Science.gov

Sample records for in-depth transcriptome analysis

  1. In-depth transcriptome analysis of the red swamp crayfish Procambarus clarkii.

    PubMed

    Shen, Huaishun; Hu, Yacheng; Ma, Yuanchao; Zhou, Xin; Xu, Zenghong; Shui, Yan; Li, Chunyan; Xu, Peng; Sun, Xiaowen

    2014-01-01

    The red swamp crayfish Procambarus clarkii is a highly adaptable, tolerant, and fecund freshwater crayfish that inhabits a wide range of aquatic environments. It is an important crustacean model organism that is used in many research fields, including animal behavior, environmental stress and toxicity, and studies of viral infection. Despite its widespread use, knowledge of the crayfish genome is very limited and insufficient for meaningful research. This is the use of next-generation sequencing techniques to analyze the crayfish transcriptome. A total of 324.97 million raw reads of 100 base pairs were generated, and a total of 88,463 transcripts were assembled de novo using Trinity software, producing 55,278 non-redundant transcripts. Comparison of digital gene expression between four different tissues revealed differentially expressed genes, in which more overexpressed genes were found in the hepatopancreas than in other tissues, and more underexpressed genes were found in the testis and the ovary than in other tissues. Gene ontology (GO) and KEGG enrichment analysis of differentially expressed genes revealed that metabolite- and immune-related pathway genes were enriched in the hepatopancreas, and DNA replication-related pathway genes were enriched in the ovary and the testis, which is consistent with the important role of the hepatopancreas in metabolism, immunity, and the stress response, and with that of the ovary and the testis in reproduction. It was also found that 14 vitellogenin transcripts were highly expressed specifically in the hepatopancreas, and 6 transcripts were highly expressed specifically in the ovary, but no vitellogenin transcripts were highly expressed in both the hepatopancreas and the ovary. These results provide new insight into the role of vitellogenin in crustaceans. In addition, 243,764 SNP sites and 43,205 microsatellite sequences were identified in the sequencing data. We believe that our results provide an important genome resource

  2. In-Depth Transcriptome Analysis of the Red Swamp Crayfish Procambarus clarkii

    PubMed Central

    Shen, Huaishun; Hu, Yacheng; Ma, Yuanchao; Zhou, Xin; Xu, Zenghong; Shui, Yan; Li, Chunyan; Xu, Peng; Sun, Xiaowen

    2014-01-01

    The red swamp crayfish Procambarus clarkii is a highly adaptable, tolerant, and fecund freshwater crayfish that inhabits a wide range of aquatic environments. It is an important crustacean model organism that is used in many research fields, including animal behavior, environmental stress and toxicity, and studies of viral infection. Despite its widespread use, knowledge of the crayfish genome is very limited and insufficient for meaningful research. This is the use of next-generation sequencing techniques to analyze the crayfish transcriptome. A total of 324.97 million raw reads of 100 base pairs were generated, and a total of 88,463 transcripts were assembled de novo using Trinity software, producing 55,278 non-redundant transcripts. Comparison of digital gene expression between four different tissues revealed differentially expressed genes, in which more overexpressed genes were found in the hepatopancreas than in other tissues, and more underexpressed genes were found in the testis and the ovary than in other tissues. Gene ontology (GO) and KEGG enrichment analysis of differentially expressed genes revealed that metabolite- and immune-related pathway genes were enriched in the hepatopancreas, and DNA replication-related pathway genes were enriched in the ovary and the testis, which is consistent with the important role of the hepatopancreas in metabolism, immunity, and the stress response, and with that of the ovary and the testis in reproduction. It was also found that 14 vitellogenin transcripts were highly expressed specifically in the hepatopancreas, and 6 transcripts were highly expressed specifically in the ovary, but no vitellogenin transcripts were highly expressed in both the hepatopancreas and the ovary. These results provide new insight into the role of vitellogenin in crustaceans. In addition, 243,764 SNP sites and 43,205 microsatellite sequences were identified in the sequencing data. We believe that our results provide an important genome resource

