer, IMRT.
Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly
2016-01-01
Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.
Interactions and user-perceived helpfulness in diet information social questions & answers.
Zhang, Yin; Wang, Peilin
2016-12-01
Online health information seeking using social questions and answers (Social Q&A) sites has been increasingly popular in recent years. It calls for better understanding of health information seeking behaviour and interactions between information seekers and information providers. The study investigates how diet information seekers interact with information providers on WebMD Answers, which is a Social Q&A site devoted to health-related topics, and examines the factors that constitute a 'helpful' answer from an information seeker's perspective. Bales' interaction process analysis was applied as the framework to analyse 568 diet-related Q&As from WebMD Answers to identify interaction patterns. Most diet information seekers post questions anonymously and without any detailed description. Individual experts or health organisations provide most answers. Overall, answers are positively received and had a high satisfaction rating. It was also found that information seeker-perceived helpfulness does not depend on who answered the question but to how an information seeker posted the question. This study indicates that answers at WebMD Answers are helpful for diet information seekers. It sheds new light on the interactions during the Q&A process, preferred site functions and important factors that contribute to perceived helpful answers. © 2016 Health Libraries Group.
CMU OAQA at TREC 2015 LiveQA: Discovering the Right Answer with Clues
2015-11-20
QA) system that was evaluated in the TREC 2015 LiveQA Challenge. This system answers real-user questions freshly submitted to the Yahoo ! Answers...questions on the Yahoo ! Answers site 1, which have not yet received a human answer. As per the requirements for this track, participants must deploy their... Yahoo ! Answers. We also designed and im- plemented a new data model and novel relevance ranking methods for LiveQA. During the official run, our QA web
Vaudaux, Catherine; Schneider, Uwe; Kaser-Hotz, Barbara
2007-01-01
We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary
Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong
2017-11-01
It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P < 0.05). There were no significant differences between the two IMRT plans on V25, V30, V40, V50 and mean dose for heart. The maximum doses of cords in two type IMRT plans were nearly the same. IMRT plans with inhomogeneous target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Lee, P; Jiang, S
2015-06-15
Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhonghe; Yan Chao; Zhang Zhiyuan
Purpose: To observe the recovery of saliva output and effect on xerostomia grade after intensity-modulated radiotherapy (IMRT) with or without contralateral submandibular gland (cSMG) sparing and to assess the impact of salivary gland dosimetry on this recovery among patients with head-and-neck cancer. Methods and Materials: Between May 2007 and May 2008, 52 patients with head-and-neck cancer received definitive (n = 5 patients) and postoperative (n = 47 patients) IMRT at our institution, with at least one parotid gland spared. Of these patients, 26 patients with a low risk of recurrence in the cSMG region underwent IMRT and had their cSMGsmore » spared (cSMG-sparing group). The remaining 26 high-risk patients had no cSMGs spared (cSMG-unspared group). Xerostomia grades and salivary flow rates were monitored at five time points (before IMRT and at 2, 6, 12, and 18 months after IMRT). Results: Average mean doses and mean volumes receiving 30 Gy (V30) of the cSMGs were lower in the cSMG-sparing group than in the cSMG-unspared group (mean dose, 20.4 Gy vs. 57.4 Gy; mean V30, 14.7% vs. 99.8%, respectively). Xerostomia grades at 2 and 6 months post-IMRT were also significantly lower among patients in the cSMG-sparing group than in the cSMG-unspared group, but differences were not significant at 12 and 18 months after IMRT. Patients in the cSMG-sparing group had significantly better mean unstimulated salivary flow rates at each time point post- IMRT as well as better mean stimulated salivary flow rates at 2 months post-IMRT. Conclusions: Recovery of saliva output and grade of xerostomia post-IMRT in patients whose cSMGs were spared were much better than in patients whose cSMGs were not spared. The influence of the mean doses to the cSMG and parotid gland on the recovery of saliva output was equivalent to that of the mean V30 to the glands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Chen, Josephine; Leary, Celeste I.
Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40 Gy, followed by a full-cord block to 50 Gy, and (3) split-field IMRT with a full-cord block to 50 Gy. Patients were planned using each of these 3 techniques.more » To facilitate comparison, extended-field plans were normalized to deliver 50 Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D{sub 95}). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4 Gy, and the mean thyroid dose was 28.6 ± 2.4 Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1 Gy) at the cost of a moderate reduction in target coverage (D{sub 95} 41.4 ± 14 Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7 Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1 Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8 Gy) but resulted in a significant reduction in target coverage (D{sub 95} 34.4 ± 15 Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20 Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.« less
Chun, Stephen G; Hu, Chen; Choy, Hak; Komaki, Ritsuko U; Timmerman, Robert D; Schild, Steven E; Bogart, Jeffrey A; Dobelbower, Michael C; Bosch, Walter; Galvin, James M; Kavadi, Vivek S; Narayan, Samir; Iyengar, Puneeth; Robinson, Clifford G; Wynn, Raymond B; Raben, Adam; Augspurger, Mark E; MacRae, Robert M; Paulus, Rebecca; Bradley, Jeffrey D
2017-01-01
Purpose Although intensity-modulated radiation therapy (IMRT) is increasingly used to treat locally advanced non-small-cell lung cancer (NSCLC), IMRT and three-dimensional conformal external beam radiation therapy (3D-CRT) have not been compared prospectively. This study compares 3D-CRT and IMRT outcomes for locally advanced NSCLC in a large prospective clinical trial. Patients and Methods A secondary analysis was performed to compare IMRT with 3D-CRT in NRG Oncology clinical trial RTOG 0617, in which patients received concurrent chemotherapy of carboplatin and paclitaxel with or without cetuximab, and 60- versus 74-Gy radiation doses. Comparisons included 2-year overall survival (OS), progression-free survival, local failure, distant metastasis, and selected Common Terminology Criteria for Adverse Events (version 3) ≥ grade 3 toxicities. Results The median follow-up was 21.3 months. Of 482 patients, 53% were treated with 3D-CRT and 47% with IMRT. The IMRT group had larger planning treatment volumes (median, 427 v 486 mL; P = .005); a larger planning treatment volume/volume of lung ratio (median, 0.13 v 0.15; P = .013); and more stage IIIB disease (30.3% v 38.6%, P = .056). Two-year OS, progression-free survival, local failure, and distant metastasis-free survival were not different between IMRT and 3D-CRT. IMRT was associated with less ≥ grade 3 pneumonitis (7.9% v 3.5%, P = .039) and a reduced risk in adjusted analyses (odds ratio, 0.41; 95% CI, 0.171 to 0.986; P = .046). IMRT also produced lower heart doses ( P < .05), and the volume of heart receiving 40 Gy (V40) was significantly associated with OS on adjusted analysis ( P < .05). The lung V5 was not associated with any ≥ grade 3 toxicity, whereas the lung V20 was associated with increased ≥ grade 3 pneumonitis risk on multivariable analysis ( P = .026). Conclusion IMRT was associated with lower rates of severe pneumonitis and cardiac doses in NRG Oncology clinical trial RTOG 0617, which supports routine use of IMRT for locally advanced NSCLC.
