Science.gov

Sample records for in-core coolant flow

  1. 1996 Coolant Flow Management Workshop

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A. (Editor)

    1997-01-01

    The following compilation of documents includes a list of the 66 attendees, a copy of the viewgraphs presented, and a summary of the discussions held after each session at the 1996 Coolant Flow Management Workshop held at the Ohio Aerospace Institute, adjacent to the NASA Lewis Research Center, Cleveland, Ohio on December 12-13, 1996. The workshop was organized by H. Joseph Gladden and Steven A. Hippensteele of NASA Lewis Research Center. Participants in this workshop included Coolant Flow Management team members from NASA Lewis, their support service contractors, the turbine engine companies, and the universities. The participants were involved with research projects, contracts and grants relating to: (1) details of turbine internal passages, (2) computational film cooling capabilities, and (3) the effects of heat transfer on both sides. The purpose of the workshop was to assemble the team members, along with others who work in gas turbine cooling research, to discuss needed research and recommend approaches that can be incorporated into the Center's Coolant Flow Management program. The workshop was divided into three sessions: (1) Internal Coolant Passage Presentations, (2) Film Cooling Presentations, and (3) Coolant Flow Integration and Optimization. Following each session there was a group discussion period.

  2. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  3. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  4. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  5. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  6. Evaluation of engine coolants under flow boiling conditions

    SciTech Connect

    McAssey, E.V. Jr.; Stinson, C.; Gollin, M.

    1995-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine coolant mixtures, propylene-glycol/water and ethylene-glycol/water. In each mixture, the concentration was 50-50 by volume. Performance in this situation is defined as the ability to maintain a lower surface temperature for a given flux. The heat transfer regimes considered covered the range from single phase forced convection through saturated flow boiling. Results show that both coolants perform satisfactorily. However, in single phase convection, ethylene-glycol/water is slightly more effective. Conversely, for sub-cooled nucleate boiling and saturated boiling, propylene-glycol/water results in slightly lower metal temperatures.

  7. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  8. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 2: Performance with coolant flow ejection at temperature ratios up to 2

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Kofskey, M. G.

    1977-01-01

    The aerodynamic performance of a 0.5 aspect ratio turbine vane configuration with coolant flow ejection was experimentally determined in a full annular cascade. The vanes were tested at a nominal mean section ideal critical velocity ratio of 0.890 over a range of primary to coolant total temperature ratio from 1.0 to 2.08 and a range of coolant to primary total pressure ratio from 1.0 to 1.4 which corresponded to coolant flows from 3.0 to 10.7 percent of the primary flow. The variations in primary and thermodynamic efficiency and exit flow conditions with circumferential and radial position were obtained.

  9. A method for measuring cooling air flow in base coolant passages of rotating turbine blades

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1975-01-01

    Method accurately determines actual coolant mass flow rate in cooling passages of rotating turbine blades. Total and static pressures are measured in blade base coolant passages. Mass flow rates are calculated from these measurements of pressure, measured temperature and known area.

  10. Method for controlling coolant flow in airfoil, flow control structure and airfoil incorporating the same

    DOEpatents

    Itzel, Gary Michael; Devine, II, Robert Henry; Chopra, Sanjay; Toornman, Thomas Nelson

    2003-07-08

    A coolant flow control structure is provided to channel cooling media flow to the fillet region defined at the transition between the wall of a nozzle vane and a wall of a nozzle segment, for cooling the fillet region. In an exemplary embodiment, the flow control structure defines a gap with the fillet region to achieve the required heat transfer coefficients in this region to meet part life requirements.

  11. Flow in serpentine coolant passages with trip strips

    NASA Technical Reports Server (NTRS)

    Tse, D. G.-N.

    1995-01-01

    Under the subject contract, an effort is being conducted at Scientific Research Associates, Inc. (SRA) to obtain flow field measurements in the coolant passage of a rotating turbine blade with ribbed walls, both in the stationary and rotating frames. The data obtained will be used for validation of computational tools and assessment of turbine blade cooling strategies. The configuration of the turbine blade passage model is given, and the measuring plane locations are given. The model has a four-pass passage with three 180 turns. This geometry was chosen to allow analyses of the velocity measurements corresponding to the heat transfer results obtained by Wagner. Two passes of the passage have a rectangular cross-section of 1.0 in x 0.5 in. Another two passes have a square cross-section of 0.5 in x 0.5 in. Trips with a streamwise pitch to trip height (P/e) = 5 and trip height to coolant passage width (e/Z) = 0.1, were machined along the leading and trailing walls. These dimensions are typical of those used in turbine blade coolant passages. The trips on these walls are staggered by the half-pitch. The trips are skewed at +/- 45 deg, and this allows the effect of trip orientation to be examined. Experiments will be conducted with flow entering the model through the 1.0 in x 0.5 in rectangular passage (Configuration C) and the 0.5 in x 0. 5 in square passage (Configuration D) to examine the effect of passage aspect ratio. Velocity measurements were obtained with a Reynolds number (Re) of 25,000, based on the hydraulic diameter of and bulk mean velocity in the half inch square passage. The coordinate system used in presenting the results for configurations C and D, respectively, is shown. The first, second and third passes of the passage will be referred to as the first, second and third passages, respectively, in later discussion. Streamwise distance (x) from the entrance is normalized by the hydraulic diameter (D). Vertical (y) and tangential (z) distances are

  12. Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen

    1990-01-01

    A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.

  13. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, L.E.

    1980-11-24

    An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

  14. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, Lyle E.

    1983-01-01

    An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

  15. Turbulence spectra and length scales measured in film coolant flows emerging from discrete holes

    SciTech Connect

    Burd, S.W.; Simon, T.W.

    1999-07-01

    To date, very little attention has been devoted to the scales and turbulence energy spectra of coolant exiting from film cooling holes. Length-scale documentation and spectral measurements have primarily been concerned with the free-stream flow with which the coolant interacts. Documentation of scales and energy decomposition of the coolant flow leads to more complete understanding of this important flow and the mechanisms by which it disperses and mixes with the free stream. CFD modeling of the emerging flow can use these data as verification that flow computations are accurate. To address this need, spectral measurements were taken with single-sensor, hot-wire anemometry at the exit plane of film cooling holes. Energy spectral distributions and length scales calculated from these distributions are presented for film cooling holes of different lengths and for coolant supply plenums of different geometries. Measurements are presented on the hole streamwise centerline at the center of the hole, one-half diameter upstream of center, and one-half diameter downstream of center. The data highlight some fundamental differences in energy content, dominant frequencies, and scales with changes in the hole and plenum geometries. Coolant flowing through long holes exhibits smoothly distributed spectra as might be anticipated in fully developed tube flows. Spectra from short-hole flows, however, show dominant frequencies.

  16. Coolant line hydrometer

    SciTech Connect

    Barber, M.D.; Kipp, W.G.

    1987-03-17

    This patent describes a hydrometer unit for connection in an automobile coolant flow line comprising: a tubular fitting adapted to be connected to the coolant flow line; a coolant receiving chamber means connected to the tubular fitting for receiving coolant from the tubular fitting; and indicating float elements contained within the coolant receiving chamber means and adapted to rise therein individually as a function of the specific gravity of the coolant. The coolant receiving chamber means includes a closure cap which when connected to the tubular fitting forms a coolant receiving chamber, retaining means for retaining the indicating float elements within the coolant receiving chamber, a viewing window member of a substantially clear material through which the float elements can be visually observed within the coolant receiving chamber means, and air venturi means located within the coolant receiving chamber means for automatically removing air which may collect within the coolant chamber means.

  17. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  18. System and method for determining coolant level and flow velocity in a nuclear reactor

    DOEpatents

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  19. Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors

    SciTech Connect

    Curtis, Franklin G; Ekici, Kivanc; Freels, James D

    2011-01-01

    The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

  20. Experimental investigations of MHD flow tailoring for first wall coolant channels of self-cooled blankets

    SciTech Connect

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Barleon, L.; Kreuzinger, H.; Walker, J.S.

    1989-03-01

    Results of experiments on the concept of flow tailoring, the use of salient features of MHD flows in strong magnetic fields to create desirable velocity profiles in the coolant ducts of the first wall and the blanket, are reported. Proof-of-principle testing of flow tailoring has been chosen as the first joint activity on liquid metal MHD between Argonne National Laboratory (ANL) and Kernforschungszentrum Karlsruhe (KfK) because flow tailoring offers the possibility of significant improvement in blanket design and performance. The joint tests are conducted at ANL's ALEX facility on a test article fabricated at KfK. A 3-D MHD thermal hydraulic code developed at ANL is used to demonstrate the increased thermal performance of first wall coolant channels with flow tailoring. Sample results of detailed measurements of velocity and voltage distributions are compared to theoretical predictions provided by analytical tools developed at ANL with the collaboration of the University of Illinois.

  1. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D., Sr.

    1989-02-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  2. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  3. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

    NASA Technical Reports Server (NTRS)

    Tse, David G.N.; Steuber, Gary

    1996-01-01

    Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

  4. Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, R. E. (Technical Monitor)

    2000-01-01

    The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The blade chosen is the VKI rotor with three staggered rows of shower-head holes. The present analysis applies these flow characteristics at the shower-head hole exits. A multi-block three-dimensional Navier-Stokes code with Wilcox's k-omega model is used to compute the heat transfer coefficient on the film-cooled turbine blade. A reasonably good comparison with the experimental data as well as with the more complete earlier analysis where the hole pipes and coolant plenum were also gridded is obtained. If the 1/7th power law is assumed for the coolant flow characteristics at the hole exits, considerable differences in the heat transfer coefficient on the blade surface, specially in the leading-edge region, are observed even though the span-averaged values of h (heat transfer coefficient based on T(sub o)-T(sub w)) match well with the experimental data. This calls for span-resolved experimental data near film-cooling holes on a blade for better validation of the code.

  5. Numerical Study of Coolant Mixing Caused by the Flow Deflectors in a Nuclear Fuel Bundle

    SciTech Connect

    In, Wang Kee

    2001-05-15

    A numerical study was conducted to investigate the nuclear fuel assembly coolant flow mixing that is promoted by the flow deflectors on the grid spacer. Four typical flow deflectors (split vane, side-supported vane, swirl vane, and twisted vane) were chosen for this study. A single subchannel of one grid span is modeled using the flow symmetry. The predicted axial and lateral mean flow velocities, and the turbulent kinetic energy in the subchannel for the split-vane design, are in good agreement with the experimental results.The split vane and the twisted vane generate a large cross flow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The cross flow rapidly decreases and the swirling flow becomes dominant downstream of the spacer. The side-supported vane induces a horizontally elongated elliptic swirl in the subchannel and a secondary flow in the near downstream of the spacer. The swirl vane produces a circular swirling flow in the subchannel and a negligible cross flow. For the twisted-vane and side-supported vane designs, the change in direction of the cross flow was predicted. The average turbulent kinetic energy in the subchannel sharply increases near the spacer and rapidly decreases to a fully developed level. In summary, the numerical results showed a somewhat large difference from the experimental results near the spacer but represented the overall characteristics of coolant mixing well in a nuclear fuel bundle with the flow deflectors on the grid spacer.

  6. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1991-01-01

    Future space exploration and commercialization will require more efficient heat rejection systems. For the required heat transfer rates, such systems must use advanced heat transfer techniques. Forced two phase flow boiling heat transfer with enhancements falls in this category. However, moderate to high quality two phase systems tend to require higher pressure losses. This report is divided into two major parts: (1) Multidimensional wall temperature measurement and heat transfer enhancement for top heated horizontal channels with flow boiling; and (2) Improved analytical heat transfer data reduction for a single side heated coolant channel. Part 1 summarizes over forty experiments which involve both single phase convection and flow boiling in a horizontal channel heated externally from the top side. Part 2 contains parametric dimensionless curves with parameters such as the coolant channel radius ratio, the Biot number, and the circumferential coordinate.

  7. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  8. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-02-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  9. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  10. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number

  11. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  12. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    SciTech Connect

    Titov, Gene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor

    2016-04-05

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  13. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-08-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  14. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-01-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  15. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  16. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOEpatents

    Christiansen, D.W.; Schively, D.P.

    1982-01-19

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  17. Inverse design of a proper number, shapes, sizes, and locations of coolant flow passages

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1992-01-01

    During the past several years we have developed an inverse method that allows a thermal cooling system designer to determine proper sizes, shapes, and locations of coolant passages (holes) in, say, an internally cooled turbine blade, a scram jet strut, a rocket chamber wall, etc. Using this method the designer can enforce a desired heat flux distribution on the hot outer surface of the object, while simultaneously enforcing desired temperature distributions on the same hot outer surface as well as on the cooled interior surfaces of each of the coolant passages. This constitutes an over-specified problem which is solved by allowing the number, sizes, locations and shapes of the holes to adjust iteratively until the final internally cooled configuration satisfies the over-specified surface thermal conditions and the governing equation for the steady temperature field. The problem is solved by minimizing an error function expressing the difference between the specified and the computed hot surface heat fluxes. The temperature field analysis was performed using our highly accurate boundary integral element code with linearly varying temperature along straight surface panels. Examples of the inverse design applied to internally cooled turbine blades and scram jet struts (coated and non-coated) having circular and non-circular coolant flow passages will be shown.

  18. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall

    SciTech Connect

    Khodak, A.; Loesser, G.; Zhai, Y.; Udintsev, V.; Klabacha, J.; Wang, W.; Johnson, D.; Feder, R.

    2015-07-24

    We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution of the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.

  19. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall

    DOE PAGES

    Khodak, A.; Loesser, G.; Zhai, Y.; ...

    2015-07-24

    We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less

  20. Effects of rotation on coolant passage heat transfer. Volume 2: Coolant passages with trips normal and skewed to the flow

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.

    1993-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modem turbine blades. This experimental program is one part of the NASA Hot Section Technology (HOST) Initiative, which has as its overall objective the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. The objective of this program was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. The experimental work was broken down into two phases. Phase 1 consists of experiments conducted in a smooth wall large scale heat transfer model. A detailed discussion of these results was presented in volume 1 of a NASA Report. In Phase 2 the large scale model was modified to investigate the effects of skewed and normal passage turbulators. The results of Phase 2 along with comparison to Phase 1 is the subject of this Volume 2 NASA Report.

  1. Fluid flow analysis of the SSME high pressure fuel and oxidizer turbine coolant systems

    NASA Technical Reports Server (NTRS)

    Teal, G. A.

    1989-01-01

    The objective is to provide improved analysis capability for the Space Shuttle Main Engine (SSME) high pressure fuel and oxidizer turbine coolant systems. Each of the systems was analyzed to determine fluid flow rate and thermodynamic and transport properties at all key points in the systems. Existing computer codes were used as a baseline for these analyses. These codes were modified to provide improved analysis capability. The major areas of improvement are listed. A review of the drawings was performed, and pertinent geometry changes were included in the models. Improvements were made in the calculation of thermodynamic and transport properties for a mixture of hydrogen and steam. A one-dimensional turbine model for each system is included as a subroutine to each code. This provides a closed loop analysis with a minimum of required boundary conditions as input. An improved labyrinth seal model is included in the high pressure fuel turbine coolant model. The modifications and the analysis results are presented in detail.

  2. Microstructural analysis of MTR fuel plates damaged by a coolant flow blockage

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Joppen, F.; Van den Berghe, S.

    2009-10-01

    In 1975, as a result of a blockage of the coolant inlet flow, two plates of a fuel element of the BR2 reactor of the Belgian Nuclear Research Centre (SCK•CEN) were partially melted. The fuel element consisted of Al-clad plates with 90% 235U enriched UAl x fuel dispersed in an Al matrix. The element had accumulated a burn up of 21% 235U before it was removed from the reactor. Recently, the damaged fuel plates were sent to the hot laboratory for detailed PIE. Microstructural changes and associated temperature markers were used to identify several stages in the progression to fuel melting. It was found that the temperature in the center of the fuel plate had increased above 900-950 °C before the reactor was scrammed. In view of the limited availability of such datasets, the results of this microstructural analysis provide valuable input in the analysis of accident scenarios for research reactors.

  3. Buoyancy Driven Coolant Mixing Studies of Natural Circulation Flows at the ROCOM Test Facility Using ANSYS CFX

    SciTech Connect

    Hohne, Thomas; Kliem, Soren; Rohde, Ulrich; Weiss, Frank-Peter

    2006-07-01

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)

  4. Analysis of the Loss of Forced Reactor Coolant Flow Accident in SMART using RETRAN-03/INT

    SciTech Connect

    Kim, Tae-Wan; Suh, Kune-Yull; Lee, Un-Chul; Park, Goon-Cherl; Kim, Jae-Hak

    2002-07-01

    Small and medium integral type nuclear reactors are getting much attention for the peaceful use of nuclear energy in non-electric area such as district heating, seawater desalination and ship propulsion. An integral type nuclear co-generation reactor, SMART(System-integrated Modular Advanced ReacTor, 330 MWt), has been developed by KAERI (Korea Atomic Energy Research Institute) since 1996. In this study, the safety analysis for SMART using modified RETRAN-03 code whose name is RETRAN-03/INT is performed to examine the applicability of RETRAN-03/INT code. For the safety analysis of integral reactor with helical-coiled steam generators, RETRAN-03 code has been modified and verified using experimental results. New heat transfer coefficients are added for helical-coiled steam generator. And, the heat transfer model for steam generator is modified due to the different primary and secondary side heat flow from U-tube type steam generator. The loss of forced reactor coolant flow accident is selected for safety analysis in this study. Also it is considered as a single failure that one of three trains of passive residual heat removal system is failed. The results from MARS/SMR code and RETRAN-03/INT code are compared. (authors)

  5. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

    SciTech Connect

    Titov, Eugene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor

    2016-03-22

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  6. Subcooled freon-11 flow boiling in top-heated finned coolant channels with and without a twisted tape

    NASA Technical Reports Server (NTRS)

    Smith, Alvin; Boyd, Ronald D., Sr.

    1989-01-01

    An experimental study was conducted in top-heated finned horizontal tubes to study the effect of enhancement devices on flow boiling heat transfer in coolant channels. The objectives are to examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for circular coolant channels with spiral finned walls and/or spiral fins with a twisted tape, and improve the data reduction technique of a previous investigator. The working fluid is freon-11 with an inlet temperature of 22.2 C (approximately 21 C subcooling). The coolant channel's exit pressure and mass velocity are 0.19 M Pa (absolute) and 0.21 Mg/sq. ms, respectively. Two tube configurations were examined; i.e., tubes had either 6.52 (small pitch) or 4.0 (large pitch) fins/cm of the circumferential length (26 and 16 fins, respectively). The large pitch fins were also examined with a twisted tape insert. The inside nominal diameter of the copper channels at the root of the fins was 1.0 cm. The results show that by adding enhancement devices, boiling occurs almost simultaneously at all axial locations. The case of spiral fins with large pitch resulted in larger mean (circumferentially averaged) heat transfer coefficients, h sub m, at all axial locations. Finally, when twisted tape is added to the tube with large-pitched fins, the power required for the onset of boiling is reduced at all axial and circumferential locations.

  7. Subcooled freon-11 flow boiling in top-heated finned coolant channels with and without a twisted tape

    NASA Astrophysics Data System (ADS)

    Smith, Alvin; Boyd, Ronald D., Sr.

    An experimental study was conducted in top-heated finned horizontal tubes to study the effect of enhancement devices on flow boiling heat transfer in coolant channels. The objectives are to examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for circular coolant channels with spiral finned walls and/or spiral fins with a twisted tape, and improve the data reduction technique of a previous investigator. The working fluid is freon-11 with an inlet temperature of 22.2 C (approximately 21 C subcooling). The coolant channel's exit pressure and mass velocity are 0.19 M Pa (absolute) and 0.21 Mg/sq. ms, respectively. Two tube configurations were examined; i.e., tubes had either 6.52 (small pitch) or 4.0 (large pitch) fins/cm of the circumferential length (26 and 16 fins, respectively). The large pitch fins were also examined with a twisted tape insert. The inside nominal diameter of the copper channels at the root of the fins was 1.0 cm. The results show that by adding enhancement devices, boiling occurs almost simultaneously at all axial locations. The case of spiral fins with large pitch resulted in larger mean (circumferentially averaged) heat transfer coefficients, h sub m, at all axial locations. Finally, when twisted tape is added to the tube with large-pitched fins, the power required for the onset of boiling is reduced at all axial and circumferential locations.

  8. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    NASA Astrophysics Data System (ADS)

    Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.

    2011-09-01

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  9. Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core

    SciTech Connect

    Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M.

    2012-07-01

    The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

  10. FORTRAN program for calculating coolant flow and metal temperatures of a full-coverage-film-cooled vane or blade

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.

    1978-01-01

    A computer program that calculates the coolant flow and the metal temperatures of a full-coverage-film-cooled vane or blade was developed. The analysis was based on compressible, one-dimensional fluid flow and on one-dimensional heat transfer and treats the vane or blade shell as a porous wall. The calculated temperatures are average values for the shell outer-surface area associated with each film-cooling hole row. A thermal-barrier coating may be specified on the shell outer surface, and centrifugal effects can be included for blade calculations. The program is written in FORTRAN 4 and is operational on a UNIVAC 1100/42 computer. The method of analysis, the program input, the program output, and two sample problems are provided.

  11. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    SciTech Connect

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    2012-11-01

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

  12. CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0

    SciTech Connect

    Toth, Sandor; Legradi, Gabor; Aszodi, Attila

    2006-07-01

    From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960 mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)

  13. Cooling Characteristics of the V-1650-7 Engine. 1; Coolant-Flow Distribution, Cylinder Temperatures, and Heat Rejections at Typical Operating Conditions

    NASA Technical Reports Server (NTRS)

    Povolny, John H.; Bogdan, Louis J.

    1947-01-01

    An investigation was conducted to determine the coolant-flow distribu tion, the cylinder temperatures, and the heat rejections of the V-165 0-7 engine . The tests were run a t several power levels varying from minimum fuel consumption to war emergency power and at each power l evel the coolant flows corresponded to the extremes of those likely t o be encountered in typical airplane installations, A mixture of 30-p ercent ethylene glycol and 70-percent water was used as the coolant. The temperature of each cylinder was measured between the exhaust val ves, between the intake valves, in the center of the head, on the exh aust-valve guide, at the top of the barrel on the exhaust side, and o n each exhaust spark-plug gasket. For an increase in engine power fro m 628 to approximately 1700 brake horsepower the average temperature for the cylinder heads between the exhaust valves increased from 437 deg to 517 deg F, the engine coolant heat rejection increased from 12 ,600 to 22,700 Btu. per minute, the oil heat rejection increased from 1030 to 4600 Btu per minute, and the aftercooler-coolant heat reject ion increased from 450 to 3500 Btu -per minute.

  14. Experimental study of fluid dynamics in the pebble bed in a radial coolant flow

    NASA Astrophysics Data System (ADS)

    Smorchkova, Y. V.; Varava, A. N.; Dedov, A. V.; Komov, A. T.

    2016-10-01

    The results of experimental studies of pebble bed hydrodynamics are presented. For the first time experimental data on the pressure loss in a radial flow of fluid through the pebble bed was obtained. Experiments were carried out in the liquid flow rate ranging from 0.09 to 0.4 kg / s, fluid temperature is 20°C.

  15. Experimental and Analytical Investigation of the Coolant Flow Characteristics in Cooled Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Damerow, W. P.; Murtaugh, J. P.; Burggraf, F.

    1972-01-01

    The flow characteristics of turbine airfoil cooling system components were experimentally investigated. Flow models representative of leading edge impingement, impingement with crossflow (midchord cooling), pin fins, feeder supply tube, and a composite model of a complete airfoil flow system were tested. Test conditions were set by varying pressure level to cover the Mach number and Reynolds number range of interest in advanced turbine applications. Selected geometrical variations were studied on each component model to determine these effects. Results of these tests were correlated and compared with data available in the literature. Orifice flow was correlated in terms of discharge coefficients. For the leading edge model this was found to be a weak function of hole Mach number and orifice-to-impinged wall spacing. In the impingement with crossflow tests, the discharge coefficient was found to be constant and thus independent of orifice Mach number, Reynolds number, crossflow rate, and impingement geometry. Crossflow channel pressure drop showed reasonable agreement with a simple one-dimensional momentum balance. Feeder tube orifice discharge coefficients correlated as a function of orifice Mach number and the ratio of the orifice-to-approach velocity heads. Pin fin data was correlated in terms of equivalent friction factor, which was found to be a function of Reynolds number and pin spacing but independent of pin height in the range tested.

  16. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  17. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2016-09-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  18. Bi-coolant flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Chon, W. Y.; Green, L. L.

    The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.

  19. Measuring flow and pressure of lithium coolant under developmental testing of a high-temperature cooling system of a space nuclear power plant

    NASA Astrophysics Data System (ADS)

    Sobolev, V. Ya.; Sinyavsky, V. V.

    2014-12-01

    Sub-megawatt space NPP use lithium as a coolant and niobium alloy as a structural material. In order to refine the lithium-niobium technology of the material and design engineering, lithium-niobium loops were worked out in RSC Energia, and they were tested at a working temperature of lithium equal to 1070-1300 K. In order to measure the lithium flow and pressure, special gauges were developed, which made possible the calibration and checkout of the loops without their dismantling. The paper describes the architecture of the electromagnetic flowmeter and the electromagnetic vibrating-wire pressure transducer (gauge) for lithium coolant in the nuclear power plant cooling systems. The operating principles of these meters are presented. Flowmeters have been developed for channel diameters ranging from 10 to 100 mm, which are capable of measuring lithium flows in the range of 0.1 to 30 L/s with the error of 3% for design calibration and 1% for volume graduation. The temperature error of the pressure transducers does not exceed 0.4% per 100 K; the nonlinearity and hysteresis of the calibration curve do not exceed 0.3 and 0.4%, respectively. The transducer applications are illustrated by the examples of results obtained from tests on the NPP module mockup and heat pipes of a radiation cooler.

  20. Development and performance of a large-scale, transonic turbine blade cascade facility for aerodynamic studies of merging coolant-mainstream flows

    NASA Astrophysics Data System (ADS)

    Al-Sayeh, Amjad Isaaf

    1998-11-01

    A new, large scale, linear cascade facility of turbine blades has been developed for the experimental exploration of the aerodynamic aspects of film cooling technology. Primary interest is in the mixing of the ejected coolant with the mainstream, at both subsonic and supersonic mainstream Mach numbers at the cascade exit. In order to achieve a spatial resolution adequate for the exploration of details on the scale of the coolant ejection holes, the cascade dimensions were maximized, within the limitations of the air supply system. The cascade contains four blades (three passages) with 14.05 cm axial chord, 17.56 cm span and a design total turning angle of 130.6 degrees. Exit Mach numbers range from 0.6 to 1.5 and Reynolds numbers from 0.5 to 1.5 million. The air supply system capacity allows run times up to five minutes at maximum flow rates. A coolant supply system has been built to deliver mixtures of SFsb6 and air to simulate coolant/mainstream density ratios up to 2. The cascade contains several novel features. A full-perimeter bleed slot upstream of the blades is used to remove the approach boundary layer from all four walls, to improve the degree of two-dimensionality. The exit flow is bounded by two adjustable tailboards that are hinged at the trailing edges and actuated to set the exit flow direction according to the imposed pressure ratio. The boards are perforated and subjected to mass removal near the blades, to minimize the undesirable reflection of shocks and expansion waves. A probe actuator is incorporated that allows continuous positioning of probes in the exhaust stream, in both the streamwise and pitchwise directions. Diagnostic methods include extensive surface pressure taps on the approach and exhaust ducts and on the blade surfaces. The large size permitted as many as 19 taps on the trailing edge itself. Shadowgraph and schlieren are available. A three-prong wake probe has been constructed to simultaneously measure total and static pressures

  1. Machine coolant waste reduction by optimizing coolant life. Project summary

    SciTech Connect

    Pallansch, J.

    1995-08-01

    The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

  2. NUCLEAR REACTOR COOLANT

    DOEpatents

    Colichman, E.L.

    1959-10-20

    The formation of new reactor coolants which suppress polymerization resulting from pyrolytic and radiation decomposition is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to about 5% of beryllium or magnesium dispersed in the hydrocarbon.

  3. NUCLEAR REACTOR COOLANT

    DOEpatents

    Colichman, E.L.

    1959-10-20

    The formation of new reactor coolants which suppress polymerization resulting from pyrolitic and radiation decomposition is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to about 10% of an alkall metal dispersed in the hydrocarbon.

  4. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    DOEpatents

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  5. Heat transfer characteristics of rectangular coolant channels with various aspect ratios in the plasma-facing components under fully developed MHD laminar flow

    SciTech Connect

    Takase, K.; Hasan, M.Z.

    1995-12-31

    Convective heat transfer in MHD laminar flow through rectangular channels in the plasma-facing components of a fusion reactor has been analyzed numerically to investigate the effects of channel aspect ratio, defined as the ratio of the lengths of the plasma-facing side to the other side. The adverse effect of the nonuniformity of surface heat flus on Nusselt number (Nu) at the plasma-facing side can be alleviated by increasing the aspect ratio of a rectangular duct. At the center and corner of the plasma-facing side of a square duct, the Nu of non-MHD flow are 6.8 and 2.2, respectively, for uniform surface heat flux. In the presence of a strong magnetic field, Nu at the center and corner increases to 22 and 3.6, respectively. However, when the heat flux is highly nonuniform, as in the plasma-facing components, Nu decreases from 22 to 3.1 at the center and from 3.6 to 3.1 at the corner. When the aspect ratio is increased to 4, Nu at the center and corner increase to 5 and 4.7. Along the circumference of a rectangular channel, there are locations where the wall temperature is equal to or less than the bulk coolant temperature, thus making the Nu with conventional definition infinity or negative. The ratio between Nu of MHD flow and Nu of non-MHD flow for various aspect ratios is constant in the region of Hartmann number of more than 200 at least. On the other hand, its ratio increases monotonously with increasing the aspect ratio.

  6. MACHINE COOLANT WASTE REDUCTION BY OPTIMIZING COOLANT LIFE

    EPA Science Inventory

    Machine shops use coolants to improve the life and function of machine tools. hese coolants become contaminated with oils with use, and this contamination can lead to growth of anaerobic bacteria and shortened coolant life. his project investigated methods to extend coolant life ...

  7. LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor: Appendix A-4

    SciTech Connect

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510/sup 0/C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs.

  8. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  9. Environmentally Friendly Coolant System

    SciTech Connect

    David Jackson Principal Investigator

    2011-11-08

    Energy reduction through the use of the EFCS is most improved by increasing machining productivity. Throughout testing, nearly all machining operations demonstrated less land wear on the tooling when using the EFCS which results in increased tool life. These increases in tool life advance into increased productivity. Increasing productivity reduces cycle times and therefore reduces energy consumption. The average energy savings by using the EFCS in these machining operations with these materials is 9%. The advantage for end milling stays with flood coolant by about 6.6% due to its use of a low pressure pump. Face milling and drilling are both about 17.5% less energy consumption with the EFCS than flood coolant. One additional result of using the EFCS is improved surface finish. Certain machining operations using the EFCS result in a smoother surface finish. Applications where finishing operations are required will be able to take advantage of the improved finish by reducing the time or possibly eliminating completely one or more finishing steps and thereby reduce their energy consumption. Some machining operations on specific materials do not show advantages for the EFCS when compared to flood coolants. More information about these processes will be presented later in the report. A key point to remember though, is that even with equivalent results, the EFCS is replacing petroleum based coolants whose production produces GHG emissions and create unsafe work environments.

  10. Optimized planning of in-service inspections of local flow-accelerated corrosion of pipeline elements used in the secondary coolant circuit of the VVER-440-based units at the Novovoronezh NPP

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.

    2015-03-01

    Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.

