Estimating IMU heading error from SAR images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
Loose Coupling of Wearable-Based INSs with Automatic Heading Evaluation.
Bousdar Ahmed, Dina; Munoz Diaz, Estefania
2017-11-03
Position tracking of pedestrians by means of inertial sensors is a highly explored field of research. In fact, there are already many approaches to implement inertial navigation systems (INSs). However, most of them use a single inertial measurement unit (IMU) attached to the pedestrian's body. Since wearable-devices will be given items in the future, this work explores the implementation of an INS using two wearable-based IMUs. A loosely coupled approach is proposed to combine the outputs of wearable-based INSs. The latter are based on a pocket-mounted IMU and a foot-mounted IMU. The loosely coupled fusion combines the output of the two INSs not only when these outputs are least erroneous, but also automatically favoring the best output. This approach is named smart update. The main challenge is determining the quality of the heading estimation of each INS, which changes every time. In order to address this, a novel concept to determine the quality of the heading estimation is presented. This concept is subject to a patent application. The results show that the position error rate of the loosely coupled fusion is 10 cm/s better than either the foot INS's or pocket INS's error rate in 95% of the cases.
Loose Coupling of Wearable-Based INSs with Automatic Heading Evaluation
Munoz Diaz, Estefania
2017-01-01
Position tracking of pedestrians by means of inertial sensors is a highly explored field of research. In fact, there are already many approaches to implement inertial navigation systems (INSs). However, most of them use a single inertial measurement unit (IMU) attached to the pedestrian’s body. Since wearable-devices will be given items in the future, this work explores the implementation of an INS using two wearable-based IMUs. A loosely coupled approach is proposed to combine the outputs of wearable-based INSs. The latter are based on a pocket-mounted IMU and a foot-mounted IMU. The loosely coupled fusion combines the output of the two INSs not only when these outputs are least erroneous, but also automatically favoring the best output. This approach is named smart update. The main challenge is determining the quality of the heading estimation of each INS, which changes every time. In order to address this, a novel concept to determine the quality of the heading estimation is presented. This concept is subject to a patent application. The results show that the position error rate of the loosely coupled fusion is 10 cm/s better than either the foot INS’s or pocket INS’s error rate in 95% of the cases. PMID:29099807
Mobile gaze tracking system for outdoor walking behavioral studies
Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang
2016-01-01
Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study
Hosseinyalamdary, Siavash
2018-01-01
Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy. PMID:29695119
Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study.
Hosseinyalamdary, Siavash
2018-04-24
Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy.
Onorbit IMU alignment error budget
NASA Technical Reports Server (NTRS)
Corson, R. W.
1980-01-01
The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.
An IMU Evaluation Method Using a Signal Grafting Scheme
Niu, Xiaoji; Wang, Qiang; Li, You; Zhang, Quan; Jiang, Peng
2016-01-01
As various inertial measurement units (IMUs) from different manufacturers appear every year, it is not affordable to evaluate every IMU through tests. Therefore, this paper presents an IMU evaluation method by grafting data from the tested IMU to the reference data from a higher-grade IMU. The signal grafting (SG) method has several benefits: (a) only one set of field tests with a higher-grade IMU is needed, and can be used to evaluate numerous IMUs. Thus, SG is effective and economic because all data from the tested IMU is collected in the lab; (b) it is a general approach to compare navigation performances of various IMUs by using the same reference data; and, finally, (c) through SG, one can first evaluate an IMU in the lab, and then decide whether to further test it. Moreover, this paper verified the validity of SG to both medium- and low-grade IMUs, and presents and compared two SG strategies, i.e., the basic-error strategy and the full-error strategy. SG provided results similar to field tests, with a difference of under 5% and 19.4%–26.7% for tested tactical-grade and MEMS IMUs. Meanwhile, it was found that dynamic IMU errors were essential to guarantee the effect of the SG method. PMID:27294932
Magnetometer-enhanced personal locator for tunnels and GPS-denied outdoor environments
NASA Astrophysics Data System (ADS)
Kwanmuang, Surat; Ojeda, Lauro; Borenstein, Johann
2011-06-01
This paper describes recent advances with our earlier developed Personal Dead-reckoning (PDR) system for GPS-denied environments. The PDR system uses a foot-mounted Inertial Measurement Unit (IMU) that also houses a three axismagnetometer. In earlier work we developed methods for correcting the drift errors in the accelerometers, thereby allowing very accurate measurements of distance traveled. In addition, we developed a powerful heuristic method for correcting heading errors caused by gyro drift. The heuristics exploit the rectilinear features found in almost all manmade structures and therefore limit this technology to indoor use only. Most recently we integrated a three-axis magnetometer with the IMU, using a Kalman Filter. While it is well known that the ubiquitous magnetic disturbances found in most modern buildings render magnetometers almost completely useless indoors, these sensors are nonetheless very effective in pristine outdoor environments as well as in some tunnels and caves. The present paper describes the integrated magnetometer/IMU system and presents detailed experimental results. Specifically, the paper reports results of an objective test conducted by Firefighters of California's CAL-FIRE. In this particular test, two firefighters in full operational gear and one civilian hiked up a two-mile long mountain trail over rocky, sometimes steeply inclined terrain, each wearing one of our magnetometer-enhanced PDR systems but not using any GPS. During the hour-long hike the average position error was about 20 meters and the maximum error was less than 45 meters, which is about 1.4% of distance traveled for all three PDR systems.
Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base
Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng
2018-01-01
The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150
Error Characterization of Flight Trajectories Reconstructed Using Structure from Motion
2015-03-27
adjustment using IMU rotation information, the accuracy of the yaw, pitch and roll is limited and numerical errors can be as high as 1e-4 depending on...due to either zero mean, Gaussian noise and/or bias in the IMU measured yaw, pitch and roll angles. It is possible that when errors in these...requires both the information on how the camera is mounted to the IMU /aircraft and the measured yaw, pitch and roll at the time of the first image
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li
2018-05-14
Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
Detection and Discrimination in One-Pass Using the OPTEMA Towed-Array
2014-11-01
pitch, roll , and yaw measurements for the OPTEMA sensor head. The IMU is co-located with the GPS receiver. OPTEMA sensor electronics include the...subtracted from subsequent data sets to isolate the anomaly response. In addition to a background subtraction, a transmitter current normalization is...the survey area. EM3DAcquire provides line following based on the sensor head GPS and IMU data. Using the line following display, the OPTEMA is
Deep data fusion method for missile-borne inertial/celestial system
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao
2018-05-01
Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.
Development of a 3-D Pen Input Device
2008-09-01
of a unistroke which can be written on any surface or in the air while correcting integration errors from the...navigation frame of a unistroke, which can be written on any surface or in the air while correcting integration errors from the measurements of the IMU... be written on any surface or in the air while correcting integration errors from the measurements of the IMU (Inertial Measurement Unit) of the
Rate-gyro-integral constraint for ambiguity resolution in GNSS attitude determination applications.
Zhu, Jiancheng; Li, Tao; Wang, Jinling; Hu, Xiaoping; Wu, Meiping
2013-06-21
In the field of Global Navigation Satellite System (GNSS) attitude determination, the constraints usually play a critical role in resolving the unknown ambiguities quickly and correctly. Many constraints such as the baseline length, the geometry of multi-baselines and the horizontal attitude angles have been used extensively to improve the performance of ambiguity resolution. In the GNSS/Inertial Navigation System (INS) integrated attitude determination systems using low grade Inertial Measurement Unit (IMU), the initial heading parameters of the vehicle are usually worked out by the GNSS subsystem instead of by the IMU sensors independently. However, when a rotation occurs, the angle at which vehicle has turned within a short time span can be measured accurately by the IMU. This measurement will be treated as a constraint, namely the rate-gyro-integral constraint, which can aid the GNSS ambiguity resolution. We will use this constraint to filter the candidates in the ambiguity search stage. The ambiguity search space shrinks significantly with this constraint imposed during the rotation, thus it is helpful to speeding up the initialization of attitude parameters under dynamic circumstances. This paper will only study the applications of this new constraint to land vehicles. The impacts of measurement errors on the effect of this new constraint will be assessed for different grades of IMU and current average precision level of GNSS receivers. Simulations and experiments in urban areas have demonstrated the validity and efficacy of the new constraint in aiding GNSS attitude determinations.
Lee, Min Su; Ju, Hojin; Song, Jin Woo; Park, Chan Gook
2015-11-06
In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT)-based pedestrian dead reckoning (PDR) and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF) on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE) with respect to walking distance is achieved.
Zhou, Qifan; Zhang, Hai; Li, You; Li, Zheng
2015-01-01
The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system’s difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution. PMID:26393605
Zhou, Qifan; Zhang, Hai; Li, You; Li, Zheng
2015-09-18
The main aim of this paper is to develop a low-cost GNSS/MEMS-IMU tightly-coupled integration system with aiding information that can provide reliable position solutions when the GNSS signal is challenged such that less than four satellites are visible in a harsh environment. To achieve this goal, we introduce an adaptive tightly-coupled integration system with height and heading aiding (ATCA). This approach adopts a novel redundant measurement noise estimation method for an adaptive Kalman filter application and also augments external measurements in the filter to aid the position solutions, as well as uses different filters to deal with various situations. On the one hand, the adaptive Kalman filter makes use of the redundant measurement system's difference sequence to estimate and tune noise variance instead of employing a traditional innovation sequence to avoid coupling with the state vector error. On the other hand, this method uses the external height and heading angle as auxiliary references and establishes a model for the measurement equation in the filter. In the meantime, it also changes the effective filter online based on the number of tracked satellites. These measures have increasingly enhanced the position constraints and the system observability, improved the computational efficiency and have led to a good result. Both simulated and practical experiments have been carried out, and the results demonstrate that the proposed method is effective at limiting the system errors when there are less than four visible satellites, providing a satisfactory navigation solution.
Star Tracker Performance Estimate with IMU
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Swank, Aaron J.
2015-01-01
A software tool for estimating cross-boresight error of a star tracker combined with an inertial measurement unit (IMU) was developed to support trade studies for the Integrated Radio and Optical Communication project (iROC) at the National Aeronautics and Space Administration Glenn Research Center. Typical laser communication systems, such as the Lunar Laser Communication Demonstration (LLCD) and the Laser Communication Relay Demonstration (LCRD), use a beacon to locate ground stations. iROC is investigating the use of beaconless precision laser pointing to enable laser communication at Mars orbits and beyond. Precision attitude knowledge is essential to the iROC mission to enable high-speed steering of the optical link. The preliminary concept to achieve this precision attitude knowledge is to use star trackers combined with an IMU. The Star Tracker Accuracy (STAcc) software was developed to rapidly assess the capabilities of star tracker and IMU configurations. STAcc determines the overall cross-boresight error of a star tracker with an IMU given the characteristic parameters: quantum efficiency, aperture, apparent star magnitude, exposure time, field of view, photon spread, detector pixels, spacecraft slew rate, maximum stars used for quaternion estimation, and IMU angular random walk. This paper discusses the supporting theory used to construct STAcc, verification of the program and sample results.
Leardini, Alberto; Lullini, Giada; Giannini, Sandro; Berti, Lisa; Ortolani, Maurizio; Caravaggi, Paolo
2014-09-11
Several rehabilitation systems based on inertial measurement units (IMU) are entering the market for the control of exercises and to measure performance progression, particularly for recovery after lower limb orthopaedic treatments. IMU are easy to wear also by the patient alone, but the extent to which IMU's malpositioning in routine use can affect the accuracy of the measurements is not known. A new such system (Riablo™, CoRehab, Trento, Italy), using audio-visual biofeedback based on videogames, was assessed against state-of-the-art gait analysis as the gold standard. The sensitivity of the system to errors in the IMU's position and orientation was measured in 5 healthy subjects performing two hip joint motion exercises. Root mean square deviation was used to assess differences in the system's kinematic output between the erroneous and correct IMU position and orientation.In order to estimate the system's accuracy, thorax and knee joint motion of 17 healthy subjects were tracked during the execution of standard rehabilitation tasks and compared with the corresponding measurements obtained with an established gait protocol using stereophotogrammetry. A maximum mean error of 3.1 ± 1.8 deg and 1.9 ± 0.8 deg from the angle trajectory with correct IMU position was recorded respectively in the medio-lateral malposition and frontal-plane misalignment tests. Across the standard rehabilitation tasks, the mean distance between the IMU and gait analysis systems was on average smaller than 5°. These findings showed that the tested IMU based system has the necessary accuracy to be safely utilized in rehabilitation programs after orthopaedic treatments of the lower limb.
McGrath, Timothy; Fineman, Richard; Stirling, Leia
2018-06-08
Inertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles—an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study ( n = 15) with an absolute root-mean-square-error (RMSE) of 9.24∘ and a zero-mean RMSE of 3.49∘. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.
PDR with a Foot-Mounted IMU and Ramp Detection
Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge
2011-01-01
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701
2013-09-30
Unit and Attitude Heading Reference System (IMU/ AHRS ). The former was motivated by analysis of prototype data that suggested that vortex shedding from...relative orientation of the coordinate system of the VN-100 IMU/ AHRS (mounted on a board inside the ITP-V pressure case) relative to that of the ACM
Bragança, F M; Bosch, S; Voskamp, J P; Marin-Perianu, M; Van der Zwaag, B J; Vernooij, J C M; van Weeren, P R; Back, W
2017-07-01
Inertial measurement unit (IMU) sensor-based techniques are becoming more popular in horses as a tool for objective locomotor assessment. To describe, evaluate and validate a method of stride detection and quantification at walk and trot using distal limb mounted IMU sensors. Prospective validation study comparing IMU sensors and motion capture with force plate data. A total of seven Warmblood horses equipped with metacarpal/metatarsal IMU sensors and reflective markers for motion capture were hand walked and trotted over a force plate. Using four custom built algorithms hoof-on/hoof-off timing over the force plate were calculated for each trial from the IMU data. Accuracy of the computed parameters was calculated as the mean difference in milliseconds between the IMU or motion capture generated data and the data from the force plate, precision as the s.d. of these differences and percentage of error with accuracy of the calculated parameter as a percentage of the force plate stance duration. Accuracy, precision and percentage of error of the best performing IMU algorithm for stance duration at walk were 28.5, 31.6 ms and 3.7% for the forelimbs and -5.5, 20.1 ms and -0.8% for the hindlimbs, respectively. At trot the best performing algorithm achieved accuracy, precision and percentage of error of -27.6/8.8 ms/-8.4% for the forelimbs and 6.3/33.5 ms/9.1% for the hindlimbs. The described algorithms have not been assessed on different surfaces. Inertial measurement unit technology can be used to determine temporal kinematic stride variables at walk and trot justifying its use in gait and performance analysis. However, precision of the method may not be sufficient to detect all possible lameness-related changes. These data seem promising enough to warrant further research to evaluate whether this approach will be useful for appraising the majority of clinically relevant gait changes encountered in practice. © 2016 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Space shuttle navigation analysis. Volume 2: Baseline system navigation
NASA Technical Reports Server (NTRS)
Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.
1980-01-01
Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.
Statistical Sensor Fusion of a 9-DOF Mems Imu for Indoor Navigation
NASA Astrophysics Data System (ADS)
Chow, J. C. K.
2017-09-01
Sensor fusion of a MEMS IMU with a magnetometer is a popular system design, because such 9-DoF (degrees of freedom) systems are capable of achieving drift-free 3D orientation tracking. However, these systems are often vulnerable to ambient magnetic distortions and lack useful position information; in the absence of external position aiding (e.g. satellite/ultra-wideband positioning systems) the dead-reckoned position accuracy from a 9-DoF MEMS IMU deteriorates rapidly due to unmodelled errors. Positioning information is valuable in many satellite-denied geomatics applications (e.g. indoor navigation, location-based services, etc.). This paper proposes an improved 9-DoF IMU indoor pose tracking method using batch optimization. By adopting a robust in-situ user self-calibration approach to model the systematic errors of the accelerometer, gyroscope, and magnetometer simultaneously in a tightly-coupled post-processed least-squares framework, the accuracy of the estimated trajectory from a 9-DoF MEMS IMU can be improved. Through a combination of relative magnetic measurement updates and a robust weight function, the method is able to tolerate a high level of magnetic distortions. The proposed auto-calibration method was tested in-use under various heterogeneous magnetic field conditions to mimic a person walking with the sensor in their pocket, a person checking their phone, and a person walking with a smartwatch. In these experiments, the presented algorithm improved the in-situ dead-reckoning orientation accuracy by 79.8-89.5 % and the dead-reckoned positioning accuracy by 72.9-92.8 %, thus reducing the relative positioning error from metre-level to decimetre-level after ten seconds of integration, without making assumptions about the user's dynamics.
The Effects of Lever Arm (Instrument Offset) Error on GRAV-D Airborne Gravity Data
NASA Astrophysics Data System (ADS)
Johnson, J. A.; Youngman, M.; Damiani, T.
2017-12-01
High quality airborne gravity collection with a 2-axis, stabilized platform gravity instrument, such as with a Micro-g LaCoste Turnkey Airborne Gravity System (TAGS), is dependent on the aircraft's ability to maintain "straight and level" flight. However, during flight there is constant rotation about the aircraft's center of gravity. Standard practice is to install the scientific equipment close to the aircraft's estimated center of gravity to minimize the relative rotations with aircraft motion. However, there remain small offsets between the instruments. These distance offsets, the lever arm, are used to define the rigid-body, spatial relationship between the IMU, GPS antenna, and airborne gravimeter within the aircraft body frame. The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, which is collecting airborne gravity data across the U.S., uses a commercial software package for coupled IMU-GNSS aircraft positioning. This software incorporates a lever arm correction to calculate a precise position for the airborne gravimeter. The positioning software must do a coordinate transformation to relate each epoch of the coupled GNSS-IMU derived position to the position of the gravimeter within the constantly-rotating aircraft. This transformation requires three inputs: accurate IMU-measured aircraft rotations, GNSS positions, and lever arm distances between instruments. Previous studies show that correcting for the lever arm distances improves gravity results, but no sensitivity tests have been done to investigate how error in the lever arm distances affects the final airborne gravity products. This research investigates the effects of lever arm measurement error on airborne gravity data. GRAV-D lever arms are nominally measured to the cm-level using surveying equipment. "Truth" data sets will be created by processing GRAV-D flight lines with both relatively small lever arms and large lever arms. Then negative and positive incremental errors will be introduced independently in the x, y, and z directions during GPS-IMU processing. Finally, the post-processed gravity data obtained using the erroneous lever arms will be compared to the post-processed truth sets to identify relationships between error in the lever arm measurement and the final gravity product.
NASA Astrophysics Data System (ADS)
K., Nirmal; A. G., Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant
2016-07-01
We describe the characterization and removal of noises present in the Inertial Measurement Unit (IMU) MPU- 6050, which was initially used in an attitude sensor, and later used in the development of a pointing system for small balloon-borne astronomical payloads. We found that the performance of the IMU degraded with time because of the accumulation of different errors. Using Allan variance analysis method, we identified the different components of noise present in the IMU, and verified the results by the power spectral density analysis (PSD). We tried to remove the high-frequency noise using smooth filters such as moving average filter and then Savitzky Golay (SG) filter. Even though we managed to filter some high-frequency noise, these filters performance wasn't satisfactory for our application. We found the distribution of the random noise present in IMU using probability density analysis and identified that the noise in our IMU was white Gaussian in nature. Hence, we used a Kalman filter to remove the noise and which gave us good performance real time.
A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors
Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul
2013-01-01
This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316
An enhanced inertial navigation system based on a low-cost IMU and laser scanner
NASA Astrophysics Data System (ADS)
Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok
2012-06-01
This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Bilateral step length estimation using a single inertial measurement unit attached to the pelvis
2012-01-01
Background The estimation of the spatio-temporal gait parameters is of primary importance in both physical activity monitoring and clinical contexts. A method for estimating step length bilaterally, during level walking, using a single inertial measurement unit (IMU) attached to the pelvis is proposed. In contrast to previous studies, based either on a simplified representation of the human gait mechanics or on a general linear regressive model, the proposed method estimates the step length directly from the integration of the acceleration along the direction of progression. Methods The IMU was placed at pelvis level fixed to the subject's belt on the right side. The method was validated using measurements from a stereo-photogrammetric system as a gold standard on nine subjects walking ten laps along a closed loop track of about 25 m, varying their speed. For each loop, only the IMU data recorded in a 4 m long portion of the track included in the calibrated volume of the SP system, were used for the analysis. The method takes advantage of the cyclic nature of gait and it requires an accurate determination of the foot contact instances. A combination of a Kalman filter and of an optimally filtered direct and reverse integration applied to the IMU signals formed a single novel method (Kalman and Optimally filtered Step length Estimation - KOSE method). A correction of the IMU displacement due to the pelvic rotation occurring in gait was implemented to estimate the step length and the traversed distance. Results The step length was estimated for all subjects with less than 3% error. Traversed distance was assessed with less than 2% error. Conclusions The proposed method provided estimates of step length and traversed distance more accurate than any other method applied to measurements obtained from a single IMU that can be found in the literature. In healthy subjects, it is reasonable to expect that, errors in traversed distance estimation during daily monitoring activity would be of the same order of magnitude of those presented. PMID:22316235
Sabatini, Angelo Maria
2011-01-01
In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical. PMID:22163689
A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications
Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser
2017-01-01
In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service. PMID:28574471
A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.
Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser
2017-06-02
In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.
Towards an IMU Evaluation Framework for Human Body Tracking.
Venek, Verena; Kremser, Wolfgang; Schneider, Cornelia
2018-01-01
Existing full-body tracking systems, which use Inertial Measurement Units (IMUs) as sensing unit, require expert knowledge for setup and data collection. Thus, the daily application for human body tracking is difficult. In particular, in the field of active and assisted living (AAL), tracking human movements would enable novel insights not only into the quantity but also into the quality of human movement, for example by monitoring functional training. While the current market offers a wide range of products with vastly different properties, literature lacks guidelines for choosing IMUs for body tracking applications. Therefore, this paper introduces developments towards an IMU evaluation framework for human body tracking which compares IMUs against five requirement areas that consider device features and data quality. The data quality is assessed by conducting a static and a dynamic error analysis. In a first application to four IMUs of different component consumption, the IMU evaluation framework convinced as promising tool for IMU selection.
Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen
2018-01-01
The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible. PMID:29695041
Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen
2018-04-24
The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible.
IMU-based online kinematic calibration of robot manipulator.
Du, Guanglong; Zhang, Ping
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.
Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data
Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Azevedo Coste, Christine
2015-01-01
This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject’s foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15% under the various walking conditions. PMID:26703622
Research into Kinect/Inertial Measurement Units Based on Indoor Robots.
Li, Huixia; Wen, Xi; Guo, Hang; Yu, Min
2018-03-12
As indoor mobile navigation suffers from low positioning accuracy and accumulation error, we carried out research into an integrated location system for a robot based on Kinect and an Inertial Measurement Unit (IMU). In this paper, the close-range stereo images are used to calculate the attitude information and the translation amount of the adjacent positions of the robot by means of the absolute orientation algorithm, for improving the calculation accuracy of the robot's movement. Relying on the Kinect visual measurement and the strap-down IMU devices, we also use Kalman filtering to obtain the errors of the position and attitude outputs, in order to seek the optimal estimation and correct the errors. Experimental results show that the proposed method is able to improve the positioning accuracy and stability of the indoor mobile robot.
Estimation of Antenna Pose in the Earth Frame Using Camera and IMU Data from Mobile Phones
Wang, Zhen; Jin, Bingwen; Geng, Weidong
2017-01-01
The poses of base station antennas play an important role in cellular network optimization. Existing methods of pose estimation are based on physical measurements performed either by tower climbers or using additional sensors attached to antennas. In this paper, we present a novel non-contact method of antenna pose measurement based on multi-view images of the antenna and inertial measurement unit (IMU) data captured by a mobile phone. Given a known 3D model of the antenna, we first estimate the antenna pose relative to the phone camera from the multi-view images and then employ the corresponding IMU data to transform the pose from the camera coordinate frame into the Earth coordinate frame. To enhance the resulting accuracy, we improve existing camera-IMU calibration models by introducing additional degrees of freedom between the IMU sensors and defining a new error metric based on both the downtilt and azimuth angles, instead of a unified rotational error metric, to refine the calibration. In comparison with existing camera-IMU calibration methods, our method achieves an improvement in azimuth accuracy of approximately 1.0 degree on average while maintaining the same level of downtilt accuracy. For the pose estimation in the camera coordinate frame, we propose an automatic method of initializing the optimization solver and generating bounding constraints on the resulting pose to achieve better accuracy. With this initialization, state-of-the-art visual pose estimation methods yield satisfactory results in more than 75% of cases when plugged into our pipeline, and our solution, which takes advantage of the constraints, achieves even lower estimation errors on the downtilt and azimuth angles, both on average (0.13 and 0.3 degrees lower, respectively) and in the worst case (0.15 and 7.3 degrees lower, respectively), according to an evaluation conducted on a dataset consisting of 65 groups of data. We show that both of our enhancements contribute to the performance improvement offered by the proposed estimation pipeline, which achieves downtilt and azimuth accuracies of respectively 0.47 and 5.6 degrees on average and 1.38 and 12.0 degrees in the worst case, thereby satisfying the accuracy requirements for network optimization in the telecommunication industry. PMID:28397765
Environmental Data Collection Using Autonomous Wave Gliders
2014-12-01
Observing System IMU Inertial Measurement Unit LRI Liquid Robotics, Inc. MASFlux Marine-Air-Sea-Flux METOC meteorological and oceanographic...position, velocity, heading, pitch, roll , and six-axis acceleration rates (Figure 11). A separate temperature probe also provides sea surface...Position, Velocity, and Magnetic declination True North Revolution Technologies GS Gyro Stabilized Electronic Compass Heading, Pitch, and Roll
Design considerations for a suboptimal Kalman filter
NASA Astrophysics Data System (ADS)
Difilippo, D. J.
1995-06-01
In designing a suboptimal Kalman filter, the designer must decide how to simplify the system error model without causing the filter estimation errors to increase to unacceptable levels. Deletion of certain error states and decoupling of error state dynamics are the two principal model simplifications that are commonly used in suboptimal filter design. For the most part, the decisions as to which error states can be deleted or decoupled are based on the designer's understanding of the physics of the particular system. Consequently, the details of a suboptimal design are usually unique to the specific application. In this paper, the process of designing a suboptimal Kalman filter is illustrated for the case of an airborne transfer-of-alignment (TOA) system used for synthetic aperture radar (SAR) motion compensation. In this application, the filter must continuously transfer the alignment of an onboard Doppler-damped master inertial navigation system (INS) to a strapdown navigator that processes information from a less accurate inertial measurement unit (IMU) mounted on the radar antenna. The IMU is used to measure spurious antenna motion during the SAR imaging interval, so that compensating phase corrections can be computed and applied to the radar returns, thereby presenting image degradation that would otherwise result from such motions. The principles of SAR are described in many references, for instance. The primary function of the TOA Kalman filter in a SAR motion compensation system is to control strapdown navigator attitude errors, and to a less degree, velocity and heading errors. Unlike a classical navigation application, absolute positional accuracy is not important. The motion compensation requirements for SAR imaging are discussed in some detail. This TOA application is particularly appropriate as a vehicle for discussing suboptimal filter design, because the system contains features that can be exploited to allow both deletion and decoupling of error states. In Section 2, a high-level background description of a SAR motion compensation system that incorporates a TOA Kalman filter is given. The optimal TOA filter design is presented in Section 3 with some simulation results to indicate potential filter performance. In Section 4, the suboptimal Kalman filter configuration is derived. Simulation results are also shown in this section to allow comparision between suboptimal and optimal filter performances. Conclusions are contained in Section 5.
Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer
NASA Astrophysics Data System (ADS)
El-Mowafy, Ahmed; Kubo, Nobuaki
2017-05-01
Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.
Jiang, Qingan; Wu, Wenqi; Jiang, Mingming; Li, Yun
2017-01-01
High-accuracy railway track surveying is essential for railway construction and maintenance. The traditional approaches based on total station equipment are not efficient enough since high precision surveying frequently needs static measurements. This paper proposes a new filtering and smoothing algorithm based on the IMU/odometer and landmarks integration for the railway track surveying. In order to overcome the difficulty of estimating too many error parameters with too few landmark observations, a new model with completely observable error states is established by combining error terms of the system. Based on covariance analysis, the analytical relationship between the railway track surveying accuracy requirements and equivalent gyro drifts including bias instability and random walk noise are established. Experiment results show that the accuracy of the new filtering and smoothing algorithm for railway track surveying can reach 1 mm (1σ) when using a Ring Laser Gyroscope (RLG)-based Inertial Measurement Unit (IMU) with gyro bias instability of 0.03°/h and random walk noise of 0.005°/h while control points of the track control network (CPIII) position observations are provided by the optical total station in about every 60 m interval. The proposed approach can satisfy at the same time the demands of high accuracy and work efficiency for railway track surveying. PMID:28629191
Redundancy management of multiple KT-70 inertial measurement units applicable to the space shuttle
NASA Technical Reports Server (NTRS)
Cook, L. J.
1975-01-01
Results of an investigation of velocity failure detection and isolation for 3 inertial measuring units (IMU) and 2 inertial measuring units (IMU) configurations are presented. The failure detection and isolation algorithm performance was highly successful and most types of velocity errors were detected and isolated. The failure detection and isolation algorithm also included attitude FDI but was not evaluated because of the lack of time and low resolution in the gimbal angle synchro outputs. The shuttle KT-70 IMUs will have dual-speed resolvers and high resolution gimbal angle readouts. It was demonstrated by these tests that a single computer utilizing a serial data bus can successfully control a redundant 3-IMU system and perform FDI.
IMU-Based Online Kinematic Calibration of Robot Manipulator
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods. PMID:24302854
Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis
2012-01-01
Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.
Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments
Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis
2012-01-01
Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations. PMID:22736999
Self-calibration method of the inner lever-arm parameters for a tri-axis RINS
NASA Astrophysics Data System (ADS)
Song, Tianxiao; Li, Kui; Sui, Jie; Liu, Zengjun; Liu, Juncheng
2017-11-01
A rotational inertial navigation system (RINS) could improve navigation performance by modulating the inertial sensor errors with rotatable gimbals. When an inertial measurement unit (IMU) rotates, the deviations between the accelerometer-sensitive points and the IMU center will lead to an inner lever-arm effect. In this paper, a self-calibration method of the inner lever-arm parameters for a tri-axis RINS is proposed. A novel rotation scheme with variable angular rate rotation is designed to motivate the velocity errors caused by the inner lever-arm effect. By extending all inner lever-arm parameters as filter states, a Kalman filter with velocity errors as measurement is established to achieve the calibration. The accuracy and feasibility of the proposed method are illustrated by both simulations and experiments. The final results indicate that the inner lever-arm effect is significantly restrained after compensation by the calibration results.
Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials.
House, Samuel; Connell, Sean; Milligan, Ian; Austin, Daniel; Hayes, Tamara L; Chiang, Patrick
2011-01-01
We describe a low-cost wearable system that tracks the location of individuals indoors using commonly available inertial navigation sensors fused with radio frequency identification (RFID) tags placed around the smart environment. While conventional pedestrian dead reckoning (PDR) calculated with an inertial measurement unit (IMU) is susceptible to sensor drift inaccuracies, the proposed wearable prototype fuses the drift-sensitive IMU with a RFID tag reader. Passive RFID tags placed throughout the smart-building then act as fiducial markers that update the physical locations of each user, thereby correcting positional errors and sensor inaccuracy. Experimental measurements taken for a 55 m × 20 m 2D floor space indicate an over 1200% improvement in average error rate of the proposed RFID-fused system over dead reckoning alone.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-05-01
Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.
NASA Astrophysics Data System (ADS)
Chen, Yuanpei; Wang, Lingcao; Li, Kui
2017-10-01
Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier
2017-01-01
Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178
NA-241_Quarterly Report_SBLibby - 12.31.2017_v2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, Stephen B.
This is an evaluation of candidate navigation solutions for GPS free inspection tools that can be used in tours of large building interiors. In principle, COTS portable inertial motion unit (IMU) sensors with satisfactory accuracy, SWAP (size, weight, power), low error, and bias drift can provide sufficiently accurate dead reckoning navigation in a large building in the absence of GPS. To explore this assumption, the capabilities of representative IMU navigation sensors to meet these requirements will be evaluated, starting with a market survey, and then carrying out a basic analysis of these sensors using LLNL’s navigation codes.
MEMS SoC: observer-based coplanar gyro-free inertial measurement unit
NASA Astrophysics Data System (ADS)
Chen, Tsung-Lin; Park, Sungsu
2005-09-01
This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Vargas-Valencia, Laura; dos Santos, Wilian M.; Schneider, Felipe B. A.; Siqueira, Adriano A. G.; Pontes, Maria José; Frizera, Anselmo
2018-07-01
This paper presents a low cost and highly reliable system for angle measurement based on a sensor fusion between inertial and fiber optic sensors. The system consists of the sensor fusion through Kalman filter of two inertial measurement units (IMUs) and an intensity variation-based polymer optical fiber (POF) curvature sensor. In addition, the IMU was applied as a reference for a compensation technique of POF curvature sensor hysteresis. The proposed system was applied on the knee angle measurement of a lower limb exoskeleton in flexion/extension cycles and in gait analysis. Results show the accuracy of the system, where the Root Mean Square Error (RMSE) between the POF-IMU sensor system and the encoder was below 4° in the worst case and about 1° in the best case. Then, the POF-IMU sensor system was evaluated as a wearable sensor for knee joint angle assessment without the exoskeleton, where its suitability for this purpose was demonstrated. The results obtained in this paper pave the way for future applications of sensor fusion between electronic and fiber optic sensors in movement analysis.
NASA Technical Reports Server (NTRS)
Miller, Christopher; Peters, Brian; Feiveson, Alan; Bloomberg, Jacob
2011-01-01
Astronauts returning from spaceflight experience neurovestibular disturbances during head movements and attempt to mitigate them by limiting head motion. Analyses to date of the head movements made during walking have concentrated on amplitude and variability measures extracted from ensemble averages of individual gait cycles. Phase shifts within each gait cycle can be determined by functional data analysis through the computation of time-warping functions. Large, localized variations in the timing of peaks in head kinematics may indicate changes in coordination. The purpose of this study was to determine timing changes in head pitch acceleration of astronauts during treadmill walking before and after flight. Six astronauts (5M/1F; age = 43.5+/-6.4yr) participated in the study. Subjects walked at 1.8 m/sec (4 mph) on a motorized treadmill while reading optotypes displayed on a computer screen 4 m in front of their eyes. Three-dimensional motion of the subject s head was recorded with an Inertial Measurement Unit (IMU) device. Data were recorded twice before flight and four times after landing. The head pitch acceleration was calculated by taking the time derivative of the pitch velocity data from the IMU. Data for each session with each subject were time-normalized into gait cycles, then registered to align significant features and create a mean curve. The mean curves of each postflight session for each subject were re-registered based on their preflight mean curve to create time-warping functions. The root mean squares (RMS) of these warping functions were calculated to assess the deviation of head pitch acceleration mean curves in each postflight session from the preflight mean curve. After landing, most crewmembers exhibited localized shifts within their head pitch acceleration regimes, with the greatest deviations in RMS occurring on landing day or 1 day after landing. These results show that the alteration of head pitch coordination due to spaceflight may be assessed using an analysis of time-warping functions.
Magnetometer-augmented IMU simulator: in-depth elaboration.
Brunner, Thomas; Lauffenburger, Jean-Philippe; Changey, Sébastien; Basset, Michel
2015-03-04
The location of objects is a growing research topic due, for instance, to the expansion of civil drones or intelligent vehicles. This expansion was made possible through the development of microelectromechanical systems (MEMS), inexpensive and miniaturized inertial sensors. In this context, this article describes the development of a new simulator which generates sensor measurements, giving a specific input trajectory. This will allow the comparison of pose estimation algorithms. To develop this simulator, the measurement equations of every type of sensor have to be analytically determined. To achieve this objective, classical kinematic equations are used for the more common sensors, i.e., accelerometers and rate gyroscopes. As nowadays, the MEMS inertial measurement units (IMUs) are generally magnetometer-augmented, an absolute world magnetic model is implemented. After the determination of the perfect measurement (through the error-free sensor models), realistic error models are developed to simulate real IMU behavior. Finally, the developed simulator is subjected to different validation tests.
Magnetometer-Augmented IMU Simulator: In-Depth Elaboration
Brunner, Thomas; Lauffenburger, Jean-Philippe; Changey, Sébastien; Basset, Michel
2015-01-01
The location of objects is a growing research topic due, for instance, to the expansion of civil drones or intelligent vehicles. This expansion was made possible through the development of microelectromechanical systems (MEMS), inexpensive and miniaturized inertial sensors. In this context, this article describes the development of a new simulator which generates sensor measurements, giving a specific input trajectory. This will allow the comparison of pose estimation algorithms. To develop this simulator, the measurement equations of every type of sensor have to be analytically determined. To achieve this objective, classical kinematic equations are used for the more common sensors, i.e., accelerometers and rate gyroscopes. As nowadays, the MEMS inertial measurement units (IMUs) are generally magnetometer-augmented, an absolute world magnetic model is implemented. After the determination of the perfect measurement (through the error-free sensor models), realistic error models are developed to simulate real IMU behavior. Finally, the developed simulator is subjected to different validation tests. PMID:25746095
Calibration Procedures on Oblique Camera Setups
NASA Astrophysics Data System (ADS)
Kemper, G.; Melykuti, B.; Yu, C.
2016-06-01
Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager) is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna -IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first step with the help of the nadir camera and the GPS/IMU data, an initial orientation correction and radial correction were calculated. With this approach, the whole project was calculated and calibrated in one step. During the iteration process the radial and tangential parameters were switched on individually for the camera heads and after that the camera constants and principal point positions were checked and finally calibrated. Besides that, the bore side calibration can be performed either on basis of the nadir camera and their offsets, or independently for each camera without correlation to the others. This must be performed in a complete mission anyway to get stability between the single camera heads. Determining the lever arms of the nodal-points to the IMU centre needs more caution than for a single camera especially due to the strong tilt angle. Prepared all these previous steps, you get a highly accurate sensor that enables a fully automated data extraction with a rapid update of you existing data. Frequently monitoring urban dynamics is then possible in fully 3D environment.