McMillen, Curtis; Zayas, Luis E.; Books, Samantha; Lee, Madeline
2009-01-01
Accompanying the rise in the number of mental health agency personnel tasked with quality assurance and improvement (QA/I) responsibilities is an increased need to understand the nature of the work these professionals undertake. Four aspects of the work of quality assurance and improvement (QA/I) professionals in mental health were explored in this qualitative study: their perceived roles, their major activities, their QA/I targets, and their contributions. In-person interviews were conducted with QA/I professionals at 16 mental health agencies. Respondents perceived their roles at varying levels of complexity, focused on different targets, and used different methods to conduct their work. Few targets of QA/I work served as indicators of high quality care. Most QA/I professionals provided concrete descriptions of how they had improved agency services, while others could describe none. Accreditation framed much of agency QA/I work, perhaps to its detriment. PMID:18688707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, K; Basavatia, A; Mynampati, D
Purpose: To compare VMAT SRS plans, dynamic conformal arc (DCA) plans, and Brainlab iPlan’s capability of planning and delivering brain SRS plans by employing HybridArc. HybridArc utilizes both DCA and IMRT. Using HybridArc, the amount of DCA versus IMRT needs to be optimized. Methods: Four SRS patients with the aim of reducing brainstem dose were selected for this study. All patients were contoured in iPlan and transferred to Eclipse for VMAT planning. In iPlan, DCA plans were created for each case. Moreover, nine HybridArc plans with DCA-IMRT ratios between 9:1 through 1:9 were created with a single ring structure generatedmore » by subtracting 3 mm expansion of target from a 10 mm expansion of the target. Two static IMRT beams were used in each of the five DCA arcs for HybridArc. The dose was prescribed to DCA only and HybridArc plans and normalized so that the target volume (TV) receives 100% dose to 99.5% of the TV to achieve 120% ∼ 130% max dose within targets. Following metrics were compared: PITV, V12Gy, CGIc, CGIg, CGI, brainstem max dose, and total monitor units (MUs). Results: A brainstem max dose comparable with VMAT from 30% IMRT and less with 50% or more IMRT could be achieved. PITV decreased with increasing IMRT portion and begins to saturate past an IMRT portion of 30%. The CGIg index, which represents how fast the dose falls off, was better with HybridArc in all HybridArc plans. Total MUs increased with increasing IMRT but less than VMAT in all cases. Conclusion: Overall, a lower brainstem max dose and a lower V12Gy with fewer MUs can be achieved with HybridArc. Considering all factors, it would be best to use a DCA-IMRT ratio of either 7:3 or 6:4.« less
Yoshimura, Takaaki; Kinoshita, Rumiko; Onodera, Shunsuke; Toramatsu, Chie; Suzuki, Ryusuke; Ito, Yoichi M; Takao, Seishin; Matsuura, Taeko; Matsuzaki, Yuka; Umegaki, Kikuo; Shirato, Hiroki; Shimizu, Shinichi
2016-09-01
This treatment planning study was conducted to determine whether spot scanning proton beam therapy (SSPT) reduces the risk of grade ⩾3 hematologic toxicity (HT3+) compared with intensity modulated radiation therapy (IMRT) for postoperative whole pelvic radiation therapy (WPRT). The normal tissue complication probability (NTCP) of the risk of HT3+ was used as an in silico surrogate marker in this analysis. IMRT and SSPT plans were created for 13 gynecologic malignancy patients who had received hysterectomies. The IMRT plans were generated using the 7-fields step and shoot technique. The SSPT plans were generated using anterior-posterior field with single field optimization. Using the relative biological effectives (RBE) value of 1.0 for IMRT and 1.1 for SSPT, the prescribed dose was 45Gy(RBE) in 1.8Gy(RBE) per fractions for 95% of the planning target volume (PTV). The homogeneity index (HI) and the conformity index (CI) of the PTV were also compared. The bone marrow (BM) and femoral head doses using SSPT were significantly lower than with IMRT. The NTCP modeling analysis showed that the risk of HT3+ using SSPT was significantly lower than with IMRT (NTCP=0.04±0.01 and 0.19±0.03, p=0.0002, respectively). There were no significant differences in the CI and HI of the PTV between IMRT and SSPT (CI=0.97±0.01 and 0.96±0.02, p=0.3177, and HI=1.24±0.11 and 1.27±0.05, p=0.8473, respectively). The SSPT achieves significant reductions in the dose to BM without compromising target coverage, compared with IMRT. The NTCP value for HT3+ in SSPT was significantly lower than in IMRT. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Anders T., E-mail: andehans@rm.dk; Lukacova, Slavka; Lassen-Ramshad, Yasmin
2015-01-01
When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanarmore » volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used—the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%—causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques. All the new techniques increased the number of MU compared with the standard technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhide, Shreerang; Clark, Catherine; Harrington, Kevin
2007-10-01
Head and neck squamous cell carcinoma with occult primary site represents a controversial clinical problem. Conventional total mucosal irradiation (TMI) maximizes local control, but at the expense of xerostomia. IMRT has been shown to spare salivary tissue in head and cancer patients. This study has been performed to investigate the potential of IMRT to perform nodal and TMI and also allow parotid gland sparing in this patient group. Conventional radiotherapy (CRT) and IMRT plans were produced for six patients to treat the ipsilateral (involved) post-operative neck (PTV1) and the un-operated contralateral neck and mucosal axis (PTV2). Plans were produced withmore » and without the inclusion of nasopharynx in the PTV2. The potential to improve target coverage and spare the parotid glands was investigated for the IMRT plans. There was no significant difference in the mean doses to the PTV1 using CRT and IMRT (59.7 and 60.0 respectively, p = 0.5). The maximum doses to PTV1 and PTV2 were lower for the IMRT technique as compared to CRT (P = 0.008 and P < 0.0001), respectively, and the minimum doses to PTV1 and PTV2 were significantly higher for IMRT as compared to CRT (P = 0.001 and P = 0.001), respectively, illustrating better dose homogeneity with IMRT. The mean dose to the parotid gland contralateral to PTV1 was significantly lower for IMRT (23.21 {+-} 0.7) as compared to CRT (50.5 {+-} 5.8) (P < 0.0001). There was a significant difference in parotid dose between plans with and without the inclusion of the nasopharynx. IMRT offers improved dose homogeneity in PTV1 and PTV2 and allows for parotid sparing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel
Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less
SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D; Feygelman, V; Moros, E
2016-06-15
Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less
Role of belly board device in the age of intensity modulated radiotherapy for pelvic irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estabrook, Neil C.; Bartlett, Gregory K.; Compton, Julia J.