  3. In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV

    PubMed Central

    Du, Zhiqiang; Jin, Yanhui; Ren, Daming

    2016-01-01

    Crayfish has become one of the most important farmed aquatic species in China due to its excellent disease resistance against bacteria and viruses. However, the antiviral mechanism of crayfish is still not very clear. In the present study, many high-quality sequence reads from crayfish intestine were obtained using Illumina-based transcriptome sequencing. For the normal group (GN), 44,600,142 high-quality clean reads were randomly assembled to produce 125,394 contigs. For the WSSV-challenged group (GW), 47,790,746 high-quality clean reads were randomly assembled to produce 148,983 contigs. After GO annotation, 39,482 unigenes were annotated into three ontologies: biological processes, cellular components, and molecular functions. In addition, 15,959 unigenes were mapped to 25 different COG categories. Moreover, 7,000 DEGs were screened out after a comparative analysis between the GN and GW samples, which were mapped into 250 KEGG pathways. Among these pathways, 36 were obviously changed (P-values < 0.05) and 28 pathways were extremely significantly changed (P-values < 0.01). Finally, five key DEGs involved in the JAK-STAT signaling pathway were chosen for qRT-PCR. The results showed that these five DEGs were obviously up-regulated at 36 h post WSSV infection in crayfish intestine. These results provide new insight into crayfish antiviral immunity mechanisms. PMID:27283359

  4. In-Depth Genomic and Transcriptomic Analysis of Five K+ Transporter Gene Families in Soybean Confirm Their Differential Expression for Nodulation

    PubMed Central

    Rehman, Hafiz M.; Nawaz, Muhammad A.; Shah, Zahid Hussain; Daur, Ihsanullah; Khatoon, Sadia; Yang, Seung Hwan; Chung, Gyuhwa

    2017-01-01

    Plants have evolved a sophisticated network of K+ transport systems to regulate growth and development. Limited K+ resources are now forcing us to investigate how plant demand can be satisfied. To answer this complex question, we must understand the genomic and transcriptomic portfolio of K+ transporters in plants. Here, we have identified 70 putative K+ transporter genes from soybean, including 29 HAK/KT/KUP genes, 16 genes encoding voltage-gated K+ channels, 9 TPK/KCO genes, 4 HKT genes, and 12 KEA genes. To clarify the molecular evolution of each family in soybean, we analyzed their phylogeny, mode of duplication, exon structures and splice sites, and paralogs. Additionally, ortholog clustering and syntenic analysis across five other dicots further explored the evolution of these gene families and indicated that the soybean data is suitable as a model for all other legumes. Available microarray data sets from Genevestigator about nodulation was evaluated and further confirmed with the RNA sequencing data available by a web server. For each family, expression models were designed based on Transcripts Per Kilobase Million (TPM) values; the outcomes indicated differential expression linked to nodulation and confirmed the genes' putative roles. In-depth studies such as ours provides the basis for understanding K+ inventories in all other plants. PMID:28588592

  5. In-depth transcriptome analysis of Coilia ectenes, an important fish resource in the Yangtze River: de novo assembly, gene annotation.

    PubMed

    Shen, Huaishun; Gu, Ruobo; Xu, Gangchun; Xu, Pao; Nie, Zijuan; Hu, Yacheng

    2015-10-01

    Coilia ectenes is an important teleost species in the Yangtze River and a model organism that can be used to study the protection of fish resources. In this report, we performed de novo transcriptome sequencing of ten cDNA libraries from the brain, gill, heart, intestine, kidney, liver, muscle, stomach, ovary, and testis tissues. A total of 352 million raw reads of 100 base pairs were generated, and 130,113 transcripts, corresponding to 65,350 non-redundant transcripts, with a mean length of 1520 bp, were assembled. BLASTx-based gene annotation (E-value<1 × 10(-5)) allowed the identification of 73,900 transcripts against at least one of four databases, including the NCBI non-redundant database, the GO database, the COG database, and the KEGG database. Our study provides a valuable resource for C. ectenes genomic and transcriptomic data that will facilitate future functional studies of C. ectenes.