Loose fusion based on SLAM and IMU for indoor environment
NASA Astrophysics Data System (ADS)
Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing
2018-04-01
The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.
INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert
2011-01-01
We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. © 2011 IEEE
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning
Deng, Zhongliang
2018-01-01
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization. PMID:29361718
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
Deng, Zhongliang; Fu, Xiao; Wang, Hanhua
2018-01-20
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
Star tracker error analysis: Roll-to-pitch nonorthogonality
NASA Technical Reports Server (NTRS)
Corson, R. W.
1979-01-01
An error analysis is described on an anomaly isolated in the star tracker software line of sight (LOS) rate test. The LOS rate cosine was found to be greater than one in certain cases which implied that either one or both of the star tracker measured end point unit vectors used to compute the LOS rate cosine had lengths greater than unity. The roll/pitch nonorthogonality matrix in the TNB CL module of the IMU software is examined as the source of error.
Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
Zizzo, Giulio; Ren, Lei
2017-12-10
Progress has been made enabling expensive, high-end inertial measurement units (IMUs) to be used as tracking sensors. However, the cost of these IMUs is prohibitive to their widespread use, and hence the potential of low-cost IMUs is investigated in this study. A wearable low-cost sensing system consisting of IMUs and ultrasound sensors was developed. Core to this system is an extended Kalman filter (EKF), which provides both zero-velocity updates (ZUPTs) and Heuristic Drift Reduction (HDR). The IMU data was combined with ultrasound range measurements to improve accuracy. When a map of the environment was available, a particle filter was used to impose constraints on the possible user motions. The system was therefore composed of three subsystems: IMUs, ultrasound sensors, and a particle filter. A Vicon motion capture system was used to provide ground truth information, enabling validation of the sensing system. Using only the IMU, the system showed loop misclosure errors of 1% with a maximum error of 4-5% during walking. The addition of the ultrasound sensors resulted in a 15% reduction in the total accumulated error. Lastly, the particle filter was capable of providing noticeable corrections, which could keep the tracking error below 2% after the first few steps.
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell
González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo
2008-01-01
This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.
González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo
2008-05-23
This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.
Meng, Xiaoli
2017-01-01
Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization. PMID:28926996
Meng, Xiaoli; Wang, Heng; Liu, Bingbing
2017-09-18
Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.
An IMU-to-Body Alignment Method Applied to Human Gait Analysis.
Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo
2016-12-10
This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.
Sensing Passive Eye Response to Impact Induced Head Acceleration Using MEMS IMUs.
Meng, Yuan; Bottenfield, Brent; Bolding, Mark; Liu, Lei; Adams, Mark L
2018-02-01
The eye may act as a surrogate for the brain in response to head acceleration during an impact. Passive eye movements in a dynamic system are sensed by microelectromechanical systems (MEMS) inertial measurement units (IMU) in this paper. The technique is validated using a three-dimensional printed scaled human skull model and on human volunteers by performing drop-and-impact experiments with ribbon-style flexible printed circuit board IMUs inserted in the eyes and reference IMUs on the heads. Data are captured by a microcontroller unit and processed using data fusion. Displacements are thus estimated and match the measured parameters. Relative accelerations and displacements of the eye to the head are computed indicating the influence of the concussion causing impacts.
Gyroscope-reduced inertial navigation system for flight vehicle motion estimation
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiao, Lu
2017-01-01
In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.
Zhang, Qian; Wang, Lei; Liu, Zengjun; Zhang, Yiming
2016-09-19
The calibration of an inertial measurement unit (IMU) is a key technique to improve the preciseness of the inertial navigation system (INS) for missile, especially for the calibration of accelerometer scale factor. Traditional calibration method is generally based on the high accuracy turntable, however, it leads to expensive costs and the calibration results are not suitable to the actual operating environment. In the wake of developments in multi-axis rotational INS (RINS) with optical inertial sensors, self-calibration is utilized as an effective way to calibrate IMU on missile and the calibration results are more accurate in practical application. However, the introduction of multi-axis RINS causes additional calibration errors, including non-orthogonality errors of mechanical processing and non-horizontal errors of operating environment, it means that the multi-axis gimbals could not be regarded as a high accuracy turntable. As for its application on missiles, in this paper, after analyzing the relationship between the calibration error of accelerometer scale factor and non-orthogonality and non-horizontal angles, an innovative calibration procedure using the signals of fiber optic gyro and photoelectric encoder is proposed. The laboratory and vehicle experiment results validate the theory and prove that the proposed method relaxes the orthogonality requirement of rotation axes and eliminates the strict application condition of the system.
Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation
Ruotsalainen, Laura; Kirkko-Jaakkola, Martti; Rantanen, Jesperi; Mäkelä, Maija
2018-01-01
The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM) and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU), sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS) sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF), which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf) in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is tested via two experiments, one at a university’s premises and another in realistic tactical conditions. The results show significant improvement on the horizontal localization when the measurement errors are carefully modelled and their inclusion into the particle filtering implementation correctly realized. PMID:29443918
An IMU-to-Body Alignment Method Applied to Human Gait Analysis
Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo
2016-01-01
This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis. PMID:27973406
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint
Zou, Jiaheng
2018-01-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m. PMID:29494542
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint.
Wang, Yan; Li, Xin; Zou, Jiaheng
2018-03-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.
GPS aiding of ocean current determination. [Global Positioning System
NASA Technical Reports Server (NTRS)
Mohan, S. N.
1981-01-01
The navigational accuracy of an oceangoing vessel using conventional GPS p-code data is examined. The GPS signal is transmitted over two carrier frequencies in the L-band at 1575.42 and 1227.6 MHz. Achievable navigational uncertainties of differenced positional estimates are presented as a function of the parameters of the problem, with particular attention given to the effect of sea-state, user equivalent range error, uncompensated antenna motion, varying delay intervals, and reduced data rate examined in the unaided mode. The unmodeled errors resulting from satellite ephemeris uncertainties are shown to be negligible for the GPS-NDS (Navigation Development) satellites. Requirements are met in relatively calm seas, but accuracy degradation by a factor of at least 2 must be anticipated in heavier sea states. The aided mode of operation is examined, and it is shown that requirements can be met by using an inertial measurement unit (IMU) to aid the GPS receiver operation. Since the use of an IMU would mean higher costs, direct Doppler from the GPS satellites is presented as a viable alternative.
Calibration Matters: Advances in Strapdown Airborne Gravimetry
NASA Astrophysics Data System (ADS)
Becker, D.
2015-12-01
Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.
Space shuttle navigation analysis
NASA Technical Reports Server (NTRS)
Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.
1976-01-01
A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.
IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning
2018-01-01
Human body motion analysis based on wearable inertial measurement units (IMUs) receives a lot of attention from both the research community and the and industrial community. This is due to the significant role in, for instance, mobile health systems, sports and human computer interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand crafted features and shallow classification approaches (e.g., support vector machines), with no agreement regarding the most suitable features for the assignment task. Moreover, estimating the complete orientation alignment of an IMU relative to the segment it is attached to using a machine learning approach has not been shown in literature so far. This is likely due to the high amount of training data that have to be recorded to suitably represent possible IMU alignment variations. In this work, we propose online approaches for solving the assignment and alignment tasks for an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep learning architecture and windows of 128 gyroscope and accelerometer data samples. For this, we combine convolutional neural networks (CNNs) for local filter learning with long-short-term memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time dynamic features. The assignment task is casted as a classification problem, while the alignment task is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting a limited amount of real IMU training data with simulated alignment variations and IMU data for improving the recognition/estimation accuracies. With the proposed approaches and final models we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when excluding left/right switches) and an average median angle error over all segments and axes of 2.91° for the I2S alignment task. PMID:29351262
Admiralty Inlet Advanced Turbulence Measurements: June 2014
Kilcher, Levi
2014-06-30
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.
Roell, Mareike; Roecker, Kai; Gehring, Dominic; Mahler, Hubert; Gollhofer, Albert
2018-01-01
The increasing interest in assessing physical demands in team sports has led to the development of multiple sports related monitoring systems. Due to technical limitations, these systems primarily could be applied to outdoor sports, whereas an equivalent indoor locomotion analysis is not established yet. Technological development of inertial measurement units (IMU) broadens the possibilities for player monitoring and enables the quantification of locomotor movements in indoor environments. The aim of the current study was to validate an IMU measuring by determining average and peak human acceleration under indoor conditions in team sport specific movements. Data of a single wearable tracking device including an IMU (Optimeye S5, Catapult Sports, Melbourne, Australia) were compared to the results of a 3D motion analysis (MA) system (Vicon Motion Systems, Oxford, UK) during selected standardized movement simulations in an indoor laboratory (n = 56). A low-pass filtering method for gravity correction (LF) and two sensor fusion algorithms for orientation estimation [Complementary Filter (CF), Kalman-Filter (KF)] were implemented and compared with MA system data. Significant differences (p < 0.05) were found between LF and MA data but not between sensor fusion algorithms and MA. Higher precision and lower relative errors were found for CF (RMSE = 0.05; CV = 2.6%) and KF (RMSE = 0.15; CV = 3.8%) both compared to the LF method (RMSE = 1.14; CV = 47.6%) regarding the magnitude of the resulting vector and strongly emphasize the implementation of orientation estimation to accurately describe human acceleration. Comparing both sensor fusion algorithms, CF revealed slightly lower errors than KF and additionally provided valuable information about positive and negative acceleration values in all three movement planes with moderate to good validity (CV = 3.9 – 17.8%). Compared to x- and y-axis superior results were found for the z-axis. These findings demonstrate that IMU-based wearable tracking devices can successfully be applied for athlete monitoring in indoor team sports and provide potential to accurately quantify accelerations and decelerations in all three orthogonal axes with acceptable validity. An increase in accuracy taking magnetometers in account should be specifically pursued by future research. PMID:29535641
Improving the Performance of MEMS GYROS via Redundant Measurements: Theory and Experiments
2014-12-01
gyroscope arrays, improve performance inertial measurement unit ( IMU ), Sparkfun razor IMU , gyroscope, magnetometer, accelerometer, redundant IMU , angular...30 Figure 15 Sparkfun 9DOF razor IMU , after [21...43 Figure 27 Sparkfun razor IMU (bottom) connected to the FT232R breakout board (top) and then to a
Synthetic Air Data Estimation: A case study of model-aided estimation
NASA Astrophysics Data System (ADS)
Lie, F. Adhika Pradipta
A method for estimating airspeed, angle of attack, and sideslip without using conventional, pitot-static airdata system is presented. The method relies on measurements from GPS, an inertial measurement unit (IMU) and a low-fidelity model of the aircraft's dynamics which are fused using two, cascaded Extended Kalman Filters. In the cascaded architecture, the first filter uses information from the IMU and GPS to estimate the aircraft's absolute velocity and attitude. These estimates are used as the measurement updates for the second filter where they are fused with the aircraft dynamics model to generate estimates of airspeed, angle of attack and sideslip. Methods for dealing with the time and inter-state correlation in the measurements coming from the first filter are discussed. Simulation and flight test results of the method are presented. Simulation results using high fidelity nonlinear model show that airspeed, angle of attack, and sideslip angle estimation errors are less than 0.5 m/s, 0.1 deg, and 0.2 deg RMS, respectively. Factors that affect the accuracy including the implication and impact of using a low fidelity aircraft model are discussed. It is shown using flight tests that a single linearized aircraft model can be used in lieu of a high-fidelity, non-linear model to provide reasonably accurate estimates of airspeed (less than 2 m/s error), angle of attack (less than 3 deg error), and sideslip angle (less than 5 deg error). This performance is shown to be relatively insensitive to off-trim attitudes but very sensitive to off-trim velocity.
2008-01-01
components attached. The laser is located on the far left corner of the bench the pulse chopper assembly and beam expansion optics are at center. The IMU...access to the computer and receivers. Modifications were also made to lock the alignment of the beam through the chopper to increase the output...Receiver 2 CPU & Digitizer Laser Head Pulse Chopper 100 cm 56 cm GPS & INS Therm al M anagem ent 56 cm INS Laser PC & Digitize TE cooler Page 6 of
NASA Astrophysics Data System (ADS)
Lawman, Adam; Straub, Jeremy; Kerlin, Scott
2015-05-01
This paper presents work conducted in preparation for a suborbital test flight to test an inertial measurement unit's (IMU's) ability to serve as a position determination mechanism in a GPS-denied environment. Because the IMU could potentially be used at several points during flight, it is not guaranteed that a GPS fix can be used to reset the IMU after the stresses of launch. Due to this, the specific goal of this work is to characterize whether a rocket launch disrupts the IMU-based position knowledge to the extent that it is unusable. This paper discusses preparations for a sub-orbital launch mission to this end. It include a description of the hardware and software used. A discussion of the data logging mechanism and the onboard and post-flight processing which is required to compare the GPS fixes and IMU-generated positions is also presented. Finally, the utility of an IMU capable of maintaining position awareness during launch is discussed.
And the World Turned: Spin Testing the DG-1000S
2015-10-01
were exceeded: 1) 30 degrees of pitch 2) 60 degrees of roll , or 3) 90 degrees of heading change. It is important to note that measurement of these post... roll or yaw angles were continuing to change at a steady or increasing rate when these criteria were exceeded. See Table 1 for adapted MIL-F-83691B...bulkhead immediately behind the rear cockpit. The pallet included a MEMSIC NAV-440 inertial measurement unit ( IMU ) which was capable of measuring
A detailed description of the sequential probability ratio test for 2-IMU FDI
NASA Technical Reports Server (NTRS)
Rich, T. M.
1976-01-01
The sequential probability ratio test (SPRT) for 2-IMU FDI (inertial measuring unit failure detection/isolation) is described. The SPRT is a statistical technique for detecting and isolating soft IMU failures originally developed for the strapdown inertial reference unit. The flowchart of a subroutine incorporating the 2-IMU SPRT is included.
The processing of IMU data in ENTREE implementation and preliminary results
NASA Technical Reports Server (NTRS)
Heck, M. L.
1980-01-01
It is demonstrated that the shuttle entry trajectory can be accurately represented in ENTREE with IMU data available postflight. The IMU data consist of platform to body quaternions, and accumulated sensed velocities in mean of fifty (M50) coordinates approximately every second. The preprocessing software required to incorporate the IMU data in ENTREE is described as well as the relatively minor code changes to the ENTREE program itself required to process the IMU data. Code changes to the ENTREE program and input tape data format and content changes are described.
Graph SLAM correction for single scanner MLS forest data under boreal forest canopy
NASA Astrophysics Data System (ADS)
Kukko, Antero; Kaijaluoto, Risto; Kaartinen, Harri; Lehtola, Ville V.; Jaakkola, Anttoni; Hyyppä, Juha
2017-10-01
Mobile laser scanning (MLS) provides kinematic means to collect three dimensional data from surroundings for various mapping and environmental analysis purposes. Vehicle based MLS has been used for road and urban asset surveys for about a decade. The equipment to derive the trajectory information for the point cloud generation from the laser data is almost without exception based on GNSS-IMU (Global Navigation Satellite System - Inertial Measurement Unit) technique. That is because of the GNSS ability to maintain global accuracy, and IMU to produce the attitude information needed to orientate the laser scanning and imaging sensor data. However, there are known challenges in maintaining accurate positioning when GNSS signal is weak or even absent over long periods of time. The duration of the signal loss affects the severity of degradation of the positioning solution depending on the quality/performance level of the IMU in use. The situation could be improved to a certain extent with higher performance IMUs, but increasing system expenses make such approach unsustainable in general. Another way to tackle the problem is to attach additional sensors to the system to overcome the degrading position accuracy: such that observe features from the environment to solve for short term system movements accurately enough to prevent the IMU solution to drift. This results in more complex system integration with need for more calibration and synchronization of multiple sensors into an operational approach. In this paper we study operation of an ATV (All -terrain vehicle) mounted, GNSS-IMU based single scanner MLS system in boreal forest conditions. The data generated by RoamerR2 system is targeted for generating 3D terrain and tree maps for optimizing harvester operations and forest inventory purposes at individual tree level. We investigate a process-flow and propose a graph optimization based method which uses data from a single scanner MLS for correcting the post-processed GNSS-IMU trajectory for positional drift under mature boreal forest canopy conditions. The result shows that we can improve the internal conformity of the data significantly from 0.7 m to 1 cm based on tree stem feature location data. When the optimization result is compared to reference at plot level we reach down to 6 cm mean error in absolute tree stem locations. The approach can be generalized to any MLS point cloud data, and provides as such a remarkable contribution to harness MLS for practical forestry and high precision terrain and structural modeling in GNSS obstructed environments.
Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S
2017-11-01
imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinematic Determination of an Unmodeled Serial Manipulator by Means of an IMU
NASA Astrophysics Data System (ADS)
Ciarleglio, Constance A.
Kinematic determination for an unmodeled manipulator is usually done through a-priori knowledge of the manipulator physical characteristics or external sensor information. The mathematics of the kinematic estimation, often based on Denavit- Hartenberg convention, are complex and have high computation requirements, in addition to being unique to the manipulator for which the method is developed. Analytical methods that can compute kinematics on-the fly have the potential to be highly beneficial in dynamic environments where different configurations and variable manipulator types are often required. This thesis derives a new screw theory based method of kinematic determination, using a single inertial measurement unit (IMU), for use with any serial, revolute manipulator. The method allows the expansion of reconfigurable manipulator design and simplifies the kinematic process for existing manipulators. A simulation is presented where the theory of the method is verified and characterized with error. The method is then implemented on an existing manipulator as a verification of functionality.
Miniaturized GPS/MEMS IMU integrated board
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2012-01-01
This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.
Vision and dual IMU integrated attitude measurement system
NASA Astrophysics Data System (ADS)
Guo, Xiaoting; Sun, Changku; Wang, Peng; Lu, Huang
2018-01-01
To determination relative attitude between two space objects on a rocking base, an integrated system based on vision and dual IMU (inertial determination unit) is built up. The determination system fuses the attitude information of vision with the angular determinations of dual IMU by extended Kalman filter (EKF) to obtain the relative attitude. One IMU (master) is attached to the measured motion object and the other (slave) to the rocking base. As the determination output of inertial sensor is relative to inertial frame, thus angular rate of the master IMU includes not only motion of the measured object relative to inertial frame but also the rocking base relative to inertial frame, where the latter can be seen as redundant harmful movement information for relative attitude determination between the measured object and the rocking base. The slave IMU here assists to remove the motion information of rocking base relative to inertial frame from the master IMU. The proposed integrated attitude determination system is tested on practical experimental platform. And experiment results with superior precision and reliability show the feasibility and effectiveness of the proposed attitude determination system.
HIFiRE-5 Flight Test Preliminary Results (Postprint)
2013-11-01
DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test article leading edge...Reference System (DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test...pitch angle relative to earth as measured by IMU , or flight-path elevation angle as measured by GPS or IMU , degrees = body-fixed angular coordinate
Space shuttle post-entry and landing analysis. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
Four candidate navigation systems for the space shuttle orbiter approach and landing phase are evaluated in detail. These include three conventional navaid systems and a single-station one-way Doppler system. In each case, a Kalman filter is assumed to be mechanized in the onboard computer, blending the navaid data with IMU and altimeter data. Filter state dimensions ranging from 6 to 24 are involved in the candidate systems. Comprehensive truth models with state dimensions ranging from 63 to 82 are formulated and used to generate detailed error budgets and sensitivity curves illustrating the effect of variations in the size of individual error sources on touchdown accuracy. The projected overall performance of each system is shown in the form of time histories of position and velocity error components.
Vision Assisted Navigation for Miniature Unmanned Aerial Vehicles (MAVs)
2009-11-01
commanded to orbit a target of known location. The error in target geolocation is shown for 200 frames with filtering (dashed line) and without (solid...so the performance of the filter was determined by using the estimated poses to solve a geolocation problem. An MAV flying at an altitude of 70 meters... geolocation as well as significantly reducing the short-term variance in the estimates based on the GPS/IMU alone. Due to the nature of the autopilot
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-01-01
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-02-24
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning
2018-03-16
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.
Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations
NASA Astrophysics Data System (ADS)
Carter, W. E.; Shrestha, R. L.; Slatton, C. C.
2004-12-01
The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing research grade ALSM observations are calibration, calibration, calibration. In this paper we discuss our general calibrations procedures, give examples of project specific calibration procedures, and discuss the use of ground truth data to verify the accuracy of ALSM surface coordinates.
An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation
He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue
2015-01-01
Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191
An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue
2015-07-08
Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... United States after importation of certain components for installation of marine autopilots with GPS or IMU (i.e., devices for pointing and stabilizing marine navigation equipment) by reason of infringement... of Marine Autopilots With GPS or IMU; Termination of Investigation on the Basis of Settlement AGENCY...
Zhe Cao; Shaojie Su; Hao Tang; Yixin Zhou; Zhihua Wang; Hong Chen
2017-07-01
With the aging of population, the number of Total Hip Replacement Surgeries (THR) increased year by year. In THR, inaccurate position of the implanted prosthesis may lead to the failure of the operation. In order to reduce the failure rate and acquire the real-time pose of Anterior Pelvic Plane (APP), we propose a measurement system in this paper. The measurement system includes two parts: Initial Pose Measurement Instrument (IPMI) and Real-time Pose Measurement Instrument (RPMI). IPMI is used to acquire the initial pose of the APP, and RPMI is used to estimate the real-time pose of the APP. Both are composed of an Inertial Measurement Unit (IMU) and magnetometer sensors. To estimate the attitude of the measurement system, the Extended Kalman Filter (EKF) is adopted in this paper. The real-time pose of the APP could be acquired together with the algorithm designed in the paper. The experiment results show that the Root Mean Square Error (RMSE) is within 1.6 degrees, which meets the requirement of THR operations.
Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente
2016-08-31
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.
Estimating Thruster Impulses From IMU and Doppler Data
NASA Technical Reports Server (NTRS)
Lisano, Michael E.; Kruizinga, Gerhard L.
2009-01-01
A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.
Remigi, Philippe; Capela, Delphine; Clerissi, Camille; Tasse, Léna; Torchet, Rachel; Bouchez, Olivier; Batut, Jacques; Cruveiller, Stéphane; Rocha, Eduardo P. C.; Masson-Boivin, Catherine
2014-01-01
Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT. PMID:25181317
Sabatini, Angelo Maria; Genovese, Vincenzo
2014-07-24
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-07-17
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-01-01
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283
NASA Technical Reports Server (NTRS)
1972-01-01
This report contains the results of additional studies which were conducted to confirm the conclusions of the MSC Mission Report and contains analyses which were not completed in time to meet the mission report deadline. The LM IMU data were examined during the lunar descent and ascent phases. Most of the PGNCS descent absolute velocity error was caused by platform misalignments. PGNCS radial velocity divergence from AGS during the early part of descent was partially caused by PGNCS gravity computation differences from AGS. The remainder of the differences between PGNCS and AGS velocity were easily attributable to attitude reference alignment differences and tolerable instrument errors. For ascent the PGNCS radial velocity error at insertion was examined. The total error of 10.8 ft/sec was well within mission constraints but larger than expected. Of the total error, 2.30 ft/sec was PIPA bias error, which was suspected to exist pre-lunar liftoff. The remaining 8.5 ft/sec is most probably satisified with a large pre-liftoff planform misalignment.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU
Dou, Lihua; Su, Zhong; Liu, Ning
2018-01-01
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots. PMID:29547515
Image-Aided Navigation Using Cooperative Binocular Stereopsis
2014-03-27
Global Postioning System . . . . . . . . . . . . . . . . . . . . . . . . . 1 IMU Inertial Measurement Unit...an intertial measurement unit ( IMU ). This technique capitalizes on an IMU’s ability to capture quick motion and the ability of GPS to constrain long...the sensor-aided IMU framework. Visual sensors provide a number of benefits, such as low cost and weight. These sensors are also able to measure
2015-12-01
10 IMU Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . 11 PS Pseudo...filters to diminish the effect of gyro corruption in the inertial measurement unit ( IMU ) [32]. Therefore, s/c states determined by the hardware...simulator’s IMU hold the required level of accuracy for characterization of the RWCMG system in the current research. Future external state measurement systems
a Man-Portable Imu-Free Mobile Mapping System
NASA Astrophysics Data System (ADS)
Nüchter, A.; Borrmann, D.; Koch, P.; Kühn, M.; May, S.
2015-08-01
Mobile mapping systems are commonly mounted on cars, ships and robots. The data is directly geo-referenced using GPS data and expensive IMU (inertial measurement systems). Driven by the need for flexible, indoor mapping systems we present an inexpensive mobile mapping solution that can be mounted on a backpack. It combines a horizontally mounted 2D profiler with a constantly spinning 3D laser scanner. The initial system featuring a low-cost MEMS IMU was revealed and demonstrated at MoLaS: Technology Workshop Mobile Laser Scanning at Fraunhofer IPM in Freiburg in November 2014. In this paper, we present an IMU-free solution.
Space shuttle entry and landing navigation analysis
NASA Technical Reports Server (NTRS)
Jones, H. L.; Crawford, B. S.
1974-01-01
A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.
Admiralty Inlet Advanced Turbulence Measurements: May 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway.more » The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.« less
IMU: inertial sensing of vertical CoM movement.
Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken
2009-07-22
The purpose of this study was to use a quaternion rotation matrix in combination with an integration approach to transform translatory accelerations of the centre of mass (CoM) from an inertial measurement unit (IMU) during walking, from the object system onto the global frame. Second, this paper utilises double integration to determine the relative change in position of the CoM from the vertical acceleration data. Five participants were tested in which an IMU, consisting of accelerometers, gyroscopes and magnetometers was attached on the lower spine estimated centre of mass. Participants were asked to walk three times through a calibrated volume at their self-selected walking speed. Synchronized data were collected by an IMU and an optical motion capture system (OMCS); both measured at 100 Hz. Accelerations of the IMU were transposed onto the global frame using a quaternion rotation matrix. Translatory acceleration, speed and relative change in position from the IMU were compared with the derived data from the OMCS. Peak acceleration in vertical axis showed no significant difference (p> or =0.05). Difference between peak and trough speed showed significant difference (p<0.05) but relative peak-trough position between the IMU and OMCS did not show any significant difference (p> or =0.05). These results indicate that quaternions, in combination with Simpsons rule integration, can be used in transforming translatory acceleration from the object frame to the global frame and therefore obtain relative change in position, thus offering a solution for using accelerometers in accurate global frame kinematic gait analyses.
2014-03-27
Fault Detection and Isolation GUI Graphical User Interface IGRF International Geomagnetic Reference Field IMU Inertial Measurement Unit IR infrared xv...ADCS hardware components were either commercially purchased or built in-house and include an Inertial Measurement Unit ( IMU ), external magnetometer, 4...3.2.1.3 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1.4 External Magnetometer . . . . . . . . . . . . . . . . . . 48 3.2.2
Validation of an inertial measurement unit for the measurement of jump count and height.
MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H
2017-05-01
To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Validation of a High Sampling Rate Inertial Measurement Unit for Acceleration During Running.
Provot, Thomas; Chiementin, Xavier; Oudin, Emeric; Bolaers, Fabrice; Murer, Sébastien
2017-08-25
The musculo-skeletal response of athletes to various activities during training exercises has become a critical issue in order to optimize their performance and minimize injuries. However, dynamic and kinematic measures of an athlete's activity are generally limited by constraints in data collection and technology. Thus, the choice of reliable and accurate sensors is crucial for gathering data in indoor and outdoor conditions. The aim of this study is to validate the use of the accelerometer of a high sampling rate ( 1344 Hz ) Inertial Measurement Unit (IMU) in the frame of running activities. To this end, two validation protocols are imposed: a classical one on a shaker, followed by another one during running, the IMU being attached to a test subject. For each protocol, the response of the IMU Accelerometer (IMUA) is compared to a calibrated industrial accelerometer, considered as the gold standard for dynamic and kinematic data collection. The repeatability, impact of signal frequency and amplitude (on shaker) as well as the influence of speed (while running) are investigated. Results reveal that the IMUA exhibits good repeatability. Coefficient of Variation CV is 1 % 8.58 ± 0.06 m / s 2 on the shaker and 3 % 26.65 ± 0.69 m / s 2 while running. However, the shaker test shows that the IMUA is affected by the signal frequency (error exceeds 10 % beyond 80 Hz ), an observation confirmed by the running test. Nevertheless, the IMUA provides a reliable measure in the range 0-100 Hz, i.e., the most relevant part in the energy spectrum over the range 0-150 Hz during running. In our view, these findings emphasize the validity of IMUs for the measurement of acceleration during running.
Sabatini, Angelo Maria; Genovese, Vincenzo
2014-01-01
A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835
Admiralty Inlet Hub-Height Turbulence Measurements from June 2012
Kilcher, Levi
2012-06-18
This data is from measurements at Admiralty Head, in admiralty inlet. The measurements were made using an IMU equipped ADV mounted on a mooring, the 'Tidal Turbulence Mooring' or 'TTM'. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity may have some 'persistent motion contamination' due to mooring sway. The ADV was positioned 11m above the seafloor in 58m of water at 48.1515N, 122.6858W. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. For additional details on this dataset see the included Marine Energy Technology Symposium paper.
Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling
2016-01-01
Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585
IMU-Based Joint Angle Measurement for Gait Analysis
Seel, Thomas; Raisch, Jorg; Schauer, Thomas
2014-01-01
This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160
Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource Mobile Robots
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-01-01
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. PMID:24152933
Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots.
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-10-21
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments.
SeaVipers- Computer Vision and Inertial Position/Reference Sensor System (CVIPRSS)
2015-08-01
uses an Inertial Measurement Unit (IMU) to detect changes in roll , pitch, and yaw (x-, y-, and z-axis movement). We use a 9DOF Razor IMU from SparkFun... inertial measurement unit (IMU) and cameras that are hardware synchronized to provide close coupling. Several fast food companies, Internet giants like...light cameras [32]. 4.1.4 Inertial Measurement Unit To assist the PTU in video stabilization for the camera and aiming the rangefinder, Sea- Vipers
Structural Acoustic UXO Detection and Identification in Marine Environments
2016-05-01
BOSS Buried Object Scanning Sonar DVL Doppler Velocity Log EW East/West IMU Inertial Measurement Unit NRL Naval Research Laboratory NSWC-PCD... Inertial Measurement Unit (IMU) to time-delay and coherently sum matched-filtered phase histories from subsurface focal points over a large number of... Measurement Unit (IMU) systems. In our imaging algorithm, the 2D depth image of a target, i.e. one mapped over x and z or y and z, presents the
Trusted Remote Operation of Proximate Emergy Robots (TROOPER): DARPA Robotics Challenge
2015-12-01
sensor in each of the robot’s feet. Additionally, there is a 6-axis IMU that sits in the robot’s pelvis cage. While testing before the Finals, the...Services. Many of the controllers in the autonomic layer have overlapping requirements, such as filtered IMU and force torque data from the robot...the following services during the DRC: • IMU Filtering • Force Torque Filtering • Joint State Publishing • TF (Transform) Broadcasting • Robot Pose
Trusted Remote Operation of Proximate Emergency Robots (TROOPER): DARPA Robotics Challenge
2015-12-01
sensor in each of the robot’s feet. Additionally, there is a 6-axis IMU that sits in the robot’s pelvis cage. While testing before the Finals, the...Services. Many of the controllers in the autonomic layer have overlapping requirements, such as filtered IMU and force torque data from the robot...the following services during the DRC: • IMU Filtering • Force Torque Filtering • Joint State Publishing • TF (Transform) Broadcasting • Robot Pose
Position and Acceleration for Airborne Gravity; the Impact of IMU Data
NASA Astrophysics Data System (ADS)
Preaux, S. A.; Diehl, T. M.; Holmes, S. A.; Weil, C.
2012-12-01
Accurate measurements in airborne gravimetry require high quality position and acceleration information in order to remove the effects of aircraft motion from the gravimeter signal. This study examines the impact of including Inertial Measurement Unit (IMU) data in position and acceleration determination for high altitude gravimetry as part of NGS's GRAV-D project. Processing with the IMU data provides a higher rate position solution that includes aircraft attitude information. The IMU can also be a source for velocity and acceleration information but these must be used with care as they contain the aircraft motion and the gravity signal. Results from the GRAV-D project's 2008 survey season in Alaska are used as a test case for this study. The use of a tightly coupled IMU+GPS solution reduced the survey RMS and standard deviation with respect to EGM08 by an average of 0.23 mGal per data track and improved the correlation between the data tracks and EGM08 by 0.04%. While these improvements appear small they represent approximately 10% of the discrepancy. Turbulent tracks showed the biggest improvement with localized improvements larger than 5 mGal in some cases. The measured gravity processed with either a GPS only position solution or a tightly coupled GPS+IMU position solution compared with EGM08 for one data track from the GRAV-D AK08 survey.
Navigation strategy and filter design for solar electric missions
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Hagar, H., Jr.
1972-01-01
Methods which have been proposed to improve the navigation accuracy for the low-thrust space vehicle include modifications to the standard Sequential- and Batch-type orbit determination procedures and the use of inertial measuring units (IMU) which measures directly the acceleration applied to the vehicle. The navigation accuracy obtained using one of the more promising modifications to the orbit determination procedures is compared with a combined IMU-Standard. The unknown accelerations are approximated as both first-order and second-order Gauss-Markov processes. The comparison is based on numerical results obtained in a study of the navigation requirements of a numerically simulated 152-day low-thrust mission to the asteroid Eros. The results obtained in the simulation indicate that the DMC algorithm will yield a significant improvement over the navigation accuracies achieved with previous estimation algorithms. In addition, the DMC algorithms will yield better navigation accuracies than the IMU-Standard Orbit Determination algorithm, except for extremely precise IMU measurements, i.e., gyroplatform alignment .01 deg and accelerometer signal-to-noise ratio .07. Unless these accuracies are achieved, the IMU navigation accuracies are generally unacceptable.
2016-04-01
Program ft foot/feet GPS Global Positioning System HE High Explosive ID Identification IDA Institute for Defense Analysis IMU Inertial Measurement Unit ISO...were replaced with two ski-shaped runners, and a new mount above the array was used to hold the Inertial Measurement Unit (IMU) and Trimble R8 Real...to collect a cued data measurement (Figure 9). The instrument’s pitch, roll , and yaw angles automatically were measured by the IMU. These angles and
Predicting Sets and Lists: Theory and Practice
2015-01-01
school. No work stands in isolation and this work would not have been possible without my co-authors: • “Contextual Optimization of Lists”: Tommy Liu... IMU Microstrain 3DM-GX3-25 PlayStation Eye camera (640x480 @ 30Hz) Onboard ARM-based Linux computer PlayStation Eye camera (640x480 @ 30Hz) Bumblebee...of the IMU integrated in the Ardupilot unit, we added a Microstrain 3DM-GX3-25 IMU which is used to aid real time pose estimation. There are two
Multiple IMU system test plan, volume 4. [subroutines for space shuttle requirements
NASA Technical Reports Server (NTRS)
Landey, M.; Vincent, K. T., Jr.; Whittredge, R. S.
1974-01-01
Operating procedures for this redundant system are described. A test plan is developed with two objectives. First, performance of the hardware and software delivered is demonstrated. Second, applicability of multiple IMU systems to the space shuttle mission is shown through detailed experiments with FDI algorithms and other multiple IMU software: gyrocompassing, calibration, and navigation. Gimbal flip is examined in light of its possible detrimental effects on FDI and navigation. For Vol. 3, see N74-10296.
Orbit IMU alinement interpretation of onboard display data
NASA Technical Reports Server (NTRS)
Corson, R.
1978-01-01
The space shuttle inertial measurement unit (IMU) alinement algorith was examined to determine the most important alinement starpair selection criterion. Three crew displayed parameters were considered: (1) the results of the separation angle difference (SAD) check for each starpair; (2) the separation angle of each starpair; and (3) the age of each star measurement. It was determined that the SAD for each pair cannot be used to predict the IMu alinement accuracy. If the age of each star measurement is less than approximately 30 minutes, time is a relatively unimportant factor and the most important alinement pair selection criterion is the starpair separation angle. Therefore, when there are three available alinement starpairs and all measurements were taken within the last 30 minutes, the pair with the separation angle closest to 90 degrees should be selected for IMU alinement.
Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair
ElSaharty, M. A.; zakzouk, Ezz Eldin
2017-01-01
Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973
Potential of IMU Sensors in Performance Analysis of Professional Alpine Skiers
Yu, Gwangjae; Jang, Young Jae; Kim, Jinhyeok; Kim, Jin Hae; Kim, Hye Young; Kim, Kitae; Panday, Siddhartha Bikram
2016-01-01
In this paper, we present an analysis to identify a sensor location for an inertial measurement unit (IMU) on the body of a skier and propose the best location to capture turn motions for training. We also validate the manner in which the data from the IMU sensor on the proposed location can characterize ski turns and performance with a series of statistical analyses, including a comparison with data collected from foot pressure sensors. The goal of the study is to logically identify the ideal location on the skier’s body to attach the IMU sensor and the best use of the data collected for the skier. The statistical analyses and the hierarchical clustering method indicate that the pelvis is the best location for attachment of an IMU, and numerical validation shows that the data collected from this location can effectively estimate the performance and characteristics of the skier. Moreover, placement of the sensor at this location does not distract the skier’s motion, and the sensor can be easily attached and detached. The findings of this study can be used for the development of a wearable device for the routine training of professional skiers. PMID:27043579
GPS/MEMS IMU/Microprocessor Board for Navigation
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James; Ott, William E.
2009-01-01
A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.
Android Platform for Realtime Gait Tracking Using Inertial Measurement Units.
Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam
2016-06-13
One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.
Zafar, H; Alghadir, A H; Iqbal, Z A
2017-12-01
To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.
Enhanced Video-Oculography System
NASA Technical Reports Server (NTRS)
Moore, Steven T.; MacDougall, Hamish G.
2009-01-01
A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.
Zhang, Tisheng; Niu, Xiaoji; Ban, Yalong; Zhang, Hongping; Shi, Chuang; Liu, Jingnan
2015-01-01
A GNSS/INS deeply-coupled system can improve the satellite signals tracking performance by INS aiding tracking loops under dynamics. However, there was no literature available on the complete modeling of the INS branch in the INS-aided tracking loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an effort on the INS branch in modeling and parameter optimization of phase-locked loops (PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the transfer function between all known error sources and the PLL tracking error, which can be used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the carrier phase tracking error. Based on that, a steady-state error model is proposed to design INS-aided PLLs and to analyze their tracking performance. Based on the modeling and error analysis, an integrated deeply-coupled hardware prototype is developed, with the optimization of the aiding information. Finally, the performance of the INS-aided PLLs designed based on the proposed steady-state error model is evaluated through the simulation and road tests of the hardware prototype. PMID:25569751
Qin, Feng; Zhan, Xingqun; Du, Gang
2013-01-01
Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS) and an inertial navigation system (INS). This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs) of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver's dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU) is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.
Vitali, Rachel V.; Cain, Stephen M.; Zaferiou, Antonia M.; Ojeda, Lauro V.; Perkins, Noel C.
2017-01-01
Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small capture volumes. These limitations may be overcome by deploying wearable inertial measurement units (IMUs). The objective of this study is to present a new IMU-based method for estimating 3D knee rotations and to benchmark the accuracy of the results using an instrumented mechanical linkage. The method employs data from shank- and thigh-mounted IMUs and a vector constraint for the medial-lateral axis of the knee during periods when the knee joint functions predominantly as a hinge. The method is carefully validated using data from high precision optical encoders in a mechanism that replicates 3D knee rotations spanning (1) pure flexion/extension, (2) pure internal/external rotation, (3) pure abduction/adduction, and (4) combinations of all three rotations. Regardless of the movement type, the IMU-derived estimates of 3D knee rotations replicate the truth data with high confidence (RMS error < 4° and correlation coefficient r≥0.94). PMID:28846613
Calibration Procedures in Mid Format Camera Setups
NASA Astrophysics Data System (ADS)
Pivnicka, F.; Kemper, G.; Geissler, S.
2012-07-01
A growing number of mid-format cameras are used for aerial surveying projects. To achieve a reliable and geometrically precise result also in the photogrammetric workflow, awareness on the sensitive parts is important. The use of direct referencing systems (GPS/IMU), the mounting on a stabilizing camera platform and the specific values of the mid format camera make a professional setup with various calibration and misalignment operations necessary. An important part is to have a proper camera calibration. Using aerial images over a well designed test field with 3D structures and/or different flight altitudes enable the determination of calibration values in Bingo software. It will be demonstrated how such a calibration can be performed. The direct referencing device must be mounted in a solid and reliable way to the camera. Beside the mechanical work especially in mounting the camera beside the IMU, 2 lever arms have to be measured in mm accuracy. Important are the lever arms from the GPS Antenna to the IMU's calibrated centre and also the lever arm from the IMU centre to the Camera projection centre. In fact, the measurement with a total station is not a difficult task but the definition of the right centres and the need for using rotation matrices can cause serious accuracy problems. The benefit of small and medium format cameras is that also smaller aircrafts can be used. Like that, a gyro bases stabilized platform is recommended. This causes, that the IMU must be mounted beside the camera on the stabilizer. The advantage is, that the IMU can be used to control the platform, the problematic thing is, that the IMU to GPS antenna lever arm is floating. In fact we have to deal with an additional data stream, the values of the movement of the stabiliser to correct the floating lever arm distances. If the post-processing of the GPS-IMU data by taking the floating levers into account, delivers an expected result, the lever arms between IMU and camera can be applied. However, there is a misalignment (bore side angle) that must be evaluated by photogrammetric process using advanced tools e.g. in Bingo. Once, all these parameters have been determined, the system is capable for projects without or with only a few ground control points. But which effect has the photogrammetric process when directly applying the achieved direct orientation values compared with an AT based on a proper tiepoint matching? The paper aims to show the steps to be done by potential users and gives a kind of quality estimation about the importance and quality influence of the various calibration and adjustment steps.
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense
Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.
2017-01-01
Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196
Automated Error Detection in Physiotherapy Training.
Jovanović, Marko; Seiffarth, Johannes; Kutafina, Ekaterina; Jonas, Stephan M
2018-01-01
Manual skills teaching, such as physiotherapy education, requires immediate teacher feedback for the students during the learning process, which to date can only be performed by expert trainers. A machine-learning system trained only on correct performances to classify and score performed movements, to identify sources of errors in the movement and give feedback to the learner. We acquire IMU and sEMG sensor data from a commercial-grade wearable device and construct an HMM-based model for gesture classification, scoring and feedback giving. We evaluate the model on publicly available and self-generated data of an exemplary movement pattern executions. The model achieves an overall accuracy of 90.71% on the public dataset and 98.9% on our dataset. An AUC of 0.99 for the ROC of the scoring method could be achieved to discriminate between correct and untrained incorrect executions. The proposed system demonstrated its suitability for scoring and feedback in manual skills training.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Rigorous Performance Evaluation of Smartphone GNSS/IMU Sensors for ITS Applications
Gikas, Vassilis; Perakis, Harris
2016-01-01
With the rapid growth in smartphone technologies and improvement in their navigation sensors, an increasing amount of location information is now available, opening the road to the provision of new Intelligent Transportation System (ITS) services. Current smartphone devices embody miniaturized Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU) and other sensors capable of providing user position, velocity and attitude. However, it is hard to characterize their actual positioning and navigation performance capabilities due to the disparate sensor and software technologies adopted among manufacturers and the high influence of environmental conditions, and therefore, a unified certification process is missing. This paper presents the analysis results obtained from the assessment of two modern smartphones regarding their positioning accuracy (i.e., precision and trueness) capabilities (i.e., potential and limitations) based on a practical but rigorous methodological approach. Our investigation relies on the results of several vehicle tracking (i.e., cruising and maneuvering) tests realized through comparing smartphone obtained trajectories and kinematic parameters to those derived using a high-end GNSS/IMU system and advanced filtering techniques. Performance testing is undertaken for the HTC One S (Android) and iPhone 5s (iOS). Our findings indicate that the deviation of the smartphone locations from ground truth (trueness) deteriorates by a factor of two in obscured environments compared to those derived in open sky conditions. Moreover, it appears that iPhone 5s produces relatively smaller and less dispersed error values compared to those computed for HTC One S. Also, the navigation solution of the HTC One S appears to adapt faster to changes in environmental conditions, suggesting a somewhat different data filtering approach for the iPhone 5s. Testing the accuracy of the accelerometer and gyroscope sensors for a number of maneuvering (speeding, turning, etc.,) events reveals high consistency between smartphones, whereas the small deviations from ground truth verify their high potential even for critical ITS safety applications. PMID:27527187
Rigorous Performance Evaluation of Smartphone GNSS/IMU Sensors for ITS Applications.
Gikas, Vassilis; Perakis, Harris
2016-08-05
With the rapid growth in smartphone technologies and improvement in their navigation sensors, an increasing amount of location information is now available, opening the road to the provision of new Intelligent Transportation System (ITS) services. Current smartphone devices embody miniaturized Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU) and other sensors capable of providing user position, velocity and attitude. However, it is hard to characterize their actual positioning and navigation performance capabilities due to the disparate sensor and software technologies adopted among manufacturers and the high influence of environmental conditions, and therefore, a unified certification process is missing. This paper presents the analysis results obtained from the assessment of two modern smartphones regarding their positioning accuracy (i.e., precision and trueness) capabilities (i.e., potential and limitations) based on a practical but rigorous methodological approach. Our investigation relies on the results of several vehicle tracking (i.e., cruising and maneuvering) tests realized through comparing smartphone obtained trajectories and kinematic parameters to those derived using a high-end GNSS/IMU system and advanced filtering techniques. Performance testing is undertaken for the HTC One S (Android) and iPhone 5s (iOS). Our findings indicate that the deviation of the smartphone locations from ground truth (trueness) deteriorates by a factor of two in obscured environments compared to those derived in open sky conditions. Moreover, it appears that iPhone 5s produces relatively smaller and less dispersed error values compared to those computed for HTC One S. Also, the navigation solution of the HTC One S appears to adapt faster to changes in environmental conditions, suggesting a somewhat different data filtering approach for the iPhone 5s. Testing the accuracy of the accelerometer and gyroscope sensors for a number of maneuvering (speeding, turning, etc.,) events reveals high consistency between smartphones, whereas the small deviations from ground truth verify their high potential even for critical ITS safety applications.
Effects of Head-Mounted Display on the Oculomotor System and Refractive Error in Normal Adolescents.
Ha, Suk-Gyu; Na, Kun-Hoo; Kweon, Il-Joo; Suh, Young-Woo; Kim, Seung-Hyun
2016-07-01
To investigate the clinical effects of head-mounted display on the refractive error and oculomotor system in normal adolescents. Sixty volunteers (age: 13 to 18 years) watched a three-dimensional movie and virtual reality application of head-mounted display for 30 minutes. The refractive error (diopters [D]), angle of deviation (prism diopters [PD]) at distance (6 m) and near (33 cm), near point of accommodation, and stereoacuity were measured before, immediately after, and 10 minutes after watching the head-mounted display. The refractive error was presented as spherical equivalent (SE). Refractive error was measured repeatedly after every 10 minutes when a myopic shift greater than 0.15 D was observed after watching the head-mounted display. The mean age of the participants was 14.7 ± 1.3 years and the mean SE before watching head-mounted display was -3.1 ± 2.6 D. One participant in the virtual reality application group was excluded due to motion sickness and nausea. After 30 minutes of watching the head-mounted display, the SE, near point of accommodation, and stereoacuity in both eyes did not change significantly (all P > .05). Immediately after watching the head-mounted display, esophoric shift was observed (0.6 ± 1.5 to 0.2 ± 1.5 PD), although it was not significant (P = .06). Transient myopic shifts of 17.2% to 30% were observed immediately after watching the head-mounted display in both groups, but recovered fully within 40 minutes after watching the head-mounted display. There were no significant clinical effects of watching head-mounted display for 30 minutes on the normal adolescent eye. Transient changes in refractive error and binocular alignment were noted, but were not significant. [J Pediatr Ophthalmol Strabismus. 2016;53(4):238-245.]. Copyright 2016, SLACK Incorporated.
IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
Dehzangi, Omid; Taherisadr, Mojtaba; ChangalVala, Raghvendar
2017-11-27
The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures and distinguish the target individual from others. However, the manual and hand crafted feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial sensors have complex structure and the detachment between manual feature extraction module and the predictive learning models might limit the generalization capabilities. In this paper, we propose a novel approach for human gait identification using time-frequency (TF) expansion of human gait cycles in order to capture joint 2 dimensional (2D) spectral and temporal patterns of gait cycles. Then, we design a deep convolutional neural network (DCNN) learning to extract discriminative features from the 2D expanded gait cycles and jointly optimize the identification model and the spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human subject synchronously in order to investigate the impact of sensor location on the gait identification performance. We then present two methods for early (input level) and late (decision score level) multi-sensor fusion to improve the gait identification generalization performance. We specifically propose the minimum error score fusion (MESF) method that discriminatively learns the linear fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the training data in an iterative manner. 10 subjects participated in this study and hence, the problem is a 10-class identification task. Based on our experimental results, 91% subject identification accuracy was achieved using the best individual IMU and 2DTF-DCNN. We then investigated our proposed early and late sensor fusion approaches, which improved the gait identification accuracy of the system to 93.36% and 97.06%, respectively.
Study on compensation algorithm of head skew in hard disk drives
NASA Astrophysics Data System (ADS)
Xiao, Yong; Ge, Xiaoyu; Sun, Jingna; Wang, Xiaoyan
2011-10-01
In hard disk drives (HDDs), head skew among multiple heads is pre-calibrated during manufacturing process. In real applications with high capacity of storage, the head stack may be tilted due to environmental change, resulting in additional head skew errors from outer diameter (OD) to inner diameter (ID). In case these errors are below the preset threshold for power on recalibration, the current strategy may not be aware, and drive performance under severe environment will be degraded. In this paper, in-the-field compensation of small DC head skew variation across stroke is proposed, where a zone table has been equipped. Test results demonstrating its effectiveness to reduce observer error and to enhance drive performance via accurate prediction of DC head skew are provided.
120. INERTIAL MEASUREMENT UNIT (IMU) NITROGEN PURGE REGULATOR PANEL FOR ...
120. INERTIAL MEASUREMENT UNIT (IMU) NITROGEN PURGE REGULATOR PANEL FOR DEFENSE METEOROLOGICAL SYSTEM PROGRAM (DMSP) PAYLOADS IN SOUTHWEST CORNER OF VEHICLE MECHANICAL SYSTEMS ROOM (111), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Measurement of Intrasound from the Marine Environment
2015-09-01
external inertial measurement unit (IMU) was used to estimate the heave, and was highly correlated with the pressure interference signal...moves up and down. An external inertial measurement unit (IMU) was used to estimate the heave, and was highly correlated with the pressure...10 EXTERNAL INTEGRATED MEASUREMENT UNIT ..................................................... 13 ADAPTIVE NOISE CANCELATION
Covariance analysis for evaluating head trackers
NASA Astrophysics Data System (ADS)
Kang, Donghoon
2017-10-01
Existing methods for evaluating the performance of head trackers usually rely on publicly available face databases, which contain facial images and the ground truths of their corresponding head orientations. However, most of the existing publicly available face databases are constructed by assuming that a frontal head orientation can be determined by compelling the person under examination to look straight ahead at the camera on the first video frame. Since nobody can accurately direct one's head toward the camera, this assumption may be unrealistic. Rather than obtaining estimation errors, we present a method for computing the covariance of estimation error rotations to evaluate the reliability of head trackers. As an uncertainty measure of estimators, the Schatten 2-norm of a square root of error covariance (or the algebraic average of relative error angles) can be used. The merit of the proposed method is that it does not disturb the person under examination by asking him to direct his head toward certain directions. Experimental results using real data validate the usefulness of our method.
Kiesewetter, Pierre; Milani, Thomas L.
2018-01-01
Previous studies have used accelerometers with various operating ranges (ORs) when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness). Runners were equipped with an inertial measurement unit (IMU) affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU) with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements. PMID:29303986
Automated Driftmeter Fused with Inertial Navigation
2014-03-27
6 IMU Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . 7 SLAM Simultaneous...timing lines to remain horizontal at all times, regardless of turbulence and within 20 degrees of roll , pitch, and yaw of the aircraft. It had two...introduced in 1960 [2]. The Kalman filter algorithm has been used to merge inertial navigational data from Inertial Measurement Units ( IMU ) with
Teng, C-C; Chai, H; Lai, D-M; Wang, S-F
2007-02-01
Previous research has shown that there is no significant relationship between the degree of structural degeneration of the cervical spine and neck pain. We therefore sought to investigate the potential role of sensory dysfunction in chronic neck pain. Cervicocephalic kinesthetic sensibility, expressed by how accurately an individual can reposition the head, was studied in three groups of individuals, a control group of 20 asymptomatic young adults and two groups of middle-aged adults (20 subjects in each group) with or without a history of mild neck pain. An ultrasound-based three-dimensional coordinate measuring system was used to measure the position of the head and to test the accuracy of repositioning. Constant error (indicating that the subject overshot or undershot the intended position) and root mean square errors (representing total errors of accuracy and variability) were measured during repositioning of the head to the neutral head position (Head-to-NHP) and repositioning of the head to the target (Head-to-Target) in three cardinal planes (sagittal, transverse, and frontal). Analysis of covariance (ANCOVA) was used to test the group effect, with age used as a covariate. The constant errors during repositioning from a flexed position and from an extended position to the NHP were significantly greater in the middle-aged subjects than in the control group (beta=0.30 and beta=0.60, respectively; P<0.05 for both). In addition, the root mean square errors during repositioning from a flexed or extended position to the NHP were greater in the middle-aged subjects than in the control group (beta=0.27 and beta=0.49, respectively; P<0.05 for both). The root mean square errors also increased during Head-to-Target in left rotation (beta=0.24;P<0.05), but there was no difference in the constant errors or root mean square errors during Head-to-NHP repositioning from other target positions (P>0.05). The results indicate that, after controlling for age as a covariate, there was no group effect. Thus, age appears to have a profound effect on an individual's ability to accurately reposition the head toward the neutral position in the sagittal plane and repositioning the head toward left rotation. A history of mild chronic neck pain alone had no significant effect on cervicocephalic kinesthetic sensibility.
Development and Flight Test of a Robust Optical-Inertial Navigation System Using Low-Cost Sensors
2008-03-01
for this test. Though, marketed as a GPS/INS, it was in fact used simply as an IMU for this test. The raw inertial measurement data (from the...Performance Evaluation of Low Cost MEMS-Based IMU Integrated With GPS for Land Vehicle Navigation Application. MS Thesis, UCGE Reports Number
Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.
Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang
2017-01-14
In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.
Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter
Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang
2017-01-01
In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829
PL-VIO: Tightly-Coupled Monocular Visual–Inertial Odometry Using Point and Line Features
Zhao, Ji; Guo, Yue; He, Wenhao; Yuan, Kui
2018-01-01
To address the problem of estimating camera trajectory and to build a structural three-dimensional (3D) map based on inertial measurements and visual observations, this paper proposes point–line visual–inertial odometry (PL-VIO), a tightly-coupled monocular visual–inertial odometry system exploiting both point and line features. Compared with point features, lines provide significantly more geometrical structure information on the environment. To obtain both computation simplicity and representational compactness of a 3D spatial line, Plücker coordinates and orthonormal representation for the line are employed. To tightly and efficiently fuse the information from inertial measurement units (IMUs) and visual sensors, we optimize the states by minimizing a cost function which combines the pre-integrated IMU error term together with the point and line re-projection error terms in a sliding window optimization framework. The experiments evaluated on public datasets demonstrate that the PL-VIO method that combines point and line features outperforms several state-of-the-art VIO systems which use point features only. PMID:29642648
Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng
2017-01-01
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available. PMID:29077070
Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng
2017-10-27
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.
A Multimodal Adaptive Wireless Control Interface for People With Upper-Body Disabilities.
Fall, Cheikh Latyr; Quevillon, Francis; Blouin, Martine; Latour, Simon; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit
2018-06-01
This paper describes a multimodal body-machine interface (BoMI) to help individuals with upper-limb disabilities using advanced assistive technologies, such as robotic arms. The proposed system uses a wearable and wireless body sensor network (WBSN) supporting up to six sensor nodes to measure the natural upper-body gesture of the users and translate it into control commands. Natural gesture of the head and upper-body parts, as well as muscular activity, are measured using inertial measurement units (IMUs) and surface electromyography (sEMG) using custom-designed multimodal wireless sensor nodes. An IMU sensing node is attached to a headset worn by the user. It has a size of 2.9 cm 2.9 cm, a maximum power consumption of 31 mW, and provides angular precision of 1. Multimodal patch sensor nodes, including both IMU and sEMG sensing modalities are placed over the user able-body parts to measure the motion and muscular activity. These nodes have a size of 2.5 cm 4.0 cm and a maximum power consumption of 11 mW. The proposed BoMI runs on a Raspberry Pi. It can adapt to several types of users through different control scenarios using the head and shoulder motion, as well as muscular activity, and provides a power autonomy of up to 24 h. JACO, a 6-DoF assistive robotic arm, is used as a testbed to evaluate the performance of the proposed BoMI. Ten able-bodied subjects performed ADLs while operating the AT device, using the Test d'Évaluation des Membres Supérieurs de Personnes Âgées to evaluate and compare the proposed BoMI with the conventional joystick controller. It is shown that the users can perform all tasks with the proposed BoMI, almost as fast as with the joystick controller, with only 30% time overhead on average, while being potentially more accessible to the upper-body disabled who cannot use the conventional joystick controller. Tests show that control performance with the proposed BoMI improved by up to 17% on average, after three trials.
A high accuracy magnetic heading system composed of fluxgate magnetometers and a microcomputer
NASA Astrophysics Data System (ADS)
Liu, Sheng-Wu; Zhang, Zhao-Nian; Hung, James C.
The authors present a magnetic heading system consisting of two fluxgate magnetometers and a single-chip microcomputer. The system, when compared to gyro compasses, is smaller in size, lighter in weight, simpler in construction, quicker in reaction time, free from drift, and more reliable. Using a microcomputer in the system, heading error due to compass deviation, sensor offsets, scale factor uncertainty, and sensor tilts can be compensated with the help of an error model. The laboratory test of a typical system showed that the accuracy of the system was improved from more than 8 deg error without error compensation to less than 0.3 deg error with compensation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... DEPARTMENT OF STATE [Public Notice: 7250] In the Matter of the Review of the Designation of Islamic Movement of Uzbekistan (IMU and Other Aliases) as a Foreign Terrorist Organization Pursuant to Section 219 of the Immigration and Nationality Act, as Amended Based upon a review of the Administrative...
Alignment Jig for the Precise Measurement of THz Radiation
NASA Technical Reports Server (NTRS)
Javadi, Hamid H.
2009-01-01
A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.
Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket
NASA Astrophysics Data System (ADS)
Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus
2018-05-01
Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.
Cho, HyunGi; Yeon, Suyong; Choi, Hyunga; Doh, Nakju
2018-01-01
In a group of general geometric primitives, plane-based features are widely used for indoor localization because of their robustness against noises. However, a lack of linearly independent planes may lead to a non-trivial estimation. This in return can cause a degenerate state from which all states cannot be estimated. To solve this problem, this paper first proposed a degeneracy detection method. A compensation method that could fix orientations by projecting an inertial measurement unit’s (IMU) information was then explained. Experiments were conducted using an IMU-Kinect v2 integrated sensor system prone to fall into degenerate cases owing to its narrow field-of-view. Results showed that the proposed framework could enhance map accuracy by successful detection and compensation of degenerated orientations. PMID:29565287
GPS/INS Sensor Fusion Using GPS Wind up Model
NASA Technical Reports Server (NTRS)
Williamson, Walton R. (Inventor)
2013-01-01
A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.
A cascaded two-step Kalman filter for estimation of human body segment orientation using MEMS-IMU.
Zihajehzadeh, S; Loh, D; Lee, M; Hoskinson, R; Park, E J
2014-01-01
Orientation of human body segments is an important quantity in many biomechanical analyses. To get robust and drift-free 3-D orientation, raw data from miniature body worn MEMS-based inertial measurement units (IMU) should be blended in a Kalman filter. Aiming at less computational cost, this work presents a novel cascaded two-step Kalman filter orientation estimation algorithm. Tilt angles are estimated in the first step of the proposed cascaded Kalman filter. The estimated tilt angles are passed to the second step of the filter for yaw angle calculation. The orientation results are benchmarked against the ones from a highly accurate tactical grade IMU. Experimental results reveal that the proposed algorithm provides robust orientation estimation in both kinematically and magnetically disturbed conditions.
Yu, Huapeng; Zhu, Hai; Gao, Dayuan; Yu, Meng; Wu, Wenqi
2015-01-01
The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically. PMID:25688588
Intelligent Behavioral Action Aiding for Improved Autonomous Image Navigation
2012-09-13
odometry, SICK laser scanning unit ( Lidar ), Inertial Measurement Unit (IMU) and ultrasonic distance measurement system (Figure 32). The Lidar , IMU...2010, July) GPS world. [Online]. http://www.gpsworld.com/tech-talk- blog/gnss-independent-navigation-solution-using-integrated- lidar -data-11378 [4...Milford, David McKinnon, Michael Warren, Gordon Wyeth, and Ben Upcroft, "Feature-based Visual Odometry and Featureless Place Recognition for SLAM in
Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model
NASA Astrophysics Data System (ADS)
Khaghani, M.; Skaloud, J.
2016-03-01
This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.
Miyashita, Theresa L; Diakogeorgiou, Eleni; Marrie, Kaitlyn
Investigation into the effect of cumulative subconcussive head impacts has yielded various results in the literature, with many supporting a link to neurological deficits. Little research has been conducted on men's lacrosse and associated balance deficits from head impacts. (1) Athletes will commit more errors on the postseason Balance Error Scoring System (BESS) test. (2) There will be a positive correlation to change in BESS scores and head impact exposure data. Prospective longitudinal study. Level 3. Thirty-four Division I men's lacrosse players (age, 19.59 ± 1.42 years) wore helmets instrumented with a sensor to collect head impact exposure data over the course of a competitive season. Players completed a BESS test at the start and end of the competitive season. The number of errors from pre- to postseason increased during the double-leg stance on foam ( P < 0.001), tandem stance on foam ( P = 0.009), total number of errors on a firm surface ( P = 0.042), and total number of errors on a foam surface ( P = 0.007). There were significant correlations only between the total errors on a foam surface and linear acceleration ( P = 0.038, r = 0.36), head injury criteria ( P = 0.024, r = 0.39), and Gadd Severity Index scores ( P = 0.031, r = 0.37). Changes in the total number of errors on a foam surface may be considered a sensitive measure to detect balance deficits associated with cumulative subconcussive head impacts sustained over the course of 1 lacrosse season, as measured by average linear acceleration, head injury criteria, and Gadd Severity Index scores. If there is microtrauma to the vestibular system due to repetitive subconcussive impacts, only an assessment that highly stresses the vestibular system may be able to detect these changes. Cumulative subconcussive impacts may result in neurocognitive dysfunction, including balance deficits, which are associated with an increased risk for injury. The development of a strategy to reduce total number of head impacts may curb the associated sequelae. Incorporation of a modified BESS test, firm surface only, may not be recommended as it may not detect changes due to repetitive impacts over the course of a competitive season.
Allicat magnetoresistive head design and performance
NASA Astrophysics Data System (ADS)
Hannon, David; Krounbi, Mohamed; Christner, Jodie
1994-03-01
The general design features of the magnetoresistive (MR) merged head are described and compared to the earlier MR piggy-back head called Corsair. Examples of static, magnetic, and error rate testing are given. Dual track profiles show the read-narrow feature of the MR head. Stability of the signal with write disturbance shows the effectiveness of the hard-bias longitudinal biasing. Error rate versus off-track position indicates the robustness of the file design.
Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L
2018-06-16
Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Testing the Dependence of Airborne Gravity Results on Three Variables in Kinematic GPS Processing
NASA Astrophysics Data System (ADS)
Weil, C.; Diehl, T. M.
2011-12-01
The National Geodetic Survey's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) program plans to collect airborne gravity data across the entire U.S. and its holdings over the next decade. The goal is to build a geoid accurate to 1-2 cm, for which the airborne gravity data is key. The first phase is underway, with > 13% of data collection completed in: parts of Alaska, parts of California, most of the Gulf Coast, Puerto Rico, and the Virgin Islands. Obtaining accurate airborne gravity survey results depends on the quality of the GPS/IMU position solution used in the processing. There are many factors that could have an influence on the positioning results. First, we will investigate how an increased data sampling rate for the GPS/IMU affects the position solution and accelerations derived from those positions. Second we will test the hypothesis that, for differential kinematic processing a better solution is obtained using both a base and a rover GPS unit that contain an additional rubidium clock that is reported to sync better with GPS time. Finally, we will look at a few different GPS+IMU processing methods available in commercial software. This includes comparing GPS-only solutions with loosely coupled GPS/IMU solutions from the Applanix POSAV-510 system and tightly coupled solutions with our newly-acquired NovAtel SPAN system (micro-IRS IMU). Differential solutions are compared with PPP (Precise Point Positioning) solutions along with multi-pass and advanced tropospheric corrections available with the NovAtel Inertial Explorer software. Based on preliminary research, we expect that the tightly-coupled solutions with either better troposphere and/or multi-pass solutions will provide superior position (and gravity) results.
Hu, B; Dixon, P C; Jacobs, J V; Dennerlein, J T; Schiffman, J M
2018-04-11
The aim of this study was to investigate if a machine learning algorithm utilizing triaxial accelerometer, gyroscope, and magnetometer data from an inertial motion unit (IMU) could detect surface- and age-related differences in walking. Seventeen older (71.5 ± 4.2 years) and eighteen young (27.0 ± 4.7 years) healthy adults walked over flat and uneven brick surfaces wearing an inertial measurement unit (IMU) over the L5 vertebra. IMU data were binned into smaller data segments using 4-s sliding windows with 1-s step lengths. Ninety percent of the data were used as training inputs and the remaining ten percent were saved for testing. A deep learning network with long short-term memory units was used for training (fully supervised), prediction, and implementation. Four models were trained using the following inputs: all nine channels from every sensor in the IMU (fully trained model), accelerometer signals alone, gyroscope signals alone, and magnetometer signals alone. The fully trained models for surface and age outperformed all other models (area under the receiver operator curve, AUC = 0.97 and 0.96, respectively; p ≤ .045). The fully trained models for surface and age had high accuracy (96.3, 94.7%), precision (96.4, 95.2%), recall (96.3, 94.7%), and f1-score (96.3, 94.6%). These results demonstrate that processing the signals of a single IMU device with machine-learning algorithms enables the detection of surface conditions and age-group status from an individual's walking behavior which, with further learning, may be utilized to facilitate identifying and intervening on fall risk. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bolink, S A A N; Grimm, B; Heyligers, I C
2015-12-01
Outcome assessment of total knee arthroplasty (TKA) by subjective patient reported outcome measures (PROMs) may not fully capture the functional (dis-)abilities of relevance. Objective performance-based outcome measures could provide distinct information. An ambulant inertial measurement unit (IMU) allows kinematic assessment of physical performance and could potentially be used for routine follow-up. To investigate the responsiveness of IMU measures in patients following TKA and compare outcomes with conventional PROMs. Patients with end stage knee OA (n=20, m/f=7/13; age=67.4 standard deviation 7.7 years) were measured preoperatively and one year postoperatively. IMU measures were derived during gait, sit-stand transfers and block step-up transfers. PROMs were assessed by using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Knee Society Score (KSS). Responsiveness was calculated by the effect size, correlations were calculated with Spearman's rho correlation coefficient. One year after TKA, patients performed significantly better at gait, sit-to-stand transfers and block step-up transfers. Measures of time and kinematic IMU measures demonstrated significant improvements postoperatively for each performance-based test. The largest improvement was found in block step-up transfers (effect size=0.56-1.20). WOMAC function score and KSS function score demonstrated moderate correlations (Spearman's rho=0.45-0.74) with some of the physical performance-based measures pre- and postoperatively. To characterize the changes in physical function after TKA, PROMs could be supplemented by performance-based measures, assessing function during different activities and allowing kinematic characterization with an ambulant IMU. Copyright © 2015 Elsevier B.V. All rights reserved.
Using Airborne Lidar Data from IcePod to Measure Annual and Seasonal Ice Changes Over Greenland
NASA Astrophysics Data System (ADS)
Frearson, N.; Bertinato, C.; Das, I.
2014-12-01
The IcePod is a multi-sensor airborne science platform that supports a wide suite of instruments, including a Riegl VQ-580 infrared scanning laser, GPS-inertial positioning system, shallow and deep-ice radars, visible-wave and infrared cameras, and upward-looking pyrometer. These instruments allow us to image the ice from top to bottom, including the surface of melt-water plumes that originate at the ice-ocean boundary. In collaboration with the New York Air National Guard 109th Airlift Wing, the IcePod is flown on LC-130 aircraft, which presents the unique opportunity to routinely image the Greenland ice sheet several times within a season. This is particularly important for mass balance studies, as we can measure elevation changes during the melt season. During the 2014 summer, laser data was collected via IcePod over the Greenland ice sheet, including Russell Glacier, Jakobshavn Glacier, Eqip Glacier, and Summit Camp. The Icepod will also be routinely operated in Antarctica. We present the initial testing, calibration, and error estimates from the first set of laser data that were collected on IcePod. At a survey altitude of 1000 m, the laser swath covers ~ 1000 m. A Northrop-Grumman LN-200 tactical grade IMU is rigidly attached to the laser scanner to provide attitude data at a rate of 200 Hz. Several methods were used to determine the lever arm between the IMU center of navigation and GPS antenna phase center, terrestrial scanning laser, total station survey, and optimal estimation. Additionally, initial bore sight calibration flights yielded misalignment angles within an accuracy of ±4 cm. We also performed routine passes over the airport ramp in Kangerlussuaq, Greenland, comparing the airborne GPS and Lidar data to a reference GPS-based ground survey across the ramp, spot GPS points on the ramp and a nearby GPS base station. Positioning errors can severely impact the accuracy of a laser altimeter when flying over remote regions such as across the ice sheets. Setting up GPS base stations along the flight track can prove to be logistically challenging. We have processed the GPS-inertial data using both DGPS and PPP and present the comparison of those results here. Finally, we discuss our processing, calibration and error estimation methods and compare our results to previously flown IceBridge lines.
University of Pennsylvania MAGIC 2010 Final Report
2011-01-10
and mapping ( SLAM ) techniques are employed to build a local map of the environment surrounding the robot. Readings from the two complementary LIDAR sen...IMU, LIDAR , Cameras Localization Disrupter UGV Local Navigation Sensors: GPS, IMU, LIDAR , Cameras Laser Control Localization Task Planner Strategy/Plan...various components shown in Figure 2. This is comprised of the following subsystems: • Sensor UGV: Mobile UGVs with LIDAR and camera sensors, GPS, and
2016-12-01
based complementary filter developed at the Naval Postgraduate School, is developed. The performance of a consumer-grade nine-degrees-of-freedom IMU...measurement unit, complementary filter , gait phase detection, zero velocity update, MEMS, IMU, AHRS, GPS denied, distributed sensor, virtual sensor...algorithm and quaternion-based complementary filter developed at the Naval Postgraduate School, is developed. The performance of a consumer-grade nine
Pose and Wind Estimation for Autonomous Parafoils
2014-09-01
Communications GT Georgia Institute of Technology IDVD Inverse Dynamics in the Virtual Domain IMU inertial measurement unit INRIA Institut National de Recherche en...sensor. The method used is a nonlinear estimator that combines the visual sensor measurements with those of an inertial measurement unit ( IMU ) on... isolated on the left side of the equation. On the other hand, when the measurement equation of (3.27) is implemented, the probabil- 58 ity
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
Development of a Novel, Two-Processor Architecture for a Small UAV Autopilot System,
2006-07-26
is, and the control laws the user implements to control it. The flight control system board will contain the processor selected for this system...Unit (IMU). The IMU contains solid-state gyros and accelerometers and uses these to determine the attitude of the UAV within the three dimensions of...multiple-UAV swarming for combat support operations. The mission processor board will contain the processor selected to execute the mission
2014-06-01
transmitted from a controller mechanism that contains inertial measurement unit ( IMU ) sensors to sense rotation and acceleration of movement. Earlier...assets, and standard hand signal commands can be presented to human team members via a variety of modalities. IMU sensor technologies placed on the body...obstacle event (e.g., climbing, crawling, combat roll , running) and between obstacles (i.e., walking). The following analyses are for each task
Mobile Gait Analysis System for Lower Limb Amputee High-Level Activity Rehabilitation
2013-09-01
The direction of gravity can be used, along with trigonometry, to determine the pitch and roll orientations of the IMU . We are interested in the...are represented using direction cosine matrices so pitch and roll rotations can be isolated while rotations about the gravity vector are ignored...three signals from the gyroscope in the IMU frame and any drift associated with the gyroscope, and . An estimate of roll and pitch, and
A Motion Tracking and Sensor Fusion Module for Medical Simulation.
Shen, Yunhe; Wu, Fan; Tseng, Kuo-Shih; Ye, Ding; Raymond, John; Konety, Badrinath; Sweet, Robert
2016-01-01
Here we introduce a motion tracking or navigation module for medical simulation systems. Our main contribution is a sensor fusion method for proximity or distance sensors integrated with inertial measurement unit (IMU). Since IMU rotation tracking has been widely studied, we focus on the position or trajectory tracking of the instrument moving freely within a given boundary. In our experiments, we have found that this module reliably tracks instrument motion.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe
2014-01-01
This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378
Lee, Kyung-Min; Song, Jin-Myoung; Cho, Jin-Hyoung; Hwang, Hyeon-Shik
2016-01-01
The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.
Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation
Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang
2014-01-01
This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911
Low Power Shoe Integrated Intelligent Wireless Gait Measurement System
NASA Astrophysics Data System (ADS)
Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.
2014-04-01
Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.
Human leader and robot follower team: correcting leader's position from follower's heading
NASA Astrophysics Data System (ADS)
Borenstein, Johann; Thomas, David; Sights, Brandon; Ojeda, Lauro; Bankole, Peter; Fellars, Donald
2010-04-01
In multi-agent scenarios, there can be a disparity in the quality of position estimation amongst the various agents. Here, we consider the case of two agents - a leader and a follower - following the same path, in which the follower has a significantly better estimate of position and heading. This may be applicable to many situations, such as a robotic "mule" following a soldier. Another example is that of a convoy, in which only one vehicle (not necessarily the leading one) is instrumented with precision navigation instruments while all other vehicles use lower-precision instruments. We present an algorithm, called Follower-derived Heading Correction (FDHC), which substantially improves estimates of the leader's heading and, subsequently, position. Specifically, FHDC produces a very accurate estimate of heading errors caused by slow-changing errors (e.g., those caused by drift in gyros) of the leader's navigation system and corrects those errors.