  11. Assessment of and Improvements to Acoustic Velocimetry in Flows in Core-like Geometries

    NASA Astrophysics Data System (ADS)

    Mautino, A. R.; Adams, M. M.; Stone, D.; Triana, S. A.; Lathrop, D. P.; Lekic, V.

    2015-12-01

    Rapidly rotating fluid flows are found in a wide variety of geophysical and astrophysical contexts, including the Earth's outer core. The dynamics of such flows can be studied experimentally at conditions inaccessible to computational modeling. However, accurately measuring the mean and time-varying flows noninvasively presents a technical challenge, particularly in opaque liquids. In this study, we tackle the problem of mapping zonal flow profiles in spherical Couette flows, shear flows in a core-like geometry. These rotating flows induce shifts and splittings in the spectrum of the acoustically resonant fluid-filled cavity. The azimuthal component of flow can be estimated from the spectra of the acoustic modes, using inversion procedures adapted from Helioseismology. Here, we present a technique for reconstructing the mean velocity field using modal analysis by way of the Finite Element Method, which is used to compute the forward model accurately, taking into account structural geometries associated with the experimental setups, such as shafts and axles. Accurate forward modeling is crucial for reliable mode identification, and we demonstrate that it allows us to identify many more modes than is possible when using the spherically symmetric approximation. We model flow geometry as a superposition of low order basis flow patterns, each of which affects mode frequency splittings and shifts through advection and Coriolis forces.

  12. Directly connected heat exchanger tube section and coolant-cooled structure

    DOEpatents

    Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2014-04-01

    A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  13. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Olsen, N.; Finlay, C. C.

    2016-10-01

    Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterizing the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual differences of these monthly means, which also removes the static crustal field. SV time-series based on revised monthly means are much less scattered than those calculated from ordinary monthly means, and their variances and correlations between components are smaller. On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow that is constant over three months; such models exhibit large and rapid temporal variations. For models of this type, less complex flows achieve the same fit to the SV derived from revised monthly means than those from ordinary monthly means. However, those obtained from ordinary monthly means are able to follow excursions in SV that are likely to be external field contamination rather than core signals. Having established that we can find models that fit the data adequately, we then assess how much temporal variability is required. Previous studies have suggested that the flow is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth's rotation axis. TO have been proposed to explain decadal

  14. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, Richard P.

    1986-01-01

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium

  15. Coolant passage heat transfer with rotation

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J.; Johnson, B. V.

    1986-01-01

    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  16. Direct numerical simulation of a fluid flow in core samples based on quasi-hydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Balashov, V. A.; Savenkov, E. B.; Kuleshov, A. A.

    2016-12-01

    Direct numerical modeling techniques for the evaluation of a macroscopic permeability coefficient of samples of naturally occurring geological media using their micro-computer tomography (micro-CT) images is considered. The basic mathematical model of a flow is based on quasi-hydrodynamic (QHD) equations for viscous heat-conducting compressible gas flows. The evaluation of a permeability coefficient of artificial and real porous media is discussed. Free available micro-CT images are used. Results of computations for artificial porous media are compared with the analytic ones, for real porous media — with the results obtained by the Lattice Boltzmann method and results obtained by other researchers. It is shown that the approach based on QHD equations is highly competitive with other approaches.

  17. Reactor coolant pump flywheel

    DOEpatents

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  18. Directly connected heat exchanger tube section and coolant-cooled structure

    DOEpatents

    Chainer, Timothy J.; Coico, Patrick A.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2015-09-15

    A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  19. Effect of luteal phase elevation in core temperature on forearm blood flow during exercise.

    PubMed

    Kolka, M A; Stephenson, L A

    1997-04-01

    Forearm blood flow (FBF) as an index of skin blood flow in the forearm was measured in five healthy women by venous occlusion plethysmography during leg exercise at 80% peak aerobic power and ambient temperature of 35 degrees C (relative humidity 22%; dew-point temperature 10 degrees C). Resting esophageal temperature (T(es)) was 0.3 +/- 0.1 degrees C higher in the midluteal than in the early follicular phase of the menstrual cycle (P < 0.05). Resting FBF was not different between menstrual cycle phases. The T(es) threshold for onset of skin vasodilation was higher (37.4 +/- 0.2 degrees C) in midluteal than in early follicular phase (37.0 +/- 0.1 degrees C; P < 0.05). The slope of the FBF to T(es) relationship was not different between menstrual cycle phases (14.0 +/- 4.2 ml x 100 ml(-1) x min(-1) x degrees C(-1) for early follicular and 16.3 +/- 3.2 ml x 100 ml(-1) x min(-1) x degrees C(-1) for midluteal phase). Plateau FBF was higher during exercise in midluteal (14.6 +/- 2.2 ml x 100 ml(-1) x min(-1) x degrees C(-1)) compared with early follicular phase (10.9 +/- 2.4 ml x 100 ml(-1) x min(-1) x degrees C(-1); P < 0.05). The attenuation of the increase in FBF to T(es) occurred when T(es) was 0.6 degrees C higher and at higher FBF in midluteal than in early follicular experiments (P < 0.05). In summary, the FBF response is different during exercise in the two menstrual cycle phases studied. After the attenuation of the increase in FBF and while T(es) was still increasing, the greater FBF in the midluteal phase may have been due to the effects of increased endogenous reproductive endocrines on the cutaneous vasculature.

  20. Transient two-phase performance of LOFT reactor coolant pumps

    SciTech Connect

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  1. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    SciTech Connect

    Yu, Wenhua; Singh, Dileep; France, David M.

    2016-11-01

    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  2. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  3. Coolant-Control Valves For Fluid-Sampling Probes

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1989-01-01

    Small built-in leaks prevent overheating. Downstream flow-control globe valve replaced with modified gate valve. Modification consists of drilling small hole through valve gate, so valve never turned completely off. This "leaky" valve provides enough flow of coolant to prevent overheating causing probe to fail. Principle also applied to automatic control system by installing small bypass line around control valve.

  4. Load following capability of CANDLE reactor by adjusting coolant operation condition

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-01

    The load following capability of CANDLE reactor is investigated in the condition that the control rods are unavailable. Both sodium cooled metallic fuel fast reactor (SFR) and 208Pb cooled metallic fuel fast reactor (LFR) are investigated for their performance in power rate changing by changing its coolant operation condition; either coolant flow rate or coolant inlet temperature. The change by coolant flow rate is difficult especially for SFR because the maximum temperature criteria on cladding material may be violated. The power rate can be changed for its full range easily by changing the coolant temperature at the core inlet. LFR can reduce the same amount of power rate by smaller change of temperature than SFR. However, the coolant output temperature is generally decreased for this method and the thermal efficiency becomes worse.

  5. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-02-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meeting the sanitary sewer discharge limits and subsequent Land Disposal Restriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered Best Demonstrated Available Technologies, or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a multiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  6. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, R.P.

    1983-08-10

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  7. Long life coolant pump technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design concepts were investigated to improve space system coolant pump technology to be suitable for mission durations of two years and greater. These design concepts included an improved bearing system for the pump rotating elements, consisting of pressurized conical bearings. This design was satisfactorily endurance tested as was a new prototype pump built using various other improved design concepts. Based upon an overall assessment of the results of the program it is concluded that reliable coolant pumps can be designed for three year space missions.

  8. Analysis of automobile radiator performance with ethylene glycol/water and propylene glycol/water coolants

    SciTech Connect

    Gollin, M.; Bjork, D.

    1996-12-31

    The heat transfer and hydraulic performance of the following coolants was examined in five automobile radiators in a wind tunnel: 100% water; 100% propylene glycol; 70/30 propylene glycol/water (volume); 50/50 propylene glycol/water (volume); 70/30 ethylene glycol/water (volume); 50/50 ethylene glycol water (volume). The results of these studies are presented to demonstrate the relative performance of these coolant mixtures in terms of heat transfer, coolant pressure drop and radiator effectiveness for a range of coolant and air flowrates. It is concluded that the most effective of the coolants in transferring heat in the test radiators was water, followed by 50/50 ethylene glycol/water, 50/50 propylene glycol/water, 70/30 ethylene glycol/water, 70/30 propylene glycol and, finally, 100% propylene glycol. There will be a negligible differences between the performance of a radiator using a 50/50 propylene glycol/water coolant and a 50/50 ethylene glycol/water coolant. It is estimated that, with 50/50 propylene glycol coolant replacing 50/50 ethylene glycol/water, the temperature of the coolant throughout the cooling loop will increase by approximately 5%. The effect that the flow regime (fully turbulent/transition/laminar) has upon the performance of a given radiator/coolant combination was found to be significant. The design of the coolant passages in radiators can affect the onset of fully turbulent flow in the coolant passages in a radiator.

  9. Vertical reactor coolant pump instabilities

    NASA Technical Reports Server (NTRS)

    Jones, R. M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corrective measures taken are also described.

  10. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    SciTech Connect

    Hassan, Yassin; Anand, Nk

    2016-03-30

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensity peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by

  11. Peculiarities of evolution of shock waves generated by boiling coolant

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.

    2016-11-01

    Simulation of compression wave generation and evolution at the disk target was performed for the case of explosive-type boiling of coolant; the boiling is initiated by endwall rupture of a high-pressure pipeline. The calculations were performed for shock wave amplitude at different times and modes of pipe rupture. The simulated pressure of a target-reflected shock wave is different from the theoretical value for ideal gas; this discrepancy between simulation and theory becomes lower at higher distances of flow from the nozzle exit. Comparative simulation study was performed for flow of two-phase coolant with account for slip flow effect and for different sizes of droplets. Simulation gave the limiting droplet size when the single-velocity homogeneous flow model is valid, i.e., the slip flow effect is insignificant.

  12. Stagnation region gas film cooling: Effects of dimensionless coolant temperature

    NASA Technical Reports Server (NTRS)

    Bonnice, M. A.; Lecuyer, M. R.

    1983-01-01

    An experimental investigation was conducted to mode the film cooling performance for a turbine vane leading edge using the stagnation region of a cylinder in cross flow. Experiments were conducted with a single row of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio and dimensionless coolant temperature with free stream-to-wall temperature ratio approximately 1.7 and Re sub D = 90000. the cylindrical test surface was instrumented with miniature heat flux gages and wall thermocouples to determine the percentage reduction in the Stanton number as a function of the distance downstream from injection (x/d sub 0) and the location between adjacent holes (z/S). Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, from stagnation using a hole spacing ratio of S/d = 5. The film coolant was injected with T sub c T sub w with a dimensionless coolant temperature in the range 1.18 or equal to theta sub c or equal to 1.56. The data for local Stanton Number Reduction (SNR) showed a significant increase in SNR as theta sub c was increased above 1.0.

  13. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    NASA Technical Reports Server (NTRS)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  14. Analysis of coolant entrance boundary shape of porous region to control cooling along exit boundary

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Snyder, A.

    1983-01-01

    A cooled porous region has a plane surface exposed to a specified spatially varying heat flux. The coolant leaves the region through this surface, and it is desired to control the flow distribution to maintain a specified uniform surface temperature. This is accomplished by having the coolant entrance surface shaped to provide in the region the necessary variation of path length and, hence, flow resistance. The surface shape at the coolant entrance is found by solving a Cauchy boundary value problem. An exact solution is obtained that will deal with a wide variety of heating distributions for both two- and three-dimensional shapes.

  15. Investigations of ice formation in the Space Shuttle Main Engine 0209 main injector coolant cavity

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Charklwick, D. M.

    1991-01-01

    Severe main combustion chamber wall and main injector baffle element deterioration occurred during tests of Space Shuttle Main Engine 0209. One of the possible causes considered is ice formation and blockage of coolant to these components, resulting from the mixing of leaking hot turbine exhaust gas (hydrogen rich steam) and hydrogen coolant in the injector coolant cavity. The plausibility of ice blockage is investigated through simple mixing calculations for hot gas and hydrogen, investigation of condensation and water droplet formation, calculation of the freezing times for droplets, and the prediction of ice layer thicknesses. It is concluded that condensation and droplet formation can occur, and small water droplets that form can freeze very quickly when in contact with the cold coolant cavity surfaces. Copnservative analysis predicts, however, that the maximum thickness of the ice layers formed is too small to result in significant blockage of the coolant flow.

  16. YNPS main coolant system decontamination

    SciTech Connect

    Metcalf, E.T.

    1996-12-31

    The Yankee Nuclear Power Station (YNPS) located in Rowe, Massachusetts, is a four-loop pressurized water reactor that permanently ceased power operation on February 26, 1992. Decommissioning activities, including steam generator removal, reactor internals removal, and system dismantlement, have been in progress since the shutdown. One of the most significant challenges for YNPS in 1996 was the performance of the main coolant system chemical decontamination. This paper describes the objectives, challenges, and achievements involved in the planning and implementation of the chemical decontamination.

  17. INHIBITING THE POLYMERIZATION OF NUCLEAR COOLANTS

    DOEpatents

    Colichman, E.L.

    1959-10-20

    >The formation of new reactor coolants which contain an additive tbat suppresses polymerization of the primary dissoclation free radical products of the pyrolytic and radiation decomposition of the organic coolants is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to 5% of a powdered metal hydride chosen from the group consisting of the group IIA and IVA dispersed in the hydrocarbon.

  18. Cleaning of aluminum after machining with coolants

    SciTech Connect

    Roop, B.

    1995-07-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended.

  19. Corrosion of structural materials by lead-based reactor coolants.

    SciTech Connect

    Abraham, D. P.; Leibowitz, L.; Maroni, V. A.; McDeavitt, S. M.; Raraz, A. G.

    2000-11-16

    Advanced nuclear reactor design has, in recent years, focused increasingly on the use of heavy-liquid-metal coolants, such as lead and lead-bismuth eutectic. Similarly, programs on accelerator-based transmutation systems have also considered the use of such coolants. Russian experience with heavy-metal coolants for nuclear reactors has lent credence to the validity of this approach. Of significant concern is the compatibility of structural materials with these coolants. We have used a thermal convection-based test method to allow exposure of candidate materials to molten lead and lead-bismuth flowing under a temperature gradient. The gradient was deemed essential in evaluating the behavior of the test materials in that should preferential dissolution of components of the test material occur we would expect dissolution in the hotter regions and deposition in the colder regions, thus promoting material transport. Results from the interactions of a Si-rich mild steel alloy, AISI S5, and a ferritic-martensitic stainless steel, HT-9, with the molten lead-bismuth are presented.

  20. Numerical simulation of PWR response to a small break LOCA (loss-of-coolant accident) with reactor coolant pumps operating

    SciTech Connect

    Adams, J.P.; Dobbe, C.A.; Bayless, P.D.

    1986-01-01

    Calculations have been made of the response of pressurized water reactors (PWRs) during a small-break, loss-of-coolant accident with the reactor coolant pumps (RCPs) operating. This study was conducted, as part of a comprehensive project, to assess the relationship between measurable RCP parameters, such as motor power or current, and fluid density, both local (at the RCP inlet) and global (average reactor coolant system). Additionally, the efficacy of using these RCP parameters, together with fluid temperature, to identify an off-nominal transient as either a LOCA, a heatup transient, or a cooldown transient and to follow recovery from the transient was assessed. The RELAP4 and RELAP5 computer codes were used with three independent sets of RCP, two-phase degradation multipliers. These multipliers were based on data obtained in two-phase flow conditions for the Semiscale, LOFT, and Creare/Combustion Engineering (CE)/Electric Power Research Institute (EPRI) pumps, respectively. Two reference PWRs were used in this study: Zion, a four-loop, 1100-MWe, Westinghouse plant operated by Commonwealth Edison Co. in Zion, Illinois and Bellefonte, a two-by-four loop, 1213 MWe, Babcock and Wilcox designed plant being built by the Tennessee Valley Authority in Scottsboro, Alabama. The results from this study showed that RCP operation resulted in an approximately homogeneous reactor coolant system and that this result was independent of reference plant, computer code, or two-phase RCP head degradation multiplier used in the calculation.

  1. Simplified failure sequence evaluation of reactor pressure vessel head corroding in-core instrumentation assembly

    SciTech Connect

    McVicker, J.P.; Conner, J.T.; Hasrouni, P.N.; Reizman, A.

    1995-11-01

    In-Core Instrumentation (ICI) assemblies located on a Reactor Pressure Vessel Head have a history of boric acid leakage. The acid tends to corrode the nuts and studs which fasten the flanges of the assembly, thereby compromising the assembly`s structural integrity. This paper provides a simplified practical approach in determining the likelihood of an undetected progressing assembly stud deterioration, which would lead to a catastrophic loss of reactor coolant. The structural behavior of the In-Core Instrumentation flanged assembly is modeled using an elastic composite section assumption, with the studs transmitting tension and the pressure sealing gasket experiencing compression. Using the above technique, one can calculate the flange relative deflection and the consequential coolant loss flow rate, as well as the stress in any stud. A solved real life example develops the expected failure sequence and discusses the exigency of leak detection for safe shutdown. In the particular case of Calvert Cliffs Nuclear Power Plant (CCNPP) it is concluded that leak detection occurs before catastrophic failure of the ICI flange assembly.

  2. Cleaning of uranium vs machine coolant formulations

    SciTech Connect

    Cristy, S.S.; Byrd, V.R.; Simandl, R.F.

    1984-10-01

    This study compares methods for cleaning uranium chips and the residues left on chips from alternate machine coolants based on propylene glycol-water mixtures with either borax, ammonium tetraborate, or triethanolamine tetraborate added as a nuclear poison. Residues left on uranium surfaces machined with perchloroethylene-mineral oil coolant and on surfaces machined with the borax-containing alternate coolant were also compared. In comparing machined surfaces, greater chlorine contamination was found on the surface of the perchloroethylene-mineral oil machined surfaces, but slightly greater oxidation was found on the surfaces machined with the alternate borax-containing coolant. Overall, the differences were small and a change to the alternate coolant does not appear to constitute a significant threat to the integrity of machined uranium parts.

  3. TACT 1: A computer program for the transient thermal analysis of a cooled turbine blade or vane equipped with a coolant insert. 2. Programmers manual

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1979-01-01

    A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.

  4. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  5. Detailed heat transfer coefficient distributions under an array of impinging jets with coolant extraction

    SciTech Connect

    Huang, Y.; Ekkad, S.V.; Han, J.C.

    1996-12-31

    Jet impingement cooling is a high performance technique for heat transfer enhancement. Local heat transfer distributions are presented for an array of jets impinging on a target plate with a series of coolant extraction holes. The flow enters the pressure channel, impinges on the target plate and exits toward the sides and through the coolant extraction holes. The impingement plate has four rows of 12 jet holes and the target plate has three rows of 11 coolant extraction holes. The jet holes and the coolant extraction holes have the same diameters and are staggered such that the air impinging from the jet hole does not exit directly through the extraction hole. The detailed heat transfer coefficient distributions are measured using a transient technique and liquid crystal coating. Results are presented for a range of jet Reynolds numbers between 4,000 and 20,000. The effect of crossflow is also studied by changing the exit opening of the impingement channel to provide three different spent air exit directions. Heat transfer results for the target plate with coolant extraction are compared with those without coolant extraction at the same flow conditions.

  6. Minimizing thermal damage of aerospace components using coolant nozzle and coolant system optimization

    SciTech Connect

    Mindek, R.B. Jr.; Webster, J.A.

    1994-12-31

    Research to optimize the application of coolant in the creep feed grinding of aerospace components was conducted at the Center for Grinding Research and Development during the past year. During this research, work was performed in the areas of coolant jet nozzle and coolant system design to identify optimum jet nozzle designs, nozzle positioning and coolant system configurations. The knowledge gained from initial screening tests and grinding trials of flat surfaces was applied to final grinding trials on actual blade and vane (profiled) production components. Final grinding test results of four specific production operations showed that at least a 27% improvement in wheel life could be realized, relative to the levels previously established in production, by optimizing grinding fluid application. In addition, a set of guidelines for optimized coolant nozzle and coolant system design and manufacture have been developed from the results of this research, and are applicable to other types of grinding or machining as well.

  7. 40 CFR 1065.745 - Coolants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... without rust inhibitors. (c) For coolants allowed in paragraphs (a) and (b) of this section, you may use rust inhibitors and additives required for lubricity, up to the levels that the additive...

  8. 40 CFR 1065.745 - Coolants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... without rust inhibitors. (c) For coolants allowed in paragraphs (a) and (b) of this section, you may use rust inhibitors and additives required for lubricity, up to the levels that the additive...

  9. 40 CFR 1065.745 - Coolants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... without rust inhibitors. (c) For coolants allowed in paragraphs (a) and (b) of this section, you may use rust inhibitors and additives required for lubricity, up to the levels that the additive...

  10. 40 CFR 1065.745 - Coolants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... without rust inhibitors. (c) For coolants allowed in paragraphs (a) and (b) of this section, you may use rust inhibitors and additives required for lubricity, up to the levels that the additive...

  11. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  12. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  13. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly

  14. Thermal stratification potential in rocket engine coolant channels

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.

    1992-01-01

    The potential for rocket engine coolant channel flow stratification was computationally studied. A conjugate, 3-D, conduction/advection analysis code (SINDA/FLUINT) was used. Core fluid temperatures were predicted to vary by over 360 K across the coolant channel, at the throat section, indicating that the conventional assumption of a fully mixed fluid may be extremely inaccurate. Because of the thermal stratification of the fluid, the walls exposed to the rocket engine exhaust gases will be hotter than an assumption of full mixing would imply. In this analysis, wall temperatures were 160 K hotter in the turbulent mixing case than in the full mixing case. The discrepancy between the full mixing and turbulent mixing analyses increased with increasing heat transfer. Both analysis methods predicted identical channel resistances at the coolant inlet, but in the stratified analysis the thermal resistance was negligible. The implications are significant. Neglect of thermal stratification could lead to underpredictions in nozzle wall temperatures. Even worse, testing at subscale conditions may be inadequate for modeling conditions that would exist in a full scale engine.

  15. Coolant and ambient temperature control for chillerless liquid cooled data centers

    DOEpatents

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  16. Hydro-ball in-core instrumentation system and method of operation

    DOEpatents

    Tower, Stephen N.; Veronesi, Luciano; Braun, Howard E.

    1990-01-01

    A hydro-ball in-core instrumentation system employs detector strings each comprising a wire having radiation sensitive balls affixed diametrically at spaced positions therealong and opposite tip ends of which are transportable by fluid drag through interior passageways. In the passageways primary coolant is caused to flow selectively in first and second opposite directions for transporting the detector strings from stored positions in an exterior chamber to inserted positions within the instrumentation thimbles of the fuel rod assemblies of a pressure vessel, and for return. The coolant pressure within the detector passageways is the same as that within the vessel; face contact, disconnectable joints between sections of the interior passageways within the vessel facilitate assembly and disassembly of the vessel for refueling and routine maintenance operations. The detector strings may pass through a very short bend radius thereby minimizing space requirements for the connections of the instrumentation system to the vessel and concomitantly the vessel containment structure. Improved radiation mapping and a significant reduction in potential exposure of personnel to radiation are provided. Both top head and bottom head penetration embodiments are disclosed.

  17. Modeling wave processes at the outflowing of a water coolant with supercritical initial parameters

    NASA Astrophysics Data System (ADS)

    Vozhakov, I. S.; Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.

    2016-10-01

    Numerical simulation of the outflow of a coolant with supercritical initial parameters at a butt-break of high-pressure pipeline is carried out. The results of calculation of the outflow dynamics on a PV-diagram, as well as the pressure evolution are presented. It is shown that the flow rate weakly depends on temperature at its low values (up to 0, 9 Tc ). In the second region (from 0, 9 Tc to Tc ), the coolant boiling occurs inside the channel, which leads to a sharp drop in the flow rate with increasing temperature. And the third area (above Tc ) is typical for the gas coolant outflow, in which the density strongly depends on pressure and temperature.

  18. On-Line Coolant Chemistry Analysis

    SciTech Connect

    LM Bachman

    2006-07-19

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level.

  19. NGNP Reactor Coolant Chemistry Control Study

    SciTech Connect

    Brian Castle

    2010-11-01

    The main focus of this paper is to identify the most desirable ranges of impurity levels in the primary coolant to optimize component life in the primary circuit of the Next Generation Nuclear Plant (NGNP), which will either be a prismatic block or pebble bed reactor.

  20. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect

    Su'ud, Zaki; Anshari, Rio

    2012-06-06

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  1. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOEpatents

    Yunker, Wayne H.; Christiansen, David W.

    1987-05-05

    A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  2. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOEpatents

    Yunker, Wayne H.; Christiansen, David W.

    1987-01-01

    A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  3. Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility

    SciTech Connect

    Not Available

    1991-09-27

    This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

  4. Review of cladding-coolant interactions during LWR accident transients

    SciTech Connect

    Hobson, D.O.

    1980-01-01

    Some of the coolant-cladding interactions that can take place during the design basis loss-of-coolant accident and the Three Mile Island loss-of-coolant accident are analyzed. The physical manifestations of the interactions are quite similar, but the time sequences involved can cause very different end results. These results are described and a listing is given of the main research programs that are involved in coolant-cladding interaction research.

  5. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  6. Effects of coolant parameters on steady state temperature distribution in phospheric-acid fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Abdul-Aziz, A.

    1991-01-01

    The influence of thermophysical properties and flow rate on the steady-state temperature distribution in a phosphoric-acid fuel cell electrode plate was experimentally investigated. An experimental setup that simulates the operating conditions prevailing in a phosphoric-acid fuel cell stack was used. The fuel cell cooling system utilized three types of coolants to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The coolants used were water, engine oil, and air. These coolants were circulated at Reynolds number ranging from 1165 to 6165 for water; 3070 to 6864 for air; and 15 to 79 for oil. Experimental results are presented.

  7. Modulation of the neutron field in the multiplying condensed matter and coolant

    SciTech Connect

    Vodyanitskii, A. A.; Slyusarenko, Yu. V.

    2009-12-14

    The spatial damping of acoustic, neutron and thermal branches of oscillations are found in neutron multiplying medium with coolant. All three branches give additive contribution to the neutron density oscillations. However, their wave numbers and coefficients of spatial damping (at the same frequency) differ greatly from the sound with its high phase velocity and small attenuation to the neutron wave with the damping length, which is comparable with its wavelength. A spatial growth of neutron density oscillations is found in the case of large frequency of neutron capture and weak coupling of neutron density and temperature branches of oscillations. This fact is of importance for the noise diagnostics of the multiplying medium with coolant. The results can be applied to the development of the methods of noise diagnostics of the in core reactor equipment.

  8. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  9. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    SciTech Connect

    Hoth, C.W

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components.

  10. Detecting the gas bubbles in a liquid metal coolant by means of magnetic flowmeters

    NASA Astrophysics Data System (ADS)

    Mogilner, A. I.; Morozov, S. A.; Zakharov, S. O.; Uralets, A. Yu.

    Solution of some problems of control and diagnosis of circuits with a liquid-metal coolant (LMC) often requires the detection of gas bubbles penetrating the circulation loop. The sources of gas intake can be presented by failed fuel elements in reactor core, failed heat-exchange surfaces in sodium-water steam generators in the secondary circuits, gas capture by circulating coolant from gas circuits. Sometimes the gas is especially injected into circulating coolant to study the dynamics of accumulation and extraction of gas bubbles and to solve research problems related to simulations of emergency situations. The most commonly used methods for gas bubble detection include methods based on measuring coolant electric conductivity. A method for detecting gas bubbles in LMC, based on revealing the change of its electric conductivity is considered. Magnetic flowmeter is used as a detecting element of these changes. Approximate theory for describing spectral and energy noises in signals of a magnetic flowmeter, controlling the flow rate of LMC with gas bubbles is suggested. A new method for signal reading is suggested. Experimental results illustrating the possibility of using the method for measuring the rate of bubble movement and studying the dependence of gas bubble volume on the flow rate of injected gas are presented.

  11. Correct numerical simulation of a two-phase coolant

    NASA Astrophysics Data System (ADS)

    Kroshilin, A. E.; Kroshilin, V. E.

    2016-02-01

    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  12. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  13. A Heated Tube Facility for Rocket Coolant Channel Research

    NASA Technical Reports Server (NTRS)

    Green, James M.; Pease, Gary M.; Meyer, Michael L.

    1995-01-01

    The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

  14. Analysis of Loss-of-Coolant Accidents in the NBSR

    SciTech Connect

    Baek J. S.; Cheng L.; Diamond, D.

    2014-05-23

    This report documents calculations of the fuel cladding temperature during loss-of-coolant accidents in the NBSR. The probability of a pipe failure is small and procedures exist to minimize the loss of water and assure emergency cooling water flows into the reactor core during such an event. Analysis in the past has shown that the emergency cooling water would provide adequate cooling if the water filled the flow channels within the fuel elements. The present analysis is to determine if there is adequate cooling if the water drains from the flow channels. Based on photographs of how the emergency water flows into the fuel elements from the distribution pan, it can be assumed that this water does not distribute uniformly across the flow channels but rather results in a liquid film flowing downward on the inside of one of the side plates in each fuel element and only wets the edges of the fuel plates. An analysis of guillotine breaks shows the cladding temperature remains below the blister temperature in fuel plates in the upper section of the fuel element. In the lower section, the fuel plates are also cooled by water outside the element that is present due to the hold-up pan and temperatures are lower than in the upper section. For small breaks, the simulation results show that the fuel elements are always cooled on the outside even in the upper section and the cladding temperature cannot be higher than the blister temperature. The above results are predicated on assumptions that are examined in the study to see their influence on fuel temperature.

  15. Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade

    DTIC Science & Technology

    2015-01-18

    turbine vane. The overall objective was to understand the turbulent mixing in a complex flow and develop tools to determine the non uniform temperature...distribution incident on a downstream turbine rotor. Magnetic resonance velocimetry provided the three component velocity distribution throughout a...Approved for Public Release; Distribution Unlimited Final Report: Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade The

  16. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOEpatents

    Yunker, W.H.; Christiansen, D.W.

    1983-11-25

    This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  17. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    SciTech Connect

    Soli T. Khericha

    2006-09-01

    This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

  18. 73. View of line of stainless steel coolant storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of line of stainless steel coolant storage tanks for bi-sodium sulfate/water coolant solution at first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Power module assemblies with staggered coolant channels

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  20. Transpiration cooling using air as a coolant

    SciTech Connect

    Kikkawa, Shinzo; Senda, Mamoru; Sakagushi, Katsuji; Shibutani, Hideki )

    1993-02-01

    Transpiration cooling is one of the most effective techniques for protecting a surface exposed to a high-temperature gas stream. In the present paper, the transpiration cooling effectiveness was measured under steady state. Air as a coolant was transpired from the surface of a porous plate exposed to hot gas stream, and the transpiration rate was varied in the range of 0.001 [approximately] 0.006. The transpiration cooling effectiveness was evaluated by measuring the temperature of the upper surface of the plate. Also, a theoretical study was performed and it was clarified that the effectiveness increases with increasing transpiration rate and heat-transfer coefficient of the upper surface. Further, the effectiveness was expressed as a function of the blowing parameter only. The agreement between the experimental results and theoretical ones was satisfactory.

  1. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  2. Behaviour of a two rows of holes coolant film along the pressure side of a high pressure nozzle guide vane

    NASA Astrophysics Data System (ADS)

    Arts, T.; Bourguignon, A. E.

    1989-06-01

    The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high pressure turbine nozzle guide vane. The measurements were performed in the short duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, freestream turbulence intensity, blowing rate and coolant to freestream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.

  3. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method

    DOEpatents

    Ekeroth, Douglas E.; Garner, Daniel C.; Hopkins, Ronald J.; Land, John T.

    1993-01-01

    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.

  4. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method

    DOEpatents

    Ekeroth, D.E.; Garner, D.C.; Hopkins, R.J.; Land, J.T.

    1993-11-30

    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof. 3 figures.