Small bowel dose often represents a limiting factor for radiation treatment of pelvic malignancies. To reduce small bowel toxicity, a belly board device (BBD) with a prone position is often recommended. Intensity modulated radiotherapy (IMRT) could reduce dose to small bowel based on the desired dose-volume constraints. We investigated the efficacy of BBD in conjunction with IMRT. A total of 11 consecutive patients with the diagnosis of rectal cancer, who were candidates for definitive therapy, were selected. Patients were immobilized with BBD in prone position for simulation and treatment. Supine position computed tomography (CT) data were either acquired at themore » same time or during a diagnostic scan, and if existed was used. Target volumes (TV) as well as organs at risk (OAR) were delineated in both studies. Three-dimensional conformal treatment (3DCRT) and IMRT plans were made for both scans. Thus for each patient, 4 plans were generated. Statistical analysis was conducted for maximum, minimum, and mean dose to each structure. When comparing the normalized mean Gross TV dose for the different plans, there was no statistical difference found between the planning types. There was a significant difference in small bowel sparing when using prone position on BBD comparing 3DCRT and IMRT plans, favoring IMRT with a 29.6% reduction in dose (p = 0.007). There was also a statistically significant difference in small bowel sparing when comparing supine position IMRT to prone-BBD IMRT favoring prone-BBD IMRT with a reduction of 30.3% (p = 0.002). For rectal cancer when small bowel could be a limiting factor, prone position using BBD along with IMRT provides the best sparing. We conclude that whenever a dose escalation in rectal cancer is desired where small bowel could be limiting factor, IMRT in conjunction with BBD should be selected.« less
Dell'Acqua, V; Kobiela, J; Kraja, F; Leonardi, M C; Surgo, A; Zerella, M A; Arculeo, S; Fodor, C; Ricotti, R; Zampino, M G; Ravenda, S; Spinoglio, G; Biffi, R; Bazani, A; Luraschi, R; Vigorito, S; Spychalski, P; Orecchia, R; Glynne-Jones, R; Jereczek-Fossa, B A
2018-03-28
Intensity-modulated radiotherapy (IMRT) is considered the preferred option in squamous cell canal cancer (SCAC), delivering high doses to tumor volumes while minimizing dose to surrounding normal tissues. IMRT has steep dose gradients, but the technique is more demanding as deep understanding of target structures is required. To evaluate genital marginal failure in a cohort of patients with non-metastatic SCAC treated either with IMRT or 3DCRT and concurrent chemotherapy, 117 patients with SCAC were evaluated: 64 and 53 patients were treated with IMRT and 3DCRT techniques, respectively. All patients underwent clinical and radiological examination during their follow-up. Tumor response was evaluated with response evaluation criteria in solid tumors v1.1 guideline on regular basis. All patients' data were analyzed, and patients with marginal failure were identified. Concomitant chemotherapy was administered in 97 and 77.4% of patients in the IMRT and 3DCRT groups, respectively. In the IMRT group, the median follow-up was 25 months (range 6-78). Progressive disease was registered in 15.6% of patients; infield recurrence, distant recurrence and both infield recurrence and distant recurrence were identified in 5, 4 and 1 patient, respectively. Two out of 64 patients (3.1%) had marginal failures, localized at vagina/recto-vaginal septum and left perineal region. In the 3DCRT group, the median follow-up was 71.3 months (range 6-194 months). Two out of 53 patients (3.8%) had marginal failures, localized at recto-vaginal septum and perigenital structures. The rate of marginal failures was comparable in IMRT and 3DCRT groups (χ 2 test p = 0.85). In this series, the use of IMRT for the treatment of SCAC did not increase the rate of marginal failures offering improved dose conformity to the target. Dose constraints should be applied with caution-particularly in females with involvement of the vagina or the vaginal septum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun
2008-08-01
Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less
Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Rübe, Christian
2016-02-01
The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael
A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy inmore » 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.« less
Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen
2012-01-01
To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.
A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b.
Zeng, Li; Sullivan, Lucy C; Vivian, Julian P; Walpole, Nicholas G; Harpur, Christopher M; Rossjohn, Jamie; Clements, Craig S; Brooks, Andrew G
2012-01-01
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 Å and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.
Linear algebraic methods applied to intensity modulated radiation therapy.