Surgical errors and risks – the head and neck cancer patient
Harréus, Ulrich
2013-01-01
Head and neck surgery is one of the basic principles of head and neck cancer therapy. Surgical errors and malpractice can have fatal consequences for the treated patients. It can lead to functional impairment and has impact in future chances for disease related survival. There are many risks for head and neck surgeons that can cause errors and malpractice. To avoid surgical mistakes, thorough preoperative management of patients is mandatory. As there are ensuring operability, cautious evaluation of preoperative diagnostics and operative planning. Moreover knowledge of anatomical structures of the head and neck, of the medical studies and data as well as qualification in modern surgical techniques and the surgeons ability for critical self assessment are basic and important prerequisites for head and neck surgeons in order to make out risks and to prevent from mistakes. Additionally it is important to have profound knowledge in nutrition management of cancer patients, wound healing and to realize and to be able to deal with complications, when they occur. Despite all precaution and surgical care, errors and mistakes cannot always be avoided. For that it is important to be able to deal with mistakes and to establish an appropriate and clear communication and management for such events. The manuscript comments on recognition and prevention of risks and mistakes in the preoperative, operative and postoperative phase of head and neck cancer surgery. PMID:24403972
Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian
2017-01-01
The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Navidi, N.; Landry, R., Jr.
2015-08-01
Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.
Online Estimation of Allan Variance Coefficients Based on a Neural-Extended Kalman Filter
Miao, Zhiyong; Shen, Feng; Xu, Dingjie; He, Kunpeng; Tian, Chunmiao
2015-01-01
As a noise analysis method for inertial sensors, the traditional Allan variance method requires the storage of a large amount of data and manual analysis for an Allan variance graph. Although the existing online estimation methods avoid the storage of data and the painful procedure of drawing slope lines for estimation, they require complex transformations and even cause errors during the modeling of dynamic Allan variance. To solve these problems, first, a new state-space model that directly models the stochastic errors to obtain a nonlinear state-space model was established for inertial sensors. Then, a neural-extended Kalman filter algorithm was used to estimate the Allan variance coefficients. The real noises of an ADIS16405 IMU and fiber optic gyro-sensors were analyzed by the proposed method and traditional methods. The experimental results show that the proposed method is more suitable to estimate the Allan variance coefficients than the traditional methods. Moreover, the proposed method effectively avoids the storage of data and can be easily implemented using an online processor. PMID:25625903
Indoor Map Aided Wi-Fi Integrated Lbs on Smartphone Platforms
NASA Astrophysics Data System (ADS)
Yu, C.; El-Sheimy, N.
2017-09-01
In this research, an indoor map aided INS/Wi-Fi integrated location based services (LBS) applications is proposed and implemented on smartphone platforms. Indoor map information together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value from Wi-Fi are collected to obtain an accurate, continuous, and low-cost position solution. The main challenge of this research is to make effective use of various measurements that complement each other without increasing the computational burden of the system. The integrated system in this paper includes three modules: INS, Wi-Fi (if signal available) and indoor maps. A cascade structure Particle/Kalman filter framework is applied to combine the different modules. Firstly, INS position and Wi-Fi fingerprint position integrated through Kalman filter for estimating positioning information. Then, indoor map information is applied to correct the error of INS/Wi-Fi estimated position through particle filter. Indoor tests show that the proposed method can effectively reduce the accumulation positioning errors of stand-alone INS systems, and provide stable, continuous and reliable indoor location service.
2006-08-05
ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) AF Office of Scientific h Researc 875 N. Randolph St. Room 3112 11. SPONSOR/MONITOR’S REPORT...the process is often time-consuming and expensive. As the IMU market is experiencing a migration trend towards Micro Electro-Mechanical System (MEMS
2014-06-06
Structure Flex Joints 6828 68% Power Primary: Lithium-Ion 7530 75% Secondary: Fuel Cells (miniature) 8843 88% Sensors IMU /LIDAR 7713 77...mission requirements taken into account; the payload included a LIDAR, sonar, and an IMU . Moreover, the focus moved to the integration of the entire...negligible for any pitch or roll angle less than 15 degrees. The small deflection assumption utilized instead seeks to minimize momentum generation. To
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
Robert-Lachaine, Xavier; Mecheri, Hakim; Larue, Christian; Plamondon, André
2017-04-01
The potential of inertial measurement units (IMUs) for ergonomics applications appears promising. However, previous IMUs validation studies have been incomplete regarding aspects of joints analysed, complexity of movements and duration of trials. The objective was to determine the technological error and biomechanical model differences between IMUs and an optoelectronic system and evaluate the effect of task complexity and duration. Whole-body kinematics from 12 participants was recorded simultaneously with a full-body Xsens system where an Optotrak cluster was fixed on every IMU. Short functional movements and long manual material handling tasks were performed and joint angles were compared between the two systems. The differences attributed to the biomechanical model showed significantly greater (P ≤ .001) RMSE than the technological error. RMSE was systematically higher (P ≤ .001) for the long complex task with a mean on all joints of 2.8° compared to 1.2° during short functional movements. Definition of local coordinate systems based on anatomical landmarks or single posture was the most influent difference between the two systems. Additionally, IMUs accuracy was affected by the complexity and duration of the tasks. Nevertheless, technological error remained under 5° RMSE during handling tasks, which shows potential to track workers during their daily labour.
Pfau, T; Weller, R
2017-01-01
Equine inertial measurement unit (IMU) gait analysis has gained in popularity for use in horses. Similar transducers are now found in consumer grade smartphones. However, to date there are no scientific data evaluating their use for assessment of movement (a)symmetry in the horse. To establish limits of agreement (LoA, mean difference ±2 s.d.) between a validated specialist IMU system and IMU data collected with a consumer grade smartphone for quantification of movement symmetry and range of motion (ROM) of pelvic movement in the trotting horse. Method comparison study based on quantitative gait data. Twenty horses were equipped with a specialist IMU (MTw, Xsens) and a consumer grade smartphone (Apple iPhone6), both securely attached immediately in front of one another in the midline over the sacrum. Horses were trotted in-hand and lunged on both reins on a soft arena surface. Median values for movement symmetry and ROM were determined over a series of strides for each exercise condition. Data collection was repeated in 6 horses to determine the effect of mediolateral sensor positioning on outcome parameters. Valid data from 17 horses resulted in LoA values of -3.7 ± 9.2 mm for MinDiff (difference between left and right hind mid stance), -0.6 ± 6.0 mm for MaxDiff (difference between left and right hind propulsion) and -0.8 ± 7.4 mm for ROM across horses and exercises. LoAs were narrower for straight line exercise and the negative bias was considerably reduced when moving the smartphone to the right of the midline. The consumer grade smartphone provided meaningful gait data in horses: LoAs in particular for in-hand exercise and when adjusting the mediolateral positioning are similar to published asymmetry thresholds. Owing to the sensitivity to mediolateral positioning, particular care should be taken when placing an IMU over the midline of the horse. © 2015 EVJ Ltd.
Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry
2018-01-19
The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100 Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.
Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Bayard, David S.
2013-01-01
G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to run on any engineer's desktop computer.
Force Method Optimization II. Volume II. User’s Manual.
1982-11-01
column labels ICC Iteration counter ICHECK Vector for intermediate output, identifying the convergence status of unknowns, 0 = has not converged, 1...NDC,NW,SIG,ND,IDYN,UP,LOW,IAREA,IMU, ALAMBDW,WARAY,NSN.,NDCNL,NXNL,NWNL,NDNNL, NSENLIRST, ICHECK ,WDYN,PR1,MAXIT,WS,ARAY) 8. Input Tapes: None 9. Output...IMUSL,IMUDL,IAREA, IMU, P,NDN,UP,LOW,IX,IDYN,NW,IMUXL,IMUWL,ICC,ALAMBD, AMIN,WT,KL,NODE,ND,COND, IDEL .NSNL,NDCNL, NXNL, NWNL, ICHECK ,WDYN,PRI,WS,MAXT
NASA Astrophysics Data System (ADS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
Non-verbal communication through sensor fusion
NASA Astrophysics Data System (ADS)
Tairych, Andreas; Xu, Daniel; O'Brien, Benjamin M.; Anderson, Iain A.
2016-04-01
When we communicate face to face, we subconsciously engage our whole body to convey our message. In telecommunication, e.g. during phone calls, this powerful information channel cannot be used. Capturing nonverbal information from body motion and transmitting it to the receiver parallel to speech would make these conversations feel much more natural. This requires a sensing device that is capable of capturing different types of movements, such as the flexion and extension of joints, and the rotation of limbs. In a first embodiment, we developed a sensing glove that is used to control a computer game. Capacitive dielectric elastomer (DE) sensors measure finger positions, and an inertial measurement unit (IMU) detects hand roll. These two sensor technologies complement each other, with the IMU allowing the player to move an avatar through a three-dimensional maze, and the DE sensors detecting finger flexion to fire weapons or open doors. After demonstrating the potential of sensor fusion in human-computer interaction, we take this concept to the next level and apply it in nonverbal communication between humans. The current fingerspelling glove prototype uses capacitive DE sensors to detect finger gestures performed by the sending person. These gestures are mapped to corresponding messages and transmitted wirelessly to another person. A concept for integrating an IMU into this system is presented. The fusion of the DE sensor and the IMU combines the strengths of both sensor types, and therefore enables very comprehensive body motion sensing, which makes a large repertoire of gestures available to nonverbal communication over distances.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-01-01
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524
Real-time localization of mobile device by filtering method for sensor fusion
NASA Astrophysics Data System (ADS)
Fuse, Takashi; Nagara, Keita
2017-06-01
Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.
Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel
2018-09-01
The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.
An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks
NASA Astrophysics Data System (ADS)
El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros
2007-12-01
The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.
A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry
NASA Astrophysics Data System (ADS)
Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.
2012-12-01
Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal components of the gravity vector to be determined. In spite of that, this type of system has been shown to still deliver very useful results in the range of a few mGal for resolutions below 10km. In this work we describe the setup used for our airborne test and we present a comparison and analysis of the performance of the medium- and high-quality inertial systems. This includes an analysis of the results of overlapping flight lines obtained with both systems. Considerations about the suitability of each of the systems for different types of applications are also discussed.
NASA Astrophysics Data System (ADS)
Ding, Lei; Lai, Yuan; He, Bin
2005-01-01
It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multi-source localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.
Can Functional Movement Assessment Predict Football Head Impact Biomechanics?
Ford, Julia M; Campbell, Kody R; Ford, Cassie B; Boyd, Kenneth E; Padua, Darin A; Mihalik, Jason P
2018-06-01
The purposes of this study was to determine functional movement assessments' ability to predict head impact biomechanics in college football players and to determine whether head impact biomechanics could explain preseason to postseason changes in functional movement performance. Participants (N = 44; mass, 109.0 ± 20.8 kg; age, 20.0 ± 1.3 yr) underwent two preseason and postseason functional movement assessment screenings: 1) Fusionetics Movement Efficiency Test and 2) Landing Error Scoring System (LESS). Fusionetics is scored 0 to 100, and participants were categorized into the following movement quality groups as previously published: good (≥75), moderate (50-75), and poor (<50). The LESS is scored 0 to 17, and participants were categorized into the following previously published movement quality groups: good (≤5 errors), moderate (6-7 errors), and poor (>7 errors). The Head Impact Telemetry (HIT) System measured head impact frequency and magnitude (linear acceleration and rotational acceleration). An encoder with six single-axis accelerometers was inserted between the padding of a commercially available Riddell football helmet. We used random intercepts general linear-mixed models to analyze our data. There were no effects of preseason movement assessment group on the two Head Impact Telemetry System impact outcomes: linear acceleration and rotational acceleration. Head impact frequency did not significantly predict preseason to postseason score changes obtained from the Fusionetics (F1,36 = 0.22, P = 0.643, R = 0.006) or the LESS (F1,36 < 0.01, P = 0.988, R < 0.001) assessments. Previous research has demonstrated an association between concussion and musculoskeletal injury, as well as functional movement assessment performance and musculoskeletal injury. The functional movement assessments chosen may not be sensitive enough to detect neurological and neuromuscular differences within the sample and subtle changes after sustaining head impacts.
Research on the magnetorheological finishing (MRF) technology with dual polishing heads
NASA Astrophysics Data System (ADS)
Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang
2014-08-01
Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.
Updating of visual orientation in a gravity-based reference frame.
Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter
2017-10-01
The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.
NASA Technical Reports Server (NTRS)
Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)
2000-01-01
Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.
Demura, S; Sato, S; Kitabayashi, T
2006-06-01
This study examined a method of predicting body density based on hydrostatic weighing without head submersion (HWwithoutHS). Donnelly and Sintek (1984) developed a method to predict body density based on hydrostatic weight without head submersion. This method predicts the difference (D) between HWwithoutHS and hydrostatic weight with head submersion (HWwithHS) from anthropometric variables (head length and head width), and then calculates body density using D as a correction factor. We developed several prediction equations to estimate D based on head anthropometry and differences between the sexes, and compared their prediction accuracy with Donnelly and Sintek's equation. Thirty-two males and 32 females aged 17-26 years participated in the study. Multiple linear regression analysis was performed to obtain the prediction equations, and the systematic errors of their predictions were assessed by Bland-Altman plots. The best prediction equations obtained were: Males: D(g) = -164.12X1 - 125.81X2 - 111.03X3 + 100.66X4 + 6488.63, where X1 = head length (cm), X2 = head circumference (cm), X3 = head breadth (cm), X4 = head thickness (cm) (R = 0.858, R2 = 0.737, adjusted R2 = 0.687, standard error of the estimate = 224.1); Females: D(g) = -156.03X1 - 14.03X2 - 38.45X3 - 8.87X4 + 7852.45, where X1 = head circumference (cm), X2 = body mass (g), X3 = head length (cm), X4 = height (cm) (R = 0.913, R2 = 0.833, adjusted R2 = 0.808, standard error of the estimate = 137.7). The effective predictors in these prediction equations differed from those of Donnelly and Sintek's equation, and head circumference and head length were included in both equations. The prediction accuracy was improved by statistically selecting effective predictors. Since we did not assess cross-validity, the equations cannot be used to generalize to other populations, and further investigation is required.
Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen
2005-10-01
Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less
Evaluation of low- and medium-cost IMUs for airborne gravimetry with UAVs
NASA Astrophysics Data System (ADS)
Deurloo, R. A.; Bastos, M. L.; Geng, Y.; Yan, W.
2011-12-01
The use of Unmanned Aerial Vehicles (UAVs) has increased in a large number of fields and is proving to be a good alternative to aerial surveys with traditional (manned) aircraft. In the scope of the PITVANT (Projecto de Investigação e Tecnologia em Veículos Aéreos Não-Tripulados) project, a research project funded by the Portuguese Ministry of Defence that aims at the development and demonstration of tools and technologies for UAVs, the Astronomical Observatory of the Faculty of Sciences of the University of Porto is investigating the use of UAVs for regional airborne gravimetry. The goal is to implement a so-called strapdown gravimetry system, based on the integrated use of GNSS and a low- to medium-cost IMU (Inertial Measurement Unit) that can be setup on board the UAVs developed within PITVANT. Two basic approaches exist in strapdown GNSS/IMU gravimetry: - to compute gravity disturbances directly from the combination of GNSS derived accelerations with accelerations measured by the IMU (the accelerometry approach); - to estimate the gravity disturbances as part of an inertial navigation solution using an (extended) Kalman filter (the inertial navigation approach). Because of the limitation of low- to medium-cost inertial systems the latter approach was used here. This method has proven to be effective in previous studies with this type of GNSS/IMU systems. To define the final system architecture, the performance of several different inertial systems was recently tested during an airborne survey with a regular aircraft, i.e. a CASA C212 from the Portuguese Air Force (PAF). Among the systems on board were a medium-cost Litton LN-200 and a low-cost Crossbow AHRS440, combined with a single GNSS receiver. Different Kalman filter configurations and GNSS processing options were investigated for each of the systems. The main goal was to assess the limits of the integrated GNSS/IMU systems to sense the gravity field (scalar gravimetry) and to evaluate their use and effectiveness in UAVs. The results of this analysis are presented here.
Lockhart, Thurmon E; Soangra, Rahul; Zhang, Jian; Wu, Xuefan
2013-01-01
Mobility characteristics associated with activity of daily living such as sitting down, lying down, rising up, and walking are considered to be important in maintaining functional independence and healthy life style especially for the growing elderly population. Characteristics of postural transitions such as sit-to-stand are widely used by clinicians as a physical indicator of health, and walking is used as an important mobility assessment tool. Many tools have been developed to assist in the assessment of functional levels and to detect a persons activities during daily life. These include questionnaires, observation, diaries, kinetic and kinematic systems, and validated functional tests. These measures are costly and time consuming, rely on subjective patient recall and may not accurately reflect functional ability in the patients home. In order to provide a low-cost, objective assessment of functional ability, inertial measurement unit (IMU) using MEMS technology has been employed to ascertain ADLs. These measures facilitate long-term monitoring of activity of daily living using wearable sensors. IMU system are desirable in monitoring human postures since they respond to both frequency and the intensity of movements and measure both dc (gravitational acceleration vector) and ac (acceleration due to body movement) components at a low cost. This has enabled the development of a small, lightweight, portable system that can be worn by a free-living subject without motion impediment TEMPO (Technology Enabled Medical Precision Observation). Using this IMU system, we acquired indirect measures of biomechanical variables that can be used as an assessment of individual mobility characteristics with accuracy and recognition rates that are comparable to the modern motion capture systems. In this study, five subjects performed various ADLs and mobility measures such as posture transitions and gait characteristics were obtained. We developed postural event detection and classification algorithm using denoised signals from single wireless IMU placed at sternum. The algorithm was further validated and verified with motion capture system in laboratory environment. Wavelet denoising highlighted postural events and transition durations that further provided clinical information on postural control and motor coordination. The presented method can be applied in real life ambulatory monitoring approaches for assessing condition of elderly.
Navigator alignment using radar scan
Doerry, Armin W.; Marquette, Brandeis
2016-04-05
The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.
A two-dimensional, finite-difference model of the high plains aquifer in southern South Dakota
Kolm, K.E.; Case, H. L.
1983-01-01
The High Plains aquifer is the principal source of water for irrigation, industry, municipalities, and domestic use in south-central South Dakota. The aquifer, composed of upper sandstone units of the Arikaree Formation, and the overlying Ogallala and Sand Hills Formations, was simulated using a two-dimensional, finite-difference computer model. The maximum difference between simulated and measured potentiometric heads was less than 60 feet (1- to 4-percent error). Two-thirds of the simulated potentiometric heads were within 26 feet of the measured values (3-percent error). The estimated saturated thickness, computed from simulated potentiometric heads, was within 25-percent error of the known saturated thickness for 95 percent of the study area. (USGS)
Allen, Marcus; Zhong, Qiang; Kirsch, Nicholas; Dani, Ashwin; Clark, William W; Sharma, Nitin
2017-12-01
Miniature inertial measurement units (IMUs) are wearable sensors that measure limb segment or joint angles during dynamic movements. However, IMUs are generally prone to drift, external magnetic interference, and measurement noise. This paper presents a new class of nonlinear state estimation technique called state-dependent coefficient (SDC) estimation to accurately predict joint angles from IMU measurements. The SDC estimation method uses limb dynamics, instead of limb kinematics, to estimate the limb state. Importantly, the nonlinear limb dynamic model is formulated into state-dependent matrices that facilitate the estimator design without performing a Jacobian linearization. The estimation method is experimentally demonstrated to predict knee joint angle measurements during functional electrical stimulation of the quadriceps muscle. The nonlinear knee musculoskeletal model was identified through a series of experiments. The SDC estimator was then compared with an extended kalman filter (EKF), which uses a Jacobian linearization and a rotation matrix method, which uses a kinematic model instead of the dynamic model. Each estimator's performance was evaluated against the true value of the joint angle, which was measured through a rotary encoder. The experimental results showed that the SDC estimator, the rotation matrix method, and EKF had root mean square errors of 2.70°, 2.86°, and 4.42°, respectively. Our preliminary experimental results show the new estimator's advantage over the EKF method but a slight advantage over the rotation matrix method. However, the information from the dynamic model allows the SDC method to use only one IMU to measure the knee angle compared with the rotation matrix method that uses two IMUs to estimate the angle.
Performance of a real-time sensor and processing system on a helicopter
NASA Astrophysics Data System (ADS)
Kurz, F.; Rosenbaum, D.; Meynberg, O.; Mattyus, G.; Reinartz, P.
2014-11-01
A new optical real-time sensor system (4k system) on a helicopter is now ready to use for applications during disasters, mass events and traffic monitoring scenarios. The sensor was developed light-weighted, small with relatively cheap components in a pylon mounted sideward on a helicopter. The sensor architecture is finally a compromise between the required functionality, the development costs, the weight and the sensor size. Aboard processors are integrated in the 4k sensor system for orthophoto generation, for automatic traffic parameter extraction and for data downlinks. It is planned to add real-time processors for person detection and tracking, for DSM generation and for water detection. Equipped with the newest and most powerful off-the-shelf cameras available, a wide variety of viewing configurations with a frame rate of up to 12 Hz for the different applications is possible. Based on three cameras with 50 mm lenses which are looking in different directions, a maximal FOV of 104° is reachable; with 100 mm lenses a ground sampling distance of 3.5 cm is possible at a flight height of 500 m above ground. In this paper, we present the first data sets and describe the technical components of the sensor. The effect of vibrations of the helicopter on the GNSS/IMU accuracy and on the 4k video quality is analysed. It can be shown, that if the helicopter hoovers the rolling shutter effect affects the 4k video quality drastically. The GNSS/IMU error is higher than the specified limit, which is mainly caused by the vibrations on the helicopter and the insufficient vibrational absorbers on the sensor board.
Accuracy analysis and design of A3 parallel spindle head
NASA Astrophysics Data System (ADS)
Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan
2016-03-01
As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.
Validation of simplified centre of mass models during gait in individuals with chronic stroke.
Huntley, Andrew H; Schinkel-Ivy, Alison; Aqui, Anthony; Mansfield, Avril
2017-10-01
The feasibility of using a multiple segment (full-body) kinematic model in clinical gait assessment is difficult when considering obstacles such as time and cost constraints. While simplified gait models have been explored in healthy individuals, no such work to date has been conducted in a stroke population. The aim of this study was to quantify the errors of simplified kinematic models for chronic stroke gait assessment. Sixteen individuals with chronic stroke (>6months), outfitted with full body kinematic markers, performed a series of gait trials. Three centre of mass models were computed: (i) 13-segment whole-body model, (ii) 3 segment head-trunk-pelvis model, and (iii) 1 segment pelvis model. Root mean squared error differences were compared between models, along with correlations to measures of stroke severity. Error differences revealed that, while both models were similar in the mediolateral direction, the head-trunk-pelvis model had less error in the anteroposterior direction and the pelvis model had less error in the vertical direction. There was some evidence that the head-trunk-pelvis model error is influenced in the mediolateral direction for individuals with more severe strokes, as a few significant correlations were observed between the head-trunk-pelvis model and measures of stroke severity. These findings demonstrate the utility and robustness of the pelvis model for clinical gait assessment in individuals with chronic stroke. Low error in the mediolateral and vertical directions is especially important when considering potential stability analyses during gait for this population, as lateral stability has been previously linked to fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of chaotic dynamics in human gait signals from mobile devices
NASA Astrophysics Data System (ADS)
DelMarco, Stephen; Deng, Yunbin
2017-05-01
The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.
NASA Astrophysics Data System (ADS)
Goulden, T.; Hopkinson, C.
2013-12-01
The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future work in LiDAR sensor measurement uncertainty must focus on the development of vegetative error models to create more robust error prediction algorithms. To achieve this objective, comprehensive empirical exploratory analysis is recommended to relate vegetative parameters to observed errors.
NASA Astrophysics Data System (ADS)
Liu, Zengjun; Wang, Lei; Li, Kui; Gao, Jiaxin
2017-05-01
Hybrid inertial navigation system (HINS) is a new kind of inertial navigation system (INS), which combines advantages of platform INS, strap-down INS and rotational INS. HINS has a physical platform to isolate the angular motion as platform INS does, HINS also uses strap-down attitude algorithms and applies rotation modulation technique. Tri-axis HINS has three gimbals to isolate the angular motion in the dynamic base, in which way the system can reduce the effects of angular motion and improve the positioning precision. However, the angular motion will affect the compensation of some error parameters, especially for the lever arm effect. The lever arm effect caused by position errors between the accelerometers and rotation center cannot be ignored due to the rapid rotation of inertial measurement unit (IMU) and it will cause fluctuation and stage in velocity in HINS. The influences of angular motion on the lever arm effect compensation are analyzed firstly in this paper, and then the compensation method of lever arm effect based on the photoelectric encoders in dynamic base is proposed. Results of experiments on turntable show that after compensation, the fluctuations and stages in velocity curve disappear.
Georeferencing in Gnss-Challenged Environment: Integrating Uwb and Imu Technologies
NASA Astrophysics Data System (ADS)
Toth, C. K.; Koppanyi, Z.; Navratil, V.; Grejner-Brzezinska, D.
2017-05-01
Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University's Satellite Positioning and Inertial Navigation (SPIN) Laboratory, as one feasible solution, Ultra- Wideband (UWB) radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI) sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.
Testing of the high accuracy inertial navigation system in the Shuttle Avionics Integration Lab
NASA Technical Reports Server (NTRS)
Strachan, Russell L.; Evans, James M.
1991-01-01
The description, results, and interpretation is presented of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and KT-70 Inertial Measurement Unit (IMU). The objective was to show the HAINS can replace the KT-70 IMU in the space shuttle Orbiter, both singularly and totally. This testing was performed in the Guidance, Navigation, and Control Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL). A variety of differences between the two instruments are explained. Four, 5 day test sessions were conducted varying the number and slot position of the HAINS and KT-70 IMUs. The various steps in the calibration and alignment procedure are explained. Results and their interpretation are presented. The HAINS displayed a high level of performance accuracy previously unseen with the KT-70 IMU. The most significant improvement of the performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4 hr specification requirement. The results obtained from the SAIL tests were generally well beyond the requirements of the procurement specification.
Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.
Schimpf, Paul H
2017-09-15
This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.
SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms
NASA Technical Reports Server (NTRS)
Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew
2015-01-01
The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.
2011-09-01
supply for the IMU switching 5, 12V ATX power supply for the computer and hard drive An L1/L2 active antenna on small back plane USB to serial...switching 5, 12V ATX power supply for the computer and hard drive Figure 4. UAS Target Location Technology for Ground Based Observers (TLGBO...15V power supply for the IMU H. switching 5, 12V ATX power supply for the computer & hard drive I. An L1/L2 active antenna on a small back
Inertial sensor self-calibration in a visually-aided navigation approach for a micro-AUV.
Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P
2015-01-16
This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time.
Xiao, Mengli; Zhang, Yongbo; Fu, Huimin; Wang, Zhihua
2018-05-01
High-precision navigation algorithm is essential for the future Mars pinpoint landing mission. The unknown inputs caused by large uncertainties of atmospheric density and aerodynamic coefficients as well as unknown measurement biases may cause large estimation errors of conventional Kalman filters. This paper proposes a derivative-free version of nonlinear unbiased minimum variance filter for Mars entry navigation. This filter has been designed to solve this problem by estimating the state and unknown measurement biases simultaneously with derivative-free character, leading to a high-precision algorithm for the Mars entry navigation. IMU/radio beacons integrated navigation is introduced in the simulation, and the result shows that with or without radio blackout, our proposed filter could achieve an accurate state estimation, much better than the conventional unscented Kalman filter, showing the ability of high-precision Mars entry navigation algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Inertial Sensor Self-Calibration in a Visually-Aided Navigation Approach for a Micro-AUV
Bonin-Font, Francisco; Massot-Campos, Miquel; Negre-Carrasco, Pep Lluis; Oliver-Codina, Gabriel; Beltran, Joan P.
2015-01-01
This paper presents a new solution for underwater observation, image recording, mapping and 3D reconstruction in shallow waters. The platform, designed as a research and testing tool, is based on a small underwater robot equipped with a MEMS-based IMU, two stereo cameras and a pressure sensor. The data given by the sensors are fused, adjusted and corrected in a multiplicative error state Kalman filter (MESKF), which returns a single vector with the pose and twist of the vehicle and the biases of the inertial sensors (the accelerometer and the gyroscope). The inclusion of these biases in the state vector permits their self-calibration and stabilization, improving the estimates of the robot orientation. Experiments in controlled underwater scenarios and in the sea have demonstrated a satisfactory performance and the capacity of the vehicle to operate in real environments and in real time. PMID:25602263
Space Shuttle Earth Observation sensors pointing and stabilization requirements study
NASA Technical Reports Server (NTRS)
1976-01-01
The shuttle orbiter inertial measurement unit (IMU), located in the orbiter cabin, is used to supply inertial attitude reference signals; and, in conjunction with the onboard navigation system, can provide a pointing capability of the navigation base accurate to within plus or minus 0.5 deg for earth viewing missions. This pointing accuracy can degrade to approximately plus or minus 2.0 deg for payloads located in the aft bay due to structural flexure of the shuttle vehicle, payload structural and mounting misalignments, and calibration errors with respect to the navigation base. Drawbacks to obtaining pointing accuracy by using the orbiter RCS jets are discussed. Supplemental electromechanical pointing systems are developed to provide independent pointing for individual sensors, or sensor groupings. The missions considered and the sensors required for these missions and the parameters of each sensor are described. Assumptions made to derive pointing and stabilization requirements are delineated.
Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
Wu, Dongjin; Xia, Linyuan; Geng, Jijun
2018-06-19
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
Rozenberg, P; Porcher, R; Salomon, L J; Boirot, F; Morin, C; Ville, Y
2008-03-01
To evaluate the learning curve of transabdominal sonography for the determination of fetal head position in labor and to compare it with that of digital vaginal examination. A student midwife who had never performed digital vaginal examination or ultrasound examination was recruited for this study. Instructions on how to perform digital vaginal examination and ultrasound examination were given before and after completing the first vaginal and ultrasound examinations, and repeated for each subsequent examination for as long as necessary. Digital and ultrasound diagnoses of the fetal head position were always performed first by the student midwife, and repeated by an experienced midwife or physician. The learning curve for identification of the fetal head position by either one of the two methods was analyzed using the cumulative sums (CUSUM) method for measurement errors. One hundred patients underwent digital vaginal examination and 99 had transabdominal sonography for the determination of fetal head position. An error rate of around 50% for vaginal examination was nearly constant during the first 50 examinations. It decreased subsequently, to stabilize at a low level from the 82(nd) patient. Errors of +/- 180 degrees were the most frequent. The learning curve for ultrasound imaging stabilized earlier than that of vaginal examination, after the 32(nd) patient. The most frequent errors with ultrasound examination were the inability to conclude on a diagnosis, particularly at the beginning of training, followed by errors of +/- 45 degrees. Based on our findings for the student tested, learning and accuracy of the determination of fetal head position in labor were easier and higher, respectively, with transabdominal sonography than with digital examination. This should encourage physicians to introduce clinical ultrasound examination into their practice. CUSUM charts provide a reliable representation of the learning curve, by accumulating evidence of performance. Copyright (c) 2008 ISUOG. Published by John Wiley & Sons, Ltd.
Development of a microcomputer-based magnetic heading sensor
NASA Technical Reports Server (NTRS)
Garner, H. D.
1987-01-01
This paper explores the development of a flux-gate magnetic heading reference using a single-chip microcomputer to process heading information and to present it to the pilot in appropriate form. This instrument is intended to replace the conventional combination of mechanical compass and directional gyroscope currently in use in general aviation aircraft, at appreciable savings in cost and reduction in maintenance. Design of the sensing element, the signal processing electronics, and the computer algorithms which calculate the magnetic heading of the aircraft from the magnetometer data have been integrated in such a way as to minimize hardware requirements and simplify calibration procedures. Damping and deviation errors are avoided by the inherent design of the device, and a technique for compensating for northerly-turning-error is described.
Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Howard, Andrew B.; Aghazarian, Hrand; Rankin, Arturo L.
2012-01-01
PSSEARCH provides predictive sea state estimation, coupled with closed-loop feedback control for automated ride control. It enables a manned or unmanned watercraft to determine the 3D map and sea state conditions in its vicinity in real time. Adaptive path-planning/ replanning software and a control surface management system will then use this information to choose the best settings and heading relative to the seas for the watercraft. PSSEARCH looks ahead and anticipates potential impact of waves on the boat and is used in a tight control loop to adjust trim tabs, course, and throttle settings. The software uses sensory inputs including IMU (Inertial Measurement Unit), stereo, radar, etc. to determine the sea state and wave conditions (wave height, frequency, wave direction) in the vicinity of a rapidly moving boat. This information can then be used to plot a safe path through the oncoming waves. The main issues in determining a safe path for sea surface navigation are: (1) deriving a 3D map of the surrounding environment, (2) extracting hazards and sea state surface state from the imaging sensors/map, and (3) planning a path and control surface settings that avoid the hazards, accomplish the mission navigation goals, and mitigate crew injuries from excessive heave, pitch, and roll accelerations while taking into account the dynamics of the sea surface state. The first part is solved using a wide baseline stereo system, where 3D structure is determined from two calibrated pairs of visual imagers. Once the 3D map is derived, anything above the sea surface is classified as a potential hazard and a surface analysis gives a static snapshot of the waves. Dynamics of the wave features are obtained from a frequency analysis of motion vectors derived from the orientation of the waves during a sequence of inputs. Fusion of the dynamic wave patterns with the 3D maps and the IMU outputs is used for efficient safe path planning.
The role of blood vessels in high-resolution volume conductor head modeling of EEG.
Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T
2016-03-01
Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C
2016-02-15
Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reeves, Jessica A.; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.; Shanker Agram, Piyush; Lauknes, Tom R.
2011-12-01
In the San Luis Valley (SLV), Colorado legislation passed in 2004 requires that hydraulic head levels in the confined aquifer system stay within the range experienced in the years 1978-2000. While some measurements of hydraulic head exist, greater spatial and temporal sampling would be very valuable in understanding the behavior of the system. Interferometric synthetic aperture radar (InSAR) data provide fine spatial resolution measurements of Earth surface deformation, which can be related to hydraulic head change in the confined aquifer system. However, change in cm-scale crop structure with time leads to signal decorrelation, resulting in low quality data. Here we apply small baseline subset (SBAS) analysis to InSAR data collected from 1992 to 2001. We are able to show high levels of correlation, denoting high quality data, in areas between the center pivot irrigation circles, where the lack of water results in little surface vegetation. At three well locations we see a seasonal variation in the InSAR data that mimics the hydraulic head data. We use measured values of the elastic skeletal storage coefficient to estimate hydraulic head from the InSAR data. In general the magnitude of estimated and measured head agree to within the calculated error. However, the errors are unacceptably large due to both errors in the InSAR data and uncertainty in the measured value of the elastic skeletal storage coefficient. We conclude that InSAR is capturing the seasonal head variation, but that further research is required to obtain accurate hydraulic head estimates from the InSAR deformation measurements.
Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning.
Whiteside, David; Cant, Olivia; Connolly, Molly; Reid, Machar
2017-10-01
Quantifying external workload is fundamental to training prescription in sport. In tennis, global positioning data are imprecise and fail to capture hitting loads. The current gold standard (manual notation) is time intensive and often not possible given players' heavy travel schedules. To develop an automated stroke-classification system to help quantify hitting load in tennis. Nineteen athletes wore an inertial measurement unit (IMU) on their wrist during 66 video-recorded training sessions. Video footage was manually notated such that known shot type (serve, rally forehand, slice forehand, forehand volley, rally backhand, slice backhand, backhand volley, smash, or false positive) was associated with the corresponding IMU data for 28,582 shots. Six types of machine-learning models were then constructed to classify true shot type from the IMU signals. Across 10-fold cross-validation, a cubic-kernel support vector machine classified binned shots (overhead, forehand, or backhand) with an accuracy of 97.4%. A second cubic-kernel support vector machine achieved 93.2% accuracy when classifying all 9 shot types. With a view to monitoring external load, the combination of miniature inertial sensors and machine learning offers a practical and automated method of quantifying shot counts and discriminating shot types in elite tennis players.
A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area
Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Cabestany, Joan; Català, Andreu
2013-01-01
Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU's movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A μSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson's disease symptoms, in gait analysis, and in a fall detection system. PMID:24145917
A wearable inertial measurement unit for long-term monitoring in the dependency care area.
Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Cabestany, Joan; Català, Andreu
2013-10-18
Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU's movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A µSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson's disease symptoms, in gait analysis, and in a fall detection system.
Pencil beam proton radiography using a multilayer ionization chamber
NASA Astrophysics Data System (ADS)
Farace, Paolo; Righetto, Roberto; Meijers, Arturs
2016-06-01
A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9 × 9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were -0.9 ± 2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0 ± 3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.
Pencil beam proton radiography using a multilayer ionization chamber.
Farace, Paolo; Righetto, Roberto; Meijers, Arturs
2016-06-07
A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9 × 9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were -0.9 ± 2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0 ± 3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyapa, Robert; Lowe, Matthew; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester
Purpose: To evaluate the robustness of head and neck plans for treatment with intensity modulated proton therapy to range and setup errors, and to establish robustness parameters for the planning of future head and neck treatments. Methods and Materials: Ten patients previously treated were evaluated in terms of robustness to range and setup errors. Error bar dose distributions were generated for each plan, from which several metrics were extracted and used to define a robustness database of acceptable parameters over all analyzed plans. The patients were treated in sequentially delivered series, and plans were evaluated for both the first seriesmore » and for the combined error over the whole treatment. To demonstrate the application of such a database in the head and neck, for 1 patient, an alternative treatment plan was generated using a simultaneous integrated boost (SIB) approach and plans of differing numbers of fields. Results: The robustness database for the treatment of head and neck patients is presented. In an example case, comparison of single and multiple field plans against the database show clear improvements in robustness by using multiple fields. A comparison of sequentially delivered series and an SIB approach for this patient show both to be of comparable robustness, although the SIB approach shows a slightly greater sensitivity to uncertainties. Conclusions: A robustness database was created for the treatment of head and neck patients with intensity modulated proton therapy based on previous clinical experience. This will allow the identification of future plans that may benefit from alternative planning approaches to improve robustness.« less
Effects of head movement and proprioceptive feedback in training of sound localization
Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti
2013-01-01
We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686
Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.
Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru
2011-01-01
In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.
Baddoura, Ritta; Venture, Gentiane
2014-01-01
During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions.
Baddoura, Ritta; Venture, Gentiane
2014-01-01
During an unannounced encounter between two humans and a proactive humanoid (NAO, Aldebaran Robotics), we study the dependencies between the human partners' affective experience (measured via the answers to a questionnaire) particularly regarding feeling familiar and feeling frightened, and their arm and head motion [frequency and smoothness using Inertial Measurement Units (IMU)]. NAO starts and ends its interaction with its partners by non-verbally greeting them hello (bowing) and goodbye (moving its arm). The robot is invested with a real and useful task to perform: handing each participant an envelope containing a questionnaire they need to answer. NAO's behavior varies from one partner to the other (Smooth with X vs. Resisting with Y). The results show high positive correlations between feeling familiar while interacting with the robot and: the frequency and smoothness of the human arm movement when waving back goodbye, as well as the smoothness of the head during the whole encounter. Results also show a negative dependency between feeling frightened and the frequency of the human arm movement when waving back goodbye. The principal component analysis (PCA) suggests that, in regards to the various motion measures examined in this paper, the head smoothness and the goodbye gesture frequency are the most reliable measures when it comes to considering the familiar experienced by the participants. The PCA also points out the irrelevance of the goodbye motion frequency when investigating the participants' experience of fear in its relation to their motion characteristics. The results are discussed in light of the major findings of studies on body movements and postures accompanying specific emotions. PMID:24688466
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Kaleris, Vassilios; Xeygeni, Vagia; Magkou, Foteini
2017-04-01
Assessing the availability of groundwater reserves at a regional level, requires accurate and robust hydraulic head estimation at multiple locations of an aquifer. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the spatial distribution of the hydraulic conductivity in the aquifer, and it is usually determined through trial-and-error, by solving the groundwater flow based on a properly selected set of alternative but physically plausible geologic structures. In this work, we use: 1) dimensional analysis, and b) a pulse-based stochastic model for simulation of synthetic aquifer structures, to calculate the distribution of the absolute error in hydraulic head estimation as a function of the standardized distance from the nearest measuring locations. The resulting distributions are proved to encompass all possible small-scale structural dependencies, exhibiting characteristics (bounds, multi-modal features etc.) that can be explained using simple geometric arguments. The obtained results are promising, pointing towards the direction of establishing design criteria based on large-scale geologic maps.
Inertial and GPS data integration for positioning and tracking of GPR
NASA Astrophysics Data System (ADS)
Chicarella, Simone; D'Alvano, Alessandro; Ferrara, Vincenzo; Frezza, Fabrizio; Pajewski, Lara
2015-04-01
Nowadays many applications and studies use a Global Positioning System (GPS) to integrate Ground-Penetrating Radar (GPR) data [1-2]. The aim is the production of detailed detection maps that are geo-referenced and superimposable on geographic maps themes. GPS provides data to determine static positioning, and to track the mobile detection system path on the land. A low-cost standard GPS, like GPS-622R by RF Solutions Ltd, allows accuracy around 2.5 m CEP (Circular Error Probability), and a maximum update rate of 10 Hz. These accuracy and update rate are satisfying values when we evaluate positioning datum, but they are unsuitable for precision tracking of a speedy-mobile GPR system. In order to determine the relative displacements with respect to an initial position on the territory, an Inertial Measurement Unit (IMU) can be used. Some inertial-system applications for GPR tracking have been presented in recent studies [3-4]. The integration of both GPS and IMU systems is the aim of our work, in order to increase GPR applicability, e.g. the case of a GPR mounted on an unmanned aerial vehicle for the detection of people buried under avalanches [5]. In this work, we will present the design, realization and experimental characterization of our electronic board that includes GPS-622R and AltIMU-10 v3 by Pololu. The latter comprises an inertial-measurement unit and an altimeter. In particular, the IMU adopts L3GD20 gyro and LSM303D accelerometer and magnetometer; the digital barometer LPS331AP provides data for altitude evaluation. The prototype of our system for GPR positioning and tracking is based on an Arduino microcontroller board. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar. ' References [1] M. Solla, X. Núñez-Nieto, M. Varela-González, J. Martínez-Sánchez, and P. Arias, 'GPR for Road Inspection: georeferencing and efficient approach to data processing and visualization,' Proceedings of 15th IEEE International Conference on Ground Penetrating Radar - GPR 2014, Brussels, Belgium, June 30 - July 4, 2014, pp. 913-918. [2] S. Urbini, L. Vittuari, and S. Gandolfi, 'GPR and GPS data integration: examples of application in Antarctica,' Annali di Geofisica, Vol. 44, No. 4, August 2001, pp. 687-702. [3] V. Prokhorenko, V. Ivashchuk, S. Korsun, and O. Dykovska, 'An Inertial Measurement Unit Application for a GPR Tracking and Positioning,' Proceedings of the 12th International Conference on Ground Penetrating Radar, June 15-19, 2008, Birmingham, UK, pp. 19-24. [4] M. Pasternak, W. Miluski, W. Czarnecki, and J. Pietrasinski, 'An optoelectronic-inertial system for handheld GPR positioning,' Proceedings of the 15th IEEE International Radar Symposium (IRS), Gdansk, Poland, June 16-18, 2014, pp. 1-4. [5] L. Crocco and V. Ferrara, 'A Review on Ground Penetrating Radar Technology for the Detection of Buried or Trapped Victims,' Proceedings of the IEEE 2nd International Workshop on Collaborations in Emergency Response and Disaster Management (ERDM 2014) as part of 2014 International Conference on Collaboration Technologies and Systems (CTS 2014) - Minneapolis (Minnesota, USA), May 19-23, 2014, pp. 535-540.
Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.
Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-09-09
Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called "virtual sensor"), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth's magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.
An in-situ measuring method for planar straightness error
NASA Astrophysics Data System (ADS)
Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie
2018-01-01
According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.
Error measuring system of rotary Inductosyn
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Zou, Jibin; Fu, Xinghe
2008-10-01
The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).
Precise visual navigation using multi-stereo vision and landmark matching
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Oskiper, Taragay; Samarasekera, Supun; Kumar, Rakesh
2007-04-01
Traditional vision-based navigation system often drifts over time during navigation. In this paper, we propose a set of techniques which greatly reduce the long term drift and also improve its robustness to many failure conditions. In our approach, two pairs of stereo cameras are integrated to form a forward/backward multi-stereo camera system. As a result, the Field-Of-View of the system is extended significantly to capture more natural landmarks from the scene. This helps to increase the pose estimation accuracy as well as reduce the failure situations. Secondly, a global landmark matching technique is used to recognize the previously visited locations during navigation. Using the matched landmarks, a pose correction technique is used to eliminate the accumulated navigation drift. Finally, in order to further improve the robustness of the system, measurements from low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) sensors are integrated with the visual odometry in an extended Kalman Filtering framework. Our system is significantly more accurate and robust than previously published techniques (1~5% localization error) over long-distance navigation both indoors and outdoors. Real world experiments on a human worn system show that the location can be estimated within 1 meter over 500 meters (around 0.1% localization error averagely) without the use of GPS information.
A low-cost GPS/INS integrated vehicle heading angle measurement system
NASA Astrophysics Data System (ADS)
Wu, Ye; Gao, Tongyue; Ding, Yi
2018-04-01
GPS can provide continuous heading information, but the accuracy is easily affected by the velocity and shelter from buildings or trees. For vehicle systems, we propose a low-cost heading angle update algorithm. Based on the GPS/INS integrated navigation kalman filter, we add the GPS heading angle to the measurement vector, and establish its error model. The experiment results show that this algorithm can effectively improve the accuracy of GPS heading angle.
Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens
2016-01-01
Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp
2014-10-06
To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less
Head Start, 4 years After Completing the Program
ERIC Educational Resources Information Center
Kim, Young-Joo
2013-01-01
This paper studies the effect of the Head Start program on children's achievements in reading and math tests during their first 4 years of schooling after completing the program. Using nationally representative data from the Early Childhood Longitudinal Study, I found large measurement error in the parental reports of Head Start attendance, which…
PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition.
Zuo, Yongchun; Li, Yuan; Chen, Yingli; Li, Guangpeng; Yan, Zhenhe; Yang, Lei
2017-01-01
The reduced amino acids perform powerful ability for both simplifying protein complexity and identifying functional conserved regions. However, dealing with different protein problems may need different kinds of cluster methods. Encouraged by the success of pseudo-amino acid composition algorithm, we developed a freely available web server, called PseKRAAC (the pseudo K-tuple reduced amino acids composition). By implementing reduced amino acid alphabets, the protein complexity can be significantly simplified, which leads to decrease chance of overfitting, lower computational handicap and reduce information redundancy. PseKRAAC delivers more capability for protein research by incorporating three crucial parameters that describes protein composition. Users can easily generate many different modes of PseKRAAC tailored to their needs by selecting various reduced amino acids alphabets and other characteristic parameters. It is anticipated that the PseKRAAC web server will become a very useful tool in computational proteomics and protein sequence analysis. Freely available on the web at http://bigdata.imu.edu.cn/psekraac CONTACTS: yczuo@imu.edu.cn or imu.hema@foxmail.com or yanglei_hmu@163.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe
2017-01-01
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work. PMID:28718788
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian
2017-07-18
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunmolu, O; Gans, N; Jiang, S
Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance ofmore » the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control will be pursued.« less
2016-04-01
publications, images, and videos. Technologies or techniques . The technique for one shot gesture recognition is a result from the research activity... shot learning concept for gesture recognition. Name: Aditya Ajay Shanghavi Project Role: Master Student Researcher Identifier (e.g. ORCID ID...use case . The transparency error depends more on the x than the z head tracking error. Head tracking is typically accurate to less than 10mm in x
Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer
Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo
2014-01-01
A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method. PMID:24831110
Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field
Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called “virtual sensor”), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms. PMID:27618056
Exploring Unsteady Sail Propulsion in Olympic Class Sailboats
NASA Astrophysics Data System (ADS)
Schutt, Riley; Williamson, C. H. K.
2014-11-01
Unsteady sailing techniques, defined as ``flicking,'' ``roll-tacking'' and ``roll-gybing'' are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. Body weight movements induce unsteady sail motion, increasing driving force and enhancing maneuvering performance. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section (induced by the sailor's body movement) is not perpendicular to the sail's motion through the air. This leads to an ``exotic heave,'' with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed, along with a measurement of thrust and lift forces. When combined with turning maneuvers, these heaving sail motions can lead to significant increases in velocity made good, a critical variable used when assessing racing performance.
Context-Aided Sensor Fusion for Enhanced Urban Navigation
Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María
2012-01-01
The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments. PMID:23223080
Context-aided sensor fusion for enhanced urban navigation.
Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María
2012-12-06
The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments.
An innovative localisation algorithm for railway vehicles
NASA Astrophysics Data System (ADS)
Allotta, B.; D'Adamio, P.; Malvezzi, M.; Pugi, L.; Ridolfi, A.; Rindi, A.; Vettori, G.
2014-11-01
In modern railway automatic train protection and automatic train control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. The aim of this work has been developing an innovative localisation algorithm for railway vehicles able to enhance the performances, in terms of speed and position estimation accuracy, of the classical odometry algorithms, such as the Italian Sistema Controllo Marcia Treno (SCMT). The proposed strategy consists of a sensor fusion between the information coming from a tachometer and an Inertial Measurements Unit (IMU). The sensor outputs have been simulated through a 3D multibody model of a railway vehicle. The work has provided the development of a custom IMU, designed by ECM S.p.a, in order to meet their industrial and business requirements. The industrial requirements have to be compliant with the European Train Control System (ETCS) standards: the European Rail Traffic Management System (ERTMS), a project developed by the European Union to improve the interoperability among different countries, in particular as regards the train control and command systems, fixes some standard values for the odometric (ODO) performance, in terms of speed and travelled distance estimation. The reliability of the ODO estimation has to be taken into account basing on the allowed speed profiles. The results of the currently used ODO algorithms can be improved, especially in case of degraded adhesion conditions; it has been verified in the simulation environment that the results of the proposed localisation algorithm are always compliant with the ERTMS requirements. The estimation strategy has good performance also under degraded adhesion conditions and could be put on board of high-speed railway vehicles; it represents an accurate and reliable solution. The IMU board is tested via a dedicated Hardware in the Loop (HIL) test rig: it includes an industrial robot able to replicate the motion of the railway vehicle. Through the generated experimental outputs the performances of the innovative localisation algorithm have been evaluated: the HIL test rig permitted to test the proposed algorithm, avoiding expensive (in terms of time and cost) on-track tests, obtaining encouraging results. In fact, the preliminary results show a significant improvement of the position and speed estimation performances compared to those obtained with SCMT algorithms, currently in use on the Italian railway network.
ERIC Educational Resources Information Center
Deutsch, Avital; Dank, Maya
2011-01-01
A common characteristic of subject-predicate agreement errors (usually termed attraction errors) in complex noun phrases is an asymmetrical pattern of error distribution, depending on the inflectional state of the nouns comprising the complex noun phrase. That is, attraction is most likely to occur when the head noun is the morphologically…
Effects of Head Rotation on Space- and Word-Based Reading Errors in Spatial Neglect
ERIC Educational Resources Information Center
Reinhart, Stefan; Keller, Ingo; Kerkhoff, Georg
2010-01-01
Patients with right hemisphere lesions often omit or misread words on the left side of a text or the beginning letters of single words which is termed neglect dyslexia (ND). Two types of reading errors are typically observed in ND: omissions and word-based reading errors. The prior are considered as space-based omission errors on the…
Head repositioning accuracy to neutral: a comparative study of error calculation.
Hill, Robert; Jensen, Pål; Baardsen, Tor; Kulvik, Kristian; Jull, Gwendolen; Treleaven, Julia
2009-02-01
Deficits in cervical proprioception have been identified in subjects with neck pain through the measure of head repositioning accuracy (HRA). Nevertheless there appears to be no general consensus regarding the construct of measurement of error used for calculating HRA. This study investigated four different mathematical methods of measurement of error to determine if there were any differences in their ability to discriminate between a control group and subjects with a whiplash associated disorder. The four methods for measuring cervical joint position error were calculated using a previous data set consisting of 50 subjects with whiplash complaining of dizziness (WAD D), 50 subjects with whiplash not complaining of dizziness (WAD ND) and 50 control subjects. The results indicated that no one measure of HRA uniquely detected or defined the differences between the whiplash and control groups. Constant error (CE) was significantly different between the whiplash and control groups from extension (p<0.05). Absolute errors (AEs) and root mean square errors (RMSEs) demonstrated differences between the two WAD groups in rotation trials (p<0.05). No differences were seen with variable error (VE). The results suggest that a combination of AE (or RMSE) and CE are probably the most suitable measures for analysis of HRA.
A novel optical rotary encoder with eccentricity self-detection ability.
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
A novel optical rotary encoder with eccentricity self-detection ability
NASA Astrophysics Data System (ADS)
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
Correcting electrode modelling errors in EIT on realistic 3D head models.
Jehl, Markus; Avery, James; Malone, Emma; Holder, David; Betcke, Timo
2015-12-01
Electrical impedance tomography (EIT) is a promising medical imaging technique which could aid differentiation of haemorrhagic from ischaemic stroke in an ambulance. One challenge in EIT is the ill-posed nature of the image reconstruction, i.e., that small measurement or modelling errors can result in large image artefacts. It is therefore important that reconstruction algorithms are improved with regard to stability to modelling errors. We identify that wrongly modelled electrode positions constitute one of the biggest sources of image artefacts in head EIT. Therefore, the use of the Fréchet derivative on the electrode boundaries in a realistic three-dimensional head model is investigated, in order to reconstruct electrode movements simultaneously to conductivity changes. We show a fast implementation and analyse the performance of electrode position reconstructions in time-difference and absolute imaging for simulated and experimental voltages. Reconstructing the electrode positions and conductivities simultaneously increased the image quality significantly in the presence of electrode movement.
Radio/FADS/IMU integrated navigation for Mars entry
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu
2018-03-01
Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velec, Michael; Waldron, John N.; O'Sullivan, Brian
2010-03-01
Purpose: To prospectively compare setup error in standard thermoplastic masks and skin-sparing masks (SSMs) modified with low neck cutouts for head-and-neck intensity-modulated radiation therapy (IMRT) patients. Methods and Materials: Twenty head-and-neck IMRT patients were randomized to be treated in a standard mask (SM) or SSM. Cone-beam computed tomography (CBCT) scans, acquired daily after both initial setup and any repositioning, were used for initial and residual interfraction evaluation, respectively. Weekly, post-IMRT CBCT scans were acquired for intrafraction setup evaluation. The population random (sigma) and systematic (SIGMA) errors were compared for SMs and SSMs. Skin toxicity was recorded weekly by use ofmore » Radiation Therapy Oncology Group criteria. Results: We evaluated 762 CBCT scans in 11 patients randomized to the SM and 9 to the SSM. Initial interfraction sigma was 1.6 mm or less or 1.1 deg. or less for SM and 2.0 mm or less and 0.8 deg. for SSM. Initial interfraction SIGMA was 1.0 mm or less or 1.4 deg. or less for SM and 1.1 mm or less or 0.9 deg. or less for SSM. These errors were reduced before IMRT with CBCT image guidance with no significant differences in residual interfraction or intrafraction uncertainties between SMs and SSMs. Intrafraction sigma and SIGMA were less than 1 mm and less than 1 deg. for both masks. Less severe skin reactions were observed in the cutout regions of the SSM compared with non-cutout regions. Conclusions: Interfraction and intrafraction setup error is not significantly different for SSMs and conventional masks in head-and-neck radiation therapy. Mask cutouts should be considered for these patients in an effort to reduce skin toxicity.« less
Rodriguez, Jose M; Codjoe, Julius; Osman, Osama; Ishak, Sherif; Wolshon, Brian
2015-01-01
While traffic planning is important for developing a hurricane evacuation plan, vehicle performance on the roads during extreme weather conditions is critical to the success of the planning process. This novel study investigates the effect of gusty hurricane wind forces on the driving behavior and vehicle performance. The study explores how the parameters of a driving simulator could be modified to reproduce wind loadings experienced by three vehicle types (passenger car, ambulance, and bus) during gusty hurricane winds, through manipulation of appropriate software. Thirty participants were then tested on the modified driving simulator under five wind conditions (ranging from normal to hurricane category 4). The driving performance measures used were heading error and lateral displacement. The results showed that higher wind forces resulted in more varied and greater heading error and lateral displacement. The ambulance had the greatest heading errors and lateral displacements, which were attributed to its large lateral surface area and light weight. Two mathematical models were developed to estimate the heading error and lateral displacements for each of the vehicle types for a given change in lateral wind force. Through a questionnaire, participants felt the different characteristics while driving each vehicle type. The findings of this study demonstrate the valuable use of a driving simulator to model the behavior of different vehicle types and to develop mathematical models to estimate and quantify driving behavior and vehicle performance under hurricane wind conditions.
NASA Astrophysics Data System (ADS)
Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.
2013-03-01
Time-domain near-infrared spectroscopy (TD-NIRS) offers the ability to measure the absolute baseline optical properties of a tissue. Specifically, for brain imaging, the robust assessment of cerebral blood volume and oxygenation based on measurement of cerebral hemoglobin concentrations is essential for reliable cross-sectional and longitudinal studies. In adult heads, these baseline measurements are complicated by the presence of thick extra-cerebral tissue (scalp, skull, CSF). A simple semi-infinite homogeneous model of the head has proven to have limited use because of the large errors it introduces in the recovered brain absorption. Analytical solutions for layered media have shown improved performance on Monte-Carlo simulated data and layered phantom experiments, but their validity on real adult head data has never been demonstrated. With the advance of fast Monte Carlo approaches based on GPU computation, numerical methods to solve the radiative transfer equation become viable alternatives to analytical solutions of the diffusion equation. Monte Carlo approaches provide the additional advantage to be adaptable to any geometry, in particular more realistic head models. The goals of the present study were twofold: (1) to implement a fast and flexible Monte Carlo-based fitting routine to retrieve the brain optical properties; (2) to characterize the performances of this fitting method on realistic adult head data. We generated time-resolved data at various locations over the head, and fitted them with different models of light propagation: the homogeneous analytical model, and Monte Carlo simulations for three head models: a two-layer slab, the true subject's anatomy, and that of a generic atlas head. We found that the homogeneous model introduced a median 20 to 25% error on the recovered brain absorption, with large variations over the range of true optical properties. The two-layer slab model only improved moderately the results over the homogeneous one. On the other hand, using a generic atlas head registered to the subject's head surface decreased the error by a factor of 2. When the information is available, using the true subject anatomy offers the best performance.
Requirements for Coregistration Accuracy in On-Scalp MEG.
Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2018-06-22
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
Error Analysis: Past, Present, and Future
ERIC Educational Resources Information Center
McCloskey, George
2017-01-01
This commentary will take an historical perspective on the Kaufman Test of Educational Achievement (KTEA) error analysis, discussing where it started, where it is today, and where it may be headed in the future. In addition, the commentary will compare and contrast the KTEA error analysis procedures that are rooted in psychometric methodology and…
Kinesthetic perceptions of earth- and body-fixed axes.
Darling, W G; Hondzinski, J M
1999-06-01
The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.
NASA Technical Reports Server (NTRS)
Garner, H. D. (Inventor)
1977-01-01
This invention employs a magnetometer as a magnetic heading reference for a vehicle such as a small aircraft. The magnetometer is mounted on a directional dial in the aircraft in the vicinity of the pilot such that it is free to turn with the dial about the yaw axis of the aircraft. The invention includes a circuit for generating a signal proportional to the northerly turning error produced in the magnetometer due to the vertical component of the earth's magnetic field. This generated signal is then subtracted from the output of the magnetometer to compensate for the northerly turning error.
Zolgharni, M; Griffiths, H; Ledger, P D
2010-08-01
The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.
Approach for Improving the Integrated Sensor Orientation
NASA Astrophysics Data System (ADS)
Mitishita, E.; Ercolin Filho, L.; Graça, N.; Centeno, J.
2016-06-01
The direct determination of exterior orientation parameters (EOP) of aerial images via integration of the Inertial Measurement Unit (IMU) and GPS is often used in photogrammetric mapping nowadays. The accuracies of the EOP depend on the accurate parameters related to sensors mounting when the job is performed (offsets of the IMU relative to the projection centre and the angles of boresigth misalignment between the IMU and the photogrammetric coordinate system). In principle, when the EOP values do not achieve the required accuracies for the photogrammetric application, the approach, known as Integrated Sensor Orientation (ISO), is used to refine the direct EOP. ISO approach requires accurate Interior Orientation Parameters (IOP) and standard deviation of the EOP under flight condition. This paper investigates the feasibility of use the in situ camera calibration to obtain these requirements. The camera calibration uses a small sub block of images, extracted from the entire block. A digital Vexcel UltraCam XP camera connected to APPLANIX POS AVTM system was used to get two small blocks of images that were use in this study. The blocks have different flight heights and opposite flight directions. The proposed methodology improved significantly the vertical and horizontal accuracies of the 3D point intersection. Using a minimum set of control points, the horizontal and vertical accuracies achieved nearly one image pixel of resolution on the ground (GSD). The experimental results are shown and discussed.
The inertial attitude augmentation for ambiguity resolution in SF/SE-GNSS attitude determination.
Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping
2014-06-26
The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation.
Motion measurement for synthetic aperture radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision andmore » accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.« less
Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jackson, Kurt (Technical Monitor)
2002-01-01
Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).
The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination
Zhu, Jiancheng; Hu, Xiaoping; Zhang, Jingyu; Li, Tao; Wang, Jinling; Wu, Meiping
2014-01-01
The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary sensor that carries out the inertial attitude augmentation. Firstly, based on the SF/SE-GNSS compass model, the Inertial Derived Baseline Vector (IDBV) is defined to connect the MEMS-IMU attitude measurement with the SF/SE-GNSS ambiguity search space, and the mechanism of inertial attitude augmentation is revealed from the perspective of geometry. Then, through the quantitative description of model strength by Ambiguity Dilution of Precision (ADOP), two ADOPs are specified for the unaided SF/SE-GNSS compass model and its inertial attitude augmentation counterparts, respectively, and a sufficient condition is proposed for augmenting the SF/SE-GNSS model strength with inertial attitude measurement. Finally, in the framework of an integer aperture estimator with fixed failure rate, the performance of SF/SE-GNSS ambiguity resolution with inertial attitude augmentation is analyzed when the model strength is varying from strong to weak. The simulation results show that, in the SF/SE-GNSS attitude determination application, MEMS-IMU can satisfy the requirements of ambiguity resolution with inertial attitude augmentation. PMID:24971472
Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred
2015-01-01
Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.
Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred
2015-01-01
Human–robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human–robot interaction experiments. For that, we analyzed 201 videos of five human–robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human–robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies. PMID:26217266
Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang
2015-01-01
Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020
New approach for simulating groundwater flow in discrete fracture network
NASA Astrophysics Data System (ADS)
Fang, H.; Zhu, J.
2017-12-01
In this study, we develop a new approach to calculate groundwater flowrate and hydraulic head distribution in two-dimensional discrete fracture network (DFN) where both laminar and turbulent flows co-exist in individual fractures. The cubic law is used to calculate hydraulic head distribution and flow behaviors in fractures where flow is laminar, while the Forchheimer's law is used to quantify turbulent flow behaviors. Reynolds number is used to distinguish flow characteristics in individual fractures. The combination of linear and non-linear equations is solved iteratively to determine flowrates in all fractures and hydraulic heads at all intersections. We examine potential errors in both flowrate and hydraulic head from the approach of uniform flow assumption. Applying the cubic law in all fractures regardless of actual flow conditions overestimates the flowrate when turbulent flow may exist while applying the Forchheimer's law indiscriminately underestimate the flowrate when laminar flows exist in the network. The contrast of apertures of large and small fractures in the DFN has significant impact on the potential errors of using only the cubic law or the Forchheimer's law. Both the cubic law and Forchheimer's law simulate similar hydraulic head distributions as the main difference between these two approaches lies in predicting different flowrates. Fracture irregularity does not significantly affect the potential errors from using only the cubic law or the Forchheimer's law if network configuration remains similar. Relative density of fractures does not significantly affect the relative performance of the cubic law and Forchheimer's law.
Dugailly, Pierre-Michel; De Santis, Roberta; Tits, Mathieu; Sobczak, Stéphane; Vigne, Anna; Feipel, Véronique
2015-12-01
Cervicocephalic kinesthetic deficiencies have been demonstrated in patients with chronic neck pain (NP). On the other hand, authors emphasized the use of different motion speeds for assessing functional impairment of the cervical spine. The objectives of this study were (1) to investigate the head repositioning accuracy in NP patients and control subjects and (2) to assess the influence of target distance, motion speed, motion direction and pain. Seventy-one subjects (36 healthy subjects and 35 NP patients; age 30-55 years) performed the head repositioning test (HRT) at two different speeds for horizontal and vertical movements and at two different distances. For each condition, six consecutive trials were sampled. The study showed the validity and reproducibility of the HRT, confirming a dysfunctional threshold of 4.5°. Normative values of head repositioning error up to 3.6° and 7.1° were identified for healthy and NP subjects, respectively. A distance of 180 cm from the target and a natural motion speed increased HRT accuracy. Repositioning after extension movement showed a significantly larger error in both groups. Intensity, duration of pain as well as pain level did not significantly alter head repositioning error. The assessment of proprioceptive performance in healthy and NP subjects allowed the validation of the HRT. The HRT is a simple, not expensive and fast test, easily implementable in daily practice to assess and monitor treatment and evolution of proprioceptive cervical deficits.
Inertial measurement unit pre-processors and post-flight STS-1 comparisons
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Mcconnell, J. G.
1981-01-01
The flight results show that the relative tri-redundant Inertial Measurement Unit IMU performance throughout the entire entry flight was within the expected accuracy. Comparisons are presented which show differences in the accumulated sensed velocity changes as measured by the tri-redundant IMUs (in Mean Equator and Equinox of 1950.0), differences in the equivalent inertial Euler angles as measured with respect to the M50 system, and finally, preliminary instrument calibrations determined relative to the ensemble average measurement set. Also, differences in the derived body axes rates and accelerations are presented. Because of the excellent performance of the IMUs during the STS-1 entry, the selection as to which particular IMU would best serve as the dynamic data source for entry reconstruction is arbitrary.
VRACK: measuring pedal kinematics during stationary bike cycling.
Farjadian, Amir B; Kong, Qingchao; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos
2013-06-01
Ankle impairment and lower limb asymmetries in strength and coordination are common symptoms for individuals with selected musculoskeletal and neurological impairments. The virtual reality augmented cycling kit (VRACK) was designed as a compact mechatronics system for lower limb and mobility rehabilitation. The system measures interaction forces and cardiac activity during cycling in a virtual environment. The kinematics measurement was added to the system. Due to the constrained problem definition, the combination of inertial measurement unit (IMU) and Kalman filtering was recruited to compute the optimal pedal angular displacement during dynamic cycling exercise. Using a novel benchmarking method the accuracy of IMU-based kinematics measurement was evaluated. Relatively accurate angular measurements were achieved. The enhanced VRACK system can serve as a rehabilitation device to monitor biomechanical and physiological variables during cycling on a stationary bike.
NASA Astrophysics Data System (ADS)
Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md
2017-12-01
An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxim, Peter G.; Loo, Billy W.; Murphy, James D.
2011-11-15
Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less
Initial clinical experience with a video-based patient positioning system.
Johnson, L S; Milliken, B D; Hadley, S W; Pelizzari, C A; Haraf, D J; Chen, G T
1999-08-01
To report initial clinical experience with an interactive, video-based patient positioning system that is inexpensive, quick, accurate, and easy to use. System hardware includes two black-and-white CCD cameras, zoom lenses, and a PC equipped with a frame grabber. Custom software is used to acquire and archive video images, as well as to display real-time subtraction images revealing patient misalignment in multiple views. Two studies are described. In the first study, video is used to document the daily setup histories of 5 head and neck patients. Time-lapse cine loops are generated for each patient and used to diagnose and correct common setup errors. In the second study, 6 twice-daily (BID) head and neck patients are positioned according to the following protocol: at AM setups conventional treatment room lasers are used; at PM setups lasers are used initially and then video is used for 1-2 minutes to fine-tune the patient position. Lateral video images and lateral verification films are registered off-line to compare the distribution of setup errors per patient, with and without video assistance. In the first study, video images were used to determine the accuracy of our conventional head and neck setup technique, i.e., alignment of lightcast marks and surface anatomy to treatment room lasers and the light field. For this initial cohort of patients, errors ranged from sigma = 5 to 7 mm and were patient-specific. Time-lapse cine loops of the images revealed sources of the error, and as a result, our localization techniques and immobilization device were modified to improve setup accuracy. After the improvements, conventional setup errors were reduced to sigma = 3 to 5 mm. In the second study, when a stereo pair of live subtraction images were introduced to perform daily "on-line" setup correction, errors were reduced to sigma = 1 to 3 mm. Results depended on patient health and cooperation and the length of time spent fine-tuning the position. An interactive, video-based patient positioning system was shown to reduce setup errors to within 1 to 3 mm in head and neck patients, without a significant increase in overall treatment time or labor-intensive procedures. Unlike retrospective portal image analysis, use of two live-video images provides the therapists with immediate feedback and allows for true 3-D positioning and correction of out-of-plane rotation before radiation is delivered. With significant improvement in head and neck alignment and the elimination of setup errors greater than 3 to 5 mm, margins associated with treatment volumes potentially can be reduced, thereby decreasing normal tissue irradiation.
[Reliability of iWitness photogrammetry in maxillofacial application].
Jiang, Chengcheng; Song, Qinggao; He, Wei; Chen, Shang; Hong, Tao
2015-06-01
This study aims to test the accuracy and precision of iWitness photogrammetry for measuring the facial tissues of mannequin head. Under ideal circumstances, the 3D landmark coordinates were repeatedly obtained from a mannequin head using iWitness photogrammetric system with different parameters, to examine the precision of this system. The differences between the 3D data and their true distance values of mannequin head were computed. Operator error of 3D system in non-zoom and zoom status were 0.20 mm and 0.09 mm, and the difference was significant (P 0.05). Image captured error of 3D system was 0.283 mm, and there was no significant difference compared with the same group of images (P>0.05). Error of 3D systen with recalibration was 0.251 mm, and the difference was not statistically significant compared with image captured error (P>0.05). Good congruence was observed between means derived from the 3D photos and direct anthropometry, with difference ranging from -0.4 mm to +0.4 mm. This study provides further evidence of the high reliability of iWitness photogrammetry for several craniofacial measurements, including landmarks and inter-landmark distances. The evaluated system can be recommended for the evaluation and documentation of the facial surface.
Effect of the mandible on mouthguard measurements of head kinematics.
Kuo, Calvin; Wu, Lyndia C; Hammoor, Brad T; Luck, Jason F; Cutcliffe, Hattie C; Lynall, Robert C; Kait, Jason R; Campbell, Kody R; Mihalik, Jason P; Bass, Cameron R; Camarillo, David B
2016-06-14
Wearable sensors are becoming increasingly popular for measuring head motions and detecting head impacts. Many sensors are worn on the skin or in headgear and can suffer from motion artifacts introduced by the compliance of soft tissue or decoupling of headgear from the skull. The instrumented mouthguard is designed to couple directly to the upper dentition, which is made of hard enamel and anchored in a bony socket by stiff ligaments. This gives the mouthguard superior coupling to the skull compared with other systems. However, multiple validation studies have yielded conflicting results with respect to the mouthguard׳s head kinematics measurement accuracy. Here, we demonstrate that imposing different constraints on the mandible (lower jaw) can alter mouthguard kinematic accuracy in dummy headform testing. In addition, post mortem human surrogate tests utilizing the worst-case unconstrained mandible condition yield 40% and 80% normalized root mean square error in angular velocity and angular acceleration respectively. These errors can be modeled using a simple spring-mass system in which the soft mouthguard material near the sensors acts as a spring and the mandible as a mass. However, the mouthguard can be designed to mitigate these disturbances by isolating sensors from mandible loads, improving accuracy to below 15% normalized root mean square error in all kinematic measures. Thus, while current mouthguards would suffer from measurement errors in the worst-case unconstrained mandible condition, future mouthguards should be designed to account for these disturbances and future validation testing should include unconstrained mandibles to ensure proper accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of visuospatial neglect on spatial navigation and heading after stroke.
Aravind, Gayatri; Lamontagne, Anouk
2017-06-09
Visuospatial neglect (VSN) impairs the control of locomotor heading in post-stroke individuals, which may affect their ability to safely avoid moving objects while walking. We aimed to compare VSN+ and VSN- stroke individuals in terms of changes in heading and head orientation in space while avoiding obstacles approaching from different directions and reorienting toward the final target. Stroke participants with VSN (VSN+) and without VSN (VSN-) walked in a virtual environment avoiding obstacles that approached contralesionally, head-on or ipsilesionally. Measures of obstacle avoidance (onset-of-heading change, maximum mediolateral deviation) and target alignment (heading and head-rotation errors with respect to target) were compared across groups and obstacle directions. In total, 26 participants with right-hemisphere stroke participated (13 VSN+ and 13 VSN-; 24 males; mean age 60.3 years, range 48 to 72 years). A larger proportion of VSN+ (75%) than VSN- (38%) participants collided with contralesional and head-on obstacles. For VSN- participants, deviating to the same side as the obstacle was a safe strategy to avoid diagonal obstacles and deviating to the opposite-side led to occasional collisions. VSN+ participants deviated ipsilesionally, displaying same-side and opposite-side strategies for ipsilesional and contralesional obstacles, respectively. Overall, VSN+ participants showed greater distances at onset-of-heading change, smaller maximum mediolateral deviation and larger errors in target alignment as compared with VSN- participants. The ipsilesional bias arising from VSN influences the modulation of heading in response to obstacles and, along with the adoption of the "riskier" strategies, contribute to the higher number colliders and poor goal-directed walking abilities in stroke survivors with VSN. Future research should focus on developing assessment and training tools for complex locomotor tasks such as obstacle avoidance in this population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Heading control and the effects of display characteristics
NASA Technical Reports Server (NTRS)
Hinz, Stephanie J.; Bennett, C. Thomas
1989-01-01
The present study evaluates whether type of display (dot or wire frame) and direction of movement have an effect on a person's ability to actively maintain a specific heading angle. The questions addressed were: (1) does the magnitude of the heading angle errors differ in the two displays, (2) are some heading angles more difficult to maintain than others, and (3) does the magnitude of some errors differ as a function of display type and direction of movement. Differences between the results of this study and previous research are explained by methodological differences across the studies. Another factor that may be responsible for the difference between previous findings and those presented here is the type of graphics used to display the simulated motion. The physical characteristics of the display or the graphics engines that generate the scene have varied greatly across the studies. Analyses and diagrams are presented showing results of the study and the differences generated from previous studies on this subject.
The Role of Aircraft Motion in Airborne Gravity Data Quality
NASA Astrophysics Data System (ADS)
Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.
2015-12-01
Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in general.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng
2016-06-01
Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.
NASA Astrophysics Data System (ADS)
Chen, Mingjun; Li, Ziang; Yu, Bo; Peng, Hui; Fang, Zhen
2013-09-01
In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter, the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear. An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining. By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form. The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear. A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error. The effect of electrode tool wear is investigated by electrical dressing experiments, and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K' tends to be constant with the increasing of the feed length of electrode and the mean value of K' is 0.156. Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method. The experimental results show that the surface roughness of the finished workpiece is 0.03 μm. The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness. This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica, which provides a solution to the tool setting method and the effect of electrode tool wear.
On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.
Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe
2013-09-03
On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration. Copyright © 2013 Elsevier Ltd. All rights reserved.
An automatic markerless registration method for neurosurgical robotics based on an optical camera.
Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi
2018-02-01
Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.
Coherent triplet excitation suppresses the heading error of the avian compass
NASA Astrophysics Data System (ADS)
Katsoprinakis, G. E.; Dellis, A. T.; Kominis, I. K.
2010-08-01
Radical-ion pair reactions are currently understood to underlie the biochemical magnetic compass of migratory birds. It was recently shown that radical-ion pair reactions form a rich playground for the application of quantum-information-science concepts and effects. We will show here that the intricate interplay between the quantum Zeno effect and the coherent excitation of radical-ion pairs leads to an exquisite angular sensitivity of the reaction yields. This results in a significant and previously unanticipated suppression of the avian compass heading error, opening the way to quantum engineering precision biological sensors.
Rolland, Jannick; Ha, Yonggang; Fidopiastis, Cali
2004-06-01
A theoretical investigation of rendered depth and angular errors, or Albertian errors, linked to natural eye movements in binocular head-mounted displays (HMDs) is presented for three possible eye-point locations: the center of the entrance pupil, the nodal point, and the center of rotation of the eye. A numerical quantification was conducted for both the pupil and the center of rotation of the eye under the assumption that the user will operate solely in either the near field under an associated instrumentation setting or the far field under a different setting. Under these conditions, the eyes are taken to gaze in the plane of the stereoscopic images. Across conditions, results show that the center of the entrance pupil minimizes rendered angular errors, while the center of rotation minimizes rendered position errors. Significantly, this investigation quantifies that under proper setting of the HMD and correct choice of the eye points, rendered depth and angular errors can be brought to be either negligible or within specification of even the most stringent applications in performance of tasks in either the near field or the far field.
Compact fiber optic gyroscopes for platform stabilization
NASA Astrophysics Data System (ADS)
Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.
2013-09-01
SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.
Use of machine learning methods to reduce predictive error of groundwater models.
Xu, Tianfang; Valocchi, Albert J; Choi, Jaesik; Amir, Eyal
2014-01-01
Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model. © 2013, National GroundWater Association.
Improving LADCP Velocity Profiles with External Attitude Sensors
NASA Astrophysics Data System (ADS)
Thurnherr, A. M.; Goszczko, I.
2016-12-01
Data collected with Acoustic Doppler Current Profilers installed on CTD rosettes and lowered through the water column (LADCP systems) are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (pitch, roll and heading). Of particular concern are the heading measurements because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship as well as the current-carrying winch wire. Heading data from dual-headed LADCP systems, which consist of upward and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10 degrees. In an attempt to reduce LADCP velocity errors, over 200 full-depth profiles were collected during several recent projects, including GO-SHIP, DIMES and ECOGIG, with an inexpensive (<$200) external magnetometer/accelerometer package. The resulting data permit full compass calibrations (for both hard- and soft-iron effects) from in-situ profile data and yields improved pitch and roll measurements. Results indicate greatly reduced inconsistencies between the data from the two ADCPs (horizontal-velocity processing residuals), as well as smaller biases in vertical -velocity (w) measurements. In addition, the external magnetometer package allows processing of some LADCP data collected in regions where the horizontal magnitude of the earth's magnetic field is insufficient for the ADCPs internal compasses to work at all.
Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy
2012-06-01
On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Localization from Visual Landmarks on a Free-Flying Robot
NASA Technical Reports Server (NTRS)
Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert
2016-01-01
We present the localization approach for Astrobee,a new free-flying robot designed to navigate autonomously on board the International Space Station (ISS). Astrobee will conduct experiments in microgravity, as well as assisst astronauts and ground controllers. Astrobee replaces the SPHERES robots which currently operate on the ISS, which were limited to operating in a small cube since their localization system relied on triangulation from ultrasonic transmitters. Astrobee localizes with only monocular vision and an IMU, enabling it to traverse the entire US segment of the station. Features detected on a previously-built map, optical flow information,and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise.Finally, we extensively evaluate the behavior of the filter on atwo-dimensional testing surface.
Localization from Visual Landmarks on a Free-Flying Robot
NASA Technical Reports Server (NTRS)
Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert
2016-01-01
We present the localization approach for Astrobee, a new free-flying robot designed to navigate autonomously on the International Space Station (ISS). Astrobee will accommodate a variety of payloads and enable guest scientists to run experiments in zero-g, as well as assist astronauts and ground controllers. Astrobee will replace the SPHERES robots which currently operate on the ISS, whose use of fixed ultrasonic beacons for localization limits them to work in a 2 meter cube. Astrobee localizes with monocular vision and an IMU, without any environmental modifications. Visual features detected on a pre-built map, optical flow information, and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise, and extensively evaluate the localization algorithm.
NASA Astrophysics Data System (ADS)
Leroux, B.; Cali, J.; Verdun, J.; Morel, L.; He, H.
2017-08-01
Airborne LiDAR systems require the use of Direct Georeferencing (DG) in order to compute the coordinates of the surveyed point in the mapping frame. An UAV platform does not derogate to this need, but its payload has to be lighter than this installed onboard so the manufacturer needs to find an alternative to heavy sensors and navigation systems. For the georeferencing of these data, a possible solution could be to replace the Inertial Measurement Unit (IMU) by a camera and record the optical flow. The different frames would then be processed thanks to photogrammetry so as to extract the External Orientation Parameters (EOP) and, therefore, the path of the camera. The major advantages of this method called Visual Odometry (VO) is low cost, no drifts IMU-induced, option for the use of Ground Control Points (GCPs) such as on airborne photogrammetry surveys. In this paper we shall present a test bench designed to assess the reliability and accuracy of the attitude estimated from VO outputs. The test bench consists of a trolley which embeds a GNSS receiver, an IMU sensor and a camera. The LiDAR is replaced by a tacheometer in order to survey the control points already known. We have also developped a methodology applied to this test bench for the calibration of the external parameters and the computation of the surveyed point coordinates. Several tests have revealed a difference about 2-3 centimeters between the control point coordinates measured and those already known.
NASA Astrophysics Data System (ADS)
Verhoeven, G.; Wieser, M.; Briese, C.; Doneus, M.
2013-07-01
Since manned, airborne aerial reconnaissance for archaeological purposes is often characterised by more-or-less random photographing of archaeological features on the Earth, the exact position and orientation of the camera during image acquisition becomes very important in an effective inventorying and interpretation workflow of these aerial photographs. Although the positioning is generally achieved by simultaneously logging the flight path or directly recording the camera's position with a GNSS receiver, this approach does not allow to record the necessary roll, pitch and yaw angles of the camera. The latter are essential elements for the complete exterior orientation of the camera, which allows - together with the inner orientation of the camera - to accurately define the portion of the Earth recorded in the photograph. This paper proposes a cost-effective, accurate and precise GNSS/IMU solution (image position: 2.5 m and orientation: 2°, both at 1σ) to record all essential exterior orientation parameters for the direct georeferencing of the images. After the introduction of the utilised hardware, this paper presents the developed software that allows recording and estimating these parameters. Furthermore, this direct georeferencing information can be embedded into the image's metadata. Subsequently, the first results of the estimation of the mounting calibration (i.e. the misalignment between the camera and GNSS/IMU coordinate frame) are provided. Furthermore, a comparison with a dedicated commercial photographic GNSS/IMU solution will prove the superiority of the introduced solution. Finally, an outlook on future tests and improvements finalises this article.
Wafer-level colinearity monitoring for TFH applications
NASA Astrophysics Data System (ADS)
Moore, Patrick; Newman, Gary; Abreau, Kelly J.
2000-06-01
Advances in thin film head (TFH) designs continue to outpace those in the IC industry. The transition to giant magneto resistive (GMR) designs is underway along with the push toward areal densities in the 20 Gbit/inch2 regime and beyond. This comes at a time when the popularity of the low-cost personal computer (PC) is extremely high, and PC prices are continuing to fall. Consequently, TFH manufacturers are forced to deal with pricing pressure in addition to technological demands. New methods of monitoring and improving yield are required along with advanced head designs. TFH manufacturing is a two-step process. The first is a wafer-level process consisting of manufacturing devices on substrates using processes similar to those in the IC industry. The second half is a slider-level process where wafers are diced into 'rowbars' containing many heads. Each rowbar is then lapped to obtain the desired performance from each head. Variation in the placement of specific layers of each device on the bar, known as a colinearity error, causes a change in device performance and directly impacts yield. The photolithography tool and process contribute to colinearity errors. These components include stepper lens distortion errors, stepper stage errors, reticle fabrication errors, and CD uniformity errors. Currently, colinearity is only very roughly estimated during wafer-level TFH production. An absolute metrology tool, such as a Nikon XY, could be used to quantify colinearity with improved accuracy, but this technique is impractical since TFH manufacturers typically do not have this type of equipment at the production site. More importantly, this measurement technique does not provide the rapid feedback needed in a high-volume production facility. Consequently, the wafer-fab must rely on resistivity-based measurements from slider-fab to quantify colinearity errors. The feedback of this data may require several weeks, making it useless as a process diagnostic. This study examines a method of quickly estimating colinearity at the wafer-level with a test reticle and metrology equipment routinely found in TFH facilities. Colinearity results are correlated to slider-fab measurements on production devices. Stepper contributions to colinearity are estimated, and compared across multiple steppers and stepper generations. Multiple techniques of integrating this diagnostic into production are investigated and discussed.
Translations on USSR Military Affairs, Number 1265
1977-03-02
ship is a specialist 1st class or master. The hatch was shut tightly, the submarine took on ballast, and we headed for the assigned depth. From...happened that we had several subunits headed by new officers without adequate experience working with men and organizing training and competition. But...smallest errors are considered here and the officers who head the combat shifts know that every mistake will be observed and subjected to strict
Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf
2011-06-01
To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
NASA Astrophysics Data System (ADS)
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.
In Vivo Evaluation of Wearable Head Impact Sensors.
Wu, Lyndia C; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B
2016-04-01
Inertial sensors are commonly used to measure human head motion. Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6-13 g sagittal soccer head impacts. Sensor coupling to the skull was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1 mm), while the skin patch and skull cap displaced up to 4 and 13 mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull, as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for a(mag), 290% for α(mag)) and the skull cap (320% NRMS error for a(mag), 500% for α(mag)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch linear acceleration in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches. Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies.
Learning mechanisms to limit medication administration errors.
Drach-Zahavy, Anat; Pud, Dorit
2010-04-01
This paper is a report of a study conducted to identify and test the effectiveness of learning mechanisms applied by the nursing staff of hospital wards as a means of limiting medication administration errors. Since the influential report ;To Err Is Human', research has emphasized the role of team learning in reducing medication administration errors. Nevertheless, little is known about the mechanisms underlying team learning. Thirty-two hospital wards were randomly recruited. Data were collected during 2006 in Israel by a multi-method (observations, interviews and administrative data), multi-source (head nurses, bedside nurses) approach. Medication administration error was defined as any deviation from procedures, policies and/or best practices for medication administration, and was identified using semi-structured observations of nurses administering medication. Organizational learning was measured using semi-structured interviews with head nurses, and the previous year's reported medication administration errors were assessed using administrative data. The interview data revealed four learning mechanism patterns employed in an attempt to learn from medication administration errors: integrated, non-integrated, supervisory and patchy learning. Regression analysis results demonstrated that whereas the integrated pattern of learning mechanisms was associated with decreased errors, the non-integrated pattern was associated with increased errors. Supervisory and patchy learning mechanisms were not associated with errors. Superior learning mechanisms are those that represent the whole cycle of team learning, are enacted by nurses who administer medications to patients, and emphasize a system approach to data analysis instead of analysis of individual cases.
The performance of the standard rate turn (SRT) by student naval helicopter pilots.
Chapman, F; Temme, L A; Still, D L
2001-04-01
During flight training, student naval helicopter pilots learn the use of flight instruments through a prescribed series of simulator training events. The training simulator is a 6-degrees-of-freedom, motion-based, high-fidelity instrument trainer. From the final basic instrument simulator flights of student pilots, we selected for evaluation and analysis their performance of the Standard Rate Turn (SRT), a routine flight maneuver. The performance of the SRT was scored with air speed, altitude and heading average error from target values and standard deviations. These average errors and standard deviations were used in a Multiple Analysis of Variance (MANOVA) to evaluate the effects of three independent variables: 1) direction of turn (left vs. right), 2) degree of turn (180 vs. 360 degrees); and 3) segment of turn (roll-in, first 30 s, last 30 s, and roll-out of turn). Only the main effects of the three independent variables were significant; there were no significant interactions. This result greatly reduces the number of different conditions that should be scored separately for the evaluation of SRT performance. The results also showed that the magnitude of the heading and altitude errors at the beginning of the SRT correlated with the magnitude of the heading and altitude errors throughout the turn. This result suggests that for the turn to be well executed, it is important for it to begin with little error in these two response parameters. The observations reported here should be considered when establishing SRT performance norms and comparing student scores. Furthermore, it seems easier for pilots to maintain good performance than to correct poor performance.
Elliott, Michael R; Margulies, Susan S; Maltese, Matthew R; Arbogast, Kristy B
2015-09-18
There has been recent dramatic increase in the use of sensors affixed to the heads or helmets of athletes to measure the biomechanics of head impacts that lead to concussion. The relationship between injury and linear or rotational head acceleration measured by such sensors can be quantified with an injury risk curve. The utility of the injury risk curve relies on the accuracy of both the clinical diagnosis and the biomechanical measure. The focus of our analysis was to demonstrate the influence of three sources of error on the shape and interpretation of concussion injury risk curves: sampling variability associated with a rare event, concussion under-reporting, and sensor measurement error. We utilized Bayesian statistical methods to generate synthetic data from previously published concussion injury risk curves developed using data from helmet-based sensors on collegiate football players and assessed the effect of the three sources of error on the risk relationship. Accounting for sampling variability adds uncertainty or width to the injury risk curve. Assuming a variety of rates of unreported concussions in the non-concussed group, we found that accounting for under-reporting lowers the rotational acceleration required for a given concussion risk. Lastly, after accounting for sensor error, we find strengthened relationships between rotational acceleration and injury risk, further lowering the magnitude of rotational acceleration needed for a given risk of concussion. As more accurate sensors are designed and more sensitive and specific clinical diagnostic tools are introduced, our analysis provides guidance for the future development of comprehensive concussion risk curves. Copyright © 2015 Elsevier Ltd. All rights reserved.
Set-up uncertainties: online correction with X-ray volume imaging.
Kataria, Tejinder; Abhishek, Ashu; Chadha, Pranav; Nandigam, Janardhan
2011-01-01
To determine interfractional three-dimensional set-up errors using X-ray volumetric imaging (XVI). Between December 2007 and August 2009, 125 patients were taken up for image-guided radiotherapy using online XVI. After matching of reference and acquired volume view images, set-up errors in three translation directions were recorded and corrected online before treatment each day. Mean displacements, population systematic (Σ), and random (σ) errors were calculated and analyzed using SPSS (v16) software. Optimum clinical target volume (CTV) to planning target volume (PTV) margin was calculated using Van Herk's (2.5Σ + 0.7 σ) and Stroom's (2Σ + 0.7 σ) formula. Patients were grouped in 4 cohorts, namely brain, head and neck, thorax, and abdomen-pelvis. The mean vector displacement recorded were 0.18 cm, 0.15 cm, 0.36 cm, and 0.35 cm for brain, head and neck, thorax, and abdomen-pelvis, respectively. Analysis of individual mean set-up errors revealed good agreement with the proposed 0.3 cm isotropic margins for brain and 0.5 cm isotropic margins for head-neck. Similarly, 0.5 cm circumferential and 1 cm craniocaudal proposed margins were in agreement with thorax and abdomen-pelvic cases. The calculated mean displacements were well within CTV-PTV margin estimates of Van Herk (90% population coverage to minimum 95% prescribed dose) and Stroom (99% target volume coverage by 95% prescribed dose). Employing these individualized margins in a particular cohort ensure comparable target coverage as described in literature, which is further improved if XVI-aided set-up error detection and correction is used before treatment.
NASA Technical Reports Server (NTRS)
Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark
2013-01-01
As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.
Are patient specific meshes required for EIT head imaging?
Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David
2016-06-01
Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.
NASA Technical Reports Server (NTRS)
Wood, S. J.; Paloski, W. H.; Reschke, M. F.
1998-01-01
This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.
Spatial calibration of an optical see-through head mounted display
Gilson, Stuart J.; Fitzgibbon, Andrew W.; Glennerster, Andrew
2010-01-01
We present here a method for calibrating an optical see-through Head Mounted Display (HMD) using techniques usually applied to camera calibration (photogrammetry). Using a camera placed inside the HMD to take pictures simultaneously of a tracked object and features in the HMD display, we could exploit established camera calibration techniques to recover both the intrinsic and extrinsic properties of the HMD (width, height, focal length, optic centre and principal ray of the display). Our method gives low re-projection errors and, unlike existing methods, involves no time-consuming and error-prone human measurements, nor any prior estimates about the HMD geometry. PMID:18599125
Correction techniques for depth errors with stereo three-dimensional graphic displays
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Holden, Anthony; Williams, Steven P.
1992-01-01
Three-dimensional (3-D), 'real-world' pictorial displays that incorporate 'true' depth cues via stereopsis techniques have proved effective for displaying complex information in a natural way to enhance situational awareness and to improve pilot/vehicle performance. In such displays, the display designer must map the depths in the real world to the depths available with the stereo display system. However, empirical data have shown that the human subject does not perceive the information at exactly the depth at which it is mathematically placed. Head movements can also seriously distort the depth information that is embedded in stereo 3-D displays because the transformations used in mapping the visual scene to the depth-viewing volume (DVV) depend intrinsically on the viewer location. The goal of this research was to provide two correction techniques; the first technique corrects the original visual scene to the DVV mapping based on human perception errors, and the second (which is based on head-positioning sensor input data) corrects for errors induced by head movements. Empirical data are presented to validate both correction techniques. A combination of the two correction techniques effectively eliminates the distortions of depth information embedded in stereo 3-D displays.
Particle swarm optimization algorithm based low cost magnetometer calibration
NASA Astrophysics Data System (ADS)
Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.
2011-12-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments
On the sensitivity of TG-119 and IROC credentialing to TPS commissioning errors.
McVicker, Drew; Yin, Fang-Fang; Adamson, Justus D
2016-01-08
We investigate the sensitivity of IMRT commissioning using the TG-119 C-shape phantom and credentialing with the IROC head and neck phantom to treatment planning system commissioning errors. We introduced errors into the various aspects of the commissioning process for a 6X photon energy modeled using the analytical anisotropic algorithm within a commercial treatment planning system. Errors were implemented into the various components of the dose calculation algorithm including primary photons, secondary photons, electron contamination, and MLC parameters. For each error we evaluated the probability that it could be committed unknowingly during the dose algorithm commissioning stage, and the probability of it being identified during the verification stage. The clinical impact of each commissioning error was evaluated using representative IMRT plans including low and intermediate risk prostate, head and neck, mesothelioma, and scalp; the sensitivity of the TG-119 and IROC phantoms was evaluated by comparing dosimetric changes to the dose planes where film measurements occur and change in point doses where dosimeter measurements occur. No commissioning errors were found to have both a low probability of detection and high clinical severity. When errors do occur, the IROC credentialing and TG 119 commissioning criteria are generally effective at detecting them; however, for the IROC phantom, OAR point-dose measurements are the most sensitive despite being currently excluded from IROC analysis. Point-dose measurements with an absolute dose constraint were the most effective at detecting errors, while film analysis using a gamma comparison and the IROC film distance to agreement criteria were less effective at detecting the specific commissioning errors implemented here.
The failure analysis and lifetime prediction for the solder joint of the magnetic head
NASA Astrophysics Data System (ADS)
Xiao, Xianghui; Peng, Minfang; Cardoso, Jaime S.; Tang, Rongjun; Zhou, YingLiang
2015-02-01
Micro-solder joint (MSJ) lifetime prediction methodology and failure analysis (FA) are to assess reliability by fatigue model with a series of theoretical calculations, numerical simulation and experimental method. Due to shortened time of solder joints on high-temperature, high-frequency sampling error that is not allowed in productions may exist in various models, including round-off error. Combining intermetallic compound (IMC) growth theory and the FA technology for the magnetic head in actual production, this thesis puts forward a new growth model to predict life expectancy for solder joint of the magnetic head. And the impact of IMC, generating from interface reaction between slider (magnetic head, usually be called slider) and bonding pad, on mechanical performance during aging process is analyzed in it. By further researching on FA of solder ball bonding, thesis chooses AuSn4 growth model that affects least to solder joint mechanical property to indicate that the IMC methodology is suitable to forecast the solder lifetime. And the diffusion constant under work condition 60 °C is 0.015354; the solder lifetime t is 14.46 years.
A nudging data assimilation algorithm for the identification of groundwater pumping
NASA Astrophysics Data System (ADS)
Cheng, Wei-Chen; Kendall, Donald R.; Putti, Mario; Yeh, William W.-G.
2009-08-01
This study develops a nudging data assimilation algorithm for estimating unknown pumping from private wells in an aquifer system using measured data of hydraulic head. The proposed algorithm treats the unknown pumping as an additional sink term in the governing equation of groundwater flow and provides a consistent physical interpretation for pumping rate identification. The algorithm identifies the unknown pumping and, at the same time, reduces the forecast error in hydraulic heads. We apply the proposed algorithm to the Las Posas Groundwater Basin in southern California. We consider the following three pumping scenarios: constant pumping rates, spatially varying pumping rates, and temporally varying pumping rates. We also study the impact of head measurement errors on the proposed algorithm. In the case study we seek to estimate the six unknown pumping rates from private wells using head measurements from four observation wells. The results show an excellent rate of convergence for pumping estimation. The case study demonstrates the applicability, accuracy, and efficiency of the proposed data assimilation algorithm for the identification of unknown pumping in an aquifer system.
A nudging data assimilation algorithm for the identification of groundwater pumping
NASA Astrophysics Data System (ADS)
Cheng, W.; Kendall, D. R.; Putti, M.; Yeh, W. W.
2008-12-01
This study develops a nudging data assimilation algorithm for estimating unknown pumping from private wells in an aquifer system using measurement data of hydraulic head. The proposed algorithm treats the unknown pumping as an additional sink term in the governing equation of groundwater flow and provides a consistently physical interpretation for pumping rate identification. The algorithm identifies unknown pumping and, at the same time, reduces the forecast error in hydraulic heads. We apply the proposed algorithm to the Las Posas Groundwater Basin in southern California. We consider the following three pumping scenarios: constant pumping rate, spatially varying pumping rates, and temporally varying pumping rates. We also study the impact of head measurement errors on the proposed algorithm. In the case study, we seek to estimate the six unknown pumping rates from private wells using head measurements from four observation wells. The results show excellent rate of convergence for pumping estimation. The case study demonstrates the applicability, accuracy, and efficiency of the proposed data assimilation algorithm for the identification of unknown pumping in an aquifer system.
Head-mounted active noise control system with virtual sensing technique
NASA Astrophysics Data System (ADS)
Miyazaki, Nobuhiro; Kajikawa, Yoshinobu
2015-03-01
In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.
76 FR 72082 - Miscellaneous Administrative Changes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... the 2008 administrative rule. Revise Table Formatting Error in 10 CFR Part 171 The table in paragraph (c) of Sec. 171.16 is missing a colon and a hard return that would separate the heading... subsequent list item, ``35 to 500 employees.'' The formatting errors are corrected, adding a colon after the...
Mehrad, Mitra; Chernock, Rebecca D; El-Mofty, Samir K; Lewis, James S
2015-12-01
Medical error is a significant problem in the United States, and pathologic diagnoses are a significant source of errors. Prior studies have shown that second-opinion pathology review results in clinically major diagnosis changes in approximately 0.6% to 5.8% of patients. The few studies specifically on head and neck pathology have suggested rates of changed diagnoses that are even higher. Objectives .- To evaluate the diagnostic discrepancy rates in patients referred to our institution, where all such cases are reviewed by a head and neck subspecialty service, and to identify specific areas with more susceptibility to errors. Five hundred consecutive, scanned head and neck pathology reports from patients referred to our institution were compared for discrepancies between the outside and in-house diagnoses. Major discrepancies were defined as those resulting in a significant change in patient clinical management and/or prognosis. Major discrepancies occurred in 20 cases (4% overall). Informative follow-up material was available on 11 of the 20 patients (55.0%), among whom, the second opinion was supported in 11 of 11 cases (100%). Dysplasia versus invasive squamous cell carcinoma was the most common (7 of 20; 35%) area of discrepancy, and by anatomic subsite, the sinonasal tract (4 of 21; 19.0%) had the highest rate of discrepant diagnoses. Of the major discrepant diagnoses, 12 (12 of 20; 60%) involved a change from benign to malignant, one a change from malignant to benign (1 of 20; 5%), and 6 involved tumor classification (6 of 20; 30%). Head and neck pathology is a relatively high-risk area, prone to erroneous diagnoses in a small fraction of patients. This study supports the importance of second-opinion review by subspecialized pathologists for the best care of patients.
Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis
NASA Astrophysics Data System (ADS)
Kurtulus, Bedri; Flipo, Nicolas
2012-01-01
The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.
Kyoung Jae Kim; Lucarevic, Jennifer; Bennett, Christopher; Gaunaurd, Ignacio; Gailey, Robert; Agrawal, Vibhor
2016-08-01
The quantification of postural sway during the unipedal stance test is one of the essentials of posturography. A shift of center of pressure (CoP) is an indirect measure of postural sway and also a measure of a person's ability to maintain balance. A widely used method in laboratory settings to calculate the sway of body center of mass (CoM) is through an ellipse that encloses 95% of CoP trajectory. The 95% ellipse can be computed under the assumption that the spatial distribution of the CoP points recorded from force platforms is normal. However, to date, this assumption of normality has not been demonstrated for sway measurements recorded from a sacral inertial measurement unit (IMU). This work provides evidence for non-normality of sway trajectories calculated at a sacral IMU with injured subjects as well as healthy subjects.
NASA Astrophysics Data System (ADS)
Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao
2015-01-01
The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.
Sampling and Control Circuit Board for an Inertial Measurement Unit
NASA Technical Reports Server (NTRS)
Chelmins, David; Powis, Rick
2012-01-01
Spacesuit navigation is one component of NASA s efforts to return humans to the Moon. Studies performed at the NASA Glenn Research Center (GRC) considered various navigation technologies and filtering approaches to enable navigation on the lunar surface. As part of this effort, microelectromechanical systems (MEMS) inertial measurement units (IMUs) were studied to determine if they could supplement a radiometric infrastructure. MEMS IMUs were included in the Lunar Extra-Vehicular Activity Crewmember Location Determination System (LECLDS) testbed during NASA s annual Desert Research and Technology Studies (D-RATS) event in 2009 and 2010. The testbed included one IMU in 2009 and three IMUs in 2010, along with a custom circuit board interfacing between the navigation processor and each IMU. The board was revised for the 2010 test, and this paper documents the design details of this latest revision of the interface circuit board and firmware.
LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing
NASA Technical Reports Server (NTRS)
Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin
2011-01-01
In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.
Diaz-Estrella, Antonio; Reyes-Lecuona, Arcadio; Langley, Alyson; Brown, Michael; Sharples, Sarah
2018-01-01
Inertial sensors offer the potential for integration into wireless virtual reality systems that allow the users to walk freely through virtual environments. However, owing to drift errors, inertial sensors cannot accurately estimate head and body orientations in the long run, and when walking indoors, this error cannot be corrected by magnetometers, due to the magnetic field distortion created by ferromagnetic materials present in buildings. This paper proposes a technique, called EHBD (Equalization of Head and Body Directions), to address this problem using two head- and shoulder-located magnetometers. Due to their proximity, their distortions are assumed to be similar and the magnetometer measurements are used to detect when the user is looking straight forward. Then, the system corrects the discrepancies between the estimated directions of the head and the shoulder, which are provided by gyroscopes and consequently are affected by drift errors. An experiment is conducted to evaluate the performance of this technique in two tasks (navigation and navigation plus exploration) and using two different locomotion techniques: (1) gaze-directed mode (GD) in which the walking direction is forced to be the same as the head direction, and (2) decoupled direction mode (DD) in which the walking direction can be different from the viewing direction. The obtained results show that both locomotion modes show similar matching of the target path during the navigation task, while DD’s path matches the target path more closely than GD in the navigation plus exploration task. These results validate the EHBD technique especially when allowing different walking and viewing directions in the navigation plus exploration tasks, as expected. While the proposed method does not reach the accuracy of optical tracking (ideal case), it is an acceptable and satisfactory solution for users and is much more compact, portable and economical. PMID:29621298
Heading error in an alignment-based magnetometer
NASA Astrophysics Data System (ADS)
Hovde, Chris; Patton, Brian; Versolato, Oscar; Corsini, Eric; Rochester, Simon; Budker, Dmitry
2011-06-01
A prototype magnetometer for anti-submarine warfare applications is being developed based on nonlinear magneto-optical rotation (NMOR) in atomic vapors. NMOR is an atomic spectroscopy technique that exploits coherences among magnetic sublevels of atoms such as cesium or rubidium to measure magnetic fields with high precision. NMOR uses stroboscopic optical pumping via frequency or amplitude modulation of a linearly polarized laser beam to create the alignment. An anti-relaxation coating on the walls of the atomic vapor cell can result in a long lifetime of 1 s or more for the coherence and enables precise measurement of the precession frequency. With proper feedback, the magnetometer can self-oscillate, resulting in accurate tracking and fast time response. The NMOR magnetic resonance spectrum of 87Rb has been measured as a function of heading in Earth's field. Optical pumping of alignment within the F=2 hyperfine manifold generates three resonances separated by the nonlinear Zeeman splitting. The spectra show a high degree of symmetry, consisting of a central peak and two side peaks of nearly equal intensity. As the heading changes, the ratio of the central peak to the average of the two side peaks changes. The amplitudes of the side peaks remain nearly equal. An analysis of the forced oscillation spectra indicates that, away from dead zones, heading error in self-oscillating mode should be less than 1 nT. A broader background is also observed in the spectra. While this background can be removed when fitting resonance spectra, understanding it will be important to achieving the small heading error in self-oscillating mode that is implied by the spectral measurements. Progress in miniaturizing the magnetometer is also reported. The new design is less than 10 cm across and includes fiber coupling of light to and from the magnetometer head. Initial tests show that the prototype has achieved a narrow spectral width and a strong polarization rotation signal.
A new markerless patient-to-image registration method using a portable 3D scanner.
Fan, Yifeng; Jiang, Dongsheng; Wang, Manning; Song, Zhijian
2014-10-01
Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. In the phantom experiments, the mean fiducial registration error between the device space and the patient space, the mean surface registration error, and the mean TRE of 15 targets on the surface of each phantom were 0.34 ± 0.01 mm and 0.33 ± 0.02 mm, 1.17 ± 0.02 mm and 1.34 ± 0.10 mm, and 1.06 ± 0.11 mm and 1.48 ± 0.21 mm, respectively. When grouping the targets according to their positions on the head, high accuracy was achieved in all parts of the head, and the TREs were similar across different regions. The authors compared their method with the current surface registration methods that use only a part of the facial surface on the elastic phantom, and the mean TRE of 15 targets was 1.48 ± 0.21 mm and 1.98 ± 0.53 mm, respectively. In a clinical experiment, the mean TRE of seven targets on the patient's head surface was 1.92 ± 0.18 mm, which was sufficient to meet clinical requirements. The proposed surface-matching registration method provides sufficient registration accuracy even in the posterior area of the head. The 3D point cloud of the entire head, including the facial surface and the back of the head, can be easily acquired using a portable 3D scanner. The scanner does not need to be calibrated prior or tracked by the optical tracking system during scanning.
Malone, Emma; Jehl, Markus; Arridge, Simon; Betcke, Timo; Holder, David
2014-06-01
We investigate the application of multifrequency electrical impedance tomography (MFEIT) to imaging the brain in stroke patients. The use of MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke, and therefore improve the outcome of treatment. Recent advances in the imaging methodology suggest that the use of spectral constraints could allow for the reconstruction of a one-shot image. We performed a simulation study to investigate the feasibility of imaging stroke in a head model with realistic conductivities. We introduced increasing levels of modelling errors to test the robustness of the method to the most common sources of artefact. We considered the case of errors in the electrode placement, spectral constraints, and contact impedance. The results indicate that errors in the position and shape of the electrodes can affect image quality, although our imaging method was successful in identifying tissues with sufficiently distinct spectra.
Registration of an on-axis see-through head-mounted display and camera system
NASA Astrophysics Data System (ADS)
Luo, Gang; Rensing, Noa M.; Weststrate, Evan; Peli, Eli
2005-02-01
An optical see-through head-mounted display (HMD) system integrating a miniature camera that is aligned with the user's pupil is developed and tested. Such an HMD system has a potential value in many augmented reality applications, in which registration of the virtual display to the real scene is one of the critical aspects. The camera alignment to the user's pupil results in a simple yet accurate calibration and a low registration error across a wide range of depth. In reality, a small camera-eye misalignment may still occur in such a system due to the inevitable variations of HMD wearing position with respect to the eye. The effects of such errors are measured. Calculation further shows that the registration error as a function of viewing distance behaves nearly the same for different virtual image distances, except for a shift. The impact of prismatic effect of the display lens on registration is also discussed.
Layfield, Eleanor M; Schmidt, Robert L; Esebua, Magda; Layfield, Lester J
2018-06-01
Frozen section is routinely used for intraoperative margin evaluation in carcinomas of the head and neck. We studied a series of frozen sections performed for margin status of head and neck tumors to determine diagnostic accuracy. All frozen sections for margin control of squamous carcinomas of the head and neck were studied from a 66 month period. Frozen and permanent section diagnoses were classified as negative or malignant. Correlation of diagnoses was performed to determine accuracy. One thousand seven hundred and ninety-six pairs of frozen section and corresponding permanent section diagnoses were obtained. Discordances were found in 55 (3.1%) pairs. In 35 pairs (1.9%), frozen section was reported as benign, but permanent sections disclosed carcinoma. In 21 cases, the discrepancy was due to sampling and in the remaining cases it was an interpretive error. In 20 cases (1.1%), frozen section was malignant, but the permanent section was interpreted as negative. Frozen section is an accurate method for evaluation of operative margins for head and neck carcinomas with concordance between frozen and permanent results of 97%. Most errors are false negative results with the majority of these being due to sampling issues.
Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S
2015-09-01
The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Begault, D. R.; Wenzel, E. M.; Anderson, M. R.
2001-01-01
A study of sound localization performance was conducted using headphone-delivered virtual speech stimuli, rendered via HRTF-based acoustic auralization software and hardware, and blocked-meatus HRTF measurements. The independent variables were chosen to evaluate commonly held assumptions in the literature regarding improved localization: inclusion of head tracking, individualized HRTFs, and early and diffuse reflections. Significant effects were found for azimuth and elevation error, reversal rates, and externalization.
Multiple IMU system hardware interface design, volume 2
NASA Technical Reports Server (NTRS)
Landey, M.; Brown, D.
1975-01-01
The design of each system component is described. Emphasis is placed on functional requirements unique in this system, including data bus communication, data bus transmitters and receivers, and ternary-to-binary torquing decision logic. Mechanization drawings are presented.
Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W
2015-08-01
This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.
Short-term adaptation of the VOR: non-retinal-slip error signals and saccade substitution
NASA Technical Reports Server (NTRS)
Eggers, Sscott D Z.; De Pennington, Nick; Walker, Mark F.; Shelhamer, Mark; Zee, David S.
2003-01-01
We studied short-term (30 min) adaptation of the vestibulo-ocular reflex (VOR) in five normal humans using a "position error" stimulus without retinal image motion. Both before and after adaptation a velocity gain (peak slow-phase eye velocity/peak head velocity) and a position gain (total eye movement during chair rotation/amplitude of chair motion) were measured in darkness using search coils. The vestibular stimulus was a brief ( approximately 700 ms), 15 degrees chair rotation in darkness (peak velocity 43 degrees /s). To elicit adaptation, a straight-ahead fixation target disappeared during chair movement and when the chair stopped the target reappeared at a new location in front of the subject for gain-decrease (x0) adaptation, or 10 degrees opposite to chair motion for gain-increase (x1.67) adaptation. This position-error stimulus was effective at inducing VOR adaptation, though for gain-increase adaptation the primary strategy was to substitute augmenting saccades during rotation while for gain-decrease adaptation both corrective saccades and a decrease in slow-phase velocity occurred. Finally, the presence of the position-error signal alone, at the end of head rotation, without any attempt to fix upon it, was not sufficient to induce adaptation. Adaptation did occur, however, if the subject did make a saccade to the target after head rotation, or even if the subject paid attention to the new location of the target without actually looking at it.
Sturgeon, Jared D; Cox, John A; Mayo, Lauren L; Gunn, G Brandon; Zhang, Lifei; Balter, Peter A; Dong, Lei; Awan, Musaddiq; Kocak-Uzel, Esengul; Mohamed, Abdallah Sherif Radwan; Rosenthal, David I; Fuller, Clifton David
2015-10-01
Digitally reconstructed radiographs (DRRs) are routinely used as an a priori reference for setup correction in radiotherapy. The spatial resolution of DRRs may be improved to reduce setup error in fractionated radiotherapy treatment protocols. The influence of finer CT slice thickness reconstruction (STR) and resultant increased resolution DRRs on physician setup accuracy was prospectively evaluated. Four head and neck patient CT-simulation images were acquired and used to create DRR cohorts by varying STRs at 0.5, 1, 2, 2.5, and 3 mm. DRRs were displaced relative to a fixed isocenter using 0-5 mm random shifts in the three cardinal axes. Physician observers reviewed DRRs of varying STRs and displacements and then aligned reference and test DRRs replicating daily KV imaging workflow. A total of 1,064 images were reviewed by four blinded physicians. Observer errors were analyzed using nonparametric statistics (Friedman's test) to determine whether STR cohorts had detectably different displacement profiles. Post hoc bootstrap resampling was applied to evaluate potential generalizability. The observer-based trial revealed a statistically significant difference between cohort means for observer displacement vector error ([Formula: see text]) and for [Formula: see text]-axis [Formula: see text]. Bootstrap analysis suggests a 15% gain in isocenter translational setup error with reduction of STR from 3 mm to [Formula: see text]2 mm, though interobserver variance was a larger feature than STR-associated measurement variance. Higher resolution DRRs generated using finer CT scan STR resulted in improved observer performance at shift detection and could decrease operator-dependent geometric error. Ideally, CT STRs [Formula: see text]2 mm should be utilized for DRR generation in the head and neck.