  5. Comparison of Calculated and Experimental Temperatures and Coolant Pressure Losses for a Cascade of Small Air-Cooled Turbine Rotor Blades

    NASA Technical Reports Server (NTRS)

    Stepka, Francis S

    1958-01-01

    Average spanwise blade temperatures and cooling-air pressure losses through a small (1.4-in, span, 0.7-in, chord) air-cooled turbine blade were calculated and are compared with experimental nonrotating cascade data. Two methods of calculating the blade spanwise metal temperature distributions are presented. The method which considered the effect of the length-to-diameter ratio of the coolant passage on the blade-to-coolant heat-transfer coefficient and assumed constant coolant properties based on the coolant bulk temperature gave the best agreement with experimental data. The agreement obtained was within 3 percent at the midspan and tip regions of the blade. At the root region of the blade, the agreement was within 3 percent for coolant flows within the turbulent flow regime and within 10 percent for coolant flows in the laminar regime. The calculated and measured cooling-air pressure losses through the blade agreed within 5 percent. Calculated spanwise blade temperatures for assumed turboprop engine operating conditions of 2000 F turbine-inlet gas temperature and flight conditions of 300 knots at a 30,000-foot altitude agreed well with those obtained by the extrapolation of correlated experimental data of a static cascade investigation of these blades.

  6. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  7. Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages

    NASA Technical Reports Server (NTRS)

    Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.

    1993-01-01

    When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.

  8. Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware - Final

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John

    2011-01-01

    An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.

  9. Direct Numerical Simulation of a Coolant Jet in a Periodic Crossflow

    NASA Technical Reports Server (NTRS)

    Sharma, Chirdeep; Acharya, Sumanta

    1998-01-01

    A Direct Numerical Simulation of a coolant jet injected normally into a periodic crossflow is presented. The physical situation simulated represents a periodic module in a coolant hole array with a heated crossflow. A collocated finite difference scheme is used which is fifth-order accurate spatially and second-order accurate temporally. The scheme is based on a fractional step approach and requires the solution of a pressure-Poisson equation. The simulations are obtained for a blowing ratio of 0.25 and a channel Reynolds number of 5600. The simulations reveal the dynamics of several large scale structures including the Counter-rotating Vortex Pair (CVP), the horse-shoe vortex, the shear layer vortex, the wall vortex and the wake vortex. The origins and the interactions of these vortical structures are identified and explored. Also presented are the turbulence statistics and how they relate to the flow structures.

  10. Algebraic grid generation for coolant passages of turbine blades with serpentine channels and pin fins

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.

  11. An In-Core Power Deposition and Fuel Thermal Environmental Monitor for Long-Lived Reactor Cores

    SciTech Connect

    Don W. Miller

    2004-09-28

    The primary objective of this program is to develop the Constant Temperature Power Sensor (CTPS) as in-core instrumentation that will provide a detailed map of local nuclear power deposition and coolant thermal-hydraulic conditions during the entire life of the core.

  12. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  13. Reclamation and disposal of water-based machining coolants

    SciTech Connect

    Taylor, P.A.

    1982-01-01

    The Oak Ridge Y-12 Plant, which is operated by the Union Carbide Corporation, Nuclear Division for the Department of Energy under US government contract W-7405-eng-26, currently uses about 10{sup 6} L/yr (260,000 gal/yr) of water-based coolants in its machining operations. These coolants are disposed of in a 110,000-L (29,000-gal) activated sludge reactor. The reactor has oxidized an average of 38.6 kg of total organic carbon (TOC) per day with an overall efficiency of 90%. The predominant bacteria in the reactor have been identified once each year for the past three years. Six primary types of water-based coolants are currently used in the machine shops. In order to reduce the coolant usage rate, efforts are being made to introduce one universal coolant into the shops. By using a biocide to limit bacterial deterioration and using a filter and centrifuge system to remove dirt and tramp oils from the coolant, the coolant discard rate can be greatly reduced. 1 tab.

  14. Steam as turbine blade coolant: Experimental data generation

    SciTech Connect

    Wilmsen, B.; Engeda, A.; Lloyd, J.R.

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  15. Turbomachine injection nozzle including a coolant delivery system

    DOEpatents

    Zuo, Baifang [Simpsonville, SC

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  16. Longer life for glyco-based stationary engine coolants

    SciTech Connect

    Hohlfeld, R.

    1996-07-01

    Large, stationary diesel engines used to compress natural gas that is to be transported down pipelines generate a great deal of heat. Unless this heat is dissipated efficiently, it will eventually cause an expensive breakdown. Whether the coolant uses ethylene glycol or propylene glycol, the two major causes of glycol degradation are heat and oxidation. The paper discusses inhibitors that enhance coolant service life and presents a comprehensive list of do`s and don`ts for users to gain a 20-year coolant life.

  17. Corrosion problems with aqueous coolants, final report

    SciTech Connect

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  18. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  19. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    NASA Astrophysics Data System (ADS)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  20. Coolant pressure and airflow distribution in a strut-supported transpiration-cooled vane for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Poferl, D. J.; Richards, H. T.

    1972-01-01

    An analysis to predict pressure and flow distribution in a strut-supported wire-cloth vane was developed. Results were compared with experimental data obtained from room-temperature airflow tests conducted over a range of vane inlet airflow rates from 10.7 to 40.4 g/sec (0.0235 to 0.0890 lb/sec). The analytical method yielded reasonably accurate predictions of vane coolant flow rate and pressure distribution.

  1. INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES

    EPA Science Inventory

    The US Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction and econo...

  2. Chemical Characterization of Simulated Boiling Water Reactor Coolant

    DTIC Science & Technology

    1990-05-01

    industry to reduce personnel radiation exposure and down-time associated with the operation, mainte- nance and refueling of Light Water Reactor (LWR...AD-A226 654 t t-FILL UIY C CHEMICAL CHARACTERIZATION OF SIMULATED , .BOILING WATER REACTOR COOLANt by Li . . , . , - VERRDON HOLBROOK MASON f ; B.S...CHARACTERIZATION OF SIMULATED BOILING WATER REACTOR COOLANT by VERRDON HOLBROOK MASON Submitted to the Department of Nuclear Engineering on May 9, 1988 in

  3. Investigation of cleaner technologies to minimize automotive coolant wastes

    SciTech Connect

    Randall, P.M.

    1993-01-01

    The U.S. Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction, and economic issues. In addition, the authors examined the potential for substituting propylene glycol for ethylene glycol based engine coolant formulations. (Copyright (c) 1993 Butterworth-Heinemann Ltd.)

  4. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2016-12-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  5. Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants

    SciTech Connect

    Su-Jong Yoon; Piyush Sabharwall

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

  6. Analyzing Flows In Rocket Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Walton, J. T.; Mcguire, M.

    1994-01-01

    CAC is analytical prediction program to study heat-transfer and fluid-flow characteristics of circular coolant passage. Predicts, as function of time, axial and radial fluid conditions, temperatures of passage walls, rates of flow in each coolant passage, and approximate maximum material temperatures. Written in ANSI standard FORTRAN 77.

  7. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H20 for the HRS pumped loop coolant working fluid. A detailed Microsoft Excel (Microsoft Corporation, Redmond, WA) analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.

  8. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee S.

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed Microsoft Excel (Microsoft Corporation, Redmond, WA) analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.

  9. Effect of coolant chemistry on PWR radiation transport processes. Progress report on reactor loop studies

    SciTech Connect

    Brown, D.J.; Flynn, G.; Haynes, J.W.; Kitt, G.P.; Large, N.R.; Lawson, D.; Mead, A.P.; Nichols, J.L.; Woodwark, D.R.

    1986-05-01

    The effect of various PWR-type coolant chemistry regimes on the behavior of corrosion products has been studied in the DIDO Water Loop at Harwell. There are strong indications that the in-core deposition behavior of corrosion product species is not fully accounted for by the solubility model based on nickel ferrite; boric acid plays a role apart from its influence on pH, and corrosion products are adsorbed to some extent in the zirconium oxide film on the fuel cladding. In DWL, soluble species appear to be dominant in deposition processes. A most important factor governing deposition behavior is surface condition; the influence of weld regions and the effect of varying pretreatment conditions have both been demonstrated. 13 figs.

  10. The heat transfer characteristic of the reactor coolant pump canned motor

    NASA Astrophysics Data System (ADS)

    Gu, X. Y.; Xu, R.; Tao, G.; Yang, Y. L.; Wang, D. Z.

    2016-05-01

    This paper deals with the heat transfer characteristic of the reactor coolant pump canned motor. The cooling of the canned motor is an important issue for the design of the pump. In order to analyze the heat transfer characteristic of the canned motor, firstly the electromagnetic field of the canned motor is calculated with finite element method, and the magnetic resistance loss is gotten, then the heat distribution of the canned motor is obtained based on the electromagnetic field, finally the flow field and temperature field of the canned motor is calculated with CFD methods. The calculation indicates that the highest temperature and highest temperature rising are both occurred at the end winding.

  11. Diesel engine coolant analysis, new application for established instrumentation

    SciTech Connect

    Anderson, D.P.; Lukas, M.; Lynch, B.K.

    1998-09-01

    Rotating disk electrode (RDE) arc emission spectrometers are used in many commercial, industrial and military laboratories throughout the world to analyze millions of oil and fuel samples each year. In fact, RDE spectrometers have been used exclusively for oil and fuel analysis for so long, that most practitioners have probably forgotten that when RDE spectrometers were first introduced more than 40 years ago, they were also routinely used for aqueous samples. This paper describes recent work to calibrate and modify RDE arc emission spectrometers for the analysis of engine coolant samples; a mixture of approximately 50% water and 50% glycol. The technique has been shown to be effective for the analysis of wear metals, contamination and supplemental coolant additives in ethylene and propylene glycol. A comparison of results for coolant samples measured by both inductively coupled plasma (ICP) and RDE spectrometers will be presented. The data correlates extremely well on new and relatively clean coolants. However, not surprisingly, RDE results are sometimes higher for samples containing particles larger than a few micrometers. This paper suggests that RDE spectrometers are appropriate, and sometimes preferred, for most types of coolants and certain types of aqueous samples. Actual field data is be presented to support the arguments.

  12. Nuclear criticality safety assessment of the proposed CFC replacement coolants

    SciTech Connect

    Jordan, W.C.; Dyer, H.R.

    1993-12-01

    The neutron multiplication characteristics of refrigerant-114 (R-114) and proposed replacement coolants perfluorobutane (C{sub 4}F{sub 10}) and cycloperfluorobutane C{sub 4}F{sub 8}) have been compared by evaluating the infinite media multiplication factors of UF{sub 6}/H/coolant systems and by replacement calculations considering a 10-MW freezer/sublimer. The results of these comparisons demonstrate that R-114 is a neutron absorber, due to its chlorine content, and that the alternative fluorocarbon coolants are neutron moderators. Estimates of critical spherical geometries considering mixtures of UF{sub 6}/HF/C{sub 4}F{sub 10} indicate that the flourocarbon-moderated systems are large compared with water-moderated systems. The freezer/sublimer calculations indicate that the alternative coolants are more reactive than R-114, but that the reactivity remains significantly below the condition of water in the tubes, which was a limiting condition. Based on these results, the alternative coolants appear to be acceptable; however, several follow-up tasks have been recommended, and additional evaluation will be required on an individual equipment basis.

  13. TACT1, a computer program for the transient thermal analysis of a cooled turbine blade or vane equipped with a coolant insert. 1. Users manual

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1978-01-01

    A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.

  14. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  15. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  16. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  17. Performance Comparison of Axisymmetric and Three-dimensional Hydrogen Film Coolant Injection in a 110N Hydrogen/oxygen Rocket

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Reed, Brian D.

    1992-01-01

    An experimental performance comparison of two geometrically different fuel film coolant injection sleeves was conducted on a 110 N gaseous hydrogen/oxygen rocket. One sleeve had slots milled axially down the walls and the other had a smooth surface to give axisymmetric flow. The comparison was made to investigate a conclusion in an earlier study that attributed a performance underprediction to a symplifying modeling assumption of axisymmetric fuel film flow. The smooth sleeve had higher overall performance at one film coolant percentage and approximately the same or slightly better at another. The study showed that the lack of modeling of three-dimensional effects was not the cause of the performance underprediction as speculated in earlier analytical studies.

  18. Development of Figure of Merits (FOMs) for Intermediate Coolant Characterization and Selection

    SciTech Connect

    Eung Soo Kim; Piyush Sabharwall; Nolan Anderson

    2011-06-01

    This paper focuses on characterization of several coolant performances in the IHTL. There are lots of choices available for the IHTL coolants; gases, liquid metals, molten salts, and etc. Traditionally, the selection of coolants is highly dependent on engineer's experience and decisions. In this decision, the following parameters are generally considered: melting point, vapor pressure, density, thermal conductivity, heat capacity, viscosity, and coolant chemistry. The followings are general thermal-hydraulic requirements for the coolant in the IHTL: (1) High heat transfer performance - The IHTL coolant should exhibit high heat transfer performance to achieve high efficiency and economics; (2) Low pumping power - The IHTL coolant requires low pumping power to improve economics through less stringent pump requirements; (3) Low amount of coolant volume - The IHTL coolant requires less coolant volume for better economics; (4) Low amount of structural materials - The IHTL coolant requires less structural material volume for better economics; (5) Low heat loss - The IHTL requires less heat loss for high efficiency; and (6) Low temperature drop - The IHTL should allow less temperature drop for high efficiency. Typically, heat transfer coolants are selected based on various fluid properties such as melting point, vapor pressure, density, thermal conductivity, heat capacity, viscosity, and coolant chemistry. However, the selection process & results are highly dependent on the engineer's personal experience and skills. In the coolant selection, if a certain coolant shows superior properties with respect to the others, the decision will be very straightforward. However, generally, each coolant material exhibits good characteristics for some properties but poor for the others. Therefore, it will be very useful to have some figures of merits (FOMs), which can represent and quantify various coolant thermal performances in the system of interest. The study summarized in this

  19. Pressurization of a compartment due to the rupture of coolant piping

    SciTech Connect

    Kot, C.A.; Hsieh, B.J.

    1993-01-01

    The pressurization and venting of enclosed compartments due to the accidental rupture of coolant piping is a safety problem common to many nuclear facilities. The processes associated with such an accident are very complex, involving, in general, transient multiphase flows, interactions and mixing between the incoming flows and the gases in the compartment, and heat transfer with the surroundings. Since pipe rupture is associated with many phenomenological uncertainties, elaborate 3-D thermal-hydraulic modeling and extensive calculational efforts are not warranted for many design applications. It is then more appropriate to rely. on simplified, global analysis approaches which can provide reasonably conservative estimates of the structural loads and flow processes, and which can readily be used in parameter/design studies. The objective of this paper is to present such an approach.

  20. Repairing Hidden Cracks in Coolant Tubes

    NASA Technical Reports Server (NTRS)

    Mills, R. C., Sr.; Duesberg, J.

    1984-01-01

    Repair technique closes leaks in tubes or conduits where access limited to wall opposite crack. Technique applicable to any tubular assembly where tubes bundled together or bonded to supporting shell, such as in heat exchangers. Procedure provides structural support to area failed and uninterrupted flow without significantly altering heat-transfer profile.

  1. Revised Emergency Cooling System LOCA (loss-of-coolant accidents) limits for PKL-reactor Mark 16B-31 charges

    SciTech Connect

    Church, J.P.; Steimke, J.L.

    1986-10-02

    Recent experiments have shown that the assembly damage models used to compute generic Emergency Cooling System (ECS) limits for loss-of-coolant accidents (LOCA) in Mark 16B-31 charges may be nonconservative. The bases of these damage models were experiments that underestimated the heat input into a heated flow channel. This document provides interim ECS limits for Mark 16, Mark 31A, and Mark 31B assemblies. 2 refs., 1 tab.

  2. Nuclear reactor downcomer flow deflector

    DOEpatents

    Gilmore, Charles B.; Altman, David A.; Singleton, Norman R.

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  3. Effects of the reactor-coolant pumps during a small-break loss-of-coolant accident

    SciTech Connect

    Elliott, J.L.

    1983-01-01

    TRAC-PD2 calculations indicate that more coolant mass remains in the system when the reactor coolant pumps are left in operation following a small cold-leg break. The analyses were performed for a Westinghouse plant (Zion-1) to help determine whether to trip the pumps at high-pressure injection initiation (the present operator directive), to trip the pumps at some later time in the transient, or to leave the pumps running indefinitely. The loop seals' behavior and the system refill characteristics primarily determined the results. 9 figures.

  4. New Hydrophilic, Composite Membranes for Air Removal from Water Coolant Systems

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.; Luo, Qiang; Curtis, Salina S.; Holladay, Jon B.; Clark, Dallas W.

    2004-01-01

    Liquid coolants are commonly used as thermal transport media to increase efficiency and flexibility in aerospace vehicle design. The introduction of gas bubbles into the coolant can have negative consequences, including: loss of centrifugal pump prime, irregular sensor readings, and blockage of coolant flow to remote systems. One solution to mitigate these problems is the development of a passive gas removal device, or gas trap, installed in the flight cooling system. In this study, a new hydrophilic, composite membrane has been developed for passage of the coolant fluid and retention of gas bubbles. The trapped bubbles are subsequently vented from the system by a thin, hydrophobic, microporous membrane. The original design for this work employed a homogeneous membrane that was susceptible to fouling and pore plugging. Spare gas traps of this variety have degraded during storage, and recreation of the membranes has been complicated due to problems with polymer duplication and property variations in the final membranes. In this work, replacements have been developed based on deposition of a hydrophilic polymer on the bore-side of a porous polyethylene (PE) tube. The tube provides excellent chemical and mechanical stability, and the hydrophilic layer provides retention of gas bubbles. Preliminary results have shown that intimate contact is required between the deposited layer and the substrate to overcome material differences. This has been accomplished by presoaking the membrane tube in the solvent to raise its surface energy. Polymer solutions of various concentrations have been used to promote penetration of the polymer layer into the porous substrate and to control separation layer thickness. The resulting composite membranes have shown repeatable decrease in nitrogen permeability, which is indicative of a decrease in membrane pore size. Studies with water permeation have yielded similar results. We have observed some swelling of the added polymer layer, which

  5. Coolants with selective optical filtering characteristics for ruby laser applications

    NASA Technical Reports Server (NTRS)

    Mc Devitt, F. R.; Rasquin, J. R.

    1968-01-01

    Coolant-filtering medium developed consists of a solution of copper sulfate in a 4-1 volumetric mixture of ethanol and methanol. This solution should be a useful addition to ruby laser systems, particularily in large pulse or Q switching applications.

  6. Substitution of Tolyltriazole for Mercaptobenzothiazole in Military Coolant Inhibitor Formulations

    DTIC Science & Technology

    coolant specifications (0.4% of the sodium salt ). 0.15% was found to be the optimum percentage of NaTT....antifreeze inhibitors with different percentages of sodium tolyltriazole (NaTT). The NaTT caused foaming in the tests, but a silicone type antifoam

  7. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  8. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  9. Fuels, Lubricants, and Coolants. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual on fuels, lubricants, and coolants is one of a series of power mechanics tests and visual aids on automotive and off-the-road agricultural and construction equipment. Materials present basic information with illustrations for use by vocational students and teachers as well as shop servicemen and laymen. Focusing on fuels, the first of…

  10. PIPING FOR COOLANT WATER IS INSTALLED INSIDE REACTOR STRUCTURE PRIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PIPING FOR COOLANT WATER IS INSTALLED INSIDE REACTOR STRUCTURE PRIOR TO EMBEDMENT IN CONCRETE. HIGHER PIPE IS INLET; THE OTHER, THE OUTLET LOOP. INLET PIPE WILL CONNECT TO TOP SECTION OF REACTOR VESSEL. INL NEGATIVE NO. 1287. Unknown Photographer, 1/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Antimony tartrate corrosion inhibitive composition for coolant systems

    SciTech Connect

    Payerle, N.E.

    1987-08-11

    An automobile coolant concentrate is described comprising (a) a liquid polyhydric alcohol chosen from the group consisting of ethylene glycol, propylene glycol, diethylene glycol and mixtures thereof, and (b) corrosion inhibitors in a corrosion inhibitory amount with respect to corrosion of lead-containing solders, the corrosion inhibitors comprising (i) an alkali metal antimony tartrate, and (ii) an azole compound.

  12. Integral coolant channels supply made by melt-out method

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1964-01-01

    Melt-out method of constructing strong, pressure-tight fluid coolant channels for chambers is accomplished by cementing pins to the surface and by depositing a melt-out material on the surface followed by two layers of epoxy-resin impregnated glass fibers. The structure is heated to melt out the low-melting alloy.

  13. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    SciTech Connect

    Williams, D.F.

    2006-03-24

    transfer and nuclear performance metrics. Lighter salts also tend to have more favorable (larger) moderating ratios, and thus should have a more favorable coolant-voiding behavior in-core. Heavy (high-Z) salts tend to have lower heat capacities and thermal conductivities and more significant activation and transmutation products. However, all of the salts are relatively good heat-transfer agents. A detailed discussion of each property and the combination of properties that served as a heat-transfer metric is presented in the body of this report. In addition to neutronic metrics, such as moderating ratio and neutron absorption, the activation properties of the salts were investigated (Table C). Again, lighter salts tend to have more favorable activation properties compared to salts with high atomic-number constituents. A simple model for estimating the reactivity coefficients associated with a reduction of salt content in the core (voiding or thermal expansion) was also developed, and the primary parameters were investigated. It appears that reasonable design flexibility exists to select a safe combination of fuel-element design and salt coolant for most of the candidate salts. Materials compatibility is an overriding consideration for high-temperature reactors; therefore the question was posed whether any one of the candidate salts was inherently, or significantly, more corrosive than another. This is a very complex subject, and it was not possible to exclude any fluoride salts based on the corrosion database. The corrosion database clearly indicates superior container alloys, but the effect of salt identity is masked by many factors which are likely more important (impurities, redox condition) in the testing evidence than salt identity. Despite this uncertainty, some reasonable preferences can be recommended, and these are indicated in the conclusions. The reasoning to support these conclusions is established in the body of this report.

  14. A passively-safe fusion reactor blanket with helium coolant and steel structure

    SciTech Connect

    Crosswait, Kenneth Mitchell

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  15. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  16. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  17. International Space Station Active Thermal Control Sub-System On-Orbit Pump Performance and Reliability Using Liquid Ammonia as a Coolant

    NASA Technical Reports Server (NTRS)

    Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.

    2011-01-01

    The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.

  18. An Analysis of an Automatic Coolant Bypass in the International Space Station Node 2 Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.

  19. Calculated effects of turbine rotor-blade cooling-air flow, altitude, and compressor bleed point on performance of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Arne, Vernon L; Nachtigall, Alfred J

    1951-01-01

    Effects of air-cooling turbine rotor blades on performance of a turbojet engine were calculated for a range of altitudes from sea level to 40,000 feet and a range of coolant flows up to 3 percent of compressor air flow, for two conditions of coolant bleed from the compressor. Bleeding at required coolant pressure resulted in a sea-level thrust reduction approximately twice the percentage coolant flow and in an increase in specific fuel consumption approximately equal to percentage coolant flow. For any fixed value of coolant flow ratio the percentage thrust reduction and percentage increase in specific fuel consumption decreased with altitude. Bleeding coolant at the compressor discharge resulted in an additional 1 percent loss in performance at sea level and in smaller increase in loss of performance at higher altitudes.

  20. In-vessel ITER tubing failure rates for selected materials and coolants

    SciTech Connect

    Marshall, T.D.; Cadwallader, L.C.

    1994-03-01

    Several materials have been suggested for fabrication of ITER in-vessel coolant tubing: beryllium, copper, Inconel, niobium, stainless steel, titanium, and vanadium. This report generates failure rates for the materials to identify the best performer from an operational safety and availability perspective. Coolant types considered in this report are helium gas, liquid lithium, liquid sodium, and water. Failure rates for the materials are generated by including the influence of ITER`s operating environment and anticipated tubing failure mechanisms with industrial operating experience failure rates. The analyses define tubing failure mechanisms for ITER as: intergranular attack, flow erosion, helium induced swelling, hydrogen damage, neutron irradiation embrittlement, cyclic fatigue, and thermal cycling. K-factors, multipliers, are developed to model each failure mechanism and are applied to industrial operating experience failure rates to generate tubing failure rates for ITER. The generated failure rates identify the best performer by its expected reliability. With an average leakage failure rate of 3.1e-10(m-hr){sup {minus}1}and an average rupture failure rate of 3.1e-11(m-hr){sup {minus}1}, titanium proved to be the best performer of the tubing materials. The failure rates generated in this report are intended to serve as comparison references for design safety and optimization studies. Actual material testing and analyses are required to validate the failure rates.

  1. Heat Exchanger Can Assembly for Provision of Helium Coolant Streams for Cryomodule Testing below 2K

    NASA Astrophysics Data System (ADS)

    Smith, E. N.; Eichhorn, R.; Quigley, P.; Sabol, D.; Shore, C.; Widger, D.

    2017-02-01

    A series of heat exchanger can (HXC) assemblies have been designed, constructed and built to utilize existing 4.2 K liquefaction and compressor capabilities to provide helium gas coolant streams of 80 K, 4.5 K, and liquid from 1.6 to 2.0 K for operating cryomodules containing from one to six superconducting RF cavities built for an energy recovery linear accelerator. Designs for the largest assemblies required up to 100 W of cooling at 1.8 K with precise temperature control, especially during cool-down, and up to 2000 W at 80 K (with a 40 K temperature rise). A novel feature of these assemblies was the use of relatively inexpensive brazed stainless steel plate heat exchangers intended for room-temperature operation with water or oil, but which in practice worked well at cryogenic temperatures. The choice of operating temperatures/pressures were to provide single-phase helium flow for better control of coolant distribution in the 80 K and 4.5 K streams, to take advantage of locally elevated heat capacity near the critical point for the 4.5 K stream, and in the region below 2 K to get the best possible Q from the niobium cavities under test.

  2. Determination of blade-to-coolant heat-transfer coefficients on a forced-convection, water-cooled, single-stage turbine

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1951-01-01

    Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.

  3. Hybrid method for numerical modelling of LWR coolant chemistry

    NASA Astrophysics Data System (ADS)

    Swiatla-Wojcik, Dorota

    2016-10-01

    A comprehensive approach is proposed to model radiation chemistry of the cooling water under exposure to neutron and gamma radiation at 300 °C. It covers diffusion-kinetic processes in radiation tracks and secondary reactions in the bulk coolant. Steady-state concentrations of the radiolytic products have been assessed based on the simulated time dependent concentration profiles. The principal reactions contributing to the formation of H2, O2 and H2O2 were indicated. Simulation was carried out depending on the amount of extra hydrogen dissolved in the coolant to reduce concentration of corrosive agents. High sensitivity to the rate of reaction H+H2O=OH+H2 is shown and discussed.

  4. Glycol coolants improve heat transfer and corrosion control

    SciTech Connect

    Holfield, R.

    1995-03-01

    Various liquids from plain water to exotic fluids have been used as coolants in large stationary diesel engines that drive compressors on natural gas pipeline distribution systems. Although water is an efficient heat transfer medium, its drawbacks of freezing at {minus}32 F and boiling at 212 F seriously limit its usefulness. Special glycol-based heat transfer fluids are available and refined specifically for long-term needs of gas compressor engines. Appropriate corrosion inhibitors have been formulated for metallurgy and operating conditions encountered with these engines. Propylene glycol was developed as an alternative for use in environmentally sensitive areas. Glycol-based fluids must be specifically inhibited for industrial applications because uninhibited or improperly inhibited coolants can seriously damage reciprocating engines.

  5. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    DTIC Science & Technology

    2006-12-01

    calculate the generation of Polonium - 210 in reactors cooled by lead and lead- bismuth eutectic. The motivation for this is to address a noted lack of...calculate the generation of Polonium - 210 in reactors cooled by lead and lead-bismuth eutectic. The motivation for this is to address a noted lack of...coolants. The objectives of thesis are two fold. The first objective is to independently calculate the generation of Polonium - 210 in reactors

  6. 92. View of transmitter building no. 102 first floor coolant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. View of transmitter building no. 102 first floor coolant process water tanks (sodium bisulfate solution), stainless steel, for electronic systems cooling in transmitter and MIP rooms. RCA Services Company 29 September, 1960, official photograph BMEWS Project by unknown photograph, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. A-1226 - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  8. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  9. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  10. Acceptance criteria for reactor coolant pumps and valves

    SciTech Connect

    Gupta, N.K.; Miller, R.F.; Sindelar, R.L.

    1993-05-01

    Each of the six primary coolant loop systems of the Savannah River Site (SRS) production reactors contains one reactor coolant pump, one PUMP suction side motor operated valve, and other smaller valves. The pumps me double suction, double volute, and radially split type pumps. The valves are different size shutoff and control valves rated from ANSI B16.5 construction class 150 to class 300. The reactor coolant system components, also known as the process water system (PWS), are classified as nuclear Safety Class I components. These components were constructed in the 1950`s in accordance with the then prevailing industry practices. No uniform construction codes were used for design and analysis of these components. However, no pressure boundary failures or bolting failures have ever been recorded throughout their operating history. Over the years, the in-service inspection (ISI) was limited to visual inspection of the pressure boundaries, and surface and volumetric examination of the pressure retaining bolts. Efforts are now underway to implement ISI requirements similar to the ASME Section XI requirements for pumps and valves. This report discusses the new ISI requirements which also call for volumetric examination of the pump casing and valve body welds.

  11. Cryostabilization of high-temperature superconducting magnets with subcooled flow in microchannels

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Hull, J. R.; Choi, U. S.

    1992-07-01

    Subcooled flow of liquid nitrogen in microchannels is proposed as a means to enhance the stability of a superconducting magnet. Analysis shows high current density or a low stabilizer fraction is obtainable in a cryostable magnet. Increase in stability (using the Stekley criterion) is directly related to coolant velocity and coolant channel aspect ratio, however, there is a corresponding increase in pressure drop of the system. Another constraint is the coolant temperature rise, which is found to be a function of coolant residence time and the coolant to conductor ratio.

  12. Sn-Li, a new coolant/breeding material for fusion applications.

    SciTech Connect

    Sze, D.-K.; Mattas, R.; Wang, Z.; Cheng, E. T.; Sawan, M.; Zinkle, S.; McCarthy, K. A.

    1999-10-11

    A new breeding material, Sn-Li has been proposed for the APEX and ALPS programs. The key reason for proposing this material is that it has very low vapor pressure. Since both APEX and ALPS are investigating free surface flow for the blanket and divertor, respectively, low vapor pressure is a big advantage. This paper summarizes the results from a preliminary investigation. The early conclusion is that Sn-Li can be used as the coolant/breeding material for the APEX and ALPS applications. It has several attractive features, such as low vapor pressure and high thermal conductivity, but it also has some potential issues, such as material compatibility and activation. Further investigation will be required to assess the potential advantages of this material compared to other breeding materials.

  13. Coolant choice for the central beryllium pipe of the BESIII beam pipe

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Fang; Wang, Li; Wu, Ping; Ji, Quan; Li, Xun-Feng; Liu, Jian-Ping

    2010-07-01

    In order to take away much more heat on the BESIII beam pipe to guarantee the normal particle detection, EDM-1 (oil No.1 for electric discharge machining), with good thermal and flow properties was selected as the candidate coolant for the central beryllium pipe of the BESIII beam pipe. Its cooling character was studied and dynamic corrosion experiment was undertaken to examine its corrosion on beryllium. The experiment results show that EDM-1 would corrode the beryllium 19.9 μm in the depth in 10 years, which is weak and can be neglected. Finite element simulation and experiment research were taken to check the cooling capacity of EDM-1. The results show that EDM-1 can meet the cooling requirement of the central beryllium pipe. Now EDM-1 is being used to cool the central beryllium pipe of the BESIII beam pipe.