  6. New in-depth rainbow trout transcriptome reference and digital atlas of gene expression

    USDA-ARS?s Scientific Manuscript database

    Sequencing the rainbow trout genome is underway and a transcriptome reference sequence is required to help in genome assembly and gene discovery. Previously, we reported a transcriptome reference sequence using a 19X coverage of 454-pyrosequencing data. Although this work added a great wealth of ann...

  7. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq

    PubMed Central

    Yan, Wei; Yang, Ning; Qu, Lujiang

    2015-01-01

    Since the feed cost is a major determinant of profitability in poultry industry, how to improve feed efficiency through genetic selection is an intriguing subject for breeders and producers. As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined as the difference between observed and expected feed intake based on maintenance and growth. However, the genetic mechanisms responsible for RFI in chickens are still less well appreciated. In this study, we investigated the duodenal transcriptome architecture of extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated exons, 5.50% were located in introns, and the remaining 18.88% were assigned to intergenic regions. In total, we identified 41 promising candidate genes by differential expression analysis between the low and high RFI groups. Furthermore, qRT-PCR assays were designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated. Functional annotation analyses revealed that these significant genes belong to several specific biological functions related to digestibility, metabolism and biosynthesis processes as well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these transcripts were mainly involved in fundamental biological regulation and metabolism processes. Our findings provided a pioneering exploration of biological basis underlying divergent RFI using RNA-Seq, which pinpoints promising candidate genes of functional relevance, is helpful to guide future breeding strategies to optimize feed efficiency and assists in improving the current gene annotation in chickens. PMID:26418546

  8. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia

    PubMed Central

    Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini

    2015-01-01

    Witches’ broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches’ broom disease. PMID:26132073

  9. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia.

    PubMed

    Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini

    2015-01-01

    Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.

  10. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis.

    PubMed

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Hübner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J R; Guryev, Victor

    2013-12-12

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.

  11. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false In-depth analysis of FOIA exemptions. 701.58... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of FOIA exemptions. An in-depth analysis of the FOIA exemptions is addressed in the DOJ's annual publication...

  12. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false In-depth analysis of FOIA exemptions. 701.58... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of FOIA exemptions. An in-depth analysis of the FOIA exemptions is addressed in the DOJ's annual publication...

  13. 32 CFR 701.58 - In-depth analysis of FOIA exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false In-depth analysis of FOIA exemptions. 701.58... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of FOIA exemptions. An in-depth analysis of the FOIA exemptions is addressed in the DOJ's annual publication...

  14. In-Depth Tanscriptomic Analysis on Giant Freshwater Prawns

    PubMed Central

    Mohd-Shamsudin, Maizatul Izzah; Kang, Yi; Lili, Zhao; Tan, Tian Tian; Kwong, Qi Bin; Liu, Hang; Zhang, Guojie; Othman, Rofina Yasmin; Bhassu, Subha

    2013-01-01

    Gene discovery in the Malaysian giant freshwater prawn (Macrobrachium rosenbergii) has been limited to small scale data collection, despite great interest in various research fields related to the commercial significance of this species. Next generation sequencing technologies that have been developed recently and enabled whole transcriptome sequencing (RNA-seq), have allowed generation of large scale functional genomics data sets in a shorter time than was previously possible. Using this technology, transcriptome sequencing of three tissue types: hepatopancreas, gill and muscle, has been undertaken to generate functional genomics data for M. rosenbergii at a massive scale. De novo assembly of 75-bp paired end Ilumina reads has generated 102,230 unigenes. Sequence homology search and in silico prediction have identified known and novel protein coding candidate genes (∼24%), non-coding RNA, and repetitive elements in the transcriptome. Potential markers consisting of simple sequence repeats associated with known protein coding genes have been successfully identified. Using KEGG pathway enrichment, differentially expressed genes in different tissues were systematically represented. The functions of gill and hepatopancreas in the context of neuroactive regulation, metabolism, reproduction, environmental stress and disease responses are described and support relevant experimental studies conducted previously in M. rosenbergii and other crustaceans. This large scale gene discovery represents the most extensive transcriptome data for freshwater prawn. Comparison with model organisms has paved the path to address the possible conserved biological entities shared between vertebrates and crustaceans. The functional genomics resources generated from this study provide the basis for constructing hypotheses for future molecular research in the freshwater shrimp. PMID:23734171