Crooks, S M; Xing, L
2001-10-01
Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.
Breton, Jacques; Lavergne, Jérôme; Wakeham, Marion C; Nabedryk, Eliane; Jones, Michael R
2007-06-05
In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the hundreds of microseconds range) and fast phase (microseconds to tens of microseconds range) in AM260(W-->C) RCs. We conclude that the unusually strong hydrogen bond between the carbonyl of QA and His M219 in the Rb. sphaeroides RC is not obligatory for efficient electron transfer from QA- to QB.
Chan, Maria F.; Li, Qiongge; Tang, Xiaoli; Li, Xiang; Li, Jingdong; Tang, Grace; Hunt, Margie A.; Deasy, Joseph O.
2016-01-01
Data visualization technique was applied to analyze the daily QA results of photon and electron beams. Special attention was paid to any trend the beams might display. A Varian Trilogy Linac equipped with dual photon energies and five electron energies was commissioned in early 2010. Daily Linac QA tests including the output constancy, beam flatness and symmetry (radial and transverse directions) were performed with an ionization chamber array device (QA BeamChecker Plus, Standard Imaging). The data of five years were collected and analyzed. For each energy, the measured data were exported and processed for visual trending using an in-house Matlab program. These daily data were cross-correlated with the monthly QA and annual QA results, as well as the preventive maintenance records. Majority of the output were within 1% of variation, with a consistent positive/upward drift for all seven energies (~+0.25% per month). The baseline of daily device is reset annually right after the TG-51 calibration. This results in a sudden drop of the output. On the other hand, the large amount of data using the same baseline exhibits a sinusoidal behavior (cycle = 12 months; amplitude = 0.8%, 0.5% for photons, electrons, respectively) on symmetry and flatness when normalization of baselines is accounted for. The well known phenomenon of new Linac output drift was clearly displayed. This output drift was a result of the air leakage of the over-pressurized sealed monitor chambers for the specific vendor. Data visualization is a new trend in the era of big data in radiation oncology research. It allows the data to be displayed visually and therefore more intuitive. Based on the visual display from the past, the physicist might predict the trend of the Linac and take actions proactively. It also makes comparisons, alerts failures, and potentially identifies causalities. PMID:27547595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, J; Shi, F; Hrycushko, B
2015-06-15
Purpose: For tandem and ovoid (T&O) HDR brachytherapy in our clinic, it is required that the planning physicist manually capture ∼10 images during planning, perform a secondary dose calculation and generate a report, combine them into a single PDF document, and upload it to a record- and-verify system to prove to an independent plan checker that the case was planned correctly. Not only does this slow down the already time-consuming clinical workflow, the PDF document also limits the number of parameters that can be checked. To solve these problems, we have developed a web-based automatic quality assurance (QA) program. Methods:more » We set up a QA server accessible through a web- interface. A T&O plan and CT images are exported as DICOMRT files and uploaded to the server. The software checks 13 geometric features, e.g. if the dwell positions are reasonable, and 10 dosimetric features, e.g. secondary dose calculations via TG43 formalism and D2cc to critical structures. A PDF report is automatically generated with errors and potential issues highlighted. It also contains images showing important geometric and dosimetric aspects to prove the plan was created following standard guidelines. Results: The program has been clinically implemented in our clinic. In each of the 58 T&O plans we tested, a 14- page QA report was automatically generated. It took ∼45 sec to export the plan and CT images and ∼30 sec to perform the QA tests and generate the report. In contrast, our manual QA document preparation tooks on average ∼7 minutes under optimal conditions and up to 20 minutes when mistakes were made during the document assembly. Conclusion: We have tested the efficiency and effectiveness of an automated process for treatment plan QA of HDR T&O cases. This software was shown to improve the workflow compared to our conventional manual approach.« less
Daily quality assurance phantom for ultrasound image guided radiation therapy
Drever, Laura
2007-01-01
A simple phantom was designed, constructed, tested, and clinically implemented for daily quality assurance (QA) of an ultrasound‐image‐guided radiation therapy (US‐IGRT) system, the Restitu Ultrasound system (Resonant Medical, Montreal, QC). The phantom consists of a high signal echogenic background gel surrounding a low signal hypoechoic egg‐shaped target. Daily QA checks involve ultrasound imaging of the phantom and segmenting of the embedded target using the automated tools available on the US‐IGRT system. This process serves to confirm system hardware and software functions and, in particular, accurate determination of the target position. Experiments were conducted to test the stability of the phantom at room temperature, its tissue‐mimicking properties, the reproducibility of target position measurements, and the usefulness of the phantom as a daily QA device. The phantom proved stable at room temperature, exhibited no evidence of bacterial or fungal invasion in 9 months, and showed limited desiccation (resulting in a monthly reduction in ultrasound‐measured volume of approximately 0.2 cm3). Furthermore, the phantom was shown to be nearly tissue‐mimicking, with speed of sound in the phantom estimated to be 0.8% higher than that assumed by the scanner calibration. The phantom performs well in a clinical setting, owing to its light weight and ease of operation. It provides reproducible measures of target position even with multiple users. At our center, the phantom is being used for daily QA of the US‐IGRT system with clinically acceptable tolerances of ±1 cm3 on target volume and ±2 mm on target position. For routine daily QA, this phantom is a good alternative to the manufacturer‐supplied calibration phantom, and we recommended that that larger phantom be reserved for less frequent, more detailed QA checks and system calibration. PACS numbers: 87.66.Xa, 87.63.Df
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zwan, B J; University of Newcastle, Newcastle, NSW; Barnes, M
2016-06-15
Purpose: To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). Methods: A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linac’s on-board gantry angle encoder. Arc-dynamic QA plans were designed to assessmore » the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). Results: Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. Conclusion: The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for regular routine testing.« less
IMRT for Image-Guided Single Vocal Cord Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de
2012-02-01
Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less
Sterzing, Florian; Stoiber, Eva M; Nill, Simeon; Bauer, Harald; Huber, Peter; Debus, Jürgen; Münter, Marc W
2009-09-23
While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature. Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed. With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed. IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.