  14. Study on the effect of the impeller and diffuser blade number on reactor coolant pump performances

    NASA Astrophysics Data System (ADS)

    Long, Y.; Yin, J. L.; Wang, D. Z.; Li, T. B.

    2016-05-01

    In this paper, CFD approach was employed to study how the blade number of impeller and diffuser influences reactor coolant pump performances. The three-dimensional pump internal flow channel was modelled by pro/E software, Reynolds-averaged Naiver-Stokes equations with the k-ε turbulence model were solved by the computational fluid dynamics software CFX. By post-processing on the numerical results, the performance curves of reactor coolant pump were obtained. The results are as follows, with the blade number of the impeller increasing, the head of the pump with different diffuser universally increases in the 8Q n∼1.2Q n conditions, and at different blade number of the diffuser, the head increases with the blade number of the impeller increasing. In 1.0Q n condition, when the blades number combination of impeller and diffuser chooses 4+16, 7+14 and 6+18, the head curves exist singular points. In 1.2Q n condition, the head curve still exists singular point in 6+18. With the blade number of the impeller increasing, the efficiency of the pump with different diffuser universally decreases in the 0.8Q n and 1.0Q n conditions, but in 1.2Q n condition, the efficiency of the pump with different diffuser universally increases. In 1.0Q n condition, the impellers of 4 and 5 blades are better. When the blade number combination of impeller and diffuser choose 4+11, 4+17, 4+18, 5+12, 5+17 and 5+18, the efficiencies relatively have higher values. With the blade number of the impeller increasing, the hydraulic shaft power of the pump with different diffuser universally increases in the 0.8Q n∼1.2Q n conditions, and with the blade number of the diffuser increasing, the power of different impeller overall has small fluctuation, but tends to be uniform. This means the increase of the diffuser blade number has less influence on shaft power.The influence on the head and flow by the matching relationship of the blades number between impeller and diffuser is very complicated, which

  15. Heat transfer characteristics for some coolant additives used for water cooled engines

    SciTech Connect

    Abou-Ziyan, H.Z.; Helali, A.H.B.

    1996-12-31

    Engine coolants contain certain additives to prevent engine overheating or coolant freezing in cold environments. Coolants, also, contain corrosion and rust inhibitors, among other additives. As most engines are using engine cooling solutions, it is of interest to evaluate the effect of engine coolants on the boiling heat transfer coefficient. This has its direct impact on radiator size and environment. This paper describes the apparatus and the measurement techniques. Also, it presents the obtained boiling heat transfer results at different parameters. Three types of engine coolants and their mixtures in distilled water are evaluated, under sub-cooled and saturated boiling conditions. A profound effect of the presence of additives in the coolant, on heat transfer, was clear since changes of heat transfer for different coolants were likely to occur. The results showed that up to 180% improvement of boiling heat transfer coefficient is experienced with some types of coolants. However, at certain concentrations other coolants provide deterioration or not enhancement in the boiling heat transfer characteristics. This investigation proved that there are limitations, which are to be taken into consideration, for the composition of engine coolants in different environments. In warm climates, ethylene glycol should be kept at the minimum concentration required for dissolving other components, whereas borax is beneficial to the enhancement of the heat transfer characteristics.

  16. Vegetable oils: liquid coolants for solar heating and cooling applications

    SciTech Connect

    Ingley, H A

    1980-02-01

    It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

  17. Reactor coolant pump shaft seal stability during station blackout

    SciTech Connect

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  18. System Study: High-Pressure Coolant Injection 1998-2012

    SciTech Connect

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  19. System Study: High-Pressure Coolant Injection 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2015-01-31

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  20. System Study: High-Pressure Coolant Injection 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  1. Cryogenic-coolant He4-superconductor dynamic and static interactions

    NASA Technical Reports Server (NTRS)

    Caspi, S.; Chuang, C.; Kim, Y. I.; Allen, R. J.; Frederking, T. H. E.

    1980-01-01

    A composite superconducting material (NbTi-Cu) was evaluated with emphasis on post quench solid cooling interaction regimes. The quasi-steady runs confirm the existence of a thermodynamic limiting thickness for insulating coatings. Two distinctly different post quench regimes of coated composites are shown to relate to the limiting thickness. Only one regime,, from quench onset to the peak value, revealed favorable coolant states, in particular in He2. Transient recovery shows favorable recovery times from this post quench regime (not drastically different from bare conductors) for both single coated specimens and a coated conductor bundle.

  2. Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER

    SciTech Connect

    Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.

    2005-01-15

    Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.

  3. Pressurized water reactor flow skirt apparatus

    SciTech Connect

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  4. Experimental studies of local coolant hydrodynamics using a scaled model of cassette-type fuel assembly of a KLT-40S reactor

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Barinov, A. A.; Varentsov, A. V.; Doronkov, D. V.; Solntsev, D. N.; Khrobostov, A. E.

    2016-08-01

    The results of experimental studies of local hydrodynamic and mass exchange characteristics of the coolant flow behind the spacer grid in the fuel assembly of a KLT-40S reactor are presented. The experiments were aimed at the investigation of representative domains of the fuel assembly with three tracer injection regions. The studies were performed at the aerodynamic test facility using the tracer gas diffusion method. According to the theory of hydrodynamic similarity, the obtained experimental results can be transferred to full-scale coolant flow conditions in standard fuel assemblies. The analysis of the tracer concentration propagation made it possible to determine in detail the flow pattern and find the main regularities and specific features of the coolant flow behind the plate spacer grid of KLT-40S fuel assembly. The hydraulic resistance coefficient of the spacer grid was experimentally determined. The coefficients of mass exchange between cells for representative cells of the displacer region in the KLT-40S fuel assembly were calculated for the first time; these results are presented in the form of the "mixing matrix." The results of studies of local coolant flow hydrodynamics in the KLT-40S fuel assembly are used at AO Afrikantov OKBM for estimation of thermotechnical reliability of active cores for reactors of floating nuclear power stations. The experimental data on hydrodynamic and mass exchange characteristics are included in the database for verification of CDF codes and detailed cell-wise calculation of the active core for KLT-40S reactor installation. The results of these studies can be used at FSUE RFNC-VNIIEF for testing and verification of domestic three-dimensional hydrodynamic CFD codes ("Logos") that are applied for substantiation of newly designed reactor installations. Practical recommendations on the application of the obtained results in thermohydraulic calculations of the active core for the KLT-40S reactor will be worked out. Proposals

  5. Development of mobile, on-site engine coolant recycling utilizing reverse-osmosis technology

    SciTech Connect

    Kughn, W.; Eaton, E.R.

    1999-08-01

    This paper presents the history of the development of self-contained, mobile, high-volume, engine coolant recycling by reverse osmosis (R/O). It explains the motivations, created by government regulatory agencies, to minimize the liability of waste generators who produce waste engine coolant by providing an engine coolant recycling service at the customer`s location. Recycling the used engine coolant at the point of origin minimizes the generators` exposure to documentation requirements, liability, and financial burdens by greatly reducing the volume of used coolant that must be hauled from the generator`s property. It describes the inherent difficulties of recycling such a highly contaminated, inconsistent input stream, such as used engine coolant, by reverse osmosis. The paper reports how the difficulties were addressed, and documents the state of the art in mobile R/O technology. Reverse osmosis provides a purified intermediate fluid that is reinhibited for use in automotive cooling systems. The paper offers a review of experiences in various automotive applications, including light-duty, medium-duty and heavy-duty vehicles operating on many types of fuel. The authors conclude that mobile embodiments of R/O coolant recycling technology provide finished coolants that perform equivalently to new coolants as demonstrated by their ability to protect vehicles from freezing, corrosion damage, and other cooling system related problems.

  6. Emergency cooling analysis for the loss of coolant malfunction

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1972-01-01

    This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.

  7. Fitness for service assessment of coolant channels of Indian PHWRs

    NASA Astrophysics Data System (ADS)

    Sinha, R. K.; Sinha, S. K.; Madhusoodanan, K.

    2008-12-01

    A typical coolant channel assembly of pressurised heavy water reactors mainly consists of pressure tube, calandria tube, garter spring spacers, all made of zirconium alloys and end fittings made of SS 403. The pressure tube is rolled at both its ends to the end fittings and is located concentrically inside the calandria tube with the help of garter spring spacers. Pressure tube houses the fuel bundles, which are cooled by means of pressurised heavy water. It, thus, operates under the environment of high pressure and temperature (typically 10 MPa and 573 K), and fast neutron flux (typically 3 × 10 17 n/m 2 s, E > 1 MeV neutrons). Under this operating environment, the material of the pressure tube undergoes degradation over a period of time, and eventually needs to be assessed for fitness for continued operation, without jeopardising the safety of the reactor. The other components of the coolant channel assembly, which are inaccessible for any in-service inspection, are assessed for their fitness, whenever a pressure tube is removed for either surveillance purpose or any other reasons. This paper, while describing the latest developments taking place to address the issue of fitness for service of the Zr-2.5 wt% Nb pressure tubes, also dwells briefly upon the developments taken place, to address the issues of life management and extension of zircaloy-2 pressure tubes in the earlier generation of Indian pressurised heavy water reactors.

  8. Hard metal lung disease: importance of cobalt in coolants.

    PubMed Central

    Sjögren, I; Hillerdal, G; Andersson, A; Zetterström, O

    1980-01-01

    Four patients were found to react to occupational exposure to grinding of hard metal (tungsten carbide). Three of the patients had symptoms and signs compatible with an allergic alveolitis, the symptoms disappearing and the chest radiograph clearing when they were absent from work for a few months. Re-exposure to the offending agent led to new signs and symptoms. The first patient was re-exposed twice and each time reacted a little more seriously. After the last episode her chest radiograph has not cleared completely, in contrast to the first two times. The fourth patient had more typical occupational asthma. All the cases occurred in the part of the factory where air concentrations of cobalt were the lowest. The cobalt there is dissolved in the coolant necessary for grinding the hard metal. It occurs mainly in the ionised form, which is known to react with proteins and therefore presumably acts as a hapten. Protective measures, including choosing a coolant with minimal ability to dissolve cobalt and an effective exhaust system, should minimise the risk of this occupational disease in the future. PMID:7444839

  9. Viscosity of alumina nanoparticles dispersed in car engine coolant

    SciTech Connect

    Kole, Madhusree; Dey, T.K.

    2010-09-15

    The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of the nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)

  10. Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants

    SciTech Connect

    Todd R. Allen; Kumar Sridharan; McLean T. Machut; Lizhen Tan

    2007-08-29

    One of the six proposed advanced reactor designs of the Generation IV Initiative, the Leadcooled Fast Reactor (LFR) possesses many characteristics that make it a desirable candidate for future nuclear energy production and responsible actinide management. These characteristics include favorable heat transfer, fluid dynamics, and neutronic performance compared to other candidate coolants. However, the use of a heavy liquid metal coolant presents a challenge for reactor designers in regards to reliable structural and fuel cladding materials in both a highly corrosive high temperature liquid metal and an intense radiation fieldi. Flow corrosion studies at the University of Wisconsin have examined the corrosion performance of candidate materials for application in the LFR concept as well as the viability of various surface treatments to improve the materials’ compatibility. To date this research has included several focus areas, which include the formulation of an understanding of corrosion mechanisms and the examination of the effects of chemical and mechanical surface modifications on the materials’ performance in liquid lead-bismuth by experimental testing in Los Alamos National Laboratory’s DELTA Loop, as well as comparison of experimental findings to numerical and physical models for long term corrosion prediction. This report will first review the literature and introduce the experiments and data that will be used to benchmark theoretical calculations. The experimental results will be followed by a brief review of the underlying theory and methodology for the physical and theoretical models. Finally, the results of theoretical calculations as well as experimentally obtained benchmarks and comparisons to the literature are presented.

  11. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    SciTech Connect

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-12-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extend ed coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98.

  12. Zero Waste Machine Coolant Management Strategy at Los Alamos National Laboratory

    SciTech Connect

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-06-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extend ed coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98.

  13. Local heat transfer in turbine disk-cavities. I - Rotor and stator cooling with hub injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.

  14. Exploratory Investigation of Transpiration Cooling of a 40 deg Double Wedge using Nitrogen and Helium as Coolants at Stagnation Temperatures from 1,295 deg F to 2,910 deg F

    NASA Technical Reports Server (NTRS)

    Rashis, Bernard

    1961-01-01

    An investigation of transpiration cooling has been conducted in the preflight jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. The model consisted of a double wedge of 40 deg included angle having a porous stainless-steel specimen inserted flush with the top surface of the wedge. The tests were conducted at a free-stream Mach number of 2.0 for stagnation temperatures ranging from 1,295 F to 2,910 F. Nitrogen and helium were used as coolants and tests were conducted for values ranging from approximately 0.03 to 0.30 percent of the local weight flow rate. The data for both the nitrogen and helium coolants indicated greater cooling effectiveness than that predicted by theory and were in good agreement with the results for an 8 deg cone tested at a stagnation temperature of 600 F. The results indicate that the helium coolant, for the same amount of heat-transfer reduction, requires only about one-fourth to one-fifth the coolant flow weight as the nitrogen coolant.

  15. FUEL SUBASSEMBLY CONSTRUCTION FOR RADIAL FLOW IN A NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1962-12-25

    An assembly of fuel elements for a boiling water reactor arranged for radial flow of the coolant is described. The ingress for the coolant is through a central header tube, perforated with parallel circumferertial rows of openings each having a lip to direct the coolant flow downward. Around the central tube there are a number of equally spaced concentric trays, closely fitiing the central header tube. Cylindrical fuel elements are placed in a regular pattern around the central tube, piercing the trays. A larger tube encloses the arrangement, with space provided for upward flow of coolart beyond the edge of the trays. (AEC)

  16. Nonflammable coolants for space vehicle environmental control systems Compatibility of component materials with selected dielectric fluids.

    NASA Technical Reports Server (NTRS)

    Howard, R. T.; Korpolinski, T. S.; Mace, E. W.

    1971-01-01

    This paper summarizes a 4-year effort to evaluate and implement a nonflammable substitute coolant for application in the Saturn instrument unit (IU) environmental control system (ECS). Discussed are candidate material evaluations, detailed investigations of the properties of the coolant selected, and a summary of the implementation into a flight vehicle.

  17. Using automatic particle counting to monitor aluminum cold mill coolant{copyright}

    SciTech Connect

    Adkins, D.L.

    1995-08-01

    A comprehensive program of testing and evaluation of aluminum cold rolling coolant conditions has been conducted using an automatic particle counting instrument. The project had three objectives. First, there was a need to know at what level of coolant particle contamination is surface cleanliness of an aluminum sheet affected during the rolling process. Secondly, is application of particle counting technology a reliable tool for troubleshooting coolant filtration systems and finally, what are the advantages of analyzing rolling coolants for contamination levels? A testing program was designed and performed over a two-year period. The test results revealed that mineral seal and synthetic-type coolants can begin to affect aluminum sheet surface cleanliness levels when particle sizes greater than five microns are in excess of 10,000 particles power 100 milliliters of rolling coolant. After performing over 3,000 separate tests, it was very clean that particle count levels are direct indicators of how well a filtration facility is performing. Through the application of particle counting, a number of conditions in coolant filtration facilities can be readily detected. Such items as defective filter valving, torn or fractured filter cloth, damaged filter parts, improper equipment operation and many other factors will directly impact the operation of aluminum cold rolling coolant filters. 11 figs.

  18. MTR, TRA603. FOUNDATION PLAN, SECTION C THROUGH COOLANT WATER EXIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. FOUNDATION PLAN, SECTION C THROUGH COOLANT WATER EXIT TUNNEL ALONG NORTH SIDE AS IT RETURNS TO MAIN COOLANT TUNNEL LEAVING BUILDING TO THE NORTH. BLAW-KNOX 3150-803-35, 5/1950. INL INDEX NO. 531-0603-62-098-100591, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Some peculiarities of checking the Topaz-2 system coolant filling quality

    SciTech Connect

    Ogloblin, B.G.; Svishchev, A.M.; Shalaev, A.I.

    1996-03-01

    This paper contains the analysis of validity of methods used for checking the Topaz-2 system coolant filling quality by a metering tank according to the mathematical model developed. A number of criteria is proposed for detecting occluded gas in the coolant loop. {copyright} {ital 1996 American Institute of Physics.}

  20. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    SciTech Connect

    DeMuth, J. A.; Meier, W. R.; Jolodosky, A.; Frantoni, M.; Reyes, S.

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  1. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    SciTech Connect

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs.

  2. Robotic inspection of PWR coolant pump casing welds

    SciTech Connect

    Pratt, W.R.; Alford, J.W.; Davis, J.B.

    1997-12-01

    As of January 1, 1995, the Swedish Nuclear Inspectorate began requiring more thorough inspections of cast stainless-steel components in nuclear power plants, including pressurized water reactor (PWR) reactor coolant pump (RCP) casings. The examination requirements are established by fracture mechanics analyses of component weldments and demonstrated test system detection capabilities. This may include full volumetric inspection or some portion thereof. Ringhals station is a four-unit nuclear power plant, owned and operated by the Swedish State Power Board, Vattenfall. Unit 1 is a boiling water reactor. Units 2, 3, and 4 are Westinghouse-designed PWRs, ranging in size from 795 to 925 MW. The RCP casings at the PWR units are made of cast stainless steel and contain four circumferential welds that require inspection. Due to the thickness of the casings at the weld locations and configuration and surface conditions on the outside diameter of the casings, remote inspection from the inside diameter of the pump casing was mandated.

  3. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  4. Loss of coolant analysis for the tower shielding reactor 2

    SciTech Connect

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs.

  5. Experimental Investigation of Coolant Mixing in the RPV of PWR in the Late Phase of a SBLOCA Event

    SciTech Connect

    Kliem, Soren; Prasser, Horst-Michael; Suehnel, Tobias; Weiss, Frank-Peter; Hansen, Asmus

    2006-07-01

    Partial depletion of the primary circuit of a pressurized water reactor during a postulated small break loss of coolant accident can lead to interruption of one-phase flow natural circulation. In this case, the decay heat is removed from the core in the reflux-condenser mode. In this operation mode, slugs of lower borated water can accumulate in the cold legs. After refilling of the primary circuit, the natural circulation in the two loops not receiving emergency core cooling injection (ECC) re-establishes and the lower borated slugs are shifted towards the reactor pressure vessel (RPV). Entering the core, the lower borated water causes a reactivity insertion. Mixing inside the RPV is an important phenomenon limiting the reactivity insertion and preventing a re-criticality. The mixing of these lower borated slugs with the ambient coolant in the RPV was investigated at the 1:5 scaled coolant mixing test facility ROCOM. Wire mesh sensors based on electrical conductivity measurement are used in ROCOM to measure in detail the spreading of a tracer solution in the facility. The mixing in the downcomer was observed with a sensor which spans a measuring grid of 64 azimuthal and 32 positions over the height. The resulting distribution of the boron concentration at the core inlet was measured with a sensor integrated into the lower core support plate providing one measurement position at the entry into each fuel assembly. The boundary conditions for the mixing experiment were taken from an experiment at the thermal-hydraulic test facility PKL operated by FANP Germany. The slugs, which have a lower density, accumulate in the upper part of the downcomer after shifting into the RPV. The ECC-water injected into the RPV falls almost straight down through the lower borated water and accelerates. On the outer sides of the ECC-streak, lower borated coolant admixes and flows together with the ECC-water downwards. This is the only mechanism of transporting the lower borated water

  6. Engine coolant compatibility with the nonmetals found in automotive cooling systems

    SciTech Connect

    Greaney, J.P.; Smith, R.A.

    1999-08-01

    High temperature, short term immersion testing was used to determine the impact of propylene and ethylene glycol base coolants on the physical properties of a variety of elastomeric and thermoplastic materials found in automotive cooling systems. The materials tested are typically used in cooling system hoses, radiator end tanks, and water pump seals. Traditional phosphate or borate-buffered silicated coolants as well as extended-life organic acid formulations were included. A modified ASTM protocol was used to carry out the testing both in the laboratory and at an independent testing facility. Post-test fluid chemistry including an analysis of any solids which may have formed is also reported. Coolant impact on elastomer integrity as well as elastomer-induced changes in fluid chemistry were found to be independent of the coolant`s glycol base.

  7. Characterization of uranium surfaces machined with aqueous propylene glycol-borax or perchloroethylene-mineral oil coolants

    SciTech Connect

    Cristy, S.S.; Bennett, R.K. Jr.; Dillon, J.J.; Richards, H.L.; Seals, R.D.; Byrd, V.R.

    1986-12-31

    The use of perchloroethylene (perc) as an ingredient in coolants for machining enriched uranium at the Oak Ridge Y-12 Plant has been discontinued because of environmental concerns. A new coolant was substituted in December 1985, which consists of an aqueous solution of propylene glycol with borax (sodium tetraborate) added as a nuclear poison and with a nitrite added as a corrosion inhibitor. Uranium surfaces machined using the two coolants were compared with respects to residual contamination, corrosion or corrosion potential, and with the aqueous propylene glycol-borax coolant was found to be better than that of enriched uranium machined with the perc-mineral oil coolant. The boron residues on the final-finished parts machined with the borax-containing coolant were not sufficient to cause problems in further processing. All evidence indicated that the enriched uranium surfaces machined with the borax-containing coolant will be as satisfactory as those machined with the perc coolant.

  8. Analysis of two small break loss-of-coolant experiments in the BETHSY facility using RELAP5/MOD3

    SciTech Connect

    Roth, P.A.; Schultz, R.R. ); Choi, C.J. )

    1992-07-01

    Small break loss-of-coolant accident (SBLOCA) data were recorded during tests 9.lb and 6.2 TC in the Boucle d'Etudes Thermohydrouliques Systeme (BETHSY) facility at the Centre d'Etudes Nucleares de Grenoble (CENG) complex in Grenoble, France. The data from test 9.lb form the basis for the International Standard Problem number 27 (ISP-27). For each test the primary system depressurization, break flow rate, core heat-up, and effect of operator actions were analyzed. Based on the test 9.lb/ISP-27 and 6.2 TC data, an assessment study of the RELAP5/MOD3 version 7 code was performed which included a study of the above phenomena along with countercurrent flow limitation and vapor pull-through. The code provided a reasonable simulation of the various phenomena which occurred during the tests.

  9. Purification of liquid metal systems with sodium coolant from oxygen using getters

    NASA Astrophysics Data System (ADS)

    Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.

    2016-05-01

    For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.

  10. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    SciTech Connect

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  11. Hydraulic drag at the condensing steam flow in tubes

    NASA Astrophysics Data System (ADS)

    Leontiev, A. I.; Milman, O. O.

    2014-12-01

    The dependency of condensing steam flow parameters in tubes and channels was studied as a function of different flow modes for the coolant: counter-flow, co-flow, cross-flow. The drop for the total pressure of steam is higher for the counter-flow than for the co-flow or cross-flow modes. The pressure drop was estimated with different computation models as a function flow mode. Calculation results were compared with experimental data.

  12. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  13. Recycling used engine coolant using high-volume stationary, multiple technology equipment

    SciTech Connect

    Haddock, M.E.; Eaton, E.R.

    1999-08-01

    Recycling used engine coolant has become increasingly desirable due to two significant factors. First, engine coolant frequently merits designation as a hazardous waste under the Federal Clean Water Act. Federal and some state environmental protection agencies have instituted strict regulation of the disposal of used engine coolant. In some cases, the disposal of engine coolant requires imposition of waste disposal fees and surcharges. Secondly, ethylene glycol, the principal cost component of engine coolant, has experienced dramatic price fluctuations and occasional shortages in supply. Therefore, there are both environmental and economic pressures to recycle engine coolant and recover the ethylene glycol component in an efficient and cost-effective manner. This paper discusses a multistage apparatus and a process for recycling used engine coolant that employs a combination of filtration, centrifugation (hydrocyclone separation), dissolved air flotation, nanofiltration, reverse osmosis, continuous deionization, and ion exchange processes for separating ethylene glycol and water from used engine coolant. The engine coolant is prefiltered through a series of filters. The filters remove particulate contaminates. This filtered fluid is then subjected to dissolved air flotation and centrifugation to remove petroleum. Then it is heated and pressurized prior to being passed over a series of two different sets of semipermeable membranes. The membrane technologies separate the feed stream into a permeate solution of ethylene glycol and water and a concentrate waste solution. The concentrate solution is returned to a concentrate tank for continuous circulation through the apparatus. The permeate solution is subjected to final refining by continuous deionization followed by a cation and anion ion exchange polishing process. The continuous deionization reduces ionic contaminants, and the ion exchange system eliminates any ionic contaminants left by the previous purification

  14. Evaluation of molten lead mixing in sodium coolant by diffusion for application to PAHR. [LMFBR

    SciTech Connect

    Chawla, T.C.; Pedersen, D.R.; Leaf, G.; Minkowycz, W.J.

    1983-01-01

    In post-accident heat removal (PAHR) applications the use of a lead slab is being considered for protecting a porous bed of steel shots in ex-vessel cavity from direct impingement of molten steel or fuel upon vessel failure following a hypothetical core dissembly accident in an LMFBR. The porous bed is provided to increase coolability of the fuel debris by the sodium coolant. The objectives of the present study are (1) to determine melting rates of lead slabs of various thicknesses in contact with sodium coolant and (2) to evaluate the extent of penetration and mixing rates of molten lead into sodium coolant by molecular diffusion alone.

  15. Numerical study: Iron corrosion-resistance in lead-bismuth eutectic coolant by molecular dynamics method

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani,; Celino, Massimo

    2012-06-06

    In this present work, we report numerical results of iron (cladding) corrosion study in interaction with lead-bismuth eutectic coolant of advanced nuclear reactors. The goal of this work is to study how the oxygen can be used to reduce the corrosion rate of cladding. The molecular dynamics method was applied to simulate corrosion process. By evaluating the diffusion coefficients, RDF functions, MSD curves of the iron and also observed the crystal structure of iron before and after oxygen injection to the coolant then we concluded that a significant and effective reduction can be achieved by issuing about 2% number of oxygen atoms to lead-bismuth eutectic coolant.

  16. Computational study: Reduction of iron corrosion in lead coolant of fast nuclear reactor

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani

    2012-06-20

    In this paper we report molecular dynamics simulation results of iron (cladding) corrosion in interaction with lead coolant of fast nuclear reactor. The goal of this work is to study effect of oxygen injection to the coolant to reduce iron corrosion. By evaluating diffusion coefficients, radial distribution functions, mean-square displacement curves and observation of crystal structure of iron before and after oxygen injection, we concluded that a significant reduction of corrosion can be achieved by issuing about 2% of oxygen atoms into lead coolant.

  17. A Case Study Of Applying Infrared Thermography To Identify A Coolant Leak In A Municipal Ice Skating Rink

    NASA Astrophysics Data System (ADS)

    Wallace, Jay R.

    1989-03-01

    This paper deals with the application of infrared imaging radiometry as a diagnostic inspection tool for locating a concealed leak in the refrigeration system supplying glycol coolant to the arena floor of an ice skating rink in a municipal coliseum facility. Scanning approximately 10 miles of black iron tubing embedded in the arena floor resulted in locating a leak within the supply/return side of the system. A secondary disclosure was a restriction to normal coolant flow in some delivery loops caused by sludge build-up. Specific inspection procedures were established to enhance temperature differentials suitable for good thermal imaging. One procedure utilized the temperature and pressure of the city water supply; a second the availability of 130F hot water from the facility's boiler system; and a third the building's own internal ambient temperature. Destructive testing and other data collection equipment confirmed the thermographic findings revealing a section of corrosion damaged pipe. Repair and flushing of the system was quickly completed with a minimum of construction costs and inconvenience. No financial losses were incurred due to the interruption of scheduled revenue events. Probable cause for the shutdown condition was attributed to a flawed installation decision made 15 years earlier during the initial construction stage.

  18. Performance of the Extravehicular Mobility Unit (EMU): Airlock Coolant Loop Recovery (A/L CLR) Hardware - Phase II

    NASA Technical Reports Server (NTRS)

    Steele, John; Rector, tony; Gazda, Daniel; Lewis, John

    2009-01-01

    An EMU water processing kit (Airlock Coolant Loop Recovery A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of postflight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives was implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit components, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements. The intent of this paper is to summarize the findings of that evaluation, and to outline updated schedules for A/L CLR use and component life.

  19. Cracked shaft detection on large vertical nuclear reactor coolant pump

    NASA Technical Reports Server (NTRS)

    Jenkins, L. S.

    1985-01-01

    Due to difficulty and radiation exposure associated with examination of the internals of large commercial nuclear reactor coolant pumps, it is necessary to be able to diagnose the cause of an excessive vibration problem quickly without resorting to extensive trial and error efforts. Consequently, it is necessary to make maximum use of all available data to develop a consistent theory which locates the problem area in the machine. This type of approach was taken at Three Mile Island, Unit #1, in February 1984 to identify and locate the cause of a continuously climbing vibration level of the pump shaft. The data gathered necessitated some in-depth knowledge of the pump internals to provide proper interpretation and avoid misleading conclusions. Therefore, the raw data included more than just the vibration characteristics. Pertinent details of the data gathered is shown and is necessary and sufficient to show that the cause of the observed vibration problem could logically only be a cracked pump shaft in the shaft overhang below the pump bearing.

  20. Reliable reactor coolant pump seal performance - the station's role

    SciTech Connect

    Pothier, N.E.; Metcalfe, R.

    1989-01-01

    During the early days of the Canada deuterium uranium (CANDU) power reactor program, operators and designers learned that close attention to reactor coolant pump (RCP) seals was imperative for achieving high-capacity factors. This lesson was driven home by unpredictable and frequent seal failures in the following early CANDU plants. Those seal failures caused forced outages, maintenance/dose burdens, and heavy-water losses. Because then-available industrial seal technology proved inadequate in providing satisfactory fixes, Atomic Energy of Canada Limited (AECL) began a major effort to understand seal performance, develop improved designs, and evolve the station technology needed to attain the RCP seal reliable lifetime requirement of 4 yr. The payback has been huge: Fixes have been successfully implemented and excellent performance is now being achieved with AECL improved RCP seals. In this paper, the CANDU RCP seal experience, the methodology (with emphasis on the station's role) for attaining reliable long RCP seal life, and the adaptability of this technology to US light water reactors (LWRs) are discussed.

  1. Evaluation of zinc addition to PWR primary coolant

    SciTech Connect

    Pathania, R.; Yagnik, S.; Gold, R.E.; Dove, M.; Kolstad, E.

    1995-12-31

    Laboratory studies have shown that addition of zinc to a PWR environment reduces the general corrosion rates of materials in the primary system and delays the initiation of primary water stress corrosion cracking (PWSCC) in Alloy 600. Because of the potential benefits of zinc addition in reducing radiation fields and mitigating PWSCC of Alloy 600 a project was initiated to qualify zinc addition to a PWR. The objective of this work was to evaluate the effect of zinc addition on radiation fields, PWSCC of Alloy 600 and fuel cladding corrosion at the Farley-2 PWR. In order to provide an early warning of any potential adverse effects on the fuel cladding, corrosion studies were initiated at the Halden test reactor prior to zinc addition at Farley-2. This paper provides an overview of the scope of the zinc addition demonstration at Farley-2 and the fuel cladding corrosion tests at Halden. The zinc concentration in the Farley-2 coolant is approximately 40 ppb and that in Halden is 50 ppb. The paper presents initial results from these studies which are still in progress.

  2. Advanced reactor vessel steels for reactors with supercritical coolant parameters

    NASA Astrophysics Data System (ADS)

    Markov, S. I.; Dub, V. S.; Lebedev, A. G.; Kuleshova, E. A.; Balikoev, A. G.; Makarycheva, E. V.; Tolstykh, D. S.; Frolov, A. S.; Krikun, E. V.