  15. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  16. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  17. In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays

    PubMed Central

    Soldà, Giulia; Merlino, Giuseppe; Fina, Emanuela; Brini, Elena; Moles, Anna; Cappelletti, Vera; Daidone, Maria Grazia

    2016-01-01

    Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment. PMID:26556871

  18. In-Depth Mathematical Analysis of Ordinary High School Problems

    ERIC Educational Resources Information Center

    Stanley, Dick; Walukiewicz, Jolanta

    2004-01-01

    The mathematical depth that is potentially present, even in simple problems is illustrated. An extended analysis of a problem that is an analysis from a mature mathematical perspective with careful attention paid to mathematical reasoning and to using good mathematical habits of mind is used.

  19. In-depth Analysis of the Magnaporthe oryzae Conidial Proteome

    PubMed Central

    Gokce, Emine; Franck, William L.; Oh, Yeonyee; Dean, Ralph A.; Muddiman, David C.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae (M. oryzae) is the causative agent of rice blast disease and presents a significant threat to worldwide rice production. To establish the groundwork for future research on the pathogenic development of M. oryzae, a global proteomic study of conidia was performed. The filter aided sample preparation method (FASP) and anion StageTip fractionation combined with long, optimized shallow 210 min nanoLC gradients prior to mass spectrometry analysis on an Orbitrap XL was applied, which resulted in a doubling of protein identifications in comparison to our previous GeLC analysis. Herein, we report the identification of 2912 conidial proteins at a 1% protein false discovery rate (FDR) and we present the most extensive study performed on M. oryzae conidia to date. A similar distribution between identified proteins and the predicted proteome was observed when subcellular localization analysis was performed, suggesting the detected proteins build a representative portion of the predicted proteome. A higher percentage of cytoplasmic proteins (associated with translation, energy and metabolism) were observed in the conidial proteome relative to the whole predicted proteome. Conversely, nuclear and extracellular proteins were less well represented in the conidial proteome. Further analysis by gene ontology revealed biological insights into identified proteins important for central metabolic processes and the physiology of conidia. PMID:23039028

  20. Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans.

    PubMed

    Koepff, Joachim; Morschett, Holger; Busche, Tobias; Winkler, Anika; Kalinowski, Jörn; Wiechert, Wolfgang; Oldiges, Marco

    2017-09-27

    Recently, a comprehensive screening workflow for the filamentous bacterium Streptomyces lividans, a highly performant source for pharmaceutically active agents was introduced. This framework used parallelized cultivation in microtiter plates to efficiently accelerate early upstream process development. Focusing on growth performance, cultivation was successfully scaled-up to 1 liter stirred tank reactors. However, metabolic adaptation was observed on the transcriptomic level as among others, several genes incorporated in light response were up-regulated during bioreactor cultivation. Despite it was assumed that this was attributed to the fact that reactor cultivations were carried out in glass vessels exposed to daylight and artificial room light, this setup did not allow distinguishing exclusively between light and other effects. Upon that, the present study directly investigates the influence of light by defined illumination of microtiter plate cultures. Almost identical growth performance was observed for cultures grown in the dark or with illumination. Transcriptomics revealed the up-regulation of seven genes of which 6 have previously been described to be relevant for carotenoid synthesis and its regulation. These pigments are effective quenchers of reactive oxygen species. The seventh transcript coded for a photo-lyase incorporated in UV-damage repair of DNA further confirming induced light response. However, this was fully compensated by metabolic adaptation on the transcriptomic level and overall process performance was maintained. Consequently, environmental conditions need extremely careful control and evaluation during in-depth omics analysis of bioprocesses. Otherwise metabolic adaptation induced by such issues can easily be misinterpreted, especially during studies addressing cultivation system comparisons. This article is protected by copyright. All rights reserved. © 2017 American Institute of Chemical Engineers.