Duarte, Victor M; Liu, Yuan F; Rafizadeh, Sassan; Tajima, Tracey; Nabili, Vishad; Wang, Marilene B
2014-01-01
To analyze the dental health of patients with head and neck cancer who received comprehensive dental care after intensity-modulated radiation therapy (IMRT) compared with radiation therapy (RT). Historical cohort study. Veteran Affairs (VA) hospital. In total, 158 patients at a single VA hospital who were treated with RT or IMRT between 2003 and 2011 were identified. A complete dental evaluation was performed prior to radiation treatment, including periodontal probing, tooth profile, cavity check, and mobility. The dental treatment plan was formulated to eliminate current and potential dental disease. The rates of dental extractions, infections, caries, mucositis, xerostomia, and osteoradionecrosis (ORN) were analyzed, and a comparison was made between patients treated with IMRT and those treated with RT. Of the 158 patients, 99 were treated with RT and 59 were treated with IMRT. Compared with those treated with IMRT, significantly more patients treated with RT exhibited xerostomia (46.5% vs 16.9%; P < .001; odds ratio [OR], 0.24; 95% confidence interval [CI], 0.11-0.52), mucositis (46.5% vs 16.9%; P < .001; OR, 0.24; 95% CI, 0.11-0.52), and ORN (10.1% vs 0%; P = .014; OR, 0.07; 95% CI, 0.00-1.21). However, significantly more patients treated with IMRT were edentulous by the conclusion of radiation treatment (32.2% vs 11.1%; P = .002; OR, 3.8; 95% CI, 1.65-8.73). Patients who were treated with IMRT had fewer instances of dental disease, more salivary flow, and fewer requisite posttreatment extractions compared with those treated with RT. The number of posttreatment extractions has been reduced with the advent of IMRT and more so with a complete dental evaluation prior to treatment.
Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer.
Van Benthuysen, Liam; Hales, Lee; Podgorsak, Matthew B
2011-01-01
Several studies have demonstrated that volumetric modulated arc therapy (VMAT) has the ability to reduce monitor units and treatment time when compared with intensity-modulated radiation therapy (IMRT). This study aims to demonstrate that VMAT is able to provide adequate organs at risk (OAR) sparing and planning target volume (PTV) coverage for adenocarcinoma of the distal esophagus while reducing monitor units and treatment time. Fourteen patients having been treated previously for esophageal cancer were planned using both VMAT and IMRT techniques. Dosimetric quality was evaluated based on doses to several OARs, as well as coverage of the PTV. Treatment times were assessed by recording the number of monitor units required for dose delivery. Body V(5) was also recorded to evaluate the increased volume of healthy tissue irradiated to low doses. Dosimetric differences in OAR sparing between VMAT and IMRT were comparable. PTV coverage was similar for the 2 techniques but it was found that IMRT was capable of delivering a slightly more homogenous dose distribution. Of the 14 patients, 12 were treated with a single arc and 2 were treated with a double arc. Single-arc plans reduced monitor units by 42% when compared with the IMRT plans. Double-arc plans reduced monitor units by 67% when compared with IMRT. The V(5) for the body was found to be 18% greater for VMAT than for IMRT. VMAT has the capability to decrease treatment times over IMRT while still providing similar OAR sparing and PTV coverage. Although there will be a smaller risk of patient movement during VMAT treatments, this advantage comes at the cost of delivering small doses to a greater volume of the patient. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet
2017-01-01
Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart D mean ), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRT DIBH decreased the Heart D mean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRT FB . IMRT further lowered mean LAD dose by 18%. Heart D mean was lower with 3DCRT DIBH over IMRT DIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V 20 of ipsilateral lung were lower with 3DCRT DIBH over IMRT DIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. 3DCRT DIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.
Parotid gland sparing IMRT for head and neck cancer improves xerostomia related quality of life
van Rij, CM; Oughlane-Heemsbergen, WD; Ackerstaff, AH; Lamers, EA; Balm, AJM; Rasch, CRN
2008-01-01
Background and purpose To assess the impact of intensity modulated radiotherapy (IMRT) versus conventional radiation on late xerostomia and Quality of Life aspects in head and neck cancer patients. Patients and nethods Questionnaires on xerostomia in rest and during meals were sent to all patients treated between January 1999 and December 2003 with a T1-4, N0-2 M0 head and neck cancer, with parotid gland sparing IMRT or conventional bilateral neck irradiation to a dose of at least 60 Gy, who were progression free and had no disseminated disease (n = 192). Overall response was 85% (n = 163); 97% in the IMRT group (n = 75) and 77% in the control group (n = 88) the median follow-up was 2.6 years. The prevalence of complaints was compared between the two groups, correcting for all relevant factors at multivariate ordinal regression analysis. Results Patients treated with IMRT reported significantly less difficulty transporting and swallowing their food and needed less water for a dry mouth during day, night and meals. They also experienced fewer problems with speech and eating in public. Laryngeal cancer patients in general had fewer complaints than oropharynx cancer patients but both groups benefited from IMRT. Within the IMRT group the xerostomia scores were better for those patients with a mean parotid dose to the "spared" parotid below 26 Gy. Conclusion Parotid gland sparing IMRT for head and neck cancer patients improves xerostomia related quality of life compared to conventional radiation both in rest and during meals. Laryngeal cancer patients had fewer complaints but benefited equally compared to oropharyngeal cancer patients from IMRT. PMID:19068126
Eames, I; Small, I; Frampton, A; Cottenden, A M
2003-01-01
The spread of fluid from a localized source on to a flat fibrous sheet is studied. The sheet is inclined at an angle, alpha, to the horizontal, and the areal flux of the fluid released is Qa. A new experimental study is described where the dimensions of the wetted region are measured as a function of time t, Qa and alpha (>0). The down-slope length, Y, grows according to Y approximately (Qa t)(2/3) (sin alpha)(1/3); for high discharge rates and low angles of inclination, the cross-slope width, X, grows as approximately (Qa t)(1/2), while for low discharge rates or high angles of inclination, the cross-slope transport is dominated by infiltration and X approximately 2(2Ks psi* t)(1/2), where Ks is the saturated permeability and psi* is the characteristic value of capillary pressure. A scaling analysis of the underlying non-linear advection diffusion equation describing the infiltration process confirms many of the salient features of the flow observed. Good agreement is observed between the collapse of the numerical solutions and experimental results. The broader implications of these results for incontinence bed-pad research are briefly discussed.