    2016-09-01

    A set of studies, tests, and technological works is performed to design promising high-strength vessel steels for reactors with supercritical coolant parameters. Compositions and technological parameters are proposed for the production of reference steel (within the limits of the grade composition of 15Kh2NMFA-A steel) and high-nickel steel. These steels are characterized by high properties, including metallurgical quality and service and technological parameters. Steel of the reference composition has high (higher by 15%) strength properties, improved viscoplastic properties, and ductile-brittle transition temperature t c of at most-125°C. The strength properties of the high-nickel steel are higher than those of the existing steels by 40-50% and higher than those of advanced foreign steels by 15-20% at ductile-brittle transition temperature t c of at most-165°C. Moreover, the designed steels are characterized by a low content of harmful impurity elements and nonmetallic inclusions, a fine-grained structure, and a low susceptibility to thermal embrittlement.

  3. Jet model for slot film cooling with effect of free-stream and coolant turbulence

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.

    1986-01-01

    An analysis was performed utilizing the model of a wall jet for obtaining equations that will predict slot film-cooling efficiency under conditions of variable turbulence intensity, flow, and temperature. The analysis, in addition to assessing the effects of the above variables, makes a distinction between an initial region and a fully developed region. Such a distinction is important in determining the role that the turbulence intensity of the coolant plays in effecting film-cooling effectiveness in the area of the slot exit. The results of the analysis were used in the correlation of the results of a well-designed film-cooling experiment. The result of the analysis and experiment was equations that predicted film-cooling efficiency within + or - 4% average deviation for lateral free-stream turbulence intensities up to 24% and blowing rates up to 1.9. These equations should be useful in determining the optimum quantity of cooling air requried for protecting the wall of a combustor.

  4. Analysis of fission product revaporization in a BWR Reactor Coolant System during a station blackout accident

    SciTech Connect

    Yang, J.W.; Schmidt, E.; Cazzoli, E.; Khatib-Rahbar, M.

    1988-01-01

    This paper presents an analysis of fission product revaporization from the Reactor Coolant System (RCS) following the Reactor Pressure Vessel (RPV) failure. The station blackout accident in a BWR Mark I Power Plant was considered. The TRAPMELT3 models for vaporization, chemisorption, and the decay heating of RCS structures and gases were used and extended beyond the RPV failure in the analysis. The RCS flow models based on the density-difference or pressure-difference between the RCS and containment pedestal region were developed to estimate the RCS outflow which carries the revaporized fission product to the containment. A computer code called REVAP was developed for the analysis. The REVAP code was incorporated with the MARCH, TRAPMELT3 and NAUA codes from the Source Term Code Package (STCP) to estimate the impact of revaporization on environmental release. The results show that the thermal-hydraulic conditions between the RCS and the pedestal region are important factors in determining the magnitude of revaporization and subsequent release of the volatile fission product into the environment. 6 refs., 8 figs.

  5. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical

  6. Concerning advantages in using 208Pb as such a FR coolant

    NASA Astrophysics Data System (ADS)

    Khorasanov, G.; Zemskov, E.; Blokhin, A.

    2017-01-01

    In the paper cores of two fast reactors with heavy liquid metal coolant are considered. The first object, RBETS-M, is a project of a medium power, 900 MW, reactor cooled with lead-bismuth. The second object, BRUTS, is a project of an ultra-small power, 0.5 MW, reactor cooled with lead. The results of replacement of their standard coolants with the lead coolant enriched up to 100% with 208Pb are presented. In the RBETS-M core having a large coolant volume share this replacement results in sufficient increasing the share of 238U involved in the fission process and respective decreasing the share of 239Pu and 241Pu burning.

  7. The experience in handling of lead-bismuth coolant contaminated by Polonium-210

    SciTech Connect

    Pankratov, D.V.; Gromov, B.F.; Solodjankin, M.A.

    1993-12-31

    During exploitation of lead-bismuth cooled reactors a wide experience in handling of radioactive coolant containing polonium has been gained. By 1990 total time of this reactor operation has reached approximately 60 reactor years.

  8. PBF (PER620) interior, basement level. Detail of coolant piping. Date: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, basement level. Detail of coolant piping. Date: May 2004. INEEL negative no. HD-41-5-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Kovalev, Yu. P.; Kalyakin, S. G.; Kozlov, F. A.; Kumaev, V. Ya.; Kondrat'ev, A. S.; Matyukhin, V. V.; Pirogov, E. P.; Sergeev, G. P.; Sorokin, A. P.; Torbenkova, I. Yu.

    2013-05-01

    Both traditional coolant purification methods (by means of traps and sorbents for removing cesium), the use of which supported successful operation of nuclear power installations equipped with fast-neutron reactors with a sodium coolant, and the possibility of removing oxygen from sodium through the use of hot traps are analyzed in substantiating the purification system for a nuclear power station equipped with a BN-1200 reactor. It is shown that a cold trap built into the reactor vessel must be a mandatory component of the reactor plant primary coolant circuit's purification system. The use of hot traps allows oxygen to be removed from the sodium coolant down to permissible concentrations when the nuclear power station operates in its rated mode. The main lines of works aimed at improving the performance characteristics of cold traps are suggested based on the results of performed investigations.

  10. Some Thermophysical Properties of Blood Components and Coolants for Frozen Blood Shipping Containers

    DTIC Science & Technology

    1989-09-01

    AD-A216 099 HSD-TR-89-027 SOME THERMOPHYSICAL PROPERTIES OF BLOOD COMPONENTS AND COOLANTS FOR FROZEN BLOOD SHIPPING CONTAINERS Ettekhar, Jahan G...obsolete SECURITY CLASSIFICATION OF THIS PAGE SUMMARY Thermophysical properties of some coolants and blood components at low temperatures were investigated...Heat of Fusion of Blood Components 33 2 Melting Point and Latent Heat of Fusion of Aqueous Solutions of Ethylene Glycol (Dowtherm SR-l) 33 3 Melting

  11. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    SciTech Connect

    Chen, N.C.J.; Yoder, G.L. ); Wendel, M.W. )

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs.

  12. Power Module Cooling for Future Electric Vehicle Applications: A Coolant Comparison of Oil and PGW

    DTIC Science & Technology

    2006-11-01

    POWER MODULE COOLING FOR FUTURE ELECTRIC VEHICLE APPLICATIONS: A COOLANT COMPARISON OF OIL AND PGW T. E. Salem U. S. Naval Academy 105...and efficient power converters are being developed to support the needs of future ground vehicle systems. This progress is being driven by...2006 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Power Module Cooling For Future Electric Vehicle Applications: A Coolant

  13. Impact of the propylene glycol-water-borax coolant on material recovery operations

    SciTech Connect

    Duerksen, W.K.; Taylor, P.A.

    1983-05-01

    The reaction of the propylene glycol-water-borax coolant with nitric acid has now been studied in some detail. This document is intended to provide a summary of the results. Findings are summarized under nine headings. Tests have also been conducted to determine if the new coolant would have any adverse effects on the uranium recycle systems. Experiments were scientifically designed after observation of the production operations so that accurate response to the immediate production concerns could be provided. Conclusions from these studies are: formation of glycol nitrates is very improbable; the reaction of concentrated (70%) nitric acid with pure propylene glycol is very violent and hazardous; dilution of the nitric acid-glycol mixture causes a drastic decrease in the rate and intensity of the reaction; the mechanism of the nitric acid propylene glycol reaction is autocatalytic in nitrous acid; no reaction is observed between coolant and 30% nitric acid unless the solution is heated; the coolant reacts fairly vigorously with 55% nitric acid after a concentration-dependent induction time; experiments showed that the dissolution of uranium chips that had been soaked in coolant proceeded at about the same rate as if the chips had not previously contacted glycol; thermodynamic calculations show that the enthalpy change (heat liberated) by the reaction of nitric acid (30%) with propylene glycol is smaller than if the same amount of nitric acid reacted with uranium. Each of these conclusions is briefly discussed. The effect of new coolant on uranium recycle operations is then briefly discussed.

  14. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  15. Reactor coolant pump testing using motor current signatures analysis

    SciTech Connect

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  16. Cladding embrittlement during postulated loss-of-coolant accidents.

    SciTech Connect

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  17. Bypass Flow Study

    SciTech Connect

    Richard Schultz

    2011-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  18. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

    SciTech Connect

    Tzanos, C. P.; Dionne, B.

    2011-05-23

    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D

  19. Method and device for measuring fluid flow

    DOEpatents

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  20. Nanomaterials for efficiently lowering the freezing point of anti-freeze coolants.

    PubMed

    Hong, Haiping; Zheng, Yingsong; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water/50% anti-freeze coolant (PAC) or 50% water/50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g., NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  1. Improved Traps for Removing Gases From Coolant Liquids

    NASA Technical Reports Server (NTRS)

    Holladay, John; Ritchie, Stephen

    2006-01-01

    Two documents discuss improvements in traps for removing noncondensable gases (e.g., air) from heat-transfer liquids (e.g., water) in spacecraft cooling systems. Noncondensable gases must be removed because they can interfere with operation. A typical trap includes a cylindrical hydrophobic membrane inside a cylindrical hydrophilic membrane, all surrounded by an outer cylindrical impermeable shell. The input mixture of gas bubbles and liquid flows into the annular volume between the membranes. Bubbles pass into the central hollow of the hydrophobic membrane and are vented. The liquid flows outward through the hydrophilic membrane and is recirculated.

  2. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    SciTech Connect

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods.

  3. Probabilistic analyses of failure in reactor coolant piping. [Double-ended guillotine break

    SciTech Connect

    Holman, G.S.

    1984-07-20

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB).

  4. Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant

    SciTech Connect

    Taylor, P.A.

    1984-12-01

    A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.

  5. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  6. Modeling the onset of flow instability for subcooled boiling in downflow

    SciTech Connect

    Qureshi, Z. ); Barry, J.J.; Crowley, C.J. )

    1990-01-01

    A postulated loss-of-coolant accident (LOCA) scenario for the Savannah River Plant (SRP) production reactors involves a double-ended break of a reactor primary coolant pipe. The flow of coolant (D{sub 2}O) in the reactor may decrease in such an event. As the flow into the reactor decreases, boiling may occur, followed by dryout and failure of the fuel due to overheating. A typical SRP fuel assembly consists of multiple concentric tubes containing the fuel and target materials. Coolant passes through the annular passages in the assembly in downflow. Under normal operating conditions, the flow rate is maintained high enough to suppress or minimize subcooled boiling, i.e. the flow remains essentially single phase throughout. At high coolant flow rates, the flow is single phase or partially developed subcooled boiling, and the pressure drop decreases with decreasing flow rate. Here friction dominates the pressure gradient, and the flow is stable. Below a certain flow rate, however, pressure drop may increase with decreasing flow rate. This occurs when significant voids are produced by boiling, resulting in a large acceleration component to the pressure drop. The negative slope of the curve leads to an instability because the pressure drop cannot adjust to compensate -- the flow is driven to a lower value. Overheating of the channel may result. 15 refs., 14 figs.

  7. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  8. Chimney for enhancing flow of coolant water in natural circulation boiling water reactor

    DOEpatents

    Oosterkamp, Willem Jan; Marquino, Wayne

    1999-01-05

    A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereat access to the fuel assemblies is not obstructed.

  9. Attenuation of Vane-Rotor Shock Interactions with Pulsating Coolant Flows

    DTIC Science & Technology

    2012-03-01

    provide aerodynamic designers new tools to harness shock interactions. 15. SUBJECT TERMS EOARD, Aerodyanamics, Turbomachinery ...A: Approved for public release; distribution is unlimited. SUMMARY In transonic and supersonic turbomachinery , shock waves appear at the trailing... turbomachinery . This paper may guide aerodynamic designers to novel concepts to modulate shock waves. 2. Experimental apparatus 2.1. Airfoil model The

  10. Chimney for enhancing flow of coolant water in natural circulation boiling water reactor

    DOEpatents

    Oosterkamp, W.J.; Marquino, W.

    1999-01-05

    A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies is disclosed. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereas access to the fuel assemblies is not obstructed. 11 figs.

  11. Metal temperatures and coolant flow in a wire cloth transpiration cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1975-01-01

    An experimental heat transfer investigation was conducted on an air-cooled turbine vane made from wire-wound cloth material and supported by a central strut. Vane temperature data obtained are compared with temperature data from two full-coverage film-cooled vanes made of different laminated construction. Measured porous-airfoil temperatures are compared with predicted temperatures.

  12. Assembly for facilitating inservice inspection of a reactor coolant pump rotor

    DOEpatents

    Veronesi, Luciano

    1990-01-01

    A reactor coolant pump has an outer casing with an internal cavity holding a coolant and a rotor rotatably mounted in the cavity within the coolant. An assembly for permitting inservice inspection of the pump rotor without first draining the coolant from the casing cavity is attached to an end of the pump. A cylindrical bore is defined through the casing in axial alignment with an end of pump rotor and opening into the internal cavity. An extension attached on the rotor end and rotatable therewith has a cylindrical coupler member extending into the bore. An outer end of the coupler member has an element configured to receive a tool for performance of inservice rotor inspection. A hollow cylindrical member is disposed in the bore and surrounds the coupler member. The cylindrical member is slidably movable relative to the coupler member along the bore between a retracted position wherein the cylindrical member is stored for normal pump operation and an extended position wherein the cylindrical member is extended for permitting inservice rotor inspection. A cover member is detachably and sealably attached to the casing across the bore for closing the bore and retaining the cylindrical member at its retracted position for normal pump operation. Upon detachment of the cover member, the cylindrical member can be extended to permit inservice rotor inspection.

  13. ETR COOLING TOWER PUMP HOUSE, TRA645. FOUR SECONDARY COOLANT PUMPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER PUMP HOUSE, TRA-645. FOUR SECONDARY COOLANT PUMPS ARE ARRANGED IN A ROW. IN REAR ARE THREE SHUTDOWN EMERGENCY PUMPS. INL NEGATIVE NO. 56-4176. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. PBF (PER620) interior, second basement level. Coolant and tank piping. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior, second basement level. Coolant and tank piping. Mark on vertical pipe says, "H.P. Demin. Water." (High pressure demineralized water.) Date: March 2004. INEEL negative no. HD-41-4-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Method and apparatus for removing iodine from a nuclear reactor coolant

    DOEpatents

    Cooper, Martin H.

    1980-01-01

    A method and apparatus for removing iodine-131 and iodine-125 from a liquid sodium reactor coolant. Non-radioactive iodine is dissolved in hot liquid sodium to increase the total iodine concentration. Subsequent precipitation of the iodine in a cold trap removes both the radioactive iodine isotopes as well as the non-radioactive iodine.

  17. TRITIUM LABORATORY, TRA666, INTERIOR. COOLANT LOOP PIPING DETAIL AND CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRITIUM LABORATORY, TRA-666, INTERIOR. COOLANT LOOP PIPING DETAIL AND CONTROL VALVE EQUIPMENT ALONG EAST WALL. INL NEGATIVE NO. HD30-2-2. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Determination of soluble chromium in simulated PWR coolant by differential-pulse adsorptive stripping voltammetry.

    PubMed

    Torrance, K; Gatford, C

    1987-11-01

    An analytical method has been developed for the determination of dissolved chromium at concentrations less than 2 mug/l. in PWR coolant by differential-pulse adsorptive stripping voltammetry at a hanging mercury drop electrode. Concentrations above 2 mug/l. can be determined by appropriate dilution of the sample. The method is based on measurement of the current associated with reduction of a chromium(III)-DTPA (diethylenetriaminepenta-acetic acid) complex adsorbed at the surface of the mercury drop. The effects of boric acid, pH, DTPA concentration, accumulation potential and time were investigated together with the oxidation state of the chromium. No interference was observed from other transition metal ions expected to be present in PWR coolant. No alternative chemical technique of similar sensitivity was available for comparison with the results obtained in solutions containing <1 mug/l. chromium. Recoveries from simulated coolant solutions were greater than 95% and the relative standard deviations for single determinations were in the range 12-25%. The statistical limit of detection at the 95% confidence level was 0.023 mug/l. This method of analysis should prove valuable in corrosion studies and is uniquely capable of following the changes in soluble chromium concentration in PWR coolant that follow operational changes in the reactor.

  19. MTR, TRA603. SUBBASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. SUB-BASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER (NORTH SIDE) AND AIR (SOUTH SIDE). RABBIT CANAL AND BULKHEADS. SUMPS AND DRAINS. BLAW-KNOX 3150-3-7, 3/1950. INL INDEX NO. 531-0603-00-098-100006, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Turbulent Coolant Dispersion in the Wake of a Turbine Vane Trailing Edge

    DTIC Science & Technology

    2015-01-01

    Asymmet- ric dispersion in this region indicated that longitudinal vortices shed from the coolant injection structures played a dominant role in the...Wedding, M.T. Draney, C.J. Elkins, D.W. Parker , R. Wicker, C.A. Taylor, R.J. Herfkens, and N.J. Pelc. Time- resolved three-dimensional phase-contrast mri

  1. Effect of glycol-based coolants on the suppression and recovery of platinum fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Garsany, Yannick; Dutta, Sreya; Swider-Lyons, Karen E.

    2012-10-01

    We use cyclic and rotating disk electrode voltammetry to study glycol-based coolant formulations to show that individual constituents have either negligible or significant poisoning effects on the nanoscale Pt/carbon catalysts used in proton exchange membrane fuel cells. The base fluid in all these coolants is glycol (1, 3 propanediol), commercially available in a BioGlycol coolant formulation with an ethoxylated nonylphenol surfactant, and azole- and polyol-based non-ionic corrosion inhibitors. Exposure of a Pt/Vulcan carbon electrode to glycol-water or glycol-water-surfactant mixtures causes the loss of Pt electrochemical surface area (ECSA), but the Pt ECSA is fully recovered in clean electrolyte. Only mixtures with the azole corrosion inhibitor cause irreversible losses to the Pt ECSA and oxygen reduction reaction (ORR) activity. The Pt ECSA and ORR activity can only be recovered to within 70% of its initial values after aggressive voltammetric cycling to 1.50 V after azole poisoning. When poisoned with a glycol mixture containing the polyol corrosion inhibitor instead, the Pt ECSA and ORR activity is completely recovered by exposure to a clean electrolyte. The results suggest that prior to incorporation in a fuel cell, voltammetric evaluation of the constituents of coolant formulations is worthwhile.

  2. An Improved Design for Air Removal from Aerospace Fluid Loop Coolant Systems

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.; Holladay, Jon B.; Holt, J. Mike; Clark, Dallas W.

    2003-01-01

    Aerospace applications with requirements for large capacity heat removal (launch vehicles, platforms, payloads, etc.) typically utilize a liquid coolant fluid as a transport media to increase efficiency and flexibility in the vehicle design. An issue with these systems however, is susceptibility to the presence of noncondensable gas (NCG) or air. The presence of air in a coolant loop can have numerous negative consequences, including loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and coolant blockage to remote systems. Hardware ground processing to remove this air is also cumbersome and time consuming which continuously drives recurring costs. Current systems for maintaining the system free of air are tailored and have demonstrated only moderate success. An obvious solution to these problems is the development and advancement of a passive gas removal device, or gas trap, that would be installed in the flight cooling system simplifying the initial coolant fill procedure and also maintaining the system during operations. The proposed device would utilize commercially available membranes thus increasing reliability and reducing cost while also addressing both current and anticipated applications. In addition, it maintains current pressure drop, water loss, and size restrictions while increasing tolerance for pressure increases due to gas build-up in the trap.

  3. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect

    Staunton, Robert H; Hsu, John S; Starke, Michael R

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at

  4. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at

  5. Polonium Issue in Fast Reactor Lead Coolants and One of the Ways of Its Solution

    SciTech Connect

    Khorasanov, G.L.; Ivanov, A.P.; Blokhin, A.I.

    2002-07-01

    One of the main issues in using materials for nuclear facilities is to minimize the production of the most hazardous radionuclides. In the ideal case, all nuclear reactor materials, except a fuel, should be low-activation. The term 'low-activation material' means that this one loses its induced activity in a short time after removal from irradiation. Proposals for building a fusion reactor using low-activation materials are given in Ref.1, 2. For this purpose, low-activation structural materials based on V-Ti-Cr alloys are in the stage of R and D in several countries [3,4]. Another technique to avoid the hazardous activity is in using isotopically enriched materials [5-7]. Although isotopic tailoring option requires tremendous technical efforts and it is too expensive, its application can be first of all assumed for those structural and functional materials which generate very hazardous radionuclides under irradiation. In modern projects of next generation NPPs the preference is given to fast reactors (FRs) with a lead coolant [8]. As it known, the coolant circulating through a FR core is activated, and in the future we should have problems with handling a completed coolant after FR decommissioning or at realization of repair or emergency activities. There, it is desirable to have a low-activation coolant with the low contents of hazardous radionuclides. In papers [9,10] presented at the previous ICONE conferences it was proposed to use lead isotope, Pb-206, as a coolant instead of lead natural, Pb-nat. This paper is devoted to more detailed calculations of accumulating stable bismuth, Bi-209, and polonium radioisotopes, Po-209 (T{sub 1/2}=102 y) and Po-210 (T{sub 1/2}=138 d), in 1 kg of Pb-nat or Pb-206 placed in the core of the BOR-60 type FR. (authors)

  6. Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).

  7. Fission-powered in-core thermoacoustic sensor

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.; Heidrich, Brenden J.; Heibel, Michael D.

    2016-04-01

    A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.

  8. Fission-powered in-core thermoacoustic sensor

    SciTech Connect

    Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.; Heidrich, Brenden J.; Heibel, Michael D.

    2016-04-07

    A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. Furthermore, these signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.

  9. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  10. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  11. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  12. Compression waves at boiling coolant outflow and peculiarities of their interaction with a barrier

    NASA Astrophysics Data System (ADS)

    Pribaturin, N. A.; Lezhnin, S. I.; Vozhakov, I. S.; Alekseev, M. V.

    2016-10-01

    Numerical simulation of the boiling coolant outflow at a butt-break of high-pressure pipeline was carried out. Interaction between the emerging compression wave and a barrier was studied. The temporal dynamics of the axial pressure profile and pressure in the center of the target were detected. The form of the radial pressure profile on the target was investigated. It has been obtained that in the case of the two-phase outflowing coolant the calculated pressure of the wave reflected from the barrier near the nozzle is less than the theoretical prediction for the ideal gas, and that with an increase in the distance from the nozzle to the barrier the differences between the calculated and theoretical values decrease.

  13. Evaluation of secondary coolant control design alternatives and their effects on heat removal performance

    SciTech Connect

    Khayat, M.I.; Anderson, J.; Battle, R.; March-Leuba, J.

    1994-03-01

    This report documents a series of calculations that evaluate the performance of the core-inlet temperature controller under different transient conditions and design options. The present analyses show that the core-inlet temperature can be controlled at {approx}45{degrees}C under all transient conditions analyzed using the controller design described in the conceptual design report, which includes variable-speed secondary coolant pumps and variable-speed cooling tower fans. This study also shows that a constant-speed secondary pump would be sufficient to maintain core-inlet temperature <45{degrees}C if this temperature is allowed to drop below the set point during some demanding transients, such as normal startup. The use of secondary loop hot coolant to warm the reactor building was also evaluated; however, optimization of the secondary hot-leg temperature can only be achieved by trading off control of the primary side core-inlet temperature.

  14. The effect of coolants on the performance of magnetic micro-refrigerators.

    PubMed

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  15. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  16. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    SciTech Connect

    Roussel, G.

    1997-04-01

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  17. TMI-2 (Three Mile Island Unit 2) primary coolant mass flowrate data report

    SciTech Connect

    McCormick, R.D.

    1986-12-01

    This is a report on the preparation of data from the TMI-2 primary coolant mass flowrate meters for inclusion into the TMI Data Base. The sources of the as-recorded data are discussed, and a description of the instrument is given. An explanation is given of how corrections were made to the as-recorded data and how the uncertainties were calculated. The identifiers attached to each data set in the TMI Data Base are given.

  18. Main-coolant-pump shaft-seal reliability investigation. Interim report

    SciTech Connect

    Fair, C.E.; Marsi, J.A.; Greer, A.O.

    1982-09-01

    This report contains the results of a survey of reactor coolant pump shaft seal reliability. The survey sample is representatively large (approx. = 27% of total US commercial plant population) and includes the three industry seal suppliers (Bingham-Williamette, Byron Jackson, and Westinghouse). Operationally incurred/induced problems and seal redesign parameters are identified. Failure hypotheses in the form of fault trees have been developed to describe the failure mechanisms. Recommendations are made for seal reliability improvement.

  19. Main-coolant-pump shaft-seal guidelines. Volume 3. Specification guidelines. Final report. [PWR; BWR

    SciTech Connect

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria to aid in the generation of procurement specifications for Main Coolant Pump Shaft Seals. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies, a review of pump and shaft seal literature and discussions with pump and seal designers. This report is preliminary in nature and could be expanded and finalized subsequent to completion of further design, test and evaluation efforts.

  20. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  1. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    NASA Astrophysics Data System (ADS)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  2. Assessment of fiber optic sensors for aging monitoring of industrial liquid coolants

    NASA Astrophysics Data System (ADS)

    Riziotis, Christos; El Sachat, Alexandros; Markos, Christos; Velanas, Pantelis; Meristoudi, Anastasia; Papadopoulos, Aggelos

    2015-03-01

    Lately the demand for in situ and real time monitoring of industrial assets and processes has been dramatically increased. Although numerous sensing techniques have been proposed, only a small fraction can operate efficiently under harsh industrial environments. In this work the operational properties of a proposed photonic based chemical sensing scheme, capable to monitor the ageing process and the quality characteristics of coolants and lubricants in industrial heavy machinery for metal finishing processes is presented. The full spectroscopic characterization of different coolant liquids revealed that the ageing process is connected closely to the acidity/ pH value of coolants, despite the fact that the ageing process is quite complicated, affected by a number of environmental parameters such as the temperature, humidity and development of hazardous biological content as for example fungi. Efficient and low cost optical fiber sensors based on pH sensitive thin overlayers, are proposed and employed for the ageing monitoring. Active sol-gel based materials produced with various pH indicators like cresol red, bromophenol blue and chorophenol red in tetraethylorthosilicate (TEOS), were used for the production of those thin film sensitive layers deposited on polymer's and silica's large core and highly multimoded optical fibers. The optical characteristics, sensing performance and environmental robustness of those optical sensors are presented, extracting useful conclusions towards their use in industrial applications.

  3. Assessment of Thermal and Hydrodynamic Fragmentation in Molten Fuel Coolant Interaction With Simulant System

    SciTech Connect

    Narayanan, K.S.; Das, S.K.; Jasmin Sudha, A.; Rao, E.H.V.M.; Lydia, G.; Murthy, S.S.; Kumareshan, M.; Harvey, J.; Kasinathan, N.; Rajan, M.

    2006-07-01

    In the Safety analysis of Fast Breeder Reactor, assessment of Molten Fuel Coolant Interaction (MFCI) assumes importance for two aspects, namely the characterization of the debris and severity of pressure pulses generation. An attempt has been made to investigate the debris generation characteristics with molten Woods Metal (Alloy of Bi 50% Pb 25% Sn 12.5% and Cd 12.5% and melting point of 346 K) - Water simulant system. Liquid Woods metal and liquid Uranium dioxide physical properties (Density, Surface tension and Kinematic viscosity) are similar. Experimental studies were conducted for various melt temperatures covering non - boiling, convective boiling and film boiling regimes of water, to assess the debris generation resulting from both hydrodynamic and thermal interaction. Woods metal was heated to the desired temperature and poured through a hot funnel having a nozzle of 8 mm release diameter into a water column of height up to 140 cm. Experiments were repeated for different coolant temperature and melt inventory up to 5 kg. The melt entry velocity was determined from video recordings. The debris is analyzed on the basis of interface temperature, Rayleigh-Taylor and Kelvin - Helmholtz instabilities. It is observed that Kelvin-Helmholtz instability is the dominant fragmentation phenomena. Contribution due to coolant boiling resulted in more debris generation in the size less than 4 mm. (authors)

  4. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  5. Evaluation of the coolant reactivity coefficient influence on the dynamic response of a small LFR system

    SciTech Connect

    Lorenzi, S.; Bortot, S.; Cammi, A.; Ponciroli, R.

    2012-07-01

    An assessment of the coolant reactivity feedback influence on a small Lead-cooled Fast Reactor (LFR) dynamics has been made aimed at providing both qualitative and quantitative insights into the system transient behavior depending on the sign of the above mentioned coefficient. The need of such an investigation has been recognized since fast reactors cooled by heavy liquid metals show to be characterized by a strong coupling between primary and secondary systems. In particular, the coolant density and radial expansion coefficients have been attested to play a major role in determining the core response to any perturbed condition on the Steam Generator (SG) side. The European Lead-cooled System (ELSY)-based demonstrator (DEMO) has been assumed as the reference LFR case study. As a first step, a zero-dimensional dynamics model has been developed and implemented in MATLAB/SIMULINK{sup R} environment; then typical transient scenarios have been simulated by incorporating the actual negative lead density reactivity coefficient and its opposite. In all the examined cases results have shown that the reactor behaves in a completely different way when considering a positive coolant feedback instead of the reference one, the system free dynamics resulting moreover considerably slower due to the core and SG mutually conflicting reactions. The outcomes of the present analysis may represent a useful feedback for both the core and the control system designers. (authors)

  6. Guidelines to achieve seals with minimal leak rates for HWR-NPR coolant system components

    SciTech Connect

    Finn, P.A.

    1991-03-01

    Seal design practices that are acceptable in pressurized-water and boiling-water reactors in the United States are not usable for the Heavy Water Reactor-New Production Reactor (HWR-NPR) because of the stringent requirement on tritium control for the atmosphere within its containment building. To maintain an atmosphere in which workers do not need protective equipment, the components of the coolant system must have a cumulative leak rate less than 0.00026 L/s. Existing technology for seal systems was reviewed with regard to flange, elastomer, valve, and pump design. A technology data base for the designers of the HWR-NPR coolant system was derived from operating experience and seal development work on reactors in the United States, Canada, and Europe. This data base was then used to generate guidelines for the design of seals and/or joints for the HWR-NPR coolant system. Also discussed are needed additional research and development, as well as the necessary component qualification tests for an effective quality control program. 141 refs., 21 figs., 14 tabs.

  7. Design of the coolant system for the Large Coil Test Facility pulse coils

    SciTech Connect

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls.

  8. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering

    NASA Astrophysics Data System (ADS)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.

    2014-05-01

    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  9. Fleet test evaluation of fully formulated heavy-duty coolant technology maintained with a delayed-release filter compared with coolant inhibited with a nitrited organic acid technology: An interim report

    SciTech Connect

    Aroyan, S.S.; Eaton, E.R.

    1999-08-01

    This paper is a controlled extended service interval (ESI) study of the comparative behaviors of a nitrite/borate/low-silicate, low total dissolved solids (TDS) coolant maintained with delayed-release filters, and an organic acid inhibited coolant technology in heavy-duty engines. It reports both laboratory and fleet test data from 66 trucks, powered with different makes of heavy-duty diesel engines. The engines were cooled with three different types of inhibitors and two different glycol base (ethylene glycol and propylene glycol) coolants for an initial period exceeding two years and 500,000 km (300,000 miles). The data reported include chemical depletion rates, periodic coolant chemical analyses, and engine/cooling system reliability experience. The ongoing test will continue for approximately five years and a 1.6 million km (1 million miles) duration. Thirteen trucks were retained as controls, operating with ASTM D 4985 specification (GM-6038 type) coolant maintained with a standard ASTM D 57542 supplemental coolant additive (SCA). Engines produced by Caterpillar, Detroit Diesel Corp., Cummins Engine Co., and Mack Trucks are included in the test mix.