  1. Dog Tear Film Proteome In-Depth Analysis.

    PubMed

    Winiarczyk, Mateusz; Winiarczyk, Dagmara; Banach, Tomasz; Adaszek, Lukasz; Madany, Jacek; Mackiewicz, Jerzy; Pietras-Ozga, Dorota; Winiarczyk, Stanislaw

    2015-01-01

    In this study, mass spectrometry was used to explore the canine tear proteome. Tear samples were obtained from six healthy dogs, and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) was used as a first step to separate intact proteins into 17 bands. Each fraction was then trypsin digested and analysed by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) to characterize the protein components in each fraction. In total, 125 tear proteins were identified, with MCA (Major Canine Allergen), Serum albumin, UPF0557 protein C10orf119 homolog, Collagen alpha-2(I) chain, Tyrosine -protein kinase Fer, Keratine type II cytoskeletal, Beta-crystallin B2, Interleukin-6 and Desmin occurring as the most confident ones with the highest scores. The results showed that the proteomic strategy used in this study was successful in the analysis of the dog tear proteome. To the best of our knowledge, this study is the first to report the comprehensive proteome profile of tears from healthy dogs by 1D SDS PAGE and MALDI-TOF. Data are available via ProteomeXchange with identifier PXD003124.

  2. In-depth analysis of the human tear proteome.

    PubMed

    Zhou, Lei; Zhao, Shao Zhen; Koh, Siew Kwan; Chen, Liyan; Vaz, Candida; Tanavde, Vivek; Li, Xiao Rong; Beuerman, Roger W

    2012-07-16

    The tears, a critical body fluid of the surface of the eye, contain an unknown number of molecules including proteins/peptides, lipids, small molecule metabolites, and electrolytes. There have been continued efforts for exploring the human tear proteome to develop biomarkers of disease. In this study, we used the high speed TripleTOF 5600 system as the platform to analyze the human tear proteome from healthy subjects (3 females and 1 male, average age: 36±14). We have identified 1543 proteins in the tears with less than 1% false discovery rate, which represents the largest number of human tear proteins reported to date. The data set was analyzed for gene ontology (GO) and compared with the human plasma proteome, NEIBank lacrimal gland gene dataset and NEIBank cornea gene dataset. This comprehensive tear protein list may serve as a reference list of human tear proteome for biomarker research of ocular diseases or establishment of MRM (Multiple Reaction Monitoring) assays for targeted analysis. Tear fluid is a useful and an accessible source not only for evaluating ocular surface tissues (cornea and conjunctiva), inflammation, lacrimal gland function and a number of disease conditions, such as dry eye as well as response to treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Transcriptome analysis of sika deer in China.

    PubMed

    Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He

    2016-10-01

    Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development.

  4. Transcriptome analysis of Ginkgo biloba kernels

    PubMed Central

    He, Bing; Gu, Yincong; Xu, Meng; Wang, Jianwen; Cao, Fuliang; Xu, Li-an

    2015-01-01

    Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics; however, genomic resources for this species are limited. In this study, we performed the first transcriptome sequencing for Ginkgo kernels at five time points using Illumina paired-end sequencing. Approximately 25.08-Gb clean reads were obtained, and 68,547 unigenes with an average length of 870 bp were generated by de novo assembly. Of these unigenes, 29,987 (43.74%) were annotated in publicly available plant protein database. A total of 3,869 genes were identified as significantly differentially expressed, and enrichment analysis was conducted at different time points. Furthermore, metabolic pathway analysis revealed that 66 unigenes were responsible for terpenoid backbone biosynthesis, with up to 12 up-regulated unigenes involved in the biosynthesis of ginkgolide and bilobalide. Differential gene expression analysis together with real-time PCR experiments indicated that the synthesis of bilobalide may have interfered with the ginkgolide synthesis process in the kernel. These data can remarkably expand the existing transcriptome resources of Ginkgo, and provide a valuable platform to reveal more on developmental and metabolic mechanisms of this species. PMID:26500663

  5. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been...

  6. Comparative analysis of de novo transcriptome assembly.

    PubMed

    Clarke, Kaitlin; Yang, Yi; Marsh, Ronald; Xie, Linglin; Zhang, Ke K

    2013-02-01

    The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis. A fast algorithm, de Bruijn graph has been successfully used for genome DNA de novo assembly; nevertheless, its performance for transcriptome assembly is unclear. In this study, we used both simulated and real RNA-Seq data, from either artificial RNA templates or human transcripts, to evaluate five de novo assemblers, ABySS, Mira, Trinity, Velvet and Oases. Of these assemblers, ABySS, Trinity, Velvet and Oases are all based on de Bruijn graph, and Mira uses an overlap graph algorithm. Various numbers of RNA short reads were selected from the External RNA Control Consortium (ERCC) data and human chromosome 22. A number of statistics were then calculated for the resulting contigs from each assembler. Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate. Trinity had relative good performance for both ERCC and human data, but it may not consistently generate full length transcripts. ABySS was the fastest method but its assembly quality was low. Mira gave a good rate for mapping its contigs onto human chromosome 22, but its computational speed is not satisfactory. Our results suggest that transcript assembly remains a challenge problem for bioinformatics society. Therefore, a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique.

  7. In-depth Proteomic Analysis of Nonsmall Cell Lung Cancer to Discover Molecular Targets and Candidate Biomarkers*

    PubMed Central

    Kikuchi, Takefumi; Hassanein, Mohamed; Amann, Joseph M.; Liu, Qinfeng; Slebos, Robbert J. C.; Rahman, S. M. Jamshedur; Kaufman, Jacob M.; Zhang, Xueqiong; Hoeksema, Megan D.; Harris, Bradford K.; Li, Ming; Shyr, Yu; Gonzalez, Adriana L.; Zimmerman, Lisa J.; Liebler, Daniel C.; Massion, Pierre P.; Carbone, David P.

    2012-01-01

    Advances in proteomic analysis of human samples are driving critical aspects of biomarker discovery and the identification of molecular pathways involved in disease etiology. Toward that end, in this report we are the first to use a standardized shotgun proteomic analysis method for in-depth tissue protein profiling of the two major subtypes of nonsmall cell lung cancer and normal lung tissues. We identified 3621 proteins from the analysis of pooled human samples of squamous cell carcinoma, adenocarcinoma, and control specimens. In addition to proteins previously shown to be implicated in lung cancer, we have identified new pathways and multiple new differentially expressed proteins of potential interest as therapeutic targets or diagnostic biomarkers, including some that were not identified by transcriptome profiling. Up-regulation of these proteins was confirmed by multiple reaction monitoring mass spectrometry. A subset of these proteins was found to be detectable and differentially present in the peripheral blood of cases and matched controls. Label-free shotgun proteomic analysis allows definition of lung tumor proteomes, identification of biomarker candidates, and potential targets for therapy. PMID:22761400

  8. In-Depth Analysis of Citrulline Specific CD4 T-Cells in Rheumatoid Arthritis

    DTIC Science & Technology

    2017-01-01

    AWARD NUMBER: W81XWH-15-1-0004 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...2016 4. TITLE AND SUBTITLE In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...NOTES 14. ABSTRACT The goal of this project is to test the hypothesis that cit-specific CD4 T cells present in rheumatoid arthritis (RA) patients

  9. In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis

    DTIC Science & Technology

    2017-01-01

    AWARD NUMBER: W81XWH-15-1-0003 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0003...NOTES 14. ABSTRACT The goal of this project is to test the hypothesis that cit-specific CD4 T cells present in rheumatoid arthritis (RA) patients

  10. Integrative analysis of the mouse embryonic transcriptome

    PubMed Central

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  11. Integrative analysis of the mouse embryonic transcriptome.

    PubMed

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-04-10

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  12. Applying thiouracil tagging to mouse transcriptome analysis.