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai
2016-01-01
This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.
Quality assurance, an administrative means to a managerial end: Part IV.
Clark, G B
1992-01-01
This is the fourth and final part of a series of articles on laboratory quality surveillance. Part I addressed the historical background of medical quality assurance. Part II covered surveillance guidelines of the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) and the College of American Pathologists with emphasis on quality assurance (QA) and the ten-step process. Part III focused on the JCAHO transition from QA to quality assessment and improvement. Part IV concludes the series by discussing the systematic identification of quality indicators in the total quality management and continuous quality improvement environment.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-12-01
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-01-01
Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623
Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-01-01
AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage. PMID:23066322
Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-10-07
To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs. 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
MO-FG-202-06: Improving the Performance of Gamma Analysis QA with Radiomics- Based Image Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, L; Nyflot, M; Ford, E
2016-06-15
Purpose: The use of gamma analysis for IMRT quality assurance has well-known limitations. Traditionally, a simple thresholding technique is used to evaluated passing criteria. However, like any image the gamma distribution is rich in information which thresholding mostly discards. We therefore propose a novel method of analyzing gamma images that uses quantitative image features borrowed from radiomics, with the goal of improving error detection. Methods: 368 gamma images were generated from 184 clinical IMRT beams. For each beam the dose to a phantom was measured with EPID dosimetry and compared to the TPS dose calculated with and without normally distributedmore » (2mm sigma) errors in MLC positions. The magnitude of 17 intensity histogram and size-zone radiomic features were derived from each image. The features that differed most significantly between image sets were determined with ROC analysis. A linear machine-learning model was trained on these features to classify images as with or without errors on 180 gamma images.The model was then applied to an independent validation set of 188 additional gamma distributions, half with and half without errors. Results: The most significant features for detecting errors were histogram kurtosis (p=0.007) and three size-zone metrics (p<1e-6 for each). The sizezone metrics detected clusters of high gamma-value pixels under mispositioned MLCs. The model applied to the validation set had an AUC of 0.8, compared to 0.56 for traditional gamma analysis with the decision threshold restricted to 98% or less. Conclusion: A radiomics-based image analysis method was developed that is more effective in detecting error than traditional gamma analysis. Though the pilot study here considers only MLC position errors, radiomics-based methods for other error types are being developed, which may provide better error detection and useful information on the source of detected errors. This work was partially supported by a grant from the Agency for Healthcare Research and Quality, grant number R18 HS022244-01.« less
SU-E-T-543: Is It Feasible to Tighten the Criteria for IROC's Anthropomorphic Phantoms?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molineu, A; Alvarez, P; Kry, S
Purpose: To analyze results of IROC Houston QA center's (RPC) H and N and prostate IMRT phantoms to determine the effect that tightening criteria would have on the phantom pass rate. Methods: IROC Houston's anthropomorphic H and N and prostate phantoms are used to credential institution's to participate in NCI clinical trials that allow the use of IMRT. The phantoms are shipped to institutions where they are filled with water and undergo imaging, treatment planning, and irradiation as a patient would. Each phantom houses targets and organs at risk. They also hold film and TLD. Dosimeter results are compared tomore » the institution's treatment plan using the criteria of 7% for PTV TLD doses and ≥85% pixels must pass 7%/4 mm global gamma analyses. Pass rates for the H and N and prostate phantoms were recalculated using the following tighter criteria options: 1) 5% TLD and 85% pixels 7%/4 gamma2) 5% TLD and 90% pixels 7%/4 gamma3) 5% TLD and 85% pixels 5%/4 gammaGamma analysis was repeated for the 30 most recent irradiations of each phantom to estimate results for criteria 3. Results: Pass rates using current criteria for the H and N and prostate phantoms are 84% and 85% respectively. Pass rates since gamma criteria were introduced in 2012 are 90% and 87%. Criteria 1 applied to all irradiations drops pass rates to 78% and 82%. Applying it to only irradiations with gamma results give 77% and 84%. Applying criteria 2 to only phantoms with gamma results drops pass rates to 80% and 74% and they fall to 83% and 67% respectively using criteria 3. Conclusion: Applying tighter criteria to phantom results has potential to increase quality in clinical trials. The results of the 30 most recent irradiations indicate that there may be room to tighten H and N phantom criteria in the future. Work supported by PHS grant CA10953 and CA081647 (NCI, DHHS)« less
Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer.
Wen, Ning; Guan, Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T; Li, Shidong; Movsas, Benjamin
2007-04-21
With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was approximately 4.0 cGy, which was approximately 40% higher than the Rt Lat dose of approximately 2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm x 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370 degrees scan rotation (10 degrees scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of approximately 10-11 cGy while the right hip received approximately 6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than approximately 12% to the table-drop setup.
Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer
NASA Astrophysics Data System (ADS)
Wen, Ning; Guan, Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T.; Li, Shidong; Movsas, Benjamin
2007-04-01
With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was ~4.0 cGy, which was ~40% higher than the Rt Lat dose of ~2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm × 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370° scan rotation (10° scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of ~10-11 cGy while the right hip received ~6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than ~12% to the table-drop setup.