  10. The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents

    SciTech Connect

    Terrani, Kurt A.; Wang, Dean; Ott, Larry J.; Montgomery, Robert O.

    2014-05-01

    The effect of variation in thermal conductivity of light water reactor fuel elements on core response during loss-of-coolant accident scenarios is examined. Initially, a simplified numerical analysis is utilized to determine the time scales associated with dissipation of stored energy from the fuel into the coolant once the fission reaction is stopped. The analysis is then followed by full reactor system thermal-hydraulics analysis of a typical boiling and pressurized water reactor subjected to a large break loss-of-coolant accident scenario using the TRACE code. Accordingly, sensitivity analyses to examine the effect of an increase in fuel thermal conductivity, up to 500%, on fuel temperature evolution during these transients are performed. Given the major differences in thermal-hydraulics design aspects of boiling and pressurized water reactors, different fuel and temperature responses during the simulated loss-of-coolant transients are observed.

  11. Columbia University flow instability experimental program: Volume 6. Single annulus tests, transient test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1 to 2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. This report presents the experimental results for the transient portion of the single annulus test program. The test program was designed to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a ribless heater and a ribbed heater under steady state as well as transient conditions. The ribbed heater testing is currently underway and will be reported separately. The steady state portion of this test program with ribless heater was completed and reported in report No. CU-HTRF-T3A. The present report presents transient test results obtained from a ribless, uniform annulus test section. A total of thirty five transients were conducted with six cases in which flow excursion occurred. No unstable conditions resulted for tests in which the steady state Q{sub ratio} OFI limit was not exceeded.

  12. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  13. 10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

    SciTech Connect

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs

  14. High pressure coolant effect on PVD coated inserts during end milling of Ti-6AL-4V

    NASA Astrophysics Data System (ADS)

    Sridharan, Arvind

    Titanium alloys are being employed extensively in engineering and aerospace applications for their high strength to weight ratio, mechanical strength and ability to withstand high temperatures. Out of the different alloys of titanium available, the most commonly used alloy is Ti-6Al-4V. It is also called `Grade-5 titanium alloy' or 'α+β titanium alloy'. High speed machining of titanium alloys generates high temperatures in the cutting zone, promoting accelerated tool wear and reducing the efficiency in metal cutting. Consequently, the ability of the coolant to remove heat from the cutting zone plays an increasingly important role in the economics of the process as well as on the life of tool inserts. With the introduction of thru-tool coolant delivery, the coolant can now be delivered directly at the point of machining without having to flood the area of machining. This research tries to address the effects that high pressure and thru-tool coolant has on insert wear while end milling Ti-6Al-4V. The parameters used in this study are speed, feed, axial depth of cut, radial depth of cut and coolant pressure. A structured design of experiments along with a central composite design approach is used to determine the main effects of coolant pressure and its interactions with the remaining parameters. The results show that, within the parameters of this experiment, coolant pressure was not a significant main effect. However, pressure seems to react positively with feed rate. Contributions from this research can be used to recommend settings of the cutting factors in order to obtain the minimal tool wear.

  15. The Effect of the Channel Head on the Unsteady Pressure Pulsation Characteristics at the Inlet and Outlet of Reactor Coolant Pumps

    NASA Astrophysics Data System (ADS)

    Yun, Long; Junlian, Yin; Dezhong, Wang; Yaoyu, Hu

    2016-11-01

    In this paper, CFD approach was employed to analyse the inlet and outlet pressure pulsation characteristics of reactor coolant pumps with different inflows. The Reynolds- averaged Naiver-Stokes equations with the k-ɛ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The channel head induces the inlet flow non-uniform, and the non-uniformity of the inflow induces the outlet flow of the pump with channel head different from that of the straight pipe. Meanwhile, the pressure pulsation signals are analysed using RMS, Standard Deviation and Peak-to-Peak Value method. At the points of the inlet and outlet, the pressure pulsation characteristics between the channel head and straight pipe are compared, and the difference is obviously. It is evident that the two different inflows of channel head and straight pipe have significant effect on the pump unsteady pressure pulsation. Finally, it is expected that the effects of non-uniform inflow on the pump performance and unsteady pressure pulsation are absolutely different from the uniform inflow. It is very important to provide accurate input conditions for the design and safety of the reactor.

  16. Estimating Loss-of-Coolant Accident Frequencies for the Standardized Plant Analysis Risk Models

    SciTech Connect

    S. A. Eide; D. M. Rasmuson; C. L. Atwood

    2008-09-01

    The U.S. Nuclear Regulatory Commission maintains a set of risk models covering the U.S. commercial nuclear power plants. These standardized plant analysis risk (SPAR) models include several loss-of-coolant accident (LOCA) initiating events such as small (SLOCA), medium (MLOCA), and large (LLOCA). All of these events involve a loss of coolant inventory from the reactor coolant system. In order to maintain a level of consistency across these models, initiating event frequencies generally are based on plant-type average performance, where the plant types are boiling water reactors and pressurized water reactors. For certain risk analyses, these plant-type initiating event frequencies may be replaced by plant-specific estimates. Frequencies for SPAR LOCA initiating events previously were based on results presented in NUREG/CR-5750, but the newest models use results documented in NUREG/CR-6928. The estimates in NUREG/CR-6928 are based on historical data from the initiating events database for pressurized water reactor SLOCA or an interpretation of results presented in the draft version of NUREG-1829. The information in NUREG-1829 can be used several ways, resulting in different estimates for the various LOCA frequencies. Various ways NUREG-1829 information can be used to estimate LOCA frequencies were investigated and this paper presents two methods for the SPAR model standard inputs, which differ from the method used in NUREG/CR-6928. In addition, results obtained from NUREG-1829 are compared with actual operating experience as contained in the initiating events database.

  17. Cooled-turbine aerodynamic performance prediction from reduced primary to coolant total-temperature-ratio results

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1976-01-01

    The prediction of the cooled aerodynamic performance, for both stators and turbines, at actual primary to coolant inlet total temperature ratios from the results obtained at a reduced total temperature ratio is described. Theoretical and available experimental results were compared for convection film and transpiration cooled stator vanes and for a film cooled, single stage core turbine. For these tests the total temperature ratio varied from near 1.0 to about 2.7. The agreement between the theoretical and the experimental results was, in general, reasonable.

  18. Extravehicular Mobility Unit (EMU) / International Space Station (ISS) Coolant Loop Failure and Recovery

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John

    2006-01-01

    Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.

  19. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    SciTech Connect

    Al-Falahi, A.; Haennine, M.; Porkholm, K.

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  20. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    SciTech Connect

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  1. Some observations on simulated molten debris-coolant layer dynamics. [PWR; BWR

    SciTech Connect

    Greene, G.A.; Klein, J.; Klages, J.; Schwarz, E.; Sanborn, Y.

    1983-04-01

    Experiments are being performed to investigate high temperature liquid-liquid film boiling between a pool of liquid metal and an overlying coolant pool of R-11 or water. Film boiling has been observed to be stable for R-11; however, considerable liquid-liquid contact has been observed with water well beyond the minimum film boiling temperature. Unstable liquid-liquid film boiling of water has been observed to escalate into dispersive, non-energetic vapor explosions when the interface contact temperature exceeded the spontaneous nucleation temperature. Other parametric trends in the data are discussed.

  2. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    DOEpatents

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  3. Proceedings of the CSNI specialists meeting on fuel-coolant interactions

    SciTech Connect

    1994-03-01

    A specialists meeting on fuel-coolant interactions was held in Santa Barbara, CA from January 5-7, 1993. The meeting was sponsored by the United States Nuclear Regulatory Commission in collaboration with the Committee on the Safety of Nuclear Installation (CSNI) of the OECD Nuclear Energy Agency (NEA) and the University of California at Santa Barbara. The objectives of the meeting are to cross-fertilize on-going work, provide opportunities for mutual check points, seek to focus the technical issues on matters of practical significance and re-evaluate both the objectives as well as path of future research. Individual papers have been cataloged separately.

  4. Photoelectrochemical protection of stainless alloys from the stress-corrosion cracking in BWR primary coolant environment

    SciTech Connect

    Akashi, Masatsune; Iso-o, Hiroyuki; Kubota, Nobuhiko; Fukuda, Takanori; Ayabe, Muneo; Hirano, Kenji

    1995-12-31

    The feasibility of counteracting or preventing the stress-corrosion cracking in the BWR core internals by the photoelectrochemical method has been examined. For the purpose TiO{sub 2} semiconductor is noted for its capability of photo electrochemically inducing the water-oxidizing anodic reaction in low enough potential domain if supplied with a light of a wavelength shorter than 410 nm. This paper offers an empirical proof by showing that Type 304 stainless steel and Alloy 600 stainless alloy that have been plasma-spray coated with TiO{sub 2} film will do quite well in environments of BWR primary coolant.

  5. Development of sputtered techniques for thrust chambers. [coolant passage closing by triode sputtering

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Broch, J. W.; Allard, P. A.

    1976-01-01

    Procedures for closing out coolant passages in regeneratively cooled thrust chambers by triode sputtering, using post and hollow Cu-0.15 percent Zr cathodes are described. The effects of aluminum composite filler materials, substrate preparation, sputter cleaning, substrate bias current density and system geometry on closeout layer bond strength and structure are evaluated. High strength closeout layers were sputtered over aluminum fillers. The tensile strength and microstructure of continuously sputtered Cu-0.15 percent Zr deposits were determined. These continuous sputtered deposits were as thick as 0.75 cm. Tensile strengths were consistently twice as great as the strength of the material in wrought form.

  6. Influence of internal flow on film cooling effectiveness

    SciTech Connect

    Wilfert, G.; Wolff, S.

    2000-04-01

    Film cooling experiments were conducted to investigate the effects of internal flow conditions and plenum geometry on the film cooling effectiveness. The film cooling measurements show a strong influence of the coolant inlet conditions on film cooling performance. The present experiments were carried out on a flat plate with a row of cylindrical holes oriented at 30 degrees with respect to a constant-velocity external flow, systematically varying the plenum geometry and blowing rates (0.5 {le} M {le} 1.25). Adiabatic film cooling measurements using the multiple narrow-banded thermochromic liquid crystal technique (TLC) were carried out, simulating a flow parallel to the mainstream flow with and without crossflow at the coolant hole entry compared with a standard plenum configuration. An impingement in front of the cooling hole entry with and without crossflow was also investigated. For all parallel flow configurations, ribs were installed at the top and bottom coolant channel wall. As the hole length-to-diameter ratio has an influence on the film cooling effectiveness, the wall thickness has also been varied. In order to optimize the benefit of the geometry effects with ribs, a vortex generator was designed and tested. Results from these experiments show in a region 5 {le} X/D {le} 80 downstream of the coolant injection location differences in adiabatic film cooling effectiveness between +5% and +65% compared with a standard plenum configuration.

  7. Numerical flow analysis for axial flow turbine

    NASA Astrophysics Data System (ADS)

    Sato, T.; Aoki, S.

    Some numerical flow analysis methods adopted in the gas turbine interactive design system, TDSYS, are described. In the TDSYS, a streamline curvature program for axisymmetric flows, quasi 3-D and fully 3-D time marching programs are used respectively for blade to blade flows and annular cascade flows. The streamline curvature method has some advantages in that it can include the effect of coolant mixing and choking flow conditions. Comparison of the experimental results with calculated results shows that the overall accuracy is determined more by the empirical correlations used for loss and deviation than by the numerical scheme. The time marching methods are the best choice for the analysis of turbine cascade flows because they can handle mixed subsonic-supersonic flows with automatic inclusion of shock waves in a single calculation. Some experimental results show that a time marching method can predict the airfoil surface Mach number distribution more accurately than a finite difference method. One weakpoint of the time marching methods is a long computer time; they usually require several times as much CPU time as other methods. But reductions in computer costs and improvements in numerical methods have made the quasi 3-D and fully 3-D time marching methods usable as design tools, and they are now used in TDSYS.

  8. Specification of Surface Roughness for Hydraulic Flow Test Plates

    SciTech Connect

    Donna Post Guillen; Timothy S. Yoder

    2006-05-01

    A study was performed to determine the surface roughness of the corrosion layer on aluminum clad booster fuel plates for the proposed Gas Test Loop (GTL) system to be incorporated into the Advanced Test Reactor (ATR) at the Idaho National Laboratory. A layer of boehmite (a crystalline, non-porous gamma-alumina hydrate) is typically pre-formed on the surface of the fuel cladding prior to exposure to reactor operation to prevent the uncontrolled buildup of corrosion product on the surface. A representative sample coupon autoclaved with the ATR driver fuel to produce the boehmite layer was analyzed using optical profilometry to determine the mean surface roughness, a parameter that can have significant impact on the coolant flow past the fuel plates. This information was used to specify the surface finish of mockup fuel plates for a hydraulic flow test model. The purpose of the flow test is to obtain loss coefficients describing the resistance of the coolant flow paths, which are necessary for accurate thermal hydraulic analyses of the water-cooled booster fuel assembly. It is recommended that the surface roughness of the boehmite layer on the fuel cladding be replicated for the flow test. While it is very important to know the order of magnitude of the surface roughness, this value does not need to be matched exactly. Maintaining a reasonable dimensional tolerance for the surface finish on each side of the 12 mockup fuel plates would ensure relative uniformity in the flow among the four coolant channels. Results obtained from thermal hydraulic analyses indicate that ±15% deviation from a surface finish (i.e., Ra) of 0.53 ìm would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature.

  9. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    SciTech Connect

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  10. Fuel-Coolant-Interaction modeling and analysis work for the High Flux Isotope Reactor Safety Analysis Report

    SciTech Connect

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Chang, S.J.; Freels, J.; Gat, U.; Lepard, B.L.; Gwaltney, R.C.; Luttrell, C.; Kirkpatrick, J.

    1993-07-01

    A brief historical background and a description of short- and long-term task plan development for effective closure of this important safety issue for the HFIR are given. Short-term aspects deal with Fuel-Coolant-Interaction (FCI) issues experimentation, modeling, and analysis for the flow-blockage-induced steam explosion events in direct support of the SAR. Long-term aspects deal with addressing FCI issues resulting from other accidents in conjunction with issues dealing with aluminum ignition, which can result in an order of magnitude increase in overall energetics. Problem formulation, modeling, and computer code simulation for the various phases of steam explosions are described. The evaluation of core melt initiation propagation, and melt superheat are described. Core melt initiation and propagation have been studied using simple conservative models as well as from modeling and analysis using RELAP5. Core debris coolability, heatup, and melting/freezing aspects have been studied by use of the two-dimensional melting/freezing analysis code 2DKO, which was also benchmarked with MELCOR code predictions. Descriptions are provided for the HM, BH, FCIMOD, and CTH computer codes that have been implemented for studying steam explosion energetics from the standpoint of evaluating bounding loads by thermodynamic models or best-estimate loads from one- and two-dimensional simulations of steam explosion energetics. Vessel failure modeling and analysis was conducted using the principles of probabilistic fracture mechanics in conjunction with ADINA code calculations. Top head bolts failure modeling has also been conducted where the failure criterion was based upon stresses in the bolts exceeding the material yield stress for a given time duration. Missile transport modeling and analysis was conducted by setting up a one-dimensional mathematical model that accounts for viscous dissipation, virtual mass effects, and material inertia.

  11. Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors

    SciTech Connect

    Moretti, Fabio; Melideo, Daniele; Terzuoli, Fulvio; D'Auria, Francesco

    2006-07-01

    Coolant mixing phenomena occurring in the pressure vessel of a nuclear reactor constitute one of the main objectives of investigation by researchers concerned with nuclear reactor safety. For instance, mixing plays a relevant role in reactivity-induced accidents initiated by de-boration or boron dilution events, followed by transport of a de-borated slug into the vessel of a pressurized water reactor. Another example is constituted by temperature mixing, which may sensitively affect the consequences of a pressurized thermal shock scenario. Predictive analysis of mixing phenomena is strongly improved by the availability of computational tools able to cope with the inherent three-dimensionality of such problem, like system codes with three-dimensional capabilities, and Computational Fluid Dynamics (CFD) codes. The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed by the ANSYS CFX-10 CFD code. In particular, the 'swirl' effect that has been observed to take place in the downcomer of such kind of reactor has been addressed, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. Results have been compared against experimental data from V1000CT-2 Benchmark. Moreover, a boron mixing problem has been investigated, in the hypothesis that a de-borated slug, transported by natural circulation, enters the vessel. Sensitivity analyses have been conducted on some geometrical features, model parameters and boundary conditions. (authors)

  12. Component evaluation for intersystem loss-of-coolant accidents in advanced light water reactors

    SciTech Connect

    Ware, A.G.

    1994-07-01

    Using the methodology outlined in NUREG/CR-5603 this report evaluates (on a probabilistic basis) design rules for components in ALWRs that could be subjected to intersystem loss-of-coolant accidents (ISLOCAs). The methodology is intended for piping elements, flange connections, on-line pumps and valves, and heat exchangers. The NRC has directed that the design rules be evaluated for BWR pressures of 7.04 MPa (1025 psig), PWR pressures of 15.4 MPa (2235 psig), and 177{degrees}C (350{degrees}F), and has established a goal of 90% probability that system rupture will not occur during an ISLOCA event. The results of the calculations in this report show that components designed for a pressure of 0.4 of the reactor coolant system operating pressure will satisfy the NRC survival goal in most cases. Specific recommendations for component strengths for BWR and PWR applications are made in the report. A peer review panel of nationally recognized experts was selected to review and critique the initial results of this program.

  13. Effect of reactor coolant radioactivity upon configuration feasibility for a nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    Soffer, L.; Wright, G. N.

    1973-01-01

    A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.

  14. Differential pulse stripping voltammetry for the determination of nickel and cobalt in simulated PWR coolant.

    PubMed

    Torrance, K; Gatford, C

    1985-04-01

    The determination of ionic nickel and cobalt in simulated PWR coolant at concentrations below 1 microg/l. by differential pulse stripping voltammetry at a hanging mercury-drop electrode has been investigated. The high sensitivity for these ions results from the adsorptive accumulation of their dimethylglyoximate complexes on the mercury drop. Boric acid does not interfere and if the samples are adjusted to pH 9 with an ammonia-ammonium chloride buffer, both nickel and cobalt can be determined in the same run. The relative standard deviations at concentrations below 2 microg/l. are of the order of 5-7% and the limits of detection for nickel and cobalt are about 8 and 2 ng/l. respectively. These performance statistics show that this method is the most sensitive method currently available for determination of soluble nickel and cobalt in PWR coolant and it should prove to be most valuable in any corrosion studies of the materials of construction of the primary circuit of a PWR.

  15. Corrosion of Ferritic Steels in High Temperature Molten Salt Coolants for Nuclear Applications

    SciTech Connect

    Farmer, J; El-Dasher, B; de Caro, M S; Ferreira, J

    2008-11-25

    Corrosion of ferritic steels in high temperature molten fluoride salts may limit the life of advanced reactors, including some hybrid systems that are now under consideration. In some cases, the steel may be protected through galvanic coupling with other less noble materials with special neutronic properties such a beryllium. This paper reports the development of a model for predicting corrosion rates for various ferritic steels, with and without oxide dispersion strengthening, in FLiBe (Li{sub 2}BeF{sub 4}) and FLiNaK (Li-Na-K-F) coolants at temperatures up to 800 C. Mixed potential theory is used to account for the protection of steel by beryllium, Tafel kinetics are used to predict rates of dissolution as a function of temperature and potential, and the thinning of the mass-transfer boundary layer with increasing Reynolds number is accounted for with dimensionless correlations. The model also accounts for the deceleration of corrosion as the coolants become saturated with dissolved chromium and iron. This paper also reports electrochemical impedance spectroscopy of steels at their corrosion potentials in high-temperature molten salt environments, with the complex impedance spectra interpreted in terms of the interfacial charge transfer resistance and capacitance, as well as the electrolyte conductivity. Such in situ measurement techniques provide valuable insight into the degradation of materials under realistic conditions.

  16. Gas production and behavior in the coolant of the SP-100 space nuclear power system

    NASA Astrophysics Data System (ADS)

    McGhee, John Morton

    1989-08-01

    The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and Doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S sub 4/P sub 1 approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy.

  17. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  18. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J; Wilson, C L

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  19. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    SciTech Connect

    Khan, E.U.

    1980-04-01

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist.

  20. Copper-based micro-channel cooler reliably operated using solutions of distilled-water and ethanol as a coolant

    NASA Astrophysics Data System (ADS)

    Chin, A. K.; Nelson, A.; Chin, R. H.; Bertaska, R.; Jacob, J. H.

    2015-03-01

    Copper-based micro-channel coolers (Cu-MCC) are the lowest thermal-resistance heat-sinks for high-power laserdiode (LD) bars. Presently, the resistivity, pH and oxygen content of the de-ionized water coolant, must be actively controlled to minimize cooler failure by corrosion and electro-corrosion. Additionally, the water must be constantly exposed to ultraviolet radiation to limit the growth of micro-organisms that may clog the micro-channels. In this study, we report the reliable, care-free operation of LD-bars attached to Cu-MCCs, using a solution of distilledwater and ethanol as the coolant. This coolant meets the storage requirements of Mil-Std 810G, e.g. exposure to a storage temperature as low as -51°C and no growth of micro-organisms during passive storage.

  1. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  2. 78 FR 56174 - In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... coolant Temperature--Enthalpy (T-H) properties. The coolant steady-state properties (i.e., temperature) do... the rapid zirconium-steam reaction, core exit temperatures were measured at around 800 F. (Leyse-4... some liquefaction of core components because of eutectic reactions (i.e., the eutectic reaction...

  3. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  4. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  5. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target

    NASA Astrophysics Data System (ADS)

    Courouau, J.-L.; Robin, J.-C.

    2004-11-01

    This study presents the lead alloy system chemistry analysis for use as nuclear coolant or spallation target in ADS related systems in order to set down the needs for purification processes and monitoring. The study is limited here to the two main impurities, oxygen and iron. The analysis of the various potential pollution sources that may occur during the various operating modes is given, as well as a first pollution rate assessment. In order to limit the consequences in term of contamination (clogging) and corrosion, it is necessary to define specifications for operation as regards oxygen and iron content in the fluid. As iron cannot be measured and controlled up to now, the best specification is to set the oxygen as high as possible, defined by the cold leg interface temperature to ensure tolerable contamination, in order to maximize the oxidation area to ensure corrosion protection by self-healing oxide layer for the entire system.

  6. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    SciTech Connect

    Kao, S.P.; Chang, S.K.; Huang, H.C.

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  7. Analysis of ex-core neutron detector response during a loss-of-coolant accident

    SciTech Connect

    Baratta, A.J.; Jester, W.A. ); Gundy, L.M. ); Imel, G.R. )

    1991-06-01

    In this paper the experimental response of ex-core neutron detectors during both actual and simulated loss-of-coolant accidents (LOCAs) at a pressurized water reactor are analyzed to determine their cause. Various analytical techniques are used to reproduce the ex-core detector response during large-break LOCAs. These techniques include both discrete ordinates transport and point kernel calculations. The experiments analyzed include large-break LOCA experiments at the Loss of Fluid Test Facility and from the Three Mile Island accident. The results show that an adiabatic method is sufficiently accurate to reproduce the detector response. This response can be explained in terms of the combined effects of changes in shielding and multiplication that occur in a core during a LOCA.

  8. Analysis of Pressurized Water Reactor Primary Coolant Leak Events Caused by Thermal Fatigue

    SciTech Connect

    Atwood, Corwin Lee; Shah, Vikram Naginbhai; Galyean, William Jospeh

    1999-09-01

    We present statistical analyses of pressurized water reactor (PWR) primary coolant leak events caused by thermal fatigue, and discuss their safety significance. Our worldwide data contain 13 leak events (through-wall cracking) in 3509 reactor-years, all in stainless steel piping with diameter less than 25 cm. Several types of data analysis show that the frequency of leak events (events per reactor-year) is increasing with plant age, and the increase is statistically significant. When an exponential trend model is assumed, the leak frequency is estimated to double every 8 years of reactor age, although this result should not be extrapolated to plants much older than 25 years. Difficulties in arresting this increase include lack of quantitative understanding of the phenomena causing thermal fatigue, lack of understanding of crack growth, and difficulty in detecting existing cracks.

  9. Use of Internal Coolant as a Means of Permitting Increase in Engine Take-Off Power

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M

    1944-01-01

    Engine tests, together with estimates made at Langley Memorial Aeronautical Laboratory, indicate that a 25-percent increase in take-off power can be obtained with present-day aircraft engines without increasing either the knock limit of the fuel or the external cooling requirements of the engine. This increase in power with present fuels and present external cooling is made possible through the use of an internal coolant inducted through the inlet manifold. Estimates on aircraft indicate that this 25-percent increase in power will permit an approximate usable increase of 8.5 percent in the take-off load of existing military airplanes. This increase in load is equivalent to an increase in the weight of gasoline normally carried of between 30 and 65 percent.

  10. Cobalt-60 simulation of LOCA (loss of coolant accident) radiation effects

    SciTech Connect

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs.

  11. An overview of fuel-coolant interactions (FCI) research at NRC

    SciTech Connect

    Basu, S.; Speis, T.P.

    1996-03-01

    An overview of the fuel-coolant interactions (FCI) research programs sponsored by the U.S. Nuclear Regulatory Commission (NRC) is presented in this paper. A historical perspective of the program is provided with particular reference to in-vessel steam explosion and its consequences on the reactor pressure vessel and the containment integrity. Emphasis is placed on research in the last decade involving fundamentals of FCI phenomenology, namely, premixing, triggering, propagation, and energetics. The status of the current understanding of in-vessel steam explosion-induced containment failure (alpha-mode) issue, and other FCI issues related to reactor vessel and containment integrity are reported, including the extensive review and discussion of these issues at the recently held second Steam Explosion Review Group Workshop (SERG-2). Ongoing NRC research programs are discussed in detail. Future research programs including those recommended at the SERG-2 workshop are outlined.

  12. Whole-core neutron transport calculations without fuel-coolant homogenization

    SciTech Connect

    Smith, M. A.; Tsoulfanidis, N.; Lewis, E. E.; Palmiotti, G.; Taiwo, T. A.

    2000-02-10

    The variational nodal method implemented in the VARIANT code is generalized to perform full core transport calculations without spatial homogenization of cross sections at either the fuel-pin cell or fuel assembly level. The node size is chosen to correspond to one fuel-pin cell in the radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux distribution represented by piecewise linear trial functions. The step change in the cross sections at the fuel-coolant interface can thus be represented explicitly in global calculations while retaining the fill spherical harmonics capability of VARIANT. The resulting method is applied to a two-dimensional seven-group representation of a LWR containing MOX fuel assemblies. Comparisons are made of the accuracy of various space-angle approximations and of the corresponding CPU times.

  13. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant.

    PubMed

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing

    2015-04-01

    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles.

  14. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  15. Stochastic simulation of fission product activity in primary coolant due to fuel rod failures in typical PWRs under power transients

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Javed; Mirza, Nasir M.; Mirza, Sikander M.

    2008-01-01

    During normal operation of PWRs, routine fuel rods failures result in release of radioactive fission products (RFPs) in the primary coolant of PWRs. In this work, a stochastic model has been developed for simulation of failure time sequences and release rates for the estimation of fission product activity in primary coolant of a typical PWR under power perturbations. In the first part, a stochastic approach is developed, based on generation of fuel failure event sequences by sampling the time dependent intensity functions. Then a three-stage model based deterministic methodology of the FPCART code has been extended to include failure sequences and random release rates in a computer code FPCART-ST, which uses state-of-the-art LEOPARD and ODMUG codes as its subroutines. The value of the 131I activity in primary coolant predicted by FPCART-ST code has been found in good agreement with the corresponding values measured at ANGRA-1 nuclear power plant. The predictions of FPCART-ST code with constant release option have also been found to have good agreement with corresponding experimental values for time dependent 135I, 135Xe and 89Kr concentrations in primary coolant measured during EDITHMOX-1 experiments.

  16. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  17. A hydrogen-oxygen rocket engine coolant passage design program (RECOP) for fluid-cooled thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1994-01-01

    The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.

  18. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    SciTech Connect

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  19. IN-CORE FUEL MANAGEMENT: PWR Core Calculations Using MCRAC

    NASA Astrophysics Data System (ADS)

    PetroviĆ, B. G.

    1991-01-01

    The following sections are included: * INTRODUCTION * IN-CORE FUEL MANAGEMENT CALCULATIONS * In-Core Fuel Management * Methodological Problems of In-Core Fuel Management * In-Core Fuel Management Analytical Tools * PENN STATE FUEL MANAGEMENT PACKAGE * Penn State Fuel Management Package (PFMP) * Assembly Data Description (ADD) * Linking PSU-LEOPARD and MCRAC: An Example * MULTICYCLE REACTOR ANALYSIS CODE (MCRAC) * Main Features and Options of MCRAC code * Core geometry * Diffusion equations * 1.5-group model * Multicycle neutronic analysis * Multicycle cost analysis * Criticality search * Power-dependent xenon feedback calculations * Control rod and burnable absorber simulation * Search for LP with flat BOC power distribution * Artificial ADD option * Variable dimensioning technique * RBI version of MCRAC code * Programming changes in PC version * Fuel interchange option * MCRAC Input/Output * General input description * Sample input * Sample output * EXPERIENCE WITH MCRAC CODE * CONCLUSIONS * REFERENCES

  20. Experimental investigations of heat transfer and temperature fields in models simulating fuel assemblies used in the core of a nuclear reactor with a liquid heavy-metal coolant

    NASA Astrophysics Data System (ADS)

    Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.

    2015-09-01

    The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with

  1. Experimental flow coefficients of a full-coverage film-cooled-vane chamber

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Hippensteele, S. A.

    1977-01-01

    Ambient- and elevated-temperature flow tests were performed on a four-times-actual-size model of an impingement- and film-cooled segment of a core engine turbine vane. Tests were conducted with the impingement and film cooling plates combined to form a chamber and also with each of the individual separated plates. For the combined tests, the proximity of the film cooling plate affected the flow of coolant through the impingement plate, but not conversely. Impingement flow is presented in terms of a discharge coefficient, and the film cooling flow discharging into still air with no main stream gas flow is presented in terms of a total pressure-loss coefficient. The effects of main stream gas flow on discharge from the film cooling holes are evaluated as a function of coolant to main-stream gas momentum flux ratio. A smoothing technique is developed that identifies and helps reduce flow measurement data scatter.