    PubMed

    Gay, Leslie; Karfilis, Kate V; Miller, Michael R; Doe, Chris Q; Stankunas, Kryn

    2014-02-01

    Transcriptional profiling is a powerful approach for studying mouse development, physiology and disease models. Here we describe a protocol for mouse thiouracil tagging (TU tagging), a transcriptome analysis technology that includes in vivo covalent labeling, purification and analysis of cell type-specific RNA. TU tagging enables the isolation of RNA from a given cell population of a complex tissue, avoiding transcriptional changes induced by cell isolation trauma, as well as the identification of actively transcribed RNAs and not preexisting transcripts. Therefore, in contrast to other cell-specific transcriptional profiling methods based on the purification of tagged ribosomes or nuclei, TU tagging provides a direct examination of transcriptional regulation. We describe how to (i) deliver 4-thiouracil to transgenic mice to thio-label cell lineage-specific transcripts, (ii) purify TU-tagged RNA and prepare libraries for Illumina sequencing and (iii) follow a straightforward bioinformatics workflow to identify cell type-enriched or differentially expressed genes. Tissue containing TU-tagged RNA can be obtained in 1 d, RNA-seq libraries can be generated within 2 d and, after sequencing, an initial bioinformatics analysis can be completed in 1 additional day.

  13. Transcriptomic analysis of degraded forensic body fluids.

    PubMed

    Lin, Meng-Han; Jones, Daniel F; Fleming, Rachel

    2015-07-01

    Massively parallel sequencing (MPS) has facilitated a significant increase in transcriptomic studies in all biological disciplines. However, the analysis of degraded RNA remains a genuine challenge in practice. In forensic science the biological samples encountered are often extensively degraded and of low abundance. RNA from these compromised samples is used for body fluid identification through the detection of body fluid-specific transcripts. Here we demonstrate the sequencing of four forensically relevant body fluids: oral mucosa/saliva (buccal), circulatory blood, menstrual blood and vaginal fluid. RNA was extracted from fresh, two and six week aged samples. Despite the extensive degradation of most body fluids, significant high quality sequencing output (>80% sequence above Q30) was generated. An average of over 80% of reads from all but one sample aligned successfully to the reference human genome. Furthermore, FPKMs (fragments per kilobase of exon per million fragments mapped) generated indicate the accurate detection of known body fluid markers in respective body fluids. Assessment of global gene expression levels over degradation time enabled the characterisation of differential RNA degradation in different body fluids. This study demonstrates the practical application of MPS technology for the accurate analysis of degraded RNA from minimal samples.

  14. Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays

    PubMed Central

    Mathavan, Sinnakaruppan; Lee, Serene G. P; Mak, Alicia; Miller, Lance D; Murthy, Karuturi Radha Krishna; Govindarajan, Kunde R; Tong, Yan; Wu, Yi Lian; Lam, Siew Hong; Yang, Henry; Ruan, Yijun; Korzh, Vladimir; Gong, Zhiyuan; Liu, Edison T; Lufkin, Thomas

    2005-01-01

    Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula) revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html). PMID:16132083

  15. Transcriptome Analysis of Encystation in Entamoeba invadens

    PubMed Central

    Nakada-Tsukui, Kumiko; Caler, Elisabet; Nozaki, Tomoyoshi

    2013-01-01

    Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of E. invadens, which is a related reptilian species that causes an invasive disease similar to that of E. histolytica, was investigated during encystation. Using a custom-generated Affymetrix platform microarray, we performed time course (0.5, 2, 8, 24, 48, and 120 h) gene expression analysis of encysting E. invadens. ANOVA analysis revealed that a total of 1,528 genes showed ≥3 fold up-regulation at one or more time points, relative to the trophozoite stage. Of these modulated genes, 8% (116 genes) were up-regulated at the early time points (0.5, 2 and 8h), while 63% (962 genes) were up-regulated at the later time points (24, 48, and 120 h). Twenty nine percent (450 genes) are either up-regulated at 2 to 5 time points or constitutively up-regulated in both early and late stages. Among the up-regulated genes are the genes encoding transporters, cytoskeletal proteins, proteins involved in vesicular trafficking (small GTPases), Myb transcription factors, cysteine proteases, components of the proteasome, and enzymes for chitin biosynthesis. This study represents the first kinetic analysis of gene expression during differentiation from the invasive trophozoite to the dormant, infective cyst stage in Entamoeba. Functional analysis on individual genes and their encoded products that are modulated during encystation may lead to the discovery of targets for the development of new chemotherapeutics that interfere with stage conversion of the parasite. PMID:24040350