Jacobson, J W; Hautala, J A; Case, M E; Giles, N H
1975-01-01
Catabolic dehydroquinase, which functions in the inducible quinic acid catabolic pathway of Neurospora crassa, has been purified from wild type (74-A) and three mutants in the qa gene cluster. The mutant strains were: 105c, a temperature-sensitive constitutive mutant in the qa-1 regulatory locus; M-16, a qa-3 mutant deficient in quinate dehydrogenase activity; and 237, a leaky qa-2 mutant which possess very low levels of catabolic dehydroquinase activity. The enzymes purified from strains 74-A, 105c, and M-16 are identical with respect to behavior during purification, specific activity, electrophoretic behavior, stability, molecular weight, subunit structure, immunological cross-reactivity, and amino acid content. The mutant enzyme from strain 237 is 1,500-fold less active and appears to have a slightly different amino acid content. It is identical by a number of the other criteria listed above and is presumed to be a mutant at or near the enzyme active site. These data demonstrate that the qa-1 gene product is not involved in the posttranslational expression of enzyme activity. The biochemical identity of catabolic dehydroquinase isolated from strains 105c and M-16 with that from wild type also demonstrates that neither the inducer, quinic acid, nor other enzymes encoded in the qa gene cluster are necessary for the expression of activity. Therefore the combined genetic and biochemical data on the qa system continue to support the hypothesis that the qa-1 regulatory protein acts as a positive initiator of qa enzyme synthesis. Images PMID:126226
Bramesfeld, Anke; Pauletzki, Jürgen; Behrenz, Lars; Szecsenyi, Joachim; Willms, Gerald; Broge, Björn
2015-08-01
Since 2001, statutory external quality assurance (QA) for hospital care has been in place in the German health system. In 2009, the decision was taken to expand it to cross-sectoral procedures. This novel and unprecedented form of national QA aims at (1) making the quality procedures comparable that are provided both in inpatient and outpatient care, (2) following-up outcomes of hospital care after patients' discharge and (3) measuring the quality of complex treatment chains across interfaces. As a pioneer procedure a QA procedure in cataract surgery QA was developed. Using this as an example, challenges of cross-sectoral QA are highlighted. These challenges relate, in particular, to three technical problems: triggering cases for documentation, following-up patients' after hospital discharge, and the burden of documentation in outpatient care. These problems resulted finally in the haltering of the development of the QA procedure. However, the experiences gained with this first development of cross-sectoral QA inspired the reorientation and further development of the field in Germany. Future cross-sectoral QA will rigorously aim at keeping burden of documentation small. It will draw data for QA mainly at three sources: routine data, patient surveys and peer reviews using indicators. Policy implications of this reorientation are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A survey of quality assurance practices in biomedical open source software projects.
Koru, Günes; El Emam, Khaled; Neisa, Angelica; Umarji, Medha
2007-05-07
Open source (OS) software is continuously gaining recognition and use in the biomedical domain, for example, in health informatics and bioinformatics. Given the mission critical nature of applications in this domain and their potential impact on patient safety, it is important to understand to what degree and how effectively biomedical OS developers perform standard quality assurance (QA) activities such as peer reviews and testing. This would allow the users of biomedical OS software to better understand the quality risks, if any, and the developers to identify process improvement opportunities to produce higher quality software. A survey of developers working on biomedical OS projects was conducted to examine the QA activities that are performed. We took a descriptive approach to summarize the implementation of QA activities and then examined some of the factors that may be related to the implementation of such practices. Our descriptive results show that 63% (95% CI, 54-72) of projects did not include peer reviews in their development process, while 82% (95% CI, 75-89) did include testing. Approximately 74% (95% CI, 67-81) of developers did not have a background in computing, 80% (95% CI, 74-87) were paid for their contributions to the project, and 52% (95% CI, 43-60) had PhDs. A multivariate logistic regression model to predict the implementation of peer reviews was not significant (likelihood ratio test = 16.86, 9 df, P = .051) and neither was a model to predict the implementation of testing (likelihood ratio test = 3.34, 9 df, P = .95). Less attention is paid to peer review than testing. However, the former is a complementary, and necessary, QA practice rather than an alternative. Therefore, one can argue that there are quality risks, at least at this point in time, in transitioning biomedical OS software into any critical settings that may have operational, financial, or safety implications. Developers of biomedical OS applications should invest more effort in implementing systemic peer review practices throughout the development and maintenance processes.
Censor, Yair; Unkelbach, Jan
2011-01-01
In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694
Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R
2006-06-10
The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirix, Piet, E-mail: piet.dirix@uzleuven.b; Vanstraelen, Bianca; Jorissen, Mark
Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 tomore » 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.« less
NASA Astrophysics Data System (ADS)
Ajo, Ramzi, Jr.