Dokka, Kalpana; DeAngelis, Gregory C.
2015-01-01
Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214
Head office commitment to quality-related event reporting in community pharmacy
Scobie, Andrea C.; Boyle, Todd A.; MacKinnon, Neil J.; Mahaffey, Thomas
2012-01-01
Background: This research explores how perceptions of head office commitment to quality-related event (QRE) reporting differ between pharmacy staff type and between pharmacies with high and low QRE reporting and learning performance. QREs include known, alleged or suspected medication errors that reach the patient as well as medication errors that are intercepted prior to dispensing. Methods: A survey questionnaire was mailed in the spring of 2010 to 427 pharmacy managers, pharmacists and pharmacy technicians in Nova Scotia. Nonparametric statistics were used to determine differences based on pharmacy staff type and pharmacy performance. Content analysis was used to analyze the responses to open-ended survey questions. Results: A total of 210 surveys were returned, for a response rate of 49.2%. However, the current study used only the subgroup of pharmacy staff who self-reported working at a chain pharmacy, for a total of 124 usable questionnaires. The results showed that community pharmacies viewed head office commitment to QRE reporting as an area to improve. In general, high-performing pharmacies ranked head office commitment higher than low-performing pharmacies. Discussion: One possible reason why high-performing pharmacies ranked the variables higher may be that increased levels of head office support for QRE processes have led these pharmacies to adopt and commit to QRE processes and thus increase their performance. Conclusion: Demonstrated commitment to QRE reporting, ongoing encouragement and targeted messages to staff could be important steps for head office to increase QRE reporting and learning in community pharmacies. PMID:23509532
Head office commitment to quality-related event reporting in community pharmacy.
Scobie, Andrea C; Boyle, Todd A; Mackinnon, Neil J; Mahaffey, Thomas
2012-05-01
This research explores how perceptions of head office commitment to quality-related event (QRE) reporting differ between pharmacy staff type and between pharmacies with high and low QRE reporting and learning performance. QREs include known, alleged or suspected medication errors that reach the patient as well as medication errors that are intercepted prior to dispensing. A survey questionnaire was mailed in the spring of 2010 to 427 pharmacy managers, pharmacists and pharmacy technicians in Nova Scotia. Nonparametric statistics were used to determine differences based on pharmacy staff type and pharmacy performance. Content analysis was used to analyze the responses to open-ended survey questions. A total of 210 surveys were returned, for a response rate of 49.2%. However, the current study used only the subgroup of pharmacy staff who self-reported working at a chain pharmacy, for a total of 124 usable questionnaires. The results showed that community pharmacies viewed head office commitment to QRE reporting as an area to improve. In general, high-performing pharmacies ranked head office commitment higher than low-performing pharmacies. One possible reason why high-performing pharmacies ranked the variables higher may be that increased levels of head office support for QRE processes have led these pharmacies to adopt and commit to QRE processes and thus increase their performance. Demonstrated commitment to QRE reporting, ongoing encouragement and targeted messages to staff could be important steps for head office to increase QRE reporting and learning in community pharmacies.
Shrawder, S; Lapin, G D; Allen, C V; Vick, N A; Groothuis, D R
1994-01-01
We designed a new head holder for immobilization and repositioning in dynamic CT studies of the brain. A customized thermoplastic face mask and foam head rest were made to restrict movement of the head in all directions, but particularly out of the axial plane (z-movement). This design provided a rigid, detailed mold of the face and back of the head that minimized motion during lengthy CT studies and enabled accurate repositioning of the head for follow-up studies. Markers applied directly to the skin were used to quantify z-movement. When tested on 12 subjects, immobilization was limited to < 2.0 mm under worst-case conditions when the subject was asked to attempt forced movements. Repositioning was accurate to < 1.5 mm when the subject was removed from the head holder and then placed back into it.
Patient identification using a near-infrared laser scanner
NASA Astrophysics Data System (ADS)
Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris
2017-03-01
We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N
Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less
Adaptive Control of Small Outboard-Powered Boats for Survey Applications
NASA Technical Reports Server (NTRS)
VanZwieten, T.S.; VanZwieten, J.H.; Fisher, A.D.
2009-01-01
Four autopilot controllers have been developed in this work that can both hold a desired heading and follow a straight line. These PID, adaptive PID, neuro-adaptive, and adaptive augmenting control algorithms have all been implemented into a numerical simulation of a 33-foot center console vessel with wind, waves, and current disturbances acting in the perpendicular (across-track) direction of the boat s desired trajectory. Each controller is tested for its ability to follow a desired heading in the presence of these disturbances and then to follow a straight line at two different throttle settings for the same disturbances. These controllers were tuned for an input thrust of 2000 N and all four controllers showed good performance with none of the controllers significantly outperforming the others when holding a constant heading and following a straight line at this engine thrust. Each controller was then tested for a reduced engine thrust of 1200 N per engine where each of the three adaptive controllers reduced heading error and across-track error by approximately 50% after a 300 second tuning period when compared to the fixed gain PID, showing that significant robustness to changes in throttle setting was gained by using an adaptive algorithm.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Lee, Hong-Tao
1989-01-01
A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a predesigned parabolic function of transmission errors and the desired location and orientation of the bearing contact. The predesigned parabolic function of transmission errors is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and reduce gear noise. The gears are face-milled by head cutters with conical surfaces or surfaces of revolution. A computer program for simulation of meshing, bearing contact and determination of transmission errors for misaligned gear has been developed.
Reduced order modeling of head related transfer functions for virtual acoustic displays
NASA Astrophysics Data System (ADS)
Willhite, Joel A.; Frampton, Kenneth D.; Grantham, D. Wesley
2003-04-01
The purpose of this work is to improve the computational efficiency in acoustic virtual applications by creating and testing reduced order models of the head related transfer functions used in localizing sound sources. State space models of varying order were generated from zero-elevation Head Related Impulse Responses (HRIRs) using Kungs Single Value Decomposition (SVD) technique. The inputs to the models are the desired azimuths of the virtual sound sources (from minus 90 deg to plus 90 deg, in 10 deg increments) and the outputs are the left and right ear impulse responses. Trials were conducted in an anechoic chamber in which subjects were exposed to real sounds that were emitted by individual speakers across a numbered speaker array, phantom sources generated from the original HRIRs, and phantom sound sources generated with the different reduced order state space models. The error in the perceived direction of the phantom sources generated from the reduced order models was compared to errors in localization using the original HRIRs.
Perceptions of Randomness: Why Three Heads Are Better than Four
ERIC Educational Resources Information Center
Hahn, Ulrike; Warren, Paul A.
2009-01-01
A long tradition of psychological research has lamented the systematic errors and biases in people's perception of the characteristics of sequences generated by a random mechanism such as a coin toss. It is proposed that once the likely nature of people's actual experience of such processes is taken into account, these "errors" and "biases"…
NASA Technical Reports Server (NTRS)
Lee, Michael
1995-01-01
Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.
NASA Astrophysics Data System (ADS)
Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.
2018-02-01
A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r ⩾ 0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.
Cervical sensorimotor control in idiopathic cervical dystonia: A cross-sectional study.
De Pauw, Joke; Mercelis, Rudy; Hallemans, Ann; Michiels, Sarah; Truijen, Steven; Cras, Patrick; De Hertogh, Willem
2017-09-01
Patients with idiopathic adult-onset cervical dystonia (CD) experience an abnormal head posture and involuntary muscle contractions. Although the exact areas affected in the central nervous system remain uncertain, impaired functions in systems stabilizing the head and neck are apparent such as the somatosensory and sensorimotor integration systems. The aim of the study is to investigate cervical sensorimotor control dysfunction in patients with CD. Cervical sensorimotor control was assessed by a head repositioning task in 24 patients with CD and 70 asymptomatic controls. Blindfolded participants were asked to reposition their head to a previously memorized neutral head position (NHP) following an active movement (flexion, extension, left, and right rotation). The repositioning error (joint position error, JPE) was registered via 3D motion analysis with an eight-camera infrared system (VICON ® T10). Disease-specific characteristics of all patients were obtained via the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58), and Toronto Western Spasmodic Rating Scale. Patients with CD showed larger JPE than controls (mean difference of 1.5°, p < .006), and systematically 'overshoot', i.e. surpassed the NHP, whereas control subjects 'undershoot', i.e. fall behind the NHP. The JPE did not correlate with disease-specific characteristics. Cervical sensorimotor control is impaired in patients with CD. As cervical sensorimotor control can be trained, this might be a potential treatment option for therapy, adjuvant to botulinum toxin injections.
An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring.
Zhao, Yifan; Görne, Lorenz; Yuen, Iek-Man; Cao, Dongpu; Sullman, Mark; Auger, Daniel; Lv, Chen; Wang, Huaji; Matthias, Rebecca; Skrypchuk, Lee; Mouzakitis, Alexandros
2017-11-22
Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs) is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers' behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone.
De Baets, Liesbet; van der Straaten, Rob; Matheve, Thomas; Timmermans, Annick
2017-09-01
This review investigates current protocols using Inertial Measurement Units (IMUs) in shoulder research, and outlines future paths regarding IMU use for shoulder research. Different databases were searched for relevant articles. Criteria for study selection were (1) research in healthy persons or persons with shoulder problems, (2) IMUs applied as assessment tool for the shoulder (in healthy subjects and shoulder patients) or upper limb (in shoulder patients), (3) peer-reviewed, full-text papers in English or Dutch. Studies with less than five participants and without ethical approval were excluded. Data extraction included (1) study design, (2) participant characteristics, (3) type/brand of IMU, (4) tasks included in the assessment protocol, and (5) outcomes. Risk of bias was assessed using the Downs and Black checklist. Scapulothoracic/glenohumeral and humerothoracic kinematics were reported in respectively 10 and 27 of the 37 included papers. Only one paper in healthy persons assessed, next to scapulothoracic/glenohumeral kinematics, other upper limb joints. IMUs' validity and reliability to capture shoulder function was limited. Considering applied protocols, 39% of the protocols was located on the International-Classification-of-Functioning (ICF) function level, while 38% and 23% were on the 'capacity' and 'actual performance'-sublevel, of the ICF-activity level. Most available IMU-research regarding the shoulder is clinically less relevant, given the widely reported humerothoracic kinematics which do not add to clinical-decision-making, and the absence of protocols assessing the complete upper limb chain. Apart from knowledge on methodological pitfalls and opportunities regarding the use of IMUs, this review provides future research paths. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I.
2017-08-01
In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.
Liggett, Kristen K; Gallimore, Jennie J
2002-02-01
Spatial disorientation (SD) refers to pilots' inability to accurately interpret the attitude of their aircraft with respect to Earth. Unfortunately, SD statistics have held constant for the past few decades, through the transition from the head-down attitude indicator (Al) to the head-up display (HUD) as the attitude instrument. The newest attitude-indicating device to find its way into military cockpits is the helmet-mounted display (HMD). HMDs were initially introduced into the cockpit to enhance target location and weapon-pointing, but there is currently an effort to make HMDs attitude reference displays so pilots need not go head-down to obtain attitude information. However, unintuitive information or inappropriate implementation of on-boresight attitude symbology on the HMD may contribute to the SD problem. The occurrence of control reversal errors (CREs) during unusual attitude recovery tasks when using an HMD to provide attitude information was investigated. The effect of such errors was evaluated in terms of altitude changes during recovery and time to recover. There were 12 pilot-subjects who completed 8 unusual attitude recovery tasks. Results showed that CREs did occur, and there was a significant negative effect of these errors on absolute altitude change, but not on total recovery time. Results failed to show a decrease in the number of CREs occurring when using the HMD as compared with data from other studies that used an Al or a HUD. Results suggest that new HMD attitude symbology needs to be designed to help reduce CREs and, perhaps, SD incidences.
Smiley, A M
1990-10-01
In February of 1986 a head-on collision occurred between a freight train and a passenger train in western Canada killing 23 people and causing over $30 million of damage. A Commission of Inquiry appointed by the Canadian government concluded that human error was the major reason for the collision. This report discusses the factors contributing to the human error: mainly poor work-rest schedules, the monotonous nature of the train driving task, insufficient information about train movements, and the inadequate backup systems in case of human error.
Using doppler radar images to estimate aircraft navigational heading error
Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM
2012-07-03
A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.
Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring
NASA Astrophysics Data System (ADS)
Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.
2017-03-01
This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.
Multiple IMU system development, volume 1
NASA Technical Reports Server (NTRS)
Landey, M.; Mckern, R.
1974-01-01
A redundant gimballed inertial system is described. System requirements and mechanization methods are defined and hardware and software development is described. Failure detection and isolation algorithms are presented and technology achievements described. Application of the system as a test tool for shuttle avionics concepts is outlined.
Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction
DOT National Transportation Integrated Search
2015-08-28
Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...
OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.
Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y
2011-01-01
A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.
Integrated communications and optical navigation system
NASA Astrophysics Data System (ADS)
Mueller, J.; Pajer, G.; Paluszek, M.
2013-12-01
The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.
Pricise Target Geolocation Based on Integeration of Thermal Video Imagery and Rtk GPS in Uavs
NASA Astrophysics Data System (ADS)
Hosseinpoor, H. R.; Samadzadegan, F.; Dadras Javan, F.
2015-12-01
There are an increasingly large number of uses for Unmanned Aerial Vehicles (UAVs) from surveillance, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy which implicates that it cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using a linear Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors and Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process.
Apollo 13 Guidance, Navigation, and Control Challenges
NASA Technical Reports Server (NTRS)
Goodman, John L.
2009-01-01
Combustion and rupture of a liquid oxygen tank during the Apollo 13 mission provides lessons and insights for future spacecraft designers and operations personnel who may never, during their careers, have participated in saving a vehicle and crew during a spacecraft emergency. Guidance, Navigation, and Control (GNC) challenges were the reestablishment of attitude control after the oxygen tank incident, re-establishment of a free return trajectory, resolution of a ground tracking conflict between the LM and the Saturn V S-IVB stage, Inertial Measurement Unit (IMU) alignments, maneuvering to burn attitudes, attitude control during burns, and performing manual GNC tasks with most vehicle systems powered down. Debris illuminated by the Sun and gaseous venting from the Service Module (SM) complicated crew attempts to identify stars and prevented execution of nominal IMU alignment procedures. Sightings on the Sun, Moon, and Earth were used instead. Near continuous communications with Mission Control enabled the crew to quickly perform time critical procedures. Overcoming these challenges required the modification of existing contingency procedures.
Indoor Pedestrian Navigation Using Foot-Mounted IMU and Portable Ultrasound Range Sensors
Girard, Gabriel; Côté, Stéphane; Zlatanova, Sisi; Barette, Yannick; St-Pierre, Johanne; van Oosterom, Peter
2011-01-01
Many solutions have been proposed for indoor pedestrian navigation. Some rely on pre-installed sensor networks, which offer good accuracy but are limited to areas that have been prepared for that purpose, thus requiring an expensive and possibly time-consuming process. Such methods are therefore inappropriate for navigation in emergency situations since the power supply may be disturbed. Other types of solutions track the user without requiring a prepared environment. However, they may have low accuracy. Offline tracking has been proposed to increase accuracy, however this prevents users from knowing their position in real time. This paper describes a real time indoor navigation system that does not require prepared building environments and provides tracking accuracy superior to previously described tracking methods. The system uses a combination of four techniques: foot-mounted IMU (Inertial Motion Unit), ultrasonic ranging, particle filtering and model-based navigation. The very purpose of the project is to combine these four well-known techniques in a novel way to provide better indoor tracking results for pedestrians. PMID:22164034
Estimating a child's age from an image using whole body proportions.
Lucas, Teghan; Henneberg, Maciej
2017-09-01
The use and distribution of child pornography is an increasing problem. Forensic anthropologists are often asked to estimate a child's age from a photograph. Previous studies have attempted to estimate the age of children from photographs using ratios of the face. Here, we propose to include body measurement ratios into age estimates. A total of 1603 boys and 1833 girls aged 5-16 years were measured over a 10-year period. They are 'Cape Coloured' children from South Africa. Their age was regressed on ratios derived from anthropometric measurements of the head as well as the body. Multiple regression equations including four ratios for each sex (head height to shoulder and hip width, knee width, leg length and trunk length) have a standard error of 1.6-1.7 years. The error is of the same order as variation of differences between biological and chronological ages of the children. Thus, the error cannot be minimised any further as it is a direct reflection of a naturally occurring phenomenon.
Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment
NASA Astrophysics Data System (ADS)
Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata
2017-12-01
Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.
Towards a neuromorphic vestibular system.
Corradi, Federico; Zambrano, Davide; Raglianti, Marco; Passetti, Giovanni; Laschi, Cecilia; Indiveri, Giacomo
2014-10-01
The vestibular system plays a crucial role in the sense of balance and spatial orientation in mammals. It is a sensory system that detects both rotational and translational motion of the head, via its semicircular canals and otoliths respectively. In this work, we propose a real-time hardware model of an artificial vestibular system, implemented using a custom neuromorphic Very Large Scale Integration (VLSI) multi-neuron chip interfaced to a commercial Inertial Measurement Unit (IMU). The artificial vestibular system is realized with spiking neurons that reproduce the responses of biological hair cells present in the real semicircular canals and otholitic organs. We demonstrate the real-time performance of the hybrid analog-digital system and characterize its response properties, presenting measurements of a successful encoding of angular velocities as well as linear accelerations. As an application, we realized a novel implementation of a recurrent integrator network capable of keeping track of the current angular position. The experimental results provided validate the hardware implementation via comparisons with a detailed computational neuroscience model. In addition to being an ideal tool for developing bio-inspired robotic technologies, this work provides a basis for developing a complete low-power neuromorphic vestibular system which integrates the hardware model of the neural signal processing pathway described with custom bio-mimetic gyroscopic sensors, exploiting neuromorphic principles in both mechanical and electronic aspects.
Keeping it simple: studying grammatical encoding with lexically reduced item sets
Veenstra, Alma; Acheson, Daniel J.; Meyer, Antje S.
2014-01-01
Compared to the large body of work on lexical access, little research has been done on grammatical encoding in language production. An exception is the generation of subject-verb agreement. Here, two key findings have been reported: (1) speakers make more agreement errors when the head and local noun of a phrase mismatch in number than when they match [e.g., the key to the cabinet(s)]; and (2) this attraction effect is asymmetric, with stronger attraction for singular than for plural head nouns. Although these findings are robust, the cognitive processes leading to agreement errors and their significance for the generation of correct agreement are not fully understood. We propose that future studies of agreement, and grammatical encoding in general, may benefit from using paradigms that tightly control the variability of the lexical content of the material. We report two experiments illustrating this approach. In both of them, the experimental items featured combinations of four nouns, four color adjectives, and two prepositions. In Experiment 1, native speakers of Dutch described pictures in sentences such as the circle next to the stars is blue. In Experiment 2, they carried out a forced-choice task, where they read subject noun phrases (e.g., the circle next to the stars) and selected the correct verb-phrase (is blue or are blue) with a button press. Both experiments showed an attraction effect, with more errors after subject phrases with mismatching, compared to matching head and local nouns. This effect was stronger for singular than plural heads, replicating the attraction asymmetry. In contrast, the response times recorded in Experiment 2 showed similar attraction effects for singular and plural head nouns. These results demonstrate that critical agreement phenomena can be elicited reliably in lexically reduced contexts. We discuss the theoretical implications of the findings and the potential and limitations of studies using lexically simple materials. PMID:25101039
Keeping it simple: studying grammatical encoding with lexically reduced item sets.
Veenstra, Alma; Acheson, Daniel J; Meyer, Antje S
2014-01-01
Compared to the large body of work on lexical access, little research has been done on grammatical encoding in language production. An exception is the generation of subject-verb agreement. Here, two key findings have been reported: (1) speakers make more agreement errors when the head and local noun of a phrase mismatch in number than when they match [e.g., the key to the cabinet(s)]; and (2) this attraction effect is asymmetric, with stronger attraction for singular than for plural head nouns. Although these findings are robust, the cognitive processes leading to agreement errors and their significance for the generation of correct agreement are not fully understood. We propose that future studies of agreement, and grammatical encoding in general, may benefit from using paradigms that tightly control the variability of the lexical content of the material. We report two experiments illustrating this approach. In both of them, the experimental items featured combinations of four nouns, four color adjectives, and two prepositions. In Experiment 1, native speakers of Dutch described pictures in sentences such as the circle next to the stars is blue. In Experiment 2, they carried out a forced-choice task, where they read subject noun phrases (e.g., the circle next to the stars) and selected the correct verb-phrase (is blue or are blue) with a button press. Both experiments showed an attraction effect, with more errors after subject phrases with mismatching, compared to matching head and local nouns. This effect was stronger for singular than plural heads, replicating the attraction asymmetry. In contrast, the response times recorded in Experiment 2 showed similar attraction effects for singular and plural head nouns. These results demonstrate that critical agreement phenomena can be elicited reliably in lexically reduced contexts. We discuss the theoretical implications of the findings and the potential and limitations of studies using lexically simple materials.
An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis
Barrois, R.; Gregory, Th.; Oudre, L.; Moreau, Th.; Truong, Ch.; Aram Pulini, A.; Vienne, A.; Labourdette, Ch.; Vayatis, N.; Buffat, S.; Yelnik, A.; de Waele, C.; Laporte, S.; Vidal, P. P.; Ricard, D.
2016-01-01
For diagnosis and follow up, it is important to be able to quantify limp in an objective, and precise way adapted to daily clinical consultation. The purpose of this exploratory study was to determine if an inertial sensor-based method could provide simple features that correlate with the severity of lower limb osteoarthritis evaluated by the WOMAC index without the use of step detection in the signal processing. Forty-eight patients with lower limb osteoarthritis formed two severity groups separated by the median of the WOMAC index (G1, G2). Twelve asymptomatic age-matched control subjects formed the control group (G0). Subjects were asked to walk straight 10 meters forward and 10 meters back at self-selected walking speeds with inertial measurement units (IMU) (3-D accelerometers, 3-D gyroscopes and 3-D magnetometers) attached on the head, the lower back (L3-L4) and both feet. Sixty parameters corresponding to the mean and the root mean square (RMS) of the recorded signals on the various sensors (head, lower back and feet), in the various axes, in the various frames were computed. Parameters were defined as discriminating when they showed statistical differences between the three groups. In total, four parameters were found discriminating: mean and RMS of the norm of the acceleration in the horizontal plane for contralateral and ipsilateral foot in the doctor’s office frame. No discriminating parameter was found on the head or the lower back. No discriminating parameter was found in the sensor linked frames. This study showed that two IMUs placed on both feet and a step detection free signal processing method could be an objective and quantitative complement to the clinical examination of the physician in everyday practice. Our method provides new automatically computed parameters that could be used for the comprehension of lower limb osteoarthritis. It may not only be used in medical consultation to score patients but also to monitor the evolution of their clinical syndrome during and after rehabilitation. Finally, it paves the way for the quantification of gait in other fields such as neurology and for monitoring the gait at a patient’s home. PMID:27776168
Xiang, Yongqing; Yakushin, Sergei B; Cohen, Bernard; Raphan, Theodore
2006-12-01
A neural network model was developed to explain the gravity-dependent properties of gain adaptation of the angular vestibuloocular reflex (aVOR). Gain changes are maximal at the head orientation where the gain is adapted and decrease as the head is tilted away from that position and can be described by the sum of gravity-independent and gravity-dependent components. The adaptation process was modeled by modifying the weights and bias values of a three-dimensional physiologically based neural network of canal-otolith-convergent neurons that drive the aVOR. Model parameters were trained using experimental vertical aVOR gain values. The learning rule aimed to reduce the error between eye velocities obtained from experimental gain values and model output in the position of adaptation. Although the model was trained only at specific head positions, the model predicted the experimental data at all head positions in three dimensions. Altering the relative learning rates of the weights and bias improved the model-data fits. Model predictions in three dimensions compared favorably with those of a double-sinusoid function, which is a fit that minimized the mean square error at every head position and served as the standard by which we compared the model predictions. The model supports the hypothesis that gravity-dependent adaptation of the aVOR is realized in three dimensions by a direct otolith input to canal-otolith neurons, whose canal sensitivities are adapted by the visual-vestibular mismatch. The adaptation is tuned by how the weights from otolith input to the canal-otolith-convergent neurons are adapted for a given head orientation.
Demura, Shinichi; Sato, Susumu; Nakada, Masakatsu; Minami, Masaki; Kitabayashi, Tamotsu
2003-07-01
This study compared the accuracy of body density (Db) estimation methods using hydrostatic weighing without complete head submersion (HW(withoutHS)) of Donnelly et al. (1988) and Donnelly and Sintek (1984) as referenced to Goldman and Buskirk's approach (1961). Donnelly et al.'s method estimates Db from a regression equation using HW(withoutHS), moreover, Donnelly and Sintek's method estimates it from HW(withoutHS) and head anthropometric variables. Fifteen Japanese males (173.8+/-4.5 cm, 63.6+/-5.4 kg, 21.2+/-2.8 years) and fifteen females (161.4+/-5.4 cm, 53.8+/-4.8 kg, 21.0+/-1.4 years) participated in this study. All the subjects were measured for head length, width and HWs under the two conditions of with and without head submersion. In order to examine the consistency of estimation values of Db, the correlation coefficients between the estimation values and the reference (Goldman and Buskirk, 1961) were calculated. The standard errors of estimation (SEE) were calculated by regression analysis using a reference value as a dependent variable and estimation values as independent variables. In addition, the systematic errors of two estimation methods were investigated by the Bland-Altman technique (Bland and Altman, 1986). In the estimation, Donnelly and Sintek's equation showed a high relationship with the reference (r=0.960, p<0.01), but had more differences from the reference compared with Donnelly et al.'s equation. Further studies are needed to develop new prediction equations for Japanese considering sex and individual differences in head anthropometry.
NASA Astrophysics Data System (ADS)
Bartsch, Adam; Samorezov, Sergey
2013-05-01
Nearly 2 million Traumatic Brain Injuries (TBI) occur in the U.S. each year, with societal costs approaching $60 billion. Including mild TBI and concussion, TBI's are prevalent in soldiers returning from Iraq and Afghanistan as well as in domestic athletes. Long-term risks of single and cumulative head impact dosage may present in the form of post traumatic stress disorder (PTSD), depression, suicide, Chronic Traumatic Encephalopathy (CTE), dementia, Alzheimer's and Parkinson's diseases. Quantifying head impact dosage and understanding associated risk factors for the development of long-term sequelae is critical toward developing guidelines for TBI exposure and post-exposure management. The current knowledge gap between head impact exposure and clinical outcomes limits the understanding of underlying TBI mechanisms, including effective treatment protocols and prevention methods for soldiers and athletes. In order to begin addressing this knowledge gap, Cleveland Clinic is developing the "Intelligent Mouthguard" head impact dosimeter. Current testing indicates the Intelligent Mouthguard can quantify linear acceleration with 3% error and angular acceleration with 17% error during impacts ranging from 10g to 174g and 850rad/s2 to 10000rad/s2, respectively. Correlation was high (R2 > 0.99, R2 = 0.98, respectively). Near-term development will be geared towards quantifying head impact dosages in vitro, longitudinally in athletes and to test new sensors for possible improved accuracy and reduced bias. Long-term, the IMG may be useful to soldiers to be paired with neurocognitive clinical data quantifying resultant TBI functional deficits.
NASA Astrophysics Data System (ADS)
Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen
2018-02-01
Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.
Using EMG to anticipate head motion for virtual-environment applications
NASA Technical Reports Server (NTRS)
Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion
2005-01-01
In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.
Using EMG to anticipate head motion for virtual-environment applications.
Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion
2005-06-01
In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.
Small satellite attitude determination based on GPS/IMU data fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovan, Andrey; Cepe, Ali
In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.
Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications
2002-12-17
microstructures [7]~[9]. The success of the surface-micromachined electrostatic micromotor in the late 80’s [10] stimulated the industry and government...processed electrostatic synchronous micromotors ,” Sensors Actuators, vol. 20, pp. 48-56, 1989. [11] “ADXL05-monolithic accelerometer with signal
Heidari, M.; Ranjithan, S.R.
1998-01-01
In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.
Fisher, Jason C.; Twining, Brian V.
2011-01-01
During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.
Mehl, S.; Hill, M.C.
2004-01-01
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
Ni, Hsing-Chang; Hwang Gu, Shoou-Lian; Lin, Hsiang-Yuan; Lin, Yu-Ju; Yang, Li-Kuang; Huang, Hui-Chun; Gau, Susan Shur-Fen
2016-05-01
Intra-individual variability in reaction time (IIV-RT) is common in individuals with attention-deficit/hyperactivity disorder (ADHD). It can be improved by stimulants. However, the effects of atomoxetine on IIV-RT are inconclusive. We aimed to investigate the effects of atomoxetine on IIV-RT, and directly compared its efficacy with methylphenidate in adults with ADHD. An 8-10 week, open-label, head-to-head, randomized clinical trial was conducted in 52 drug-naïve adults with ADHD, who were randomly assigned to two treatment groups: immediate-release methylphenidate (n=26) thrice daily (10-20 mg per dose) and atomoxetine once daily (n=26) (0.5-1.2 mg/kg/day). IIV-RT, derived from the Conners' continuous performance test (CCPT), was represented by the Gaussian (reaction time standard error, RTSE) and ex-Gaussian models (sigma and tau). Other neuropsychological functions, including response errors and mean of reaction time, were also measured. Participants received CCPT assessments at baseline and week 8-10 (60.4±6.3 days). We found comparable improvements in performances of CCPT between the immediate-release methylphenidate- and atomoxetine-treated groups. Both medications significantly improved IIV-RT in terms of reducing tau values with comparable efficacy. In addition, both medications significantly improved inhibitory control by reducing commission errors. Our results provide evidence to support that atomoxetine could improve IIV-RT and inhibitory control, of comparable efficacy with immediate-release methylphenidate, in drug-naïve adults with ADHD. Shared and unique mechanisms underpinning these medication effects on IIV-RT awaits further investigation. © The Author(s) 2016.
Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
Paré, M; Guitton, D
1998-06-01
When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades executed by alert cats. OPNs discharged tonically during intersaccadic intervals and at a reduced level during slow perisaccadic gaze movements sometimes accompanying saccades. Their activity ceased for the duration of the saccadic gaze shifts the animal executed, either by head-fixed eye saccades alone or by combined eye-head movements. This was true for all types of gaze shifts studied: active movements to visual targets; passive movements induced by whole-body rotation or by head rotation about stationary body; and electrically evoked movements by stimulation of the caudal part of the superior colliculus (SC), a central structure for gaze control. For combined eye-head gaze shifts, the OPN pause was therefore not correlated to the eye-in-head trajectory. For instance, in active gaze movements, the end of the pause was better correlated with the gaze end than with either the eye saccade end or the time of eye counterrotation. The hypothesis that cat OPNs participate in controlling gaze shifts is supported by these results, and also by the observation that the movements of both the eyes and the head were transiently interrupted by stimulation of OPNs during gaze shifts. However, we found that the OPN pause could be dissociated from the gaze-motor-error signal producing the gaze shift. First, OPNs resumed discharging when perturbation of head motion briefly interrupted a gaze shift before its intended amplitude was attained. Second, stimulation of caudal SC sites in head-free cat elicited large head-free gaze shifts consistent with the creation of a large gaze-motor-error signal. However, stimulation of the same sites in head-fixed cat produced small "goal-directed" eye saccades, and OPNs paused only for the duration of the latter; neither a pause nor an eye movement occurred when the same stimulation was applied with the eyes at the goal location. We conclude that OPNs can be controlled by neither a simple eye control system nor an absolute gaze control system. Our data cannot be accounted for by existing models describing the control of combined eye-head gaze shifts and therefore put new constraints on future models, which will have to incorporate all the various signals that act synergistically to control gaze shifts.
Maguire Jr., Gerald Q.; Noz, Marilyn E.; Olivecrona, Henrik; Zeleznik, Michael P.
2014-01-01
As the most advantageous total hip arthroplasty (THA) operation is the first, timely replacement of only the liner is socially and economically important because the utilization of THA is increasing as younger and more active patients are receiving implants and they are living longer. Automatic algorithms were developed to infer liner wear by estimating the separation between the acetabular cup and femoral component head given a computed tomography (CT) volume. Two series of CT volumes of a hip phantom were acquired with the femoral component head placed at 14 different positions relative to the acetabular cup. The mean and standard deviation (SD) of the diameter of the acetabular cup and femoral component head, in addition to the range of error in the expected wear values and the repeatability of all the measurements, were calculated. The algorithms resulted in a mean (±SD) for the diameter of the acetabular cup of 54.21 (±0.011) mm and for the femoral component head of 22.09 (±0.02) mm. The wear error was ±0.1 mm and the repeatability was 0.077 mm. This approach is applicable clinically as it utilizes readily available computed tomography imaging systems and requires only five minutes of human interaction. PMID:24587727
Rotary head type reproducing apparatus
Takayama, Nobutoshi; Edakubo, Hiroo; Kozuki, Susumu; Takei, Masahiro; Nagasawa, Kenichi
1986-01-01
In an apparatus of the kind arranged to reproduce, with a plurality of rotary heads, an information signal from a record bearing medium having many recording tracks which are parallel to each other with the information signal recorded therein and with a plurality of different pilot signals of different frequencies also recorded one by one, one in each of the recording tracks, a plurality of different reference signals of different frequencies are simultaneously generated. A tracking error is detected by using the different reference signals together with the pilot signals which are included in signals reproduced from the plurality of rotary heads.
NASA Astrophysics Data System (ADS)
Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong
2017-11-01
Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.
An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring
Görne, Lorenz; Yuen, Iek-Man; Cao, Dongpu; Sullman, Mark; Auger, Daniel; Lv, Chen; Wang, Huaji; Matthias, Rebecca; Skrypchuk, Lee; Mouzakitis, Alexandros
2017-01-01
Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs) is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers’ behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone. PMID:29165331
Clausner, Tommy; Dalal, Sarang S; Crespo-García, Maité
2017-01-01
The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D . Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position.
Clausner, Tommy; Dalal, Sarang S.; Crespo-García, Maité
2017-01-01
The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D. Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position. PMID:28559791
A Kindergarten Teacher Bringing Science to a Community
ERIC Educational Resources Information Center
Theis, Becky; Galindo, Ed; Shockey, Tod
2014-01-01
The National Aeronautical and Space Administration (NASA) sponsored professional development of educators in the NASA Summer of Innovation (SOI) program. The Idaho, Montana, and Utah (IMU-SOI) program worked with educators and students from thirteen Native American communities. The summer sessions were focused on problem based learning and…
Measurement of Infrasound from the Marine Environment
2015-09-01
ocean heave, which are due to the change in the background atmospheric pressure as the sensor moves up and down. An external inertial measurement unit ... inertial measurement unit (IMU) was used to estimate the heave, and was highly correlated with the pressure interference signal. Mission area... MEASUREMENT UNIT ..................................................... 13 ADAPTIVE NOISE CANCELATION
Why Three Heads Are a Better Bet than Four: A Reply to Sun, Tweney, and Wang (2010)
ERIC Educational Resources Information Center
Hahn, Ulrike; Warren, Paul A.
2010-01-01
We (Hahn & Warren, 2009) recently proposed a new account of the systematic errors and biases that appear to be present in people's perception of randomly generated events. In a comment on that article, Sun, Tweney, and Wang (2010) critiqued our treatment of the gambler's fallacy. We had argued that this fallacy was less gross an error than it…
In vivo evaluation of wearable head impact sensors
Wu, Lyndia C.; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B.
2015-01-01
Inertial sensors are commonly used to measure human head motion.(R1–3) Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo(R3–10) method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6–13g(R1–20) sagittal soccer head impacts. Sensor coupling to the skull (R1–3) was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1mm), while the skin patch and skull cap displaced up to 4mm and 13mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull (R1–5), as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for amag, 290% for αmag(R1–6)) and the skull cap (320% NRMS error for amag, 500% for αmag(R1–6)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch acceleration peaks in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches(R1–7). Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies. PMID:26289941
NASA Technical Reports Server (NTRS)
James, R. (Inventor)
1981-01-01
A display device is disclosed which is particularly suited for providing the pilot of an aircraft with combined inflight attitude, heading, altitude, and horizontal situation information previously available only by using two or three devices providing separate displays. The preferred embodiment combines a commonly used and commercially available flight director-type device for providing a display in combination with a miniature aircraft supported for angular displacement from a vertical orientation to indicate heading error, or heading offset, and an extended course deviation indicator bar which projects into juxtaposition with the miniature aircraft for providing a true picture of the aircraft's horizontal situation relative to a selective VOR, ILS, or MLS course.
Photorefractor ocular screening system
NASA Technical Reports Server (NTRS)
Richardson, John R. (Inventor); Kerr, Joseph H. (Inventor)
1987-01-01
A method and apparatus for detecting human eye defects, particularly detection of refractive error is presented. Eye reflex is recorded on color film when the eyes are exposed to a flash of light. The photographs are compared with predetermined standards to detect eye defects. The base structure of the ocular screening system is a folding interconnect structure, comprising hinged sections. Attached to one end of the structure is a head positioning station which comprises vertical support, a head positioning bracket having one end attached to the top of the support, and two head positioning lamps to verify precise head positioning. At the opposite end of the interconnect structure is a camera station with camera, electronic flash unit, and blinking fixation lamp, for photographing the eyes of persons being evaluated.
Head rice rate measurement based on concave point matching
Yao, Yuan; Wu, Wei; Yang, Tianle; Liu, Tao; Chen, Wen; Chen, Chen; Li, Rui; Zhou, Tong; Sun, Chengming; Zhou, Yue; Li, Xinlu
2017-01-01
Head rice rate is an important factor affecting rice quality. In this study, an inflection point detection-based technology was applied to measure the head rice rate by combining a vibrator and a conveyor belt for bulk grain image acquisition. The edge center mode proportion method (ECMP) was applied for concave points matching in which concave matching and separation was performed with collaborative constraint conditions followed by rice length calculation with a minimum enclosing rectangle (MER) to identify the head rice. Finally, the head rice rate was calculated using the sum area of head rice to the overall coverage of rice. Results showed that bulk grain image acquisition can be realized with test equipment, and the accuracy rate of separation of both indica rice and japonica rice exceeded 95%. An increase in the number of rice did not significantly affect ECMP and MER. High accuracy can be ensured with MER to calculate head rice rate by narrowing down its relative error between real values less than 3%. The test results show that the method is reliable as a reference for head rice rate calculation studies. PMID:28128315
Structured Head and Neck CT Angiography Reporting Reduces Resident Revision Rates.
Johnson, Tucker F; Brinjikji, Waleed; Doolittle, Derrick A; Nagelschneider, Alex A; Welch, Brian T; Kotsenas, Amy L
2018-04-12
This resident-driven quality improvement project was undertaken to assess the effectiveness of structured reporting to reduce revision rates for afterhours reports dictated by residents. The first part of the study assessed baseline revision rates for head and neck CT angiography (CTA) examinations dictated by residents during afterhours call. A structured report was subsequently created based on templates on the RSNA informatics reporting website and critical findings that should be assessed for on all CTA examinations. The template was made available to residents through the speech recognition software for all head and neck CTA examinations for a duration of 2 months. Report revision rates were then compared with and without use of the structured template. The structured template was found to reduce revision rates by approximately 50% with 10/41 unstructured reports revised and 2/17 structured reports revised. We believe that structured reporting can help reduce reporting errors, particularly in term of typographical errors, train residents to evaluate complex examinations in a systematic fashion, and assist them in recalling critical findings on these examinations. Copyright © 2018 Elsevier Inc. All rights reserved.
de Kermoysan, Goulwen; Péry, Alexandre R R; Porcher, Jean-Marc; Beaudouin, Rémy
2013-08-01
A mathematical model to distinguish mature female and male three-spined sticklebacks Gasterosteus aculeatus L. 1758 is proposed. This method is based on sexual dimorphism in the head morphology. The discrimination was established on five distances of interest on the head, adjusted by the standard length of fish. The parameters were estimated based on a training set composed of 102 fish with an equilibrium sex ratio and validated on a test set composed of 69 fish. The model estimates the relationship between the percentage of fish that can be sexed with our model and the percentage of fish correctly sexed. For instance, to reach 1% of error in the sex determination, only 53% of the fish should be considered, whereas to reach 5% of error, 90% of the fish can be used. Compared to other available methods to sex G. aculeatus, the model is non invasive, not expensive, rapid, replicable, and can be calibrated outside of the breeding period. Copyright © 2013 Elsevier Inc. All rights reserved.
Reduction of low frequency error for SED36 and APS based HYDRA star trackers
NASA Astrophysics Data System (ADS)
Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc
2017-11-01
In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.
Sources of variability and systematic error in mouse timing behavior.
Gallistel, C R; King, Adam; McDonald, Robert
2004-01-01
In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.
In-Flight Guidance, Navigation, and Control Performance Results for the GOES-16 Spacecraft
NASA Technical Reports Server (NTRS)
Chapel, Jim; Stancliffe, Devin; Bevacqua, Tim; Winkler, Stephen; Clapp, Brian; Rood, Tim; Freesland, Doug; Reth, Alan; Early, Derrick; Walsh, Tim;
2017-01-01
The Geostationary Operational Environmental Satellite-R Series (GOES-R), which launched in November 2016, is the first of the next generation geostationary weather satellites. GOES-R provides 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations compared with its predecessor spacecraft. Additionally, Earth relative and Sun-relative pointing and pointing stability requirements are maintained throughout reaction wheel desaturation events and station keeping activities, allowing GOES-R to provide continuous Earth and sun observations. This paper reviews the pointing control, pointing stability, attitude knowledge, and orbit knowledge requirements necessary to realize the ambitious Image Navigation and Registration (INR) objectives of GOES-R. This paper presents a comparison between low-frequency on-orbit pointing results and simulation predictions for both the Earth Pointed Platform (EPP) and Sun Pointed Platform (SPP). Results indicate excellent agreement between simulation predictions and observed on-orbit performance, and compliance with pointing performance requirements. The EPP instrument suite includes 6 seismic accelerometers sampled at 2 KHz, allowing in-flight verification of jitter responses and comparison back to simulation predictions. This paper presents flight results of acceleration, shock response spectrum (SRS), and instrument line of sight responses for various operational scenarios and instrument observation modes. The results demonstrate the effectiveness of the dual-isolation approach employed on GOES-R. The spacecraft provides attitude and rate data to the primary Earth-observing instrument at 100 Hz, which are used to adjust instrument scanning. The data must meet accuracy and latency numbers defined by the Integrated Rate Error (IRE) requirements. This paper discusses the on-orbit IRE results, showing compliance to these requirements with margin. During the spacecraft checkout period, IRE disturbances were observed and subsequently attributed to thermal control of the Inertial Measurement Unit (IMU) mounting interface. Adjustments of IMU thermal control and the resulting improvements in IRE are presented. Orbit knowledge represents the final element of INR performance. Extremely accurate orbital position is achieved by GPS navigation at Geosynchronous Earth Orbit (GEO). On-orbit performance results are shown demonstrating compliance with the stringent orbit position accuracy requirements of GOES-R, including during station keeping activities and momentum desaturation events. As we show in this paper, the on-orbit performance of the GNC design provides the necessary capabilities to achieve GOES-R mission objectives.
Demonstration of an Aerocapture GN and C System Through Hardware-in-the-Loop Simulations
NASA Technical Reports Server (NTRS)
Masciarelli, James; Deppen, Jennifer; Bladt, Jeff; Fleck, Jeff; Lawson, Dave
2010-01-01
Aerocapture is an orbit insertion maneuver in which a spacecraft flies through a planetary atmosphere one time using drag force to decelerate and effect a hyperbolic to elliptical orbit change. Aerocapture employs a feedback Guidance, Navigation, and Control (GN&C) system to deliver the spacecraft into a precise postatmospheric orbit despite the uncertainties inherent in planetary atmosphere knowledge, entry targeting and aerodynamic predictions. Only small amounts of propellant are required for attitude control and orbit adjustments, thereby providing mass savings of hundreds to thousands of kilograms over conventional all-propulsive techniques. The Analytic Predictor Corrector (APC) guidance algorithm has been developed to steer the vehicle through the aerocapture maneuver using bank angle control. Through funding provided by NASA's In-Space Propulsion Technology Program, the operation of an aerocapture GN&C system has been demonstrated in high-fidelity simulations that include real-time hardware in the loop, thus increasing the Technology Readiness Level (TRL) of aerocapture GN&C. First, a non-real-time (NRT), 6-DOF trajectory simulation was developed for the aerocapture trajectory. The simulation included vehicle dynamics, gravity model, atmosphere model, aerodynamics model, inertial measurement unit (IMU) model, attitude control thruster torque models, and GN&C algorithms (including the APC aerocapture guidance). The simulation used the vehicle and mission parameters from the ST-9 mission. A 2000 case Monte Carlo simulation was performed and results show an aerocapture success rate of greater than 99.7%, greater than 95% of total delta-V required for orbit insertion is provided by aerodynamic drag, and post-aerocapture orbit plane wedge angle error is less than 0.5 deg (3-sigma). Then a real-time (RT), 6-DOF simulation for the aerocapture trajectory was developed which demonstrated the guidance software executing on a flight-like computer, interfacing with a simulated IMU and simulated thrusters, with vehicle dynamics provided by an external simulator. Five cases from the NRT simulations were run in the RT simulation environment. The results compare well to those of the NRT simulation thus verifying the RT simulation configuration. The results of the above described simulations show the aerocapture maneuver using the APC algorithm can be accomplished reliably and the algorithm is now at TRL-6. Flight validation is the next step for aerocapture technology development.
NASA Technical Reports Server (NTRS)
Young, J. C.; Bundick, W. T.; Irwin, S. H.
1983-01-01
Tests were conducted with a van mounted experimental magnetic leader cable sensor to evaluate its potential for measuring aircraft displacement and heading with respect to the leader cable during roll out and turnoff. Test results show that the system may be usable in measuring displacement but the heading measurement contains errors introduced by distortion of the magnetic field by the metal van or aircraft.
Olson, Stephen M; Hussaini, Mohammad; Lewis, James S
2011-05-01
Frozen section analysis is an essential tool for assessing margins intra-operatively to assure complete resection. Many institutions evaluate surgical defect edge tissue provided by the surgeon after the main lesion has been removed. With the increasing use of transoral laser microsurgery, this method is becoming even more prevalent. We sought to evaluate error rates at our large academic institution and to see if sampling errors could be reduced by the simple method change of taking an additional third section on these specimens. All head and neck tumor resection cases from January 2005 through August 2008 with margins evaluated by frozen section were identified by database search. These cases were analyzed by cutting two levels during frozen section and a third permanent section later. All resection cases from August 2008 through July 2009 were identified as well. These were analyzed by cutting three levels during frozen section (the third a 'much deeper' level) and a fourth permanent section later. Error rates for both of these periods were determined. Errors were separated into sampling and interpretation types. There were 4976 total frozen section specimens from 848 patients. The overall error rate was 2.4% for all frozen sections where just two levels were evaluated and was 2.5% when three levels were evaluated (P=0.67). The sampling error rate was 1.6% for two-level sectioning and 1.2% for three-level sectioning (P=0.42). However, when considering only the frozen section cases where tumor was ultimately identified (either at the time of frozen section or on permanent sections) the sampling error rate for two-level sectioning was 15.3 versus 7.4% for three-level sectioning. This difference was statistically significant (P=0.006). Cutting a single additional 'deeper' level at the time of frozen section identifies more tumor-bearing specimens and may reduce the number of sampling errors.
2013-01-01
Background The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. Results We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. Conclusions Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools. PMID:24209455
NASA Astrophysics Data System (ADS)
Zhang, Y. K.; Liang, X.
2014-12-01
Effects of aquifer heterogeneity and uncertainties in source/sink, and initial and boundary conditions in a groundwater flow model on the spatiotemporal variations of groundwater level, h(x,t), were investigated. Analytical solutions for the variance and covariance of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation with a white noise source/sink and a random transmissivity field were derived. It was found that in a typical aquifer the error in h(x,t) in early time is mainly caused by the random initial condition and the error reduces as time goes to reach a constant error in later time. The duration during which the effect of the random initial condition is significant may last a few hundred days in most aquifers. The constant error in groundwater in later time is due to the combined effects of the uncertain source/sink and flux boundary: the closer to the flux boundary, the larger the error. The error caused by the uncertain head boundary is limited in a narrow zone near the boundary but it remains more or less constant over time. The effect of the heterogeneity is to increase the variation of groundwater level and the maximum effect occurs close to the constant head boundary because of the linear mean hydraulic gradient. The correlation of groundwater level decreases with temporal interval and spatial distance. In addition, the heterogeneity enhances the correlation of groundwater level, especially at larger time intervals and small spatial distances.
Sturgill, David; Malone, John H; Sun, Xia; Smith, Harold E; Rabinow, Leonard; Samson, Marie-Laure; Oliver, Brian
2013-11-09
The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools.
Evaluation of the 3dMDface system as a tool for soft tissue analysis.
Hong, C; Choi, K; Kachroo, Y; Kwon, T; Nguyen, A; McComb, R; Moon, W
2017-06-01
To evaluate the accuracy of three-dimensional stereophotogrammetry by comparing values obtained from direct anthropometry and the 3dMDface system. To achieve a more comprehensive evaluation of the reliability of 3dMD, both linear and surface measurements were examined. UCLA Section of Orthodontics. Mannequin head as model for anthropometric measurements. Image acquisition and analysis were carried out on a mannequin head using 16 anthropometric landmarks and 21 measured parameters for linear and surface distances. 3D images using 3dMDface system were made at 0, 1 and 24 hours; 1, 2, 3 and 4 weeks. Error magnitude statistics used include mean absolute difference, standard deviation of error, relative error magnitude and root mean square error. Intra-observer agreement for all measurements was attained. Overall mean errors were lower than 1.00 mm for both linear and surface parameter measurements, except in 5 of the 21 measurements. The three longest parameter distances showed increased variation compared to shorter distances. No systematic errors were observed for all performed paired t tests (P<.05). Agreement values between two observers ranged from 0.91 to 0.99. Measurements on a mannequin confirmed the accuracy of all landmarks and parameters analysed in this study using the 3dMDface system. Results indicated that 3dMDface system is an accurate tool for linear and surface measurements, with potentially broad-reaching applications in orthodontics, surgical treatment planning and treatment evaluation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.
2011-06-01
Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.
Yan, M; Lovelock, D; Hunt, M; Mechalakos, J; Hu, Y; Pham, H; Jackson, A
2013-12-01
To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or -0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1-2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39-16.8) cGy, or 10.1 (0.8-32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%-9.06%) and 10.2% (0.7%-63.6%), respectively. Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%.
Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A.
2013-01-01
Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%. PMID:24320510
Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage
NASA Technical Reports Server (NTRS)
1992-01-01
Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.
NASA Synthetic Vision EGE Flight Test
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.
2002-01-01
NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.
Detailed Test Plan Redundant Sensor Strapdown IMU Evaluation Program
NASA Technical Reports Server (NTRS)
Hartwell, T.; Miyatake, Y.; Wedekind, D. E.
1971-01-01
The test plan for a redundant sensor strapdown inertial measuring unit evaluation program is presented. The subjects discussed are: (1) test philosophy and limitations, (2) test sequence, (3) equipment specifications, (4) general operating procedures, (5) calibration procedures, (6) alignment test phase, and (7) navigation test phase. The data and analysis requirements are analyzed.
Levis, Angelo G; Minicuci, Nadia; Ricci, Paolo; Gennaro, Valerio; Garbisa, Spiridione
2011-06-17
Whether or not there is a relationship between use of mobile phones (analogue and digital cellulars, and cordless) and head tumour risk (brain tumours, acoustic neuromas, and salivary gland tumours) is still a matter of debate; progress requires a critical analysis of the methodological elements necessary for an impartial evaluation of contradictory studies. A close examination of the protocols and results from all case-control and cohort studies, pooled- and meta-analyses on head tumour risk for mobile phone users was carried out, and for each study the elements necessary for evaluating its reliability were identified. In addition, new meta-analyses of the literature data were undertaken. These were limited to subjects with mobile phone latency time compatible with the progression of the examined tumours, and with analysis of the laterality of head tumour localisation corresponding to the habitual laterality of mobile phone use. Blind protocols, free from errors, bias, and financial conditioning factors, give positive results that reveal a cause-effect relationship between long-term mobile phone use or latency and statistically significant increase of ipsilateral head tumour risk, with biological plausibility. Non-blind protocols, which instead are affected by errors, bias, and financial conditioning factors, give negative results with systematic underestimate of such risk. However, also in these studies a statistically significant increase in risk of ipsilateral head tumours is quite common after more than 10 years of mobile phone use or latency. The meta-analyses, our included, examining only data on ipsilateral tumours in subjects using mobile phones since or for at least 10 years, show large and statistically significant increases in risk of ipsilateral brain gliomas and acoustic neuromas. Our analysis of the literature studies and of the results from meta-analyses of the significant data alone shows an almost doubling of the risk of head tumours induced by long-term mobile phone use or latency.
2011-01-01
Background Whether or not there is a relationship between use of mobile phones (analogue and digital cellulars, and cordless) and head tumour risk (brain tumours, acoustic neuromas, and salivary gland tumours) is still a matter of debate; progress requires a critical analysis of the methodological elements necessary for an impartial evaluation of contradictory studies. Methods A close examination of the protocols and results from all case-control and cohort studies, pooled- and meta-analyses on head tumour risk for mobile phone users was carried out, and for each study the elements necessary for evaluating its reliability were identified. In addition, new meta-analyses of the literature data were undertaken. These were limited to subjects with mobile phone latency time compatible with the progression of the examined tumours, and with analysis of the laterality of head tumour localisation corresponding to the habitual laterality of mobile phone use. Results Blind protocols, free from errors, bias, and financial conditioning factors, give positive results that reveal a cause-effect relationship between long-term mobile phone use or latency and statistically significant increase of ipsilateral head tumour risk, with biological plausibility. Non-blind protocols, which instead are affected by errors, bias, and financial conditioning factors, give negative results with systematic underestimate of such risk. However, also in these studies a statistically significant increase in risk of ipsilateral head tumours is quite common after more than 10 years of mobile phone use or latency. The meta-analyses, our included, examining only data on ipsilateral tumours in subjects using mobile phones since or for at least 10 years, show large and statistically significant increases in risk of ipsilateral brain gliomas and acoustic neuromas. Conclusions Our analysis of the literature studies and of the results from meta-analyses of the significant data alone shows an almost doubling of the risk of head tumours induced by long-term mobile phone use or latency. PMID:21679472
Quantifying infant physical interactions using sensorized toys in a natural play environment.
Goyal, Vatsala; Torres, Wilson; Rai, Roshan; Shofer, Frances; Bogen, Daniel; Bryant, Phillip; Prosser, Laura; Johnson, Michelle J
2017-07-01
Infants with developmental delays must be detected early in their development to minimize the progression of motor and neurological impairments. Our objective is to quantify how sensorized toys in a natural play environment can promote infant-toy physical interactions. We created a hanging elephant toy, equipped with an inertial measurement unit (IMU), a pressure transducer, and multiple feedback sensors, to be a hand-grasping toy. We used a 3 DoF robotic model with inputs from the IMU to calculate multiple kinematic metrics and an equation to calculate haptic metrics from the pressure transducer. Six typical infants were tested in the gym set-up. Three infants interacted with the toy for more than half the trial time. The youngest infant exhibited the largest toy displacement with ΔD = 27.6 cm, while the oldest infant squeezed the toy with the largest mean pressure of 4.5 kPa. More data on on both typical and atypical infants needs to be collected. After testing atypical infants in the SmarToyGym set-up, we will be able to identify interaction metrics that differentiate atypical and typical infants.
Pricise Target Geolocation and Tracking Based on Uav Video Imagery
NASA Astrophysics Data System (ADS)
Hosseinpoor, H. R.; Samadzadegan, F.; Dadrasjavan, F.
2016-06-01
There is an increasingly large number of applications for Unmanned Aerial Vehicles (UAVs) from monitoring, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using an extended Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors, Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process. The results of this study compared with code-based ordinary GPS, indicate that RTK observation with proposed method shows more than 10 times improvement of accuracy in target geolocation.
NASA Astrophysics Data System (ADS)
Choi, Michael K.
2017-09-01
The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go sample acquisition, and Return Cruise mission phases.
Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente
2016-01-01
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763
Besharati Tabrizi, Leila; Mahvash, Mehran
2015-07-01
An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.
2016-01-01
Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul
2014-01-01
Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr
Online and offline tools for head movement compensation in MEG.
Stolk, Arjen; Todorovic, Ana; Schoffelen, Jan-Mathijs; Oostenveld, Robert
2013-03-01
Magnetoencephalography (MEG) is measured above the head, which makes it sensitive to variations of the head position with respect to the sensors. Head movements blur the topography of the neuronal sources of the MEG signal, increase localization errors, and reduce statistical sensitivity. Here we describe two novel and readily applicable methods that compensate for the detrimental effects of head motion on the statistical sensitivity of MEG experiments. First, we introduce an online procedure that continuously monitors head position. Second, we describe an offline analysis method that takes into account the head position time-series. We quantify the performance of these methods in the context of three different experimental settings, involving somatosensory, visual and auditory stimuli, assessing both individual and group-level statistics. The online head localization procedure allowed for optimal repositioning of the subjects over multiple sessions, resulting in a 28% reduction of the variance in dipole position and an improvement of up to 15% in statistical sensitivity. Offline incorporation of the head position time-series into the general linear model resulted in improvements of group-level statistical sensitivity between 15% and 29%. These tools can substantially reduce the influence of head movement within and between sessions, increasing the sensitivity of many cognitive neuroscience experiments. Copyright © 2012 Elsevier Inc. All rights reserved.
Quality assessment of MEG-to-MRI coregistrations
NASA Astrophysics Data System (ADS)
Sonntag, Hermann; Haueisen, Jens; Maess, Burkhard
2018-04-01
For high precision in source reconstruction of magnetoencephalography (MEG) or electroencephalography data, high accuracy of the coregistration of sources and sensors is mandatory. Usually, the source space is derived from magnetic resonance imaging (MRI). In most cases, however, no quality assessment is reported for sensor-to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals are provided. It has been shown, however, that RMS of residuals do not correlate with coregistration errors. We suggest using target registration error (TRE) as criterion for the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed. An adaptive Metropolis algorithm was used to estimate the optimal coregistration and to sample the coregistration parameters (rotation and translation). We found an average TRE between 1.3 and 2.3 mm at the head surface. Further, we observed a mean absolute difference in coregistration parameters between the Metropolis and iterative closest point algorithm of (1.9 +/- 15){\\hspace{0pt}}\\circ and (1.1 +/- 9) m. A paired sample t-test indicated a significant improvement in goal function minimization by using the Metropolis algorithm. The sampled parameters allowed computation of TRE on the entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for head-to-MRI coregistrations.
Berger, Rachel P; Parks, Sharyn; Fromkin, Janet; Rubin, Pamela; Pecora, Peter J
2015-04-01
To assess the accuracy of an International Classification of Diseases (ICD) code-based operational case definition for abusive head trauma (AHT). Subjects were children <5 years of age evaluated for AHT by a hospital-based Child Protection Team (CPT) at a tertiary care paediatric hospital with a completely electronic medical record (EMR) system. Subjects were designated as non-AHT traumatic brain injury (TBI) or AHT based on whether the CPT determined that the injuries were due to AHT. The sensitivity and specificity of the ICD-based definition were calculated. There were 223 children evaluated for AHT: 117 AHT and 106 non-AHT TBI. The sensitivity and specificity of the ICD-based operational case definition were 92% (95% CI 85.8 to 96.2) and 96% (95% CI 92.3 to 99.7), respectively. All errors in sensitivity and three of the four specificity errors were due to coder error; one specificity error was a physician error. In a paediatric tertiary care hospital with an EMR system, the accuracy of an ICD-based case definition for AHT was high. Additional studies are needed to assess the accuracy of this definition in all types of hospitals in which children with AHT are cared for. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary
Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen
2017-01-01
Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115
Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign
NASA Astrophysics Data System (ADS)
Båserud, Line; Reuder, Joachim; Jonassen, Marius O.; Kral, Stephan T.; Paskyabi, Mostafa B.; Lothon, Marie
2016-10-01
The micro-RPAS (remotely piloted aircraft system) SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1 kg. The integration of the turbulence probe in the SUMO system was still in an early prototype stage during this campaign, and therefore extensive post-processing of the data was required. In order to be able to calculate the three-dimensional wind vector, flow probe measurements were first synchronized with the autopilot's attitude and velocity data. Clearly visible oscillations were detected in the resulting vertical velocity, w, even after correcting for the aircraft motion. The oscillations in w were identified as the result of an internal time shift between the inertial measurement unit (IMU) and the GPS sensors, leading to insufficient motion correction, especially for the vertical wind component, causing large values of σw. Shifting the IMU 1-1.5 s forward in time with respect to the GPS yields a minimum for σw and maximum covariance between the IMU pitch angle and the GPS climb angle. The SUMO data show a good agreement to sonic anemometer data from a 60 m tower for σu, but show slightly higher values for σv and σw. Vertical TKE profiles, obtained from consecutive flight legs at different altitudes, show reasonable results, both with respect to the overall TKE level and the temporal variation. A thorough discussion of the methods used and the identified uncertainties and limitations of the system for turbulence measurements is included and should help the developers and users of other systems with similar problems.
Lai, N; Nalliah, S; Jutti, R C; Hla, Y; Lim, V K E
2009-08-01
The educational environment is widely considered to be a major factor affecting students' motivation and learning outcomes. Although students' perceptions of their educational environment are often reported, we are unaware of any published reports that relate this information to students' clinical competence, either self-perceived or objectively measured. We aimed to correlate students' perceptions of their learning environment and their self-perceived competence in clinical, practical and personal skills, using validated scales. Subjects included a cohort of 71 final-year medical students who were posted to a peripheral campus affiliated with a district hospital. Two questionnaires were administered concurrently: a modified DREEM (50 items) to assess the learning environment and an abbreviated IMU Student Competency Survey (29 items) to examine self-perceived competence across a wide range of skills and work-readiness. We correlated the major domains in both surveys using Spearman's Correlation. Fifty-nine students (83%) completed the questionnaires. Comparing correlations of the five major domains of the modified DREEM questionnaire ("Perception of learning", "Perception of teachers", "Academic self-perception", "Perception of atmosphere" and "Social self-perception") with all subscales in the abbreviated IMU Student Competency Survey (clinical, practical, personal skills and overall work-readiness), we found that academic self-perception domain had the strongest correlations (r:0.405 to 0.579, p:0.002 to < 0.001) and perception of teachers bears the weakest correlations (r:0.171 to 0.284, p:0.254 to 0.031). Self-perceived competence in practical skills in the IMU Student Competency Survey correlated the weakest with all domains of the modified DREEM (r:0.206 to 0.405, p:0.124 to 0.002). The overall weak-to-moderate correlations between perceptions of learning environment and self-perceived clinical competence suggest that other factors might interact with the learning environment to determine students' confidence and achievements.
Aslani, Navid; Noroozi, Siamak; Davenport, Philip; Hartley, Richard; Dupac, Mihai; Sewell, Philip
2018-06-01
Traditional shoulder range of movement (ROM) measurement tools suffer from inaccuracy or from long experimental setup times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a 'frozen' shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291 ± 538 deg 2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg 2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace. Graphical abstract The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. The assessment tool consists of an IMU sensor, an EMG sensor, a microcontroller and a Bluetooth module. The assessment tool was attached to subjects arm. Individuals were instructed to move their arms with the elbow fully extended. They were then asked to provide the maximal voluntary elevation envelope of the arm in 3D space in multiple attempts starting from a small movement envelope going to the biggest possible in four consecutive circuits. The results showed that there was an average ROM surface area of 27291 ± 538 deg2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace.
A Note on NCOM Temperature Forecast Error Calibration Using the Ensemble Transform
2009-01-01
Division Head Ruth H. Preller, 7300 Security, Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs...problem, local unbiased (correlation) and persistent errors (bias) of the Navy Coastal Ocean Modeling (NCOM) System nested in global ocean domains, are...system were made available in real-time without performing local data assimilation, though remote sensing and global data was assimilated on the
SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegener, S; Herzog, B; Sauer, O
2016-06-15
Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent highermore » doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.« less
A new methodology for vibration error compensation of optical encoders.
Lopez, Jesus; Artes, Mariano
2012-01-01
Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.
Grantham, D Wesley; Ashmead, Daniel H; Haynes, David S; Hornsby, Benjamin W Y; Labadie, Robert F; Ricketts, Todd A
2012-01-01
: One purpose of this investigation was to evaluate the effect of a unilateral bone-anchored hearing aid (Baha) on horizontal plane localization performance in single-sided deaf adults who had either a conductive or sensorineural hearing loss in their impaired ear. The use of a 33-loudspeaker array allowed for a finer response measure than has previously been used to investigate localization in this population. In addition, a detailed analysis of error patterns allowed an evaluation of the contribution of random error and bias error to the total rms error computed in the various conditions studied. A second purpose was to investigate the effect of stimulus duration and head-turning on localization performance. : Two groups of single-sided deaf adults were tested in a localization task in which they had to identify the direction of a spoken phrase on each trial. One group had a sensorineural hearing loss (SNHL group; N = 7), and the other group had a conductive hearing loss (CHL group; N = 5). In addition, a control group of four normal-hearing adults was tested. The spoken phrase was either 1250 msec in duration (a male saying "Where am I coming from now?") or 341 msec in duration (the same male saying "Where?"). For the longer-duration phrase, subjects were tested in conditions in which they either were or were not allowed to move their heads before the termination of the phrase. The source came from one of nine positions in the front horizontal plane (from -79° to +79°). The response range included 33 choices (from -90° to +90°, separated by 5.6°). Subjects were tested in all stimulus conditions, both with and without the Baha device. Overall rms error was computed for each condition. Contributions of random error and bias error to the overall error were also computed. : There was considerable intersubject variability in all conditions. However, for the CHL group, the average overall error was significantly smaller when the Baha was on than when it was off. Further analysis of error patterns indicated that this improvement was primarily based on reduced response bias when the device was on; that is, the average response azimuth was nearer to the source azimuth when the device was on than when it was off. The SNHL group, on the other hand, had significantly greater overall error when the Baha was on than when it was off. Collapsed across listening conditions and groups, localization performance was significantly better with the 1250 msec stimulus than with the 341 msec stimulus. However, for the longer-duration stimulus, there was no significant beneficial effect of head-turning. Error scores in all conditions for both groups were considerably larger than those in the normal-hearing control group. : On average, single-sided deaf adults with CHL showed improved localization ability when using the Baha, whereas single-sided deaf adults with SNHL showed a decrement in performance when using the device. These results may have implications for clinical counseling for patients with unilateral hearing impairment.
Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.
Richard, Sandra K; Chesnaux, Romain; Rouleau, Alain
2016-03-01
An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil-bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling-head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re-equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling-head permeability test. These observations demonstrate that a properly designed falling-head permeability test may be useful in the detection of defective casing seals. © 2015, National Ground Water Association.
Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba
Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less
Gao, Nuo; Zhu, S A; He, Bin
2005-06-07
We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.
Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle
Byun, Yeun Sub; Kim, Young Chol
2016-01-01
Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Simpson, James
2010-01-01
The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.
Rapid Annealing of Iron Implanted Hg(1-x)Cd(x)Te
1990-03-01
Alnrroveii rFoi’ PubikI Release; distributin tilIntl ted DTICELECTEJUN 12 IMU’ BEest Available Cop, D i ..:6 (J,•, 4iL& , AD Rapid Annealing of Ion...Recently, we have received from Or.J. Dinan of the Night Vision and Electro-optic Army Labs at Fort Belvoir a few electrically uncharacterized Hg
Dynamo: A Model Transition Framework for Dynamic Stability Control and Body Mass Manipulation
2011-11-01
driving at high speed, and you turn the steering wheel hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the...sensors (GPS, IMU, LIDAR ) for vehicle control. Figure 17: Dynamo high-speed small UGV hardware platform We will perform experiments to measure the MTC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
.... Strandvelen 18, Lysaker, Norway. Navico UK, Ltd., Premier Way, Abbey Park, Romsey Hampshire, United Kingdom..., Southampton Road. Portsmouth Hampshire, PO6 4QB, United Kingdom. Raymarine Inc., 21 Manchester Street... violations of section 337 based upon the importation into the United States, the sale for importation, and...
LiDAR and Image Point Cloud Comparison
2014-09-01
UAV unmanned aerial vehicle USGS United States Geological Survey UTM Universal Transverse Mercator WGS 84 World Geodetic System 1984 WSI...19 1. Physics of LiDAR Systems ................................................................20 III. DATA AND SOFTWARE...ground control point GPS Global Positioning System IMU inertial measurements unit LiDAR light detection and ranging MI mutual information MVS
2007 Precision Strike Annual Programs Review
2007-04-25
Adapting our methods • Remaining a flexible combined-arms force • Enabling a generation of combat- experienced decision-makers by distributing...Sustain Propulsion Network RadioMEMS IMU Flexible Engagement Options Requirements Capabilities Precision Attack Missile (PAM) 67” (with Canister...Aimpoint 6 PAM Seeker Modes PAM’s Multiple Targeting Modes Increase Flexibility , Improve Lethality PAM’s Multiple Targeting Modes Increase Flexibility
Quantification of residual dose estimation error on log file-based patient dose calculation.
Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi
2016-05-01
The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Wang, He; Wang, Congjun; Tung, Samuel; Dimmitt, Andrew Wilson; Wong, Pei Fong; Edson, Mark A.; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Gunn, Gary B.; Takiar, Vinita; Wang, Xin A.; Luo, Dershan; Yang, James N.; Wong, Jennifer
2016-01-01
The purpose of this study was to investigate the setup and positioning uncertainty of a custom cushion/mask/bite‐block (CMB) immobilization system and determine PTV margin for image‐guided head and neck stereotactic ablative radiotherapy (HN‐SABR). We analyzed 105 treatment sessions among 21 patients treated with HN‐SABR for recurrent head and neck cancers using a custom CMB immobilization system. Initial patient setup was performed using the ExacTrac infrared (IR) tracking system and initial setup errors were based on comparison of ExacTrac IR tracking system to corrected online ExacTrac X‐rays images registered to treatment plans. Residual setup errors were determined using repeat verification X‐ray. The online ExacTrac corrections were compared to cone‐beam CT (CBCT) before treatment to assess agreement. Intrafractional positioning errors were determined using prebeam X‐rays. The systematic and random errors were analyzed. The initial translational setup errors were −0.8±1.3 mm, −0.8±1.6 mm, and 0.3±1.9 mm in AP, CC, and LR directions, respectively, with a three‐dimensional (3D) vector of 2.7±1.4 mm. The initial rotational errors were up to 2.4° if 6D couch is not available. CBCT agreed with ExacTrac X‐ray images to within 2 mm and 2.5°. The intrafractional uncertainties were 0.1±0.6 mm, 0.1±0.6 mm, and 0.2±0.5 mm in AP, CC, and LR directions, respectively, and 0.0∘±0.5°, 0.0∘±0.6°, and −0.1∘±0.4∘ in yaw, roll, and pitch direction, respectively. The translational vector was 0.9±0.6 mm. The calculated PTV margins mPTV(90,95) were within 1.6 mm when using image guidance for online setup correction. The use of image guidance for online setup correction, in combination with our customized CMB device, highly restricted target motion during treatments and provided robust immobilization to ensure minimum dose of 95% to target volume with 2.0 mm PTV margin for HN‐SABR. PACS number(s): 87.55.ne PMID:27167275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.; Jark, W.; Takacs, P.Z.
1995-02-01
Metrology requirements for optical components for third generation synchrotron sources are taxing the state-of-the-art in manufacturing technology. We have investigated a number of effect sources in a commercial figure measurement instrument, the Long Trace Profiler II (LTP II), and have demonstrated that, with some simple modifications, we can significantly reduce the effect of error sources and improve the accuracy and reliability of the measurement. By keeping the optical head stationary and moving a penta prism along the translation stage, the stability of the optical system is greatly improved, and the remaining error signals can be corrected by a simple referencemore » beam subtraction. We illustrate the performance of the modified system by investigating the distortion produced by gravity on a typical synchrotron mirror and demonstrate the repeatability of the instrument despite relaxed tolerances on the translation stage.« less
Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV
NASA Astrophysics Data System (ADS)
Khatiwada, Bikalpa; Budge, Scott E.
2017-05-01
Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.
Kang, Sung-Won; Choi, Hyeob; Park, Hyung-Il; Choi, Byoung-Gun; Im, Hyobin; Shin, Dongjun; Jung, Young-Giu; Lee, Jun-Young; Park, Hong-Won; Park, Sukyung; Roh, Jung-Sim
2017-11-07
Spinal disease is a common yet important condition that occurs because of inappropriate posture. Prevention could be achieved by continuous posture monitoring, but most measurement systems cannot be used in daily life due to factors such as burdensome wires and large sensing modules. To improve upon these weaknesses, we developed comfortable "smart wear" for posture measurement using conductive yarn for circuit patterning and a flexible printed circuit board (FPCB) for interconnections. The conductive yarn was made by twisting polyester yarn and metal filaments, and the resistance per unit length was about 0.05 Ω/cm. An embroidered circuit was made using the conductive yarn, which showed increased yield strength and uniform electrical resistance per unit length. Circuit networks of sensors and FPCBs for interconnection were integrated into clothes using a computer numerical control (CNC) embroidery process. The system was calibrated and verified by comparing the values measured by the smart wear with those measured by a motion capture camera system. Six subjects performed fixed movements and free computer work, and, with this system, we were able to measure the anterior/posterior direction tilt angle with an error of less than 4°. The smart wear does not have excessive wires, and its structure will be optimized for better posture estimation in a later study.
A Robust Self-Alignment Method for Ship's Strapdown INS Under Mooring Conditions
Sun, Feng; Lan, Haiyu; Yu, Chunyang; El-Sheimy, Naser; Zhou, Guangtao; Cao, Tong; Liu, Hang
2013-01-01
Strapdown inertial navigation systems (INS) need an alignment process to determine the initial attitude matrix between the body frame and the navigation frame. The conventional alignment process is to compute the initial attitude matrix using the gravity and Earth rotational rate measurements. However, under mooring conditions, the inertial measurement unit (IMU) employed in a ship's strapdown INS often suffers from both the intrinsic sensor noise components and the external disturbance components caused by the motions of the sea waves and wind waves, so a rapid and precise alignment of a ship's strapdown INS without any auxiliary information is hard to achieve. A robust solution is given in this paper to solve this problem. The inertial frame based alignment method is utilized to adapt the mooring condition, most of the periodical low-frequency external disturbance components could be removed by the mathematical integration and averaging characteristic of this method. A novel prefilter named hidden Markov model based Kalman filter (HMM-KF) is proposed to remove the relatively high-frequency error components. Different from the digital filters, the HMM-KF barely cause time-delay problem. The turntable, mooring and sea experiments favorably validate the rapidness and accuracy of the proposed self-alignment method and the good de-noising performance of HMM-KF. PMID:23799492
Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas
2018-01-04
In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.