  16. Transcriptome analysis of encystation in Entamoeba invadens.

    PubMed

    De Cádiz, Aleyla Escueta; Jeelani, Ghulam; Nakada-Tsukui, Kumiko; Caler, Elisabet; Nozaki, Tomoyoshi

    2013-01-01

    Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of E. invadens, which is a related reptilian species that causes an invasive disease similar to that of E. histolytica, was investigated during encystation. Using a custom-generated Affymetrix platform microarray, we performed time course (0.5, 2, 8, 24, 48, and 120 h) gene expression analysis of encysting E. invadens. ANOVA analysis revealed that a total of 1,528 genes showed ≥3 fold up-regulation at one or more time points, relative to the trophozoite stage. Of these modulated genes, 8% (116 genes) were up-regulated at the early time points (0.5, 2 and 8h), while 63% (962 genes) were up-regulated at the later time points (24, 48, and 120 h). Twenty nine percent (450 genes) are either up-regulated at 2 to 5 time points or constitutively up-regulated in both early and late stages. Among the up-regulated genes are the genes encoding transporters, cytoskeletal proteins, proteins involved in vesicular trafficking (small GTPases), Myb transcription factors, cysteine proteases, components of the proteasome, and enzymes for chitin biosynthesis. This study represents the first kinetic analysis of gene expression during differentiation from the invasive trophozoite to the dormant, infective cyst stage in Entamoeba. Functional analysis on individual genes and their encoded products that are modulated during encystation may lead to the discovery of targets for the development of new chemotherapeutics that interfere with stage conversion of the parasite.

  17. Integrated analysis of the Plasmodium species transcriptome.

    PubMed

    Hoo, Regina; Zhu, Lei; Amaladoss, Anburaj; Mok, Sachel; Natalang, Onguma; Lapp, Stacey A; Hu, Guangan; Liew, Kingsley; Galinski, Mary R; Bozdech, Zbynek; Preiser, Peter R

    2016-05-01

    The genome sequence available for different Plasmodium species is a valuable resource for understanding malaria parasite biology. However, comparative genomics on its own cannot fully explain all the species-specific differences which suggests that other genomic aspects such as regulation of gene expression play an important role in defining species-specific characteristics. Here, we developed a comprehensive approach to measure transcriptional changes of the evolutionary conserved syntenic orthologs during the intraerythrocytic developmental cycle across six Plasmodium species. We show significant transcriptional constraint at the mid-developmental stage of Plasmodium species while the earliest stages of parasite development display the greatest transcriptional variation associated with critical functional processes. Modeling of the evolutionary relationship based on changes in transcriptional profile reveal a phylogeny pattern of the Plasmodium species that strictly follows its mammalian hosts. In addition, the work shows that transcriptional conserved orthologs represent potential future targets for anti-malaria intervention as they would be expected to carry out key essential functions within the parasites. This work provides an integrated analysis of orthologous transcriptome, which aims to provide insights into the Plasmodium evolution thereby establishing a framework to explore complex pathways and drug discovery in Plasmodium species with broad host range. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Transcriptomic Analysis of Grazing by Marine Nanoflagellates

    NASA Astrophysics Data System (ADS)

    Palenik, B.; Shi, X.; Paz-Yepes, J.

    2016-02-01

    Synechococcus is an important contributor to coastal and open ocean primary productivity. It is thought to be consumed by heterotrophic nanoflagellates and ciliates. To better understand if such predators adapt to the consumption of different prey, we obtained transcriptomes from five nanoflagellate grazers provided with or without Synechococcus prey. Transcriptomes were sequenced as part of the Moore Foundation Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) program. All transcriptomes showed differential gene expression in the presence of Synechococcus CC9311. No genes were found to be up-regulated in all five grazers, but 18 genes were up-regulated more than two fold in at least three grazers grown with CC9311, and two