Modern treatment planning systems (TPS's) utilize different algorithms in computing dose within the patient medium. The algorithms rely on properly modeled clinical setups in order to perform optimally. Aside from various parameters of the beam, modifiers, such as multileaf collimators (MLC's), must also be modeled properly. That could not be more true today, where dynamic delivery such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are being increasingly utilized due to their ability to deliver higher dose precisely to the target while sparing more surrounding normal tissue. Two of the most popular TPS's, Pinnacle (Philips) and Eclipse (Varian), were compared, with special emphasis placed on parameterization of the dosimetric leaf gap (DLG) in Eclipse. The DLG is a parameter that accounts for Varian's rounded MLC leaf ends. While Pinnacle accounts for the rounded leaf end by modeling the MLC's, Eclipse uses a measured parameter. This study investigated whether a single value measured DLG is sufficient for dynamic delivery. Using five planning volumes for vertebral body SBRT treatments, each prescribed for 3000 cGy in 5 fractions, an array of 20 treatment plans was generated using varying energies of 6MV-FFF and 10MV-FFF. Treatment techniques consisted of 9-field Step-and-shoot IMRT, and dual-arc VMAT using patient specific optimization criteria in the Pinnacle TPS v9.8. Each plan was normalized to ensure coverage of 3000cGy to 95% of the target volume. The dose was computed in Pinnacle v9.8, with the Collapsed Cone Convolution Superposition algorithm and Eclipse v11, with the Acuros XB algorithm, using a dose grid resolution of 2 mm in both systems. Dose volume histograms (DVH's) were generated for a comparison of max and mean dose to the targets and spinal cord, as well as 95% coverage of the targets and the volume of the spinal cord receiving 14.5 Gy (V14.5). Patient specific quality assurance (PSQA) fields were generated and then delivered, using a Varian Edge linear accelerator, to a 4D QA phantom for a gamma analysis and distance to agreement (DTA) comparison. All Eclipse calculations were made for both measured and optimized DLG parameters. Calculated vs. measured point dose for the Pinnacle TPS had an average difference of 2.79 +/- 2.00%. Gamma analysis using a 3% and 3 mm DTA had 99/100 fields passing at > 95%. Using measured values of the DLG in Eclipse, calculated vs. measured point dose was -4.44 +/- 1.97%, and DTA had 33/110 fields passing at > 95%. After an optimization of the DLG in Eclipse, calculated vs. measured point dose had an average difference of 2.20 +/- 2.23%, and DTA with 95/110 fields passing at > 95%. This study looked at the performance of the Pinnacle and Eclipse TPS's, with special consideration given to the DLG parameterization used by Eclipse. The results support the idea that a single valued DLG is not sufficient for dynamic delivery. An optimization of the parameter is necessary to account for the high modulation of IMRT and VMAT techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, H; Zhao, L; Prabhu, K
2015-06-15
Purpose This study compares the dosimetric parameters in treatment of unresectable hepatocellular carcinoma between intensity modulated proton therapy (IMPT) and intensity modulated x-ray radiation therapy (IMRT). Methods and Materials: We studied four patients treated at our institution. All patients were simulated supine with 4D-CT using a GE light speed simulator with a maximum slice thickness of 3mm. The average CT and an internal target volume to account for respiration motion were used for planning. Both IMRT and IMPT plans were created using Elekta’s CMSXiO treatment planning system (TPS). The prescription dose was 58.05 CGE in 15 fractions. The IMRT plansmore » had five beams with combination of co-planar and non-co-planar. The IMPT plans had 2 to 3 beams. Dose comparison was performed based on the averaged results of the four patients. Results The mean dose and V95% to PTV were 58.24CGE, 98.57% for IMPT, versus 57.34CGE and 96.68% for IMRT, respectively. The V10, V20, V30 and mean dose of the normal liver for IMPT were 23.10%, 18.61%, 13.75% and 9.78 CGE; and 47.19%, 37.55%, 22.73% and 17.12CGE for IMRT. The spinal cord didn’t receive any dose in IMPT technique, but received a maximum of 18.77CGE for IMRT. The IMPT gave lower maximum dose to the stomach as compared to IMRT (19.26 vs 26.35CGE). V14 for left and right kidney was 0% and 2.32% for IMPT and 3.89% and 29.54% for IMRT. The mean dose, V35, V40 and V45 for small bowl were similar in both techniques, 0.74CGE, 6.27cc, 4.85cc and 3.53 cc for IMPT, 3.47CGE, 9.73cc, 7.61cc 5.35cc for IMRT. Conclusion Based on this study, IMPT plans gave less dose to the critical structures such as normal liver, kidney, stomach and spinal cord as compared to IMRT plans, potentially leading to less toxicity and providing better quality of life for patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George
2005-09-15
Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jun, E-mail: jun-lian@med.unc.edu; Chera, Bhishamjit S.; Chang, Sha
Purpose: To build a statistical model to quantitatively correlate the anatomic features of structures and the corresponding dose-volume histogram (DVH) of head and neck (HN) Tomotherapy (Tomo) plans. To study if the model built upon one intensity modulated radiation therapy (IMRT) technique (such as conventional Linac) can be used to predict anticipated organs-at-risk (OAR) DVH of patients treated with a different IMRT technique (such as Tomo). To study if the model built upon the clinical experience of one institution can be used to aid IMRT planning for another institution. Methods: Forty-four Tomotherapy intensity modulate radiotherapy plans of HN cases (Tomo-IMRT)more » from Institution A were included in the study. A different patient group of 53 HN fixed gantry IMRT (FG-IMRT) plans was selected from Institution B. The analyzed OARs included the parotid, larynx, spinal cord, brainstem, and submandibular gland. Two major groups of anatomical features were considered: the volumetric information and the spatial information. The volume information includes the volume of target, OAR, and overlapped volume between target and OAR. The spatial information of OARs relative to PTVs was represented by the distance-to-target histogram (DTH). Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. Two regression models, one for Tomotherapy plan and one for IMRT plan, were built independently. The accuracy of intratreatment-modality model prediction was validated by a leave one out cross-validation method. The intertechnique and interinstitution validations were performed by using the FG-IMRT model to predict the OAR dosimetry of Tomo-IMRT plans. The dosimetry of OARs, under the same and different institutional preferences, was analyzed to examine the correlation between the model prediction and planning protocol. Results: Significant patient anatomical factors contributing to OAR dose sparing in HN Tomotherapy plans have been analyzed and identified. For all the OARs, the discrepancies of dose indices between the model predicted values and the actual plan values were within 2.1%. Similar results were obtained from the modeling of FG-IMRT plans. The parotid gland was spared in a comparable fashion during the treatment planning of two institutions. The model based on FG-IMRT plans was found to predict the median dose of the parotid of Tomotherapy plans quite well, with a mean error of 2.6%. Predictions from the FG-IMRT model suggested the median dose of the larynx, median dose of the brainstem and D2 of the brainstem could be reduced by 10.5%, 12.8%, and 20.4%, respectively, in the Tomo-IMRT plans. This was found to be correlated to the institutional differences in OAR constraint settings. Re-planning of six Tomotherapy patients confirmed the potential of optimization improvement predicted by the FG-IMRT model was correct. Conclusions: The authors established a mathematical model to correlate the anatomical features and dosimetric indexes of OARs of HN patients in Tomotherapy plans. The model can be used for the setup of patient-specific OAR dose sparing goals and quality control of planning results. The institutional clinical experience was incorporated into the model which allows the model from one institution to generate a reference plan for another institution, or another IMRT technique.« less
Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.
2012-01-01
Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717