  2. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    SciTech Connect

    Grossbeck, Martin; Qualls, Louis

    2015-07-31

    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  3. Comparative Evaluation of Two Different Ultrasonic Liquid Coolants on Dental Aerosols

    PubMed Central

    Bhandari, Vishnudas; Ugale, Gauri; Taru, Snehal; Khaparde, Surbhi; Kulkarni, Arun; Ardale, Mukesh; Marde, Shraddha

    2016-01-01

    Introduction Dentists are more prone for developing infectious diseases especially related to respiratory system. The ultrasonic scaler which is a major source of dental aerosol production is most frequently used contrivance in a dental set up. Aim The aim of this study was to evaluate the effect of povidone iodine and chlorhexidine gluconate as an ultrasonic liquid coolant on aerosols in comparison with distilled water. The objectives of this study were to compare the potency of povidone iodine and chlorhexidine gluconate on reducing dental aerosols and quantitative assessment of microbial content of dental aerosols at right, left and behind the dental chair. Materials and Methods In this study 30 subjects were selected who fulfilled the inclusion criteria and were divided into three groups. Group 1 (Control group): Ultrasonic scaling with distilled water (10 subjects), Group 2 (Test group): Ultrasonic scaling with 2% povidone iodine (10 subjects), Group 3 (Test group): Ultrasonic scaling with 0.12% chlorhexidine (10 subjects). At the baseline one blood agar plate was kept for 10 minutes in the fumigated chamber before ultrasonic scaling, thereafter three blood agar plates were kept at a distance of 0.4 meters away on either side of the patient and 2 meters behind the patient’s mouth during ultrasonic scaling. Blood agar plates were kept for gravitometric settling of dental aerosols. Results At baseline, no significant numbers of Colony-Forming Units (CFU) were detected. It is found that Group 3 (chlorhexidine gluconate) showed effective CFU reduction (27.17 ±12.5 CFU) when compared to distilled water (124.5 ± 30.08 CFU) and povidone iodine (60.43 ± 33.33 CFU). More CFU were found on blood agar plates which were kept on right side in all the three groups. The results obtained were statistically significant (p< 0.001). Conclusion Chlorhexidine gluconate is more effective in reducing dental aerosols when compared to povidone iodine and distilled water. Povidone

  4. The cryogenic on-orbit liquid analytical tool (COOLANT) - A computer program for evaluating the thermodynamic performance of orbital cryogen storage facilities

    NASA Technical Reports Server (NTRS)

    Taylor, W. J.; Honkonen, S. C.; Williams, G. E.; Liggett, M. W.; Tucker, S. P.

    1991-01-01

    The United States plans to establish a permanent manned presence at the Space Station Freedom in low earth orbit (LEO) and then carry out exploration of the solar system from this base. These plans may require orbital cryogenic propellant storage depots. The COOLANT program has been developed to analyze the thermodynamic performance of these depots to support design tradeoff studies. It was developed as part of the Long Term Cryogenic Storage Facility Systems Study for NASA/MSFC. This paper discusses the program structure and capabilities of the COOLANT program. In addition, the results of an analysis of a 200,000 lbm hydrogen/oxygen storage depot tankset using COOLANT are presented.

  5. Flow visualization study in high aspect ratio cooling channels for rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1993-01-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  6. Aging and loss-of-coolant accident (LOCA) testing of electrical connections

    SciTech Connect

    Nelson, C.F.

    1998-01-01

    This report presents the results of an experimental program to determine the aging and loss-of-coolant accident (LOCA) behavior of electrical connections in order to obtain an initial scoping of their performance. Ten types of connections commonly used in nuclear power plants were tested. These included 3 types of conduit seals, 2 types of cable-to-device connectors, 3 types of cable-to-cable connectors, and 2 types of in-line splices. The connections were aged for 6 months under simultaneous thermal (99 C) and radiation (46 Gy/hr) conditions. A simulated LOCA consisting of sequential high dose-rate irradiation (3 kGy/hr) and high-temperature steam exposures followed the aging. Connection functionality was monitored using insulation resistance measurements during the aging and LOCA exposures. Because only 5 of the 10 connection types passed a post-LOCA, submerged dielectric withstand test, further detailed investigation of electrical connections and the effects of cable jacket integrity on the cable-connection system is warranted.

  7. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    SciTech Connect

    Nelson, C.F.; Gauthier, G.; Carlin, F.

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  8. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    SciTech Connect

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.

  9. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Pint, B. A.; Kim, Y.-J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, H. M.; Rebak, R. B.

    2016-10-01

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. The maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ∼2 μm, which is inconsequential for a ∼300-500 μm thick cladding.

  10. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    DOE PAGES

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; ...

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation ofmore » very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.« less

  11. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    SciTech Connect

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, III, H. M.; Rebak, R. B.

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.

  12. Review of Failure Probability Calculations for HFIR Primary Coolant System Piping

    SciTech Connect

    Simonen, Fredric A.

    2001-10-31

    During July 2001, Pacific Northwest National Laboratory was requested by the U.S. Department of Energy, Office of Nuclear Facilities Management, Office of Nuclear Energy, Science and Technology, Germantown, Maryland, to review calculations of piping failure probabilities for the High Flux Test Reactor (HFIR) located at and operated by the Oak Ridge National Laboratory (ORNL). The objective of the failure probability calculations was to estimate the probabilities of large leaks (>1500 gpm) that are of sufficient size to disable the primary coolant system of HFIR to the extent that there is a potential for core damage. PNNL reviewed the computational methods and the inputs to the calculations along with an evaluation of potential failure mechanisms not explicitly addressed by the ORNL calculations. The review concluded that the calculated failure probabilities even with consideration of uncertainties in the calculations and of other potential failure mechanisms provide a high level of confidence that failure frequencies are less than the stated goal of 10-6 piping failures per year.

  13. Environmentally assisted cracking behavior of dissimilar metal weldments in simulated BWR coolant environments

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Chiang, M. F.; Jeng, S. L.; Huang, J. S.; Kuo, R. C.

    2013-01-01

    The environmentally assisted cracking behavior of dissimilar metal (DM) welds, including Alloy 52-A 508 and Alloy 82-A508, under simulated BWR coolant conditions was studied. Effects of postweld heat treatment and sulfur content of the base metal on the corrosion fatigue and SCC growth rates of DM welds were evaluated. The crack growth rates for the DM weld heat-treated at 621 °C for 24 h were observed to be faster than those for the as-welded. But the DM weld heat-treated at 621 °C for 8 h + 400 °C for 200 h showed better SCC resistance than the as-welded. The longer the heat treatment at 621 °C, the higher the chromium carbides density along the grain boundary was observed. Sulfur could diffuse out of the base metal and segregate along the grain boundaries of the dilution zone, leading to weakening the grain boundary strength and the SCC resistance of the Alloy 52-A508 weld.

  14. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    NASA Astrophysics Data System (ADS)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-10-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  15. Interaction study between MOX fuel and eutectic lead-bismuth coolant

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-François; Popa, Karin; Tyrpekl, Vaclav; Gardeur, Sébastien; Freis, Daniel; Somers, Joseph

    2015-12-01

    In the frame of the MYRRHA reactor project, the interaction between fuel pellets and the reactor coolant is essential for safety evaluations, e.g. in case of a pin breach. Therefore, interaction tests between uranium-plutonium mixed oxide (MOX) pellets and molten lead bismuth eutectic (LBE) have been performed and three parameters were studied, namely the interaction temperature (500 °C and 800 °C), the oxygen content in LBE and the stoichiometry of the MOX (U0.7Pu0.3O2-x and U0.7Pu0.3O2.00). After 50 h of interaction in closed containers, the pellet integrity was preserved in all cases. Whatever the conditions, neither interaction compounds (crystalline or amorphous) nor lead and bismuth diffusion into the surface regions of the MOX pellets has been detected. In most of the conditions, actinide releases into LBE were very limited (in the range of 0.01-0.15 mg), with a homogeneous release of the different actinides present in the MOX. Detected values were significantly higher in the 800 °C and low LBE oxygen content tests for both U0.7Pu0.3O2-x and U0.7Pu0.3O2.00, with 1-2 mg of actinide released in these conditions.

  16. Analysis of an AP600 intermediate-size loss-of-coolant accident

    SciTech Connect

    Boyack, B.E.; Lime, J.F.

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  17. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, John P.

    1993-01-01

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  18. Nuclear reactor flow control method and apparatus

    DOEpatents

    Church, J.P.

    1993-03-30

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  19. UO2 and PuO2 utilization in high temperature engineering test reactor with helium coolant

    NASA Astrophysics Data System (ADS)

    Waris, Abdul; Aji, Indarta K.; Novitrian, Pramuditya, Syeilendra; Su'ud, Zaki

    2016-03-01

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO2 fuel. In this study, we have evaluated the use of UO2 and PuO2 in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of 235U in loaded fuel is 18.0% or above.

  20. Evaluation of containment peak pressure and structural response for a large-break loss-of-coolant accident in a VVER-440/213 NPP

    SciTech Connect

    Spencer, B.W.; Sienicki, J.J.; Kulak, R.F.; Pfeiffer, P.A.; Voeroess, L.; Techy, Z.; Katona, T.

    1998-07-01

    A collaborative effort between US and Hungarian specialists was undertaken to investigate the response of a VVER-440/213-type NPP to a maximum design-basis accident, defined as a guillotine rupture with double-ended flow from the largest pipe (500 mm) in the reactor coolant system. Analyses were performed to evaluate the magnitude of the peak containment pressure and temperature for this event; additional analyses were performed to evaluate the ultimate strength capability of the containment. Separate cases were evaluated assuming 100% effectiveness of the bubbler-condenser pressure suppression system as well as zero effectiveness. The pipe break energy release conditions were evaluated from three sources: (1) FSAR release rate based on Soviet safety calculations, (2) RETRAN-03 analysis and (3) ATHLET analysis. The findings indicated that for 100% bubbler-condenser effectiveness the peak containment pressures were less than the containment design pressure of 0.25 MPa. For the BDBA case of zero effectiveness of the bubbler-condenser system, the peak pressures were less than the calculated containment failure pressure of 0.40 MPa absolute.

  1. Self-Pumped Coolant Circulation Driven by Thermal Gradient over Microstructures

    NASA Astrophysics Data System (ADS)

    Lobato-Dauzier, Nicolas; Genot, Anthony J.; Fujita, Hiroyuki

    2016-11-01

    We propose a passive cooling device which converts thermal energy into fluid flow via Marangoni effect: a gradient of temperature induces a gradient of surface tension. This in turn triggers a fluid flow at the air/liquid interface which runs transversally to the heat flow. We show how to amplify the global fluid flow thanks to geometrical optimization. We also show how the addition of an asymmetric small wall across the channel reduces the backflow and improves our device.

  2. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    PubMed

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  3. Operating experience feedback report: Experience with pump seals installed in reactor coolant pumps manufactured by Byron Jackson

    SciTech Connect

    Bell, L.G.; O'Reilly, P.D.

    1992-09-01

    This report examines the reactor coolant pump (RCP) seal operating experience through August 1990 at plants with Byron Jackson (B-J) RCPs. ne operating experience examined in this analysis included a review of the practice of continuing operation with a degraded seal. Plants with B-J RCPs that have had relatively good experience with their RCP seals attribute this success to a combination of different factors, including: enhanced seal QA efforts, modified/new seal designs, improved maintenance procedures and training, attention to detail, improved seal operating procedures, knowledgeable personnel involved in seal maintenance and operation, reduction in frequency of transients that stress the seals, seal handling and installation equipment designed to the appropriate precision, and maintenance of a clean seal cooling water system. As more plants have implemented corrective measures such as these, the number of B-J RCP seal failures experienced has tended to decrease. This study included a review of the practice of continued operation with a degraded seal in the case of PWR plants with Byron Jackson reactor coolant pumps. Specific factors were identified which should be addressed in order to safety manage operation of a reactor coolant pump with indications of a degrading seal.

  4. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  5. Evaluation and test of improved fire-resistant fluid lubricants for water reactor coolant pump motors. Volume 1. Fluid evaluation, bearing model tests, motor tests, and fire tests

    SciTech Connect

    Not Available

    1980-07-01

    Fires within nuclear containment have occurred when the lubricants used in reactor coolant pump motors have leaked or spilled onto the hot insulated main coolant piping. This project was directed toward determining the applicability of commercially available fire resistant fluid lubricants to the lubrication of the bearings of a reactor coolant pump motor. This report describes the evaluation of candidate fluids, the testing of these fluids, and the selection of a lubricant for use in a standard reactor coolant pump motor test. The test results indicated that the phosphate ester lubricants, when properly inhibited and maintained, are acceptable for use. Recommendations are presented for further work necessary to the successful application of the fire resistant fluid lubricant.

  6. Evaluation and test of improved fire-resistant fluid lubricants for water reactor coolant pump motors. Volume 2. Fluid/metal compatibility

    SciTech Connect

    Not Available

    1980-07-01

    Fires within nuclear containment have occurred when the lubricants used in reactor coolant pump motors have leaked or spilled onto the hot insulated main coolant piping. This project was directed toward determining the applicability of commercially available fire resistant fluid lubricants to the lubrication of the bearings of a reactor coolant pump motor. This report describes the evaluation of candidate fluids, the testing of these fluids, and the selection of a lubricant for use in a standard reactor coolant pump motor test. The test results indicated that the phsophate ester lubricants, when properly inhibited and maintained, are acceptable for use. Recommendations are presented for further work necessary to the successful application of the fire resistant fluid lubricant.

  7. PACER -- A fast running computer code for the calculation of short-term containment/confinement loads following coolant boundary failure. Volume 1: Code models and correlations

    SciTech Connect

    Sienicki, J.J.

    1997-06-01

    A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. Flashing from coolant release, condensation heat transfer, intercompartment transport, and engineered safety features are described using best estimate models and correlations often based upon experiment analyses. Two notable capabilities of PACER that differ from most other containment loads codes are the modeling of the rates of steam and water formation accompanying coolant release as well as the correlations for steam condensation upon structure.

  8. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  9. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-12-31

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  10. Flow visualisation of the external flow from a converging slot-hole film-cooling geometry

    NASA Astrophysics Data System (ADS)

    Sargison, J. E.; Oldfield, M. L. G.; Guo, S. M.; Lock, G. D.; Rawlinson, A. J.

    2005-03-01

    This paper presents flow visualisation experiments for a novel film-cooling hole, the converging slot-hole or console for short. Previously published experimental results have demonstrated that the console improved both the heat transfer and the aerodynamic performance of turbine vane and rotor blade cooling systems. Flow visualisation data for a row of consoles were compared with that of cylindrical and fan-shaped holes and a slot at the same inclination angle of 35° to the surface, on a large-scale, flat-plate model at engine-representative Reynolds numbers in a low speed tunnel with ambient temperature mainstream flow. In the first set of experiments, the flow was visualised by using a fine nylon mesh covered with thermochromic liquid crystals, allowing the measurement of gas temperature contours in planes perpendicular to the flow. This data demonstrated that the console film was similar to a slot film, and remained thin and attached to the surface for the coolant-to-mainstream momentum flux ratios of 1.1 to 40 and for a case with no crossflow (infinite momentum flux ratio). A second set of flow visualisation experiments using water/dry-ice fog have confirmed these results and have shown that the flow through all coolant geometries is unsteady.

  11. Influence of coolant on ductile mode processing of binderless nanocrystalline tungsten carbide through ultraprecision diamond turning

    NASA Astrophysics Data System (ADS)

    Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver

    2015-08-01

    Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.

  12. Far-infrared line coolants in massive star-forming regions

    NASA Astrophysics Data System (ADS)

    Leurini, Silvia

    2014-10-01

    The lines of [OI] and [CII] are powefulr tracers of different environments. In photo-dissociation regions (PDRs) their line ratio strongly depends on density; in molecular outflows from low-mass young stellar objects the luminosity of the [OI] line at 63 micron is directly proportional to the rate of mass outflow from the star and it is independent on visual extinction, inclination, and geometry of the outflow. In metal-rich galaxies, [OI] and [CII] lines are among the main coolants, and being very luminous, they are potentially powerful tracers of star formation rates (SFRs) even in galaxies at high z. However, [OI] and [CII] were till now observed only with very poor spectral resolution. They can be heavily affected by absorptions from the source or from different foreground clouds, and the contribution of outflows and PDRs cannot be quantified without resolved profiles. Therefore their diagnostic value is of limited use. We propose here to exploit the unprecedented resolution of the GREAT receiver aboard SOFIA for the first spectroscopically resolved observations of [OI] and [CII] of a sample of galactic massive star-forming clumps. The sources are a flux-limited sub-sample from the ATLASGAL continuum survey of the inner Galaxy and cover a broad range of evolutionary phases. Thanks to the wealth of already collected ancillary data (in particular water, high-J CO and NH3), the proposed observations will be fundamental to calibrate [OI] and [CII] as PDR, outflow and SFR tracers in a sample of sources rapresentative of the Galactic population of massive star-forming clumps. The data will answer the following questions: Which ISM components do [OI] and [CII] trace? How does the complete (CO+H2O+[OI]+[CII]) FIR cooling budget change with bolometric luminosity? Does [OI] show prominent high-velocity emission in massive sources or is ti dominated by PDR emission?

  13. Delineations of power and power-to-flow feedback components of EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The detailed contributions of feedback components by regions for various experimental breeder reactor-II (EBR-II) configurations have been reported assuming given values for the coolant flows. The separation of these components into power dependent and power-to-flow dependent parts if reported here for EBR-II run 93A. The power-reactivity-decrement (PRD) can then be expressed as the sum of parts which enables the PRD for other values of coolant flow to be estimated. The delineations of the components also enhance the understanding of the contributions of the various components and regions in the feedback process in EBR-II. Separation of the components into power and power-to-flow delineations were made by calculations of the components of the PRD assuming infinite coolant flow and comparing with results previously reported for finite flow. Subtractions of the infinite-flow feedback values from the corresponding finite-flow values give the power-to-flow portions. These linear and Doppler components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) which accounts for the effects of axial positionings of control rods.

  14. Measurements in film cooling flows: Hole L/D and turbulence intensity effects

    SciTech Connect

    Burd, S.W.; Kaszeta, R.W.; Simon, T.W.

    1996-12-31

    Hot-wire anemometry of simulated film cooling was used to study the influence of freestream turbulence intensity and film cooling hole length-to-diameter ratio on mean velocity and turbulence intensity. Measurements were made in the zone where the coolant and freestream flows mix. Flow from one row of film cooling holes with a streamwise injection of 35{degree} and no lateral injection and with a coolant- to-freestream flow velocity ratio of 1.0 was investigated under freestream turbulence levels of 0.5 and 12%. Coolant-to-freestream density ratio was unity. Two length-to-diameter ratios for the film cooling holes, 2.3 and 7.0, are tested. Results show that under low freestream turbulence conditions, pronounced differences exist in the flowfield between L/D=7.0 and 2.3; the differences are less prominent at high freestream turbulence intensities. Generally, short-L/D injection results in ``jetting`` of the coolant further into the freestream flow and enhanced mixing. Other changes in the flowfield attributable to a rise in freestream turbulence intensity to engine- representative conditions are documented. 15 figs, 2 tabs, refs.

  15. LPT. EBOR (TAN646) reactor vessel, flow distribution tank. Outlet nozzle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR (TAN-646) reactor vessel, flow distribution tank. Outlet nozzle on side of vessel will be connected to coolant duct. Photographer: Lowin. Date: January 20, 1965. INEEL negative no. 65-237 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    SciTech Connect

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  17. A study on fluid flow simulation in the cooling systems of machine tools

    NASA Astrophysics Data System (ADS)

    Olaru, I.

    2016-08-01

    This paper aims analysing the type of coolants and the correct choice of that as well as the dispensation in the processing area to control the temperature resulted from the cutting operation and the choose of the cutting operating modes. A high temperature in the working area over a certain amount can be harmful in terms of the quality of resulting surface and that could have some influences on the life of the cutting tool. The coolant chosen can be a combination of different cooling fluids in order to achieve a better cooling of the cutting area at the same time for carrying out the proper lubrication of that area. The fluid flow parameters of coolant can be influenced by the nature of the fluid or fluids used, the geometry of the nozzle used which generally has a convergent-divergent geometry in order to achieve a better dispersion of the coolant / lubricant on the area to be processed. A smaller amount of fluid is important in terms of the economy lubricant, because they are quite expensive. A minimal amount of lubricant may have a better impact on the environment and the health of the operator because the coolants in contact with overheated machined surface may develop a substantial amount of these gases that are not always beneficial to health.

  18. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  19. A generalized one dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  20. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA

    SciTech Connect

    Wenfeng Liu; Kazimi, Mujid S.

    2006-07-01

    This paper describes a model for the cladding-coolant heat transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is implemented in the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the clad oxidation, is modeled by a modified Henry correlation. This accounts for the effects of thermal properties of the cladding surface on the transient temperature drop during liquid-solid contact. The transition boiling regime is described as the interpolation of the heat flux between two anchor points on the boiling curve: the Critical Heat Flux (CHF) and minimum stable film boiling. The CHF correlation is based on the Zuber hydrodynamic model multiplied by a subcooling factor. Frederking correlation is chosen to model the film boiling regime. The heat conduction through the oxide layer of the cladding surface of high burnup fuel is calculated by solving heat conduction equations with thermal properties of zirconia taken from MATPRO. This model is validated in the FRAPTRAN code for test cases of both high burnup and fresh test fuel rods including the burnup level (0--56 MW d/kg), peak fuel enthalpy deposit (70--190 cal/g), degree of subcooling (0--80 deg. C), and extent of oxidation (0--25 micron). The modified code demonstrates the capability of differentiating between the departure from nucleate boiling (DNB) and none-DNB cases. The predicted peak cladding temperature (PCT) and duration of DNB achieves generally good agreement with the experimental data. It is found that the cladding surface oxidation of high burnup fuel causes an early rewetting of cladding or suppresses DNB due to two factors: 1) Thick zirconia layer may delay the heat conducted to the surface while keeping the surface heat transfer in the most effective nucleate boiling regime. 2) The transient liquid-solid contact resulting from vapor breaking down would cause a lower interface temperature for an oxidized surface

  1. Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China)

    NASA Astrophysics Data System (ADS)

    Yang, Renchao; Loon, A. J. (Tom) van; Yin, Wei; Fan, Aiping; Han, Zuozhen

    2016-09-01

    The fine-grained autochthonous sedimentation in the deep part of a Late Triassic lake was frequently interrupted by gravity-induced mass flows. Some of these mass flows were so rich in water that they must have represented slurries. This can be deduced from the soft-sediment deformation structures that abound in cores from these lacustrine deposits which constitute the Yanchang Fm., which is present in the Ordos Basin (central China). The flows and the resulting SSDS were probably triggered by earthquakes, volcanic eruptions, shear stress of gravity flows, and/or the sudden release of overburden-induced excess pore-fluid pressure. The tectonically active setting, the depositional slope and the high sedimentation rate facilitated the development of soft-sediment deformations, which consist mainly of load casts and associated structures such as pseudonodules and flame structures. Sediments with such deformations were occasionally eroded by slurries and became embedded in their deposits.

  2. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    SciTech Connect

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  3. Consequences of nuclear electron capture in core collapse supernovae.

    PubMed

    Hix, W R; Messer, O E B; Mezzacappa, A; Liebendörfer, M; Sampaio, J; Langanke, K; Dean, D J; Martínez-Pinedo, G

    2003-11-14

    The most important weak nuclear interaction to the dynamics of stellar core collapse is electron capture, primarily on nuclei with masses larger than 60. In prior simulations of core collapse, electron capture on these nuclei has been treated in a highly parametrized fashion, if not ignored. With realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as the ramifications for the postbounce evolution in core collapse supernovae.

  4. PWR internal flow modeling with fuel assemblies details

    SciTech Connect

    Popov, E.; Yan, J.; Karoutas, Z.; Gehin, J.; Brewster, R.; Baglietto, E.

    2012-07-01

    This study is an example of a massive parallel computing of the coolant flow in a nuclear reactor. It resolves the flow velocities in each assembly on pin level and predicts the flow distribution in complex geometries such as the lower and upper reactor plenums. The size of the developed model (1.035 billion cells) required the runs to be executed on the NCCS clusters (www.nccs.gov). STAR-CCM+ code (www.ed-adapco.com) was installed on two clusters: JAGUARXT5 and FROST, both of which were capable of executing this model. (authors)

  5. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report

    SciTech Connect

    Todreas, N.E.; Golay, M.W.; Wold, L.

    1981-02-01

    Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

  6. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    SciTech Connect

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  7. System design description for GCFR-core flow test loop

    SciTech Connect

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  8. Estimation of Critical Flow Velocity for Collapse of Gas Test Loop Booster Fuel Assembly

    SciTech Connect

    Guillen; Mark J. Russell

    2006-07-01

    This paper presents calculations performed to determine the critical flow velocity for plate collapse due to static instability for the Gas Test Loop booster fuel assembly. Long, slender plates arranged in a parallel configuration can experience static divergence and collapse at sufficiently high coolant flow rates. Such collapse was exhibited by the Oak Ridge High Flux Reactor in the 1940s and the Engineering Test Reactor at the Idaho National Laboratory in the 1950s. Theoretical formulas outlined by Miller, based upon wide-beam theory and Bernoulli’s equation, were used for the analysis. Calculations based upon Miller’s theory show that the actual coolant flow velocity is only 6% of the predicted critical flow velocity. Since there is a considerable margin between the theoretically predicted plate collapse velocity and the design velocity, the phenomena of plate collapse due to static instability is unlikely.

  9. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    PubMed Central

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  10. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  11. Studies in Optimizing the Film Flow Rate for Liquid Film Cooling

    DTIC Science & Technology

    2011-07-19

    water flow was metered with a cavitating venturi. The static pressure of the test section was monitored via the pressure tap located 1 inch upstream...performed under cold-flow conditions, using nitrogen gas and water as simulants for the combusion gases and film 4 American Institute of Aeronautics...studies on liquid film cooling in the 1950’s. Heated air was used to simulate the combustion gases and liquid water was used as the coolant simulant in

  12. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  13. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  14. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  15. Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; James, R. H.

    1989-01-01

    This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

  16. Transonic injection in interaction with transverse compressible flow.

    PubMed

    Dizene, R; Charbonnier, J M; Dorignac, E; Lablanc, R

    2002-10-01

    An extensive study devoted to modelling blade cooling was undertaken at CEAT a few years ago in collaboration with SNECMA. For the turbomachinery applications, an experimental configuration of a turbulent boundary layer with heat transfer was studied for compressible and incompressible flows. The research presented here is a part of that study and this paper reports on the experimental results of an investigation concerned with a row of transonic jets interacting with a transverse flow. In many applications, the cooling layer does not emerge onto the surface from a tangential slot but comes from a slot normal to or inclined to what is otherwise a flush surface. In this case the freestream interacts with the coolant flow. The secondary (jet) flow is introduced at an angle of 45 degrees to the mainstream flow direction. Visualization studies using the surface flow patterns and surface temperature flow patterns are reported and discussed.

  17. Static-flow-instability in subcooled flow boiling in wide rectangular parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-12-31

    The Advanced Neutron Source (ANS) is a state-of-the-art research reactor facility that will be built at the Oak Ridge National Laboratory (ORNL) and is designed to become the world`s most advanced thermal neutron flux source for scientific experiments. Therefore, the core of the ANS reactor (ANSR) must be designed to accommodate very high power densities using very high coolant mass fluxes and subcooling levels, The nominal average and peak heat fluxes in the ANSR are approximately 6 and 12 MW/M{sup 2}, respectively, with a nominal total thermal power of 303 MW. Highly subcooled heavy-water coolant (1.7 MPa and 85{degrees}C at the core exit) flows vertically upward at a very high mass flux of almost 27 Mg/M{sup 2}-s. The cooling channels in each fuel assembly are all parallel and share common inlet and outlet plenums, effectively imposing a common pressure drop across all the channels. This core configuration is subject to flow excursion (FE) and/or flow instability that may occur once boiling is initiated in any one of the channels. The FE phenomenon constitutes a different thermal limit than a true critical heat flux (CHF) or departure from nucleate boiling (DNB). In such a system, initiation of boiling in one of the channels (i.e., the hot channel) can result in flow redistribution to the other cooler channels. This report details testing to document this phenomenon.

  18. Thermally determining flow and/or heat load distribution in parallel paths

    SciTech Connect

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  19. DNS of MHD turbulent flow via the HELIOS supercomputer system at IFERC-CSC

    NASA Astrophysics Data System (ADS)

    Satake, Shin-ichi; Kimura, Masato; Yoshimori, Hajime; Kunugi, Tomoaki; Takase, Kazuyuki

    2014-06-01

    The simulation plays an important role to estimate characteristics of cooling in a blanket for such high heating plasma in ITER-BA. An objective of this study is to perform large -scale direct numerical simulation (DNS) on heat transfer of magneto hydro dynamic (MHD) turbulent flow on coolant materials assumed from Flibe to lithium. The coolant flow conditions in ITER-BA are assumed to be Reynolds number and Hartmann number of a higher order. The maximum target of the DNS assumed by this study based on the result of the benchmark of Helios at IFERC-CSC for Project cycle 1 is 116 TB (2048 nodes). Moreover, we tested visualization by ParaView to visualize directly the large-scale computational result. If this large-scale DNS becomes possible, an essential understanding and modelling of a MHD turbulent flow and a design of nuclear fusion reactor contributes greatly.

  20. The influence of liquefied natural gas composition on its behavior as a coolant

    NASA Astrophysics Data System (ADS)

    Urbano, A.; Nasuti, F.

    2013-03-01

    Liquefied Natural Gas (LNG) is a suitable propellant to be used, together with liquid oxygen as oxidizer, in a liquid rocket engine, because of possible advantages with respect to hydrogen in specific applications. Often approximated as pure methane, LNG is a mixture of methane, other heavier hydrocarbons and nitrogen. If LNG is to be used in a regeneratively cooled liquid rocket engine, the knowledge of the thermodynamic and heat transfer characteristics when it flows in the cooling channels is of primary importance. The aim of the present work is to understand how the composition of LNG can influence the flow in the cooling channels. A parametric study is carried out considering different LNG compositions and heat flux levels. Attention is devoted to the pressure drop and cooling capabilities, which are the aspects that have to be controlled in a regenerative cooling system.

  1. Safety Analysis of Small Break Loss of Coolant Accident for 1200 MWe Simplified Boiling Water Reactor (SBWR-1200 BDLB)

    SciTech Connect

    Xu, Y.; Revankar, S.T.; Ishii, M.

    2002-07-01

    The objective of this research is to assess the performance of the safety systems during small break loss of coolant accident (SBLOCA) transient in the full size SBWR. RELAP5/MOD3 was used to simulate the blow-down and long-term cooling responses of the various safety systems during the accident transient. An integral test for long-term cooling under low pressure was conducted in a scaled facility with the initial conditions given by the code simulation. The code applicability and the facility scalability were evaluated by the comparison between the test data and the code simulations. The scaling analysis has been done by the comparison of the prototype code predictions and the scaled-up test data with the proper scaling multiplications and time shifting. The good agreement between the major safety parameters has shown the applicability of the RELAP5/MOD3 code and the scalability of the facility for SBWR-1200 safety analysis applications. (authors)

  2. Thermodynamic and experimental study of corrosion behavior of vanadium-based alloy in liquid sodium-potassium coolant

    NASA Astrophysics Data System (ADS)

    Krasin, V. P.; Lyublinski, I. E.; Soyustova, S. I.

    2016-11-01

    A preliminary assessment of oxygen effect on vanadium solubility in Na-K melt eutectic composition has been carried out using mathematical framework of the subregular solution model and equations of coordination-cluster model. The effect of oxygen on the solubility of vanadium in the Na-K alloy can be considered as the result of short-range ordering in liquid metal solution. The negative deviations from the ideality for dilute oxygen solutions in Na-K solvent is one reason that explains the quantitative differences between Na and Na-K coolants, when we need to estimate the threshold oxygen concentration for the formation of ternary oxide NaVO2 on the surface of the solid vanadium in liquid sodium and in Na-K alloy. Isothermal capsule experiments qualitatively confirmed the results of calculations of vanadium solubility in Na0.32K0.68 alloy.

  3. Dose to man from a hypothetical loss-of-coolant accident at the Rancho Seco Nuclear Power Plant

    SciTech Connect

    Peterson, K.R.; Greenly, G.D.

    1981-02-01

    At the request of the Sacramento Municipal Utilities District, we used our computer codes, MATHEW and ADPIC, to assess the environmental impact of a loss-of-coolant accident at the Rancho Seco Nuclear Power Plant, about 40 kilometres southeast of Sacramento, California. Meteorological input was selected so that the effluent released by the accident would be transported over the Sacramento metropolitan area. With the release rates provided by the Sacramento Municipal Utilities District, we calculated the largest total dose for a 24-hour release as 70 rem about one kilometre northwest of the reactor. The largest total dose in the Sacramento metropolitan area is 780 millirem. Both doses are from iodine-131, via the forage-cow-milk pathway to an infant's thyroid. The largest dose near the nuclear plant can be minimized by replacing contaminated milk and by giving the cows dry feed. To our knowledge, there are no milk cows within the Sacramento metropolitan area.

  4. Large-Break Loss-of-Coolant Accident Testing and Simulation for 200-MWe Simplified Boiling Water Reactor

    SciTech Connect

    Revankar, S.T.; Xu, Y.; Yoon, H.J.; Ishii, M.

    2002-07-01

    The performance of the safety systems of a new design of the 200-MWe simplified boiling water reactor during a large-break, loss-of-coolant accident transient was investigated through code modeling and integral system testing. The accident considered was a break in the main steam line which is the major design basis accident. RELAP5/MOD3 best estimate reactor thermalhydraulic code was used and its applicability to the reactor safety system evaluation was examined. The integral tests were performed to assess the safety systems and the response of the emergency core cooling systems to accident conditions in a scaled facility called PUMA. The details of the safety system behavior are presented. The integral test simulations examined code applicability at the scaled facility level as well as prototype key safety system performance. (authors)

  5. Survey of tracking systems and rotary joints for coolant piping. Final report, August 15, 1978-August 14, 1978. [Includes patents

    SciTech Connect

    Furaus, J P; Gruchalla, M E; Sower, G D

    1980-01-01

    Problems were surveyed and evaluated with respect to solar tracking mechanisms and rotary joints for coolant piping. An analytical development of celestial mechanics, one- and two-axis tracking configurations and the effect of tracking accuracy versus collector efficiency are reported. Daily operational requirements and tracking modes were defined and evaluated. A literature and patent search on solar tracking technology was performed. Tracking system and control system performance specifications were determined. Alternative conceptual tracking approaches were defined and a cost and performance evaluation of a mechanical tracking concept was performed. Fluid coupling service specifications were determined. The cost and performance of several types of actuators and error detectors were evaluated with respect to solar tracking mechanisms.

  6. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; He, Ya-Ling; Zhang, Yuwen

    2015-10-01

    Two and three dimensional transient thermal analysis of a prismatic Li-ion cell has been carried out to compare internal and external cooling methods for thermal management of Lithium Ion (Li-ion) battery packs. Water and liquid electrolyte have been utilized as coolants for external and internal cooling, respectively. The effects of the methods on decreasing the temperature inside the battery and also temperature uniformity were investigated. The results showed that at the same pumping power, using internal cooling not only decreases the bulk temperature inside the battery more than external cooling, but also decreases the standard deviation of the temperature field inside the battery significantly. Finally, using internal cooling decreases the intersection angle between the velocity vector and the temperature gradient which according to field synergy principle (FSP) causes to increase the convection heat transfer.

  7. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    SciTech Connect

    Wong, S.; DiBiasio, A.; Gunther, W.

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.

  8. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    SciTech Connect

    Azarm, M A; Boccio, J L; Mitra, S

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs.

  9. JAEA Studies on High Burnup Fuel Behaviors during Reactivity-Initiated Accident and Loss-of-Coolant Accident

    SciTech Connect

    Fuketa, Toyoshi; Sugiyama, Tomoyuki; Nagase, Fumihisa; Suzuki, Motoe

    2007-07-01

    The objectives of fuel safety research program at Japan Atomic Energy Agency (JAEA) are; to evaluate adequacy of present safety criteria and safety margins; to provide a database for future regulation on higher burnup UO{sub 2} and MOX fuels, new cladding and pellets; and to provide reasonably mechanistic computer codes for regulatory application. The JAEA program is comprised of reactivity-initiated accident (RIA) studies including pulse-irradiation experiments in the NSRR and cladding mechanical tests, loss-of-coolant accident (LOCA) tests including integral thermal shock test and oxidation rate measurement, development and verification of computer codes FEMAXI-6 and RANNS, and so on. In addition to an overview of the fuel safety research at JAEA, most recent progresses in the RIA and LOCA tests programs and the codes development are described and discussed in the paper. (authors)

  10. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    SciTech Connect

    Heams, T J; Williams, D A; Johns, N A; Mason, A; Bixler, N E; Grimley, A J; Wheatley, C J; Dickson, L W; Osborn-Lee, I; Domagala, P; Zawadzki, S; Rest, J; Alexander, C A; Lee, R Y

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  11. Experimental investigation on the chemical precipitation generation under the loss of coolant accident of nuclear power plants

    SciTech Connect

    Kim, C. H.; Sung, J. J.; Chung, Y. W.

    2012-07-01

    The PWR containment buildings are designed to facilitate core cooling in the event of a Loss of Coolant Accident (LOCA). The cooling process requires water discharged from the break and containment spray to be collected in a sump for recirculation. The containment sump contains screens to protect the components of the Emergency Core Cooling System (ECCS) and Containment Spray System (CSS) from debris. Since the containment materials may dissolve or corrode when exposed to the reactor coolant and spray solutions, various chemical precipitations can be generated in a post-LOCA environment. These chemical precipitations may become another source of debris loading to be considered in sump screen performance and downstream effects. In this study, new experimental methodology to predict the type and quantity of chemical precipitations has been developed. To generate the plant-specific chemical precipitation in a post-LOCA environment, the plant specific chemical condition of the recirculation sump during post-LOCA is simulated with the experimental reactor for the chemical effect. The plant-specific containment materials are used in the present experiment such as glass fibers, concrete blocks, aluminum specimens, and chemical reagent - boric acid, spray additives or buffering chemicals (sodium hydroxide, Tri-Sodium Phosphate (TSP), or others). The inside temperature of the reactor is controlled to simulate the plant-specific temperature profile of the recirculation sump. The total amount of aluminum released from aluminum specimens is evaluated by ICP-AES analysis to determine the amount of AlOOH and NaAlSi{sub 3}O{sub 8} which induce very adverse effect on the head loss across the sump screens. The amount of these precipitations generated in the present experimental study is compared with the results of WCAP-16530-NP-A. (authors)

  12. An experimental investigation of the post-CHF enhancement factor for a prototypical ITER divertor plate with water coolant

    SciTech Connect

    Marshall, T.D.; Watson, R.D.; McDonald, J.M.

    1995-09-01

    In an off-normal event, water-cooled copper divertor plates in the International Thermonuclear Experimental Reactor (ITER) may either experience heat loads beyond their design basis, or the normal heat loads may be accompanied by low coolant pressure and velocity. The purpose of this experiment was to illustrate that during one-sided heating, as in ITER, a copper divertor plate with the proper side wall thickness, at low system pressure and velocity can absorb without failing an incident heat flux, q{sub i}, that significantly exceed the value, q{sub i}{sup CHF}, which is associated with local CHF at the wall of the coolant channel. The experiment was performed using a 30 kW electron beam test system for heating of a square cross-section divertor heat sink with a smooth circular channel of 7.63 mm diameter. The heated width, length, and wall thickness were 16, 40, and 3 mm, respectively. Stable surface temperatures were observed at incident heat fluxes greater than the local CHF point, presumably due to circumferential conduction around the thick tube walls when q{sub i}{sup CHF} was exceeded. The Post-CHF enhancement factor, {eta}, is defined as the ratio of the incident burnout heat flux, q{sub i}{sup BO}, to q{sub i}{sup CHF}. For this experiment with water at inlet conditions of 70{degrees}C, 1 m/s, and 1 MPa, q{sub i}{sup CHF} and q{sub i}{sup BO} were 600 and 1100 W/cm{sup 2}, respectively, which gave an {eta} of 1.8.

  13. An experimental investigation of the post-CHF enhancement factor for a prototypical ITER divertor plate with water coolant

    SciTech Connect

    Marshall, T.D.; Watson, R.D.; McDonald, J.M.; Youchison, D.L.

    1995-12-31

    In an off-normal event, water-cooled copper divertor plates in the International Thermonuclear Experimental Reactor (ITER) may either experience heat loads beyond their design basis, or the normal heat loads may be accompanied by low coolant pressure and velocity. The purpose of this experiment was to illustrate that during one-sided heating, as in ITER, a copper divertor plate with the proper side wall thickness, at low system pressure and velocity can absorb without failing an incident heat flux, q{sub i}, that significantly exceed the value, q{sub i}{sup CHF}, which is associated with local CHF at the wall of the coolant channel. The experiment was performed using a 30 KW electron beam test system for heating of a square cross-section divertor heat sink with a smooth circular channel of 7.6 mm diameter. The heated width, length, and wall thickness were 16, 40, and 3 mm, respectively. Stable surface temperatures were observed at incident heat fluxes greater than the local CHF point, presumably due to circumferential conduction around the thick tube walls when q{sub i}{sup CHF} was exceeded. The Post-CHF enhancement factor, {eta}, is defined as the ratio of the incident burnout heat flux, q{sub i}{sup BO}, to q{sub i}{sup CHF}. For this experiment with water at inlet conditions of 70 C, 1 m/s, and 1 MPa, q{sub i}{sup CHF} and q{sub i}{sup BO} were 600 and 1,100 W/cm{sup 2}, respectively, which gave an {eta} of 1.8.

  14. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    SciTech Connect

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  15. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  16. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  17. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    ERIC Educational Resources Information Center

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  18. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  19. A Systematic Study of Explosions in Core Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Swesty, F. Douglas; Mihalas, Dimitri; Norman, Michael

    1997-01-01

    This report covers the research conducted from September 1996 to August 1997 (eighteen months into the three year grant). We have obtained a number of significant findings based on the on the work that we have conducted under this grant during the past year. As we stated in our original proposal the work has focused on multi-dimensional models of the convective epoch in core collapse supernovae. During the past year we have developed a large number of models of the convective epoch in 2-D under two levels of neutrino transport approximation and we are currently working on 3-D models. In the following pages will endeavor to give brief descriptions of our results.

  20. Optimal operational modes for frameless space radiators with organosilicon ultrahigh coolant

    NASA Astrophysics Data System (ADS)

    Bondareva, N. V.; Koroteev, A. A.; Safronov, A. A.; Filatov, N. I.; Shishkanov, I. I.

    2016-12-01

    Optimal modes of operation of frameless space radiators with organosilicon ultrahigh-vacuum working medium have been determined. Recommendations for increasing efficiency and intensity of the sheet radiation cooling under different modes of operation of the droplet cooler-radiator in the space are formulated. A method for determining the optimal number of droplet planes within the fine droplet sheet structure is presented. How the flow rarefaction influences onto on radiator's main thermal characteristics is investigated. The operational modes of the frameless radiator with "cross" configuration are grounded.

  1. Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Kopper, F. C.; Sturgess, G. J.; Datta, P.

    1989-01-01

    An experimental and analytical program was conducted to investigate heat transfer and pressure losses in rotating multipass passages with configurations and dimensions typical of modern turbine blades. The objective of this program is the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. As part of this overall program, a technique is developed for computational fluid dynamics. The specific objectives were to: select a baseline CFD computer code, assess the limitations of the baseline code, modify the baseline code for rotational effects, verify the modified code against benchmark experiments in the literature, and to identify shortcomings in the code as revealed by the verification. The Pratt and Whitney 3D-TEACH CFD code was selected as the vehicle for this program. The code was modified to account for rotating internal flows, and these modifications were evaluated for flow characteristics of those expected in the application. Results can make a useful contribution to blade internal cooling.

  2. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  3. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  4. Heat transfer performance of engine coolants under sub-cooled boiling conditions

    SciTech Connect

    Bhowmick, S.; Branchi, C.; McAssey, E.V. Jr.; Gollin, M.

    1996-12-31

    An experimental program has been conducted to evaluate the heat transfer performance of two engine cooling fluid mixtures, propylene-glycol/water and ethylene-glycol/water. These tests were performed under conditions closely simulating normal engine operation. For both mixtures, results were obtained over a range of heat transfer regimes from single phase convection to saturated flow boiling. Tests showed that propylene-glycol/water and ethylene-glycol/water have very similar heat transfer performances. Performance is defined as the steady state wall temperature maintained for a given surface heat flux and test section inlet velocity. For the lowest velocity tested, the test section experienced saturated boiling over approximately one-half of its heated length. The experimental results were also compared to analytical predictions based upon the Chen correlation. At higher fluxes, the analytical methods under-predicted the test section wall temperature.

  5. Design and Testing of a Shell-Flow Hollow-Fiber Venting Gas Trap

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Cross, Cindy; Hansen, Scott; Vogel, Matthew; Dillon, Paul

    2013-01-01

    A Venting Gas Trap (VGT) was designed, built, and tested at NASA Johnson Space Center to eliminate dissolved and free gas from the circulating coolant loop of the Orion Environmental Control Life Support System. The VGT was downselected from two different designs. The VGT has robust operation, and easily met all the Orion requirements, especially size and weight. The VGT has a novel design with the gas trap made of a five-layer spiral wrap of porous hydrophobic hollow fibers that form a cylindrically shaped curtain terminated by a dome-shaped distal plug. Circulating coolant flows into the center of the cylindrical curtain and flows between the hollow fibers, around the distal plug, and exits the VGT outlet. Free gas is forced by the coolant flow to the distal plug and brought into contact with hollow fibers. The proximal ends of the hollow fibers terminate in a venting chamber that allows for rapid venting of the free gas inclusion, but passively limits the external venting from the venting chamber through two small holes in the event of a long-duration decompression of the cabin. The VGT performance specifications were verified in a wide range of flow rates, bubble sizes, and inclusion volumes. Long-duration and integrated Orion human tests of the VGT are also planned for the coming year.

  6. Bypass Flow Computations using a One-Twelfth Symmetric Sector For Normal Operation in a 350 MWth VHTR

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato

    2010-10-01

    Significant uncertainty exists about the effects of bypass flow in a prismatic gas-cooled very high temperature reactor (VHTR). Bypass flow is the flow in the gaps between prismatic graphite blocks in the core. The gaps are present because of variations in their construction, imperfect installation and expansion and shrinkage from thermal heating and neutron fluence. Calculations are performed using computational fluid dynamics (CFD) for flow of the helium coolant in the gap and coolant channels along with conjugate heat generation and heat transfer in the fuel compacts and graphite. A commercial CFD code is used for all of the computations. A one-twelfth sector of a standard hexagonal block column is used for the CFD model because of its symmetry. Various scenarios are computed by varying the gap width from zero to 5 mm, varying the total heat generation rate to examine average and peak radial generation rates and variation of the graphite block geometry to account for the effects of shrinkage caused by irradiation. The calculations are for a 350 MWth prismatic reactor. It is shown that the effect of increasing gap width, while maintaining the same total mass flow rate, causes increased maximum fuel temperature while providing significant cooling to the near-gap region. The maximum outlet coolant temperature variation is increased by the presence of gap flow and also by an increase in total heat generation with a gap present. The effect of block shrinkage is actually to decrease maximum fuel temperature compared to a similar reference case.

  7. Estimation of the Drop Size in Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Agafonova, N. D.; Paramonova, I. L.

    2016-07-01

    The formulas for calculating the characteristic drop size for the mean Sauter diameter have been compared. The question on various forms of the size distribution of drops has been considered. To substantiate the applicability of the compared formulas for calculating the thermohydrodynamics in the circuits of nuclear power plants, experimental data on the wall temperature in a dispersed flow have been used. It has been shown that the Sauter diameter values calculated using the wall temperature in the supercritical region are in good agreement with sparse direct measurements of the drop size in steam-water flows. The drop sizes calculated using the tested formulas obtained for two-component gas-liquid flows or for single-component flows of coolants (various kinds of freons) and liquefied nitrogen turned out to be much lower. It has been shown that it is necessary to recalculate the numerical coefficients in the considered formulas in using them for steam-water flows.

  8. Vapor Explosion of Coolant Jet When Penetrating a Hot Molten Metal

    SciTech Connect

    Perets, Y.; Harari, R.; Sher, E.

    2005-06-15

    The vapor explosion phenomenon is investigated experimentally for a geometrical arrangement in which a cold liquid (water) jet is injected into a hot liquid surface (tin). Medium-scale experiments using 1 kg of molten tin were performed in an open geometry experiment system. In the first phase of the research, the influence of the injection mass flow rate on the likelihood of vapor explosion was investigated in order to map the various relevant regimes. In the second phase, the influence of some selected parameters on the interaction was studied to characterize the relevant parameters of the vapor explosion phenomenon.The range of the initial tin and water temperatures that leads to vapor explosion has been determined in order to define the thermal interaction zone. It is noticed that vapor explosion can occur at high water temperatures even near the saturation point. The delay time for the explosion to occur and the degree of the interaction violence were correlated with the initial tin and water temperatures. We also clarified the triggering point and noted a correlation between the quench temperature and the likelihood of the vapor explosion occurrence.

  9. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  10. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    SciTech Connect

    Not Available

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  11. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    SciTech Connect

    Park, H. B.; Chopra, O. K.

    2000-04-10

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of {Delta}J and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values.

  12. Analysis of Kuosheng Large-Break Loss-of-Coolant Accident with MELCOR 1.8.4

    SciTech Connect

    Wang, T.-C.; Wang, S.-J.; Chien, C.-S

    2000-09-15

    The MELCOR code, developed by Sandia National Laboratories, is capable of simulating the severe accident phenomena of light water reactor nuclear power plants (NPPs). A specific large-break loss-of-coolant accident (LOCA) for Kuosheng NPP is simulated with the use of the MELCOR 1.8.4 code. This accident is induced by a double-ended guillotine break of one of the recirculation pipes concurrent with complete failure of the emergency core cooling system. The MELCOR input deck for the Kuosheng NPP is established based on the design data of the Kuosheng NPP and the MELCOR users' guides. The initial steady-state conditions are generated with a developed self-initialization algorithm. The effect of the MELCOR 1.8.4-provided initialization process is demonstrated. The main severe accident phenomena and the corresponding fission product released fractions associated with the large-break LOCA sequences are simulated. The MELCOR 1.8.4 predicts a longer time interval between the core collapse and vessel failure and a higher source term. This MELCOR 1.8.4 input deck will be applied to the probabilistic risk assessment, the severe accident analysis, and the severe accident management study of the Kuosheng NPP in the near future.

  13. Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)

    SciTech Connect

    Ruggles, A. E.; Cheng, L. Y.; Dimenna, R. A.; Griffith, P.; Wilson, G. E.

    1994-06-01

    A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

  14. Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators

    SciTech Connect

    Hibbs, R.; Chen, Y.; Nikitopoulos, D.

    1995-10-01

    The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

  15. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE PAGES

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  16. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  17. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments

    DOE PAGES

    Parish, Chad M.; Terrani, Kurt A.; Kim, Young -Jin; ...

    2016-11-28

    Nano-infiltration and transient eutectic phase (NITE) sintering was developed for fabrication of nuclear grade SiC composites. We produced monolithic SiC ceramics using NITE sintering, as candidates for accident-tolerant fuels in light-water reactors (LWRs). In this work, we exposed three different NITE chemistries (yttria-alumina [YA], ceria-zirconia-alumina [CZA], and yttria-zirconia-alumina [YZA]) to autoclave conditions simulating LWR coolant loops. The YZA was most corrosion resistant, followed by CZA, with YA being worst. High-resolution elemental analysis using scanning transmission electron microscopy (STEM) X-ray mapping combined with multivariate statistical analysis (MVSA) datamining helped explain the differences in corrosion. YA-NITE lost all Al from the corrodedmore » region and the ytttria reformed into blocky precipitates. The CZA material lost all Al from the corroded area, and the YZA – which suffered the least corrosion –retained some Al in the corroded region. Lastly, the results indicate that the YZA-NITE SiC is most resistant to hydrothermal corrosion in the LWR environment.« less

  18. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    SciTech Connect

    Werry, E.V.; Somasundaram, S.

    1995-09-01

    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process.

  19. Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Test 2

    SciTech Connect

    Russcher, G. E.; Barner, J. O.; Hesson, G. M.; Wilson, C. L.; Parchen, L. J.; Cunningham, M. E.; Marshall, R. K.; Mohr, C. L.

    1981-09-01

    A loss-of-coolant accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects on pressurized water reactor (PWR) test fuel bundles. This Experiment Operation Plan (EOP) Addendum 2, together with the referenced EOP, describes the desired operating conditions and additional hazards review associated with the four-part MT-2 experiment. The primary portions of the experiment, MT-2.2 and MT-2.3, will evaluate the following: 1) the mechanical deformation of pressurized fuel rods subjected to a slow LOCA, using reflood water for temperature control, that is designed to produce cladding temperatures in the range from 1033 to 1089K (1400 to 1500°F) for an extended time, and 2) the effects of the deformed and possibly failed cladding on the thermal-hydraulic performance of the test assembly during simulated LOCA heating and reflooding. The secondary portions of the experiment, MT-2.1 and MT-2.4, are intended to provide thermal-hydraulic calibration information during two-stage reflood conditions for 1) relatively low cladding temperatures, <839K (1050°F), on nondeformed rods, and 2) moderately high cladding temperatures, <1089K (1500°F), on deformed rods.

  20. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments

    SciTech Connect

    Parish, Chad M.; Terrani, Kurt A.; Kim, Young -Jin; Koyanagi, Takaaki; Katoh, Yutai

    2016-11-28

    Nano-infiltration and transient eutectic phase (NITE) sintering was developed for fabrication of nuclear grade SiC composites. We produced monolithic SiC ceramics using NITE sintering, as candidates for accident-tolerant fuels in light-water reactors (LWRs). In this work, we exposed three different NITE chemistries (yttria-alumina [YA], ceria-zirconia-alumina [CZA], and yttria-zirconia-alumina [YZA]) to autoclave conditions simulating LWR coolant loops. The YZA was most corrosion resistant, followed by CZA, with YA being worst. High-resolution elemental analysis using scanning transmission electron microscopy (STEM) X-ray mapping combined with multivariate statistical analysis (MVSA) datamining helped explain the differences in corrosion. YA-NITE lost all Al from the corroded region and the ytttria reformed into blocky precipitates. The CZA material lost all Al from the corroded area, and the YZA – which suffered the least corrosion –retained some Al in the corroded region. Lastly, the results indicate that the YZA-NITE SiC is most resistant to hydrothermal corrosion in the LWR environment.

  1. Simulation analysis of Maanshan steam generator level high-high transient due to reactor coolant pump trip and restart

    SciTech Connect

    Lee, Shawcuang; Wang, Jyhgang; Lee, Heikuang; King, Chuanheng

    1990-06-01

    On March 21, 1989, the reactor coolant pump (RCP) of Maanshan nuclear power plant unit 1 was tripped so that the power output of loop 1 decreased to almost zero. After this short transient, the unit 1 reactor remained in steady-state operation and maintained 19% of rated power with only two loops (two RCPs). The problem of RCP-A was then resolved, and it was restarted at {approximately} 30 min after the prior trip. After 11 s, a water-level transient occurred in steam generator (SG)-A, and shortly thereafter the turbine and generator were automatically tripped because of the SG-A high-high level setpoint. At that point, because of another electrical system failure, the electrical bus could not automatically switch over the RCP power supply to off-site power so that all three RCPs were tripped because of a low-voltage signal. The resulted in a reactor trip. In this study, the Institute of Nuclear Energy Research was requested to analyze the scenario of the Maanshan nuclear power plant unit 1 SG-A high-high level transient event, which was induced by RCP-A restart after an accidental trip.

  2. Application of 3-dimensional radiation transport codes to the analysis of the CRBR prototypic coolant pipe chaseway neutron streaming experiment

    SciTech Connect

    Chatani, K. )

    1992-08-01

    This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.

  3. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    SciTech Connect

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750 to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.

  4. Hydrogel Encapsulation of Cells in Core-Shell Microcapsules for Cell Delivery.

    PubMed

    Nguyen, Duy Khiem; Son, Young Min; Lee, Nae-Eung

    2015-07-15

    A newly designed 3D core-shell microcapsule structure composed of a cell-containing liquid core and an alginate hydrogel shell is fabricated using a coaxial dual-nozzle electrospinning system. Spherical alginate microcapsules are successfully generated with a core-shell structure and less than 300 μm in average diameter using this system. The thickness of the core and shell can be easily controlled by manipulating the core and shell flow rates. Cells encapsulated in core-shell microcapsules demonstrate better cell encapsulation and immune protection than those encapsulated in microbeads. The observation of a high percentage of live cells (≈80%) after encapsulation demonstrates that the voltage applied for generation of microcapsules does not significantly affect the viability of encapsulated cells. The viability of encapsulated cells does not change even after 3 d in culture, which suggests that the core-shell structure with culture medium in the core can maintain high cell survival by providing nutrients and oxygen to all cells. This newly designed core-shell structure can be extended to use in multifunctional platforms not only for delivery of cells but also for factor delivery, imaging, or diagnosis by loading other components in the core or shell.

  5. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  6. WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Heat transfer in rotating serpentine passages with trips normal to the flow

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.

    1991-01-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.

  8. Operating experience feedback report: Experience with pump seals installed in reactor coolant pumps manufactured by Byron Jackson. Commercial power reactors, Volume 7

    SciTech Connect

    Bell, L.G.; O`Reilly, P.D.

    1992-09-01

    This report examines the reactor coolant pump (RCP) seal operating experience through August 1990 at plants with Byron Jackson (B-J) RCPs. ne operating experience examined in this analysis included a review of the practice of continuing operation with a degraded seal. Plants with B-J RCPs that have had relatively good experience with their RCP seals attribute this success to a combination of different factors, including: enhanced seal QA efforts, modified/new seal designs, improved maintenance procedures and training, attention to detail, improved seal operating procedures, knowledgeable personnel involved in seal maintenance and operation, reduction in frequency of transients that stress the seals, seal handling and installation equipment designed to the appropriate precision, and maintenance of a clean seal cooling water system. As more plants have implemented corrective measures such as these, the number of B-J RCP seal failures experienced has tended to decrease. This study included a review of the practice of continued operation with a degraded seal in the case of PWR plants with Byron Jackson reactor coolant pumps. Specific factors were identified which should be addressed in order to safety manage operation of a reactor coolant pump with indications of a degrading seal.

  9. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  10. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-12-31

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels.

  11. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  12. Experimental study of void behavior in a suppression pool of a boiling water reactor during the blowdown period of a loss of coolant accident

    NASA Astrophysics Data System (ADS)

    Rassame, Somboon

    The possible failure of an Emergency Core Cooling System (ECCS) train due to a large amount of entrained gas in the ECCS pump suction piping in a Loss of Coolant Accident (LOCA) is one of the potential engineering problems faced in a Boiling Water Reactor (BWR) power plant. To analyze potential gas intrusion into the ECCS pump suction piping, the study of void behavior in the Suppression Pool (SP) during the LOCA is necessary. The void fraction distribution and void penetration are considered as the key parameters in the problem analysis. Two sets of experiments, namely, steady-state tests and transient tests were conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR application (PUMA-E) to study void behavior in the SP during the blowdown. The design of the test apparatus used is based on the scaling analysis from a prototypical BWR containment (MARK-I) with consideration of the downcomer size, the SP water level, and the downcomer water submergence depth. Several instruments were installed to obtain the required experimental data, such as inlet gas volumetric flow, void fraction, pressure, and temperature. For the steady-state tests, the air was injected through a downcomer pipe in the SP in order to simulate the physical phenomena in the SP during the initial blowdown of LOCA. Thirty tests were performed with two different downcomer sizes (0.076 and 0.102 m), various air volumetric flow rates or flux (0.003 to 0.153 m3/s or 0.5 to 24.7 m/s), initial downcomer void conditions (fully filled with water, partially void, and completely void) and air velocity ramp rates (one to two seconds). Two phases of the experiment were observed, namely, the initial phase and the quasi-steady phase. The initial phase produced the maximum void penetration depth; and the quasi-steady phase showed less void penetration with oscillation in the void penetration. The air volumetric flow rate was found to have a minor effect on the void fraction

  13. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    SciTech Connect

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; Jae, Moosung; Park, Goon -Cherl

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connecting the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.

  14. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  15. Shock-turbulence interaction in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat

    2016-10-01

    Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.

  16. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok

    2002-01-01

    Pure water is distilled from waste water in the International Space Station. The distillation assembly consists of an evaporator, a compressor and a condenser. Vapor is periodically purged from the condenser to avoid vapor accumulation. Purged vapor is condensed in a tube by coolant water prior to entering the purge pump. The paper presents a condensation model of purged vapor in a tube. This model is based on the Finite Volume Method. In the Finite Volume Method, the flow domain is discretized into multiple control volumes and a simultaneous analysis is performed.

  17. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    SciTech Connect

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.; Anderson, M. T.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  18. The effect of stainless steel overlay cladding on corrosion fatigue crack propagation in pressure vessel steel in PWR primary coolant

    SciTech Connect

    Bramwell, I.L.; Tice, D.R.; Worswick, D.; Heys, G.B.

    1995-12-31

    The growth of sub-critical cracks in pressure boundary materials in light water reactors is assessed using codified procedures, but the presence of the overlay-welded stainless steel cladding on the pressure vessel is not normally taken into consideration because of the difficulty in demonstrating clad integrity for the lifetime of the plant. In order to investigate any possible effect of the cladding layer on crack propagation, tests have been performed using two types of specimen. The first was sputter ion plated with a thin layer of austenitic stainless steel to simulate the electrochemical and oxide effects due to the cladding, whilst the second used an overlay clad specimen to investigate the behavior of a crack propagating from the austenitic into the ferritic material. Testing was carried out under cyclic loading conditions in well controlled simulated PWR primary water. At 288 C, the presence of stainless steel in contact with the low alloy steel did not enhance crack propagation in PWR primary coolant compared to unclad or unplated specimens. There was limited evidence that at 288 C under certain loading conditions, in both air and PWR water, there may be an effect of the cladding which reduces crack growth rates, at least for a short distance of crack propagation into the low alloy steel. Crack growth rates in the ferritic steel at 130 C were higher for both the plated and clad specimens than found in previous tests under similar conditions on the unclad material. However, the crack growth rates were bounded by current ASME 11 Appendix A recommendations for defects exposed to water and at low R ratio. There was no evidence of environmental enhancement of crack propagation in the stainless steel in clad specimens. The results indicate that the current approach of ignoring the cladding for assessment purposes is conservative at plant operating temperature.

  19. Assessment of a large break loss of coolant accident scenario requiring operator action to initiate safety injection

    SciTech Connect

    Grendys, R.C.; Nissley, M.E.; Baker, D.C.

    1996-11-01

    As part of the licensing basis for a nuclear power plant, the acceptability of the Emergency Core Cooling Systems (ECCS) following a postulated Loss-of-Coolant Accident (LOCA) as described in the Code of Federal Regulations (CFR), Title 10, Chapter 1, Part 50.46, must be verified. The LOCA analysis is performed with an acceptable ECCS Evaluation Model and results must show compliance with the 10 CFR 50.46 acceptance criteria. Westinghouse Electric Corporation performs Large and Small Break LOCA and LOCA-related analyses to support the licensing basis of various nuclear power plants and also performs evaluations against the licensing basis analyses as required. Occasionally, the need arises for the holder of an operating license of a nuclear power plant to submit a Licensee Event Report (LER) to the US Nuclear Regulatory Commission (USNRC) for any event of the type described in the Code of Federal Regulations, Title 10, Chapter 1, Part 50.73. To support the LER, a Justification for Past Operation (JPO) may be performed to assess the safety consequences and implications of the event based on previous operating conditions. This paper describes the work performed for the Large Break LOCA to assess the impact of an event discovered by Florida Power and Light and reported in LER-94-005-02. For this event, it was determined that under certain circumstances, operator action would have been required to initiate safety injection (SI), thus challenging the acceptability of the ECCS. This event was specifically addressed for the Large Break LOCA by using an advanced thermal hydraulic analysis methodology with realistic input assumptions.

  20. A numerical strategy for modelling rotating stall in core compressors

    NASA Astrophysics Data System (ADS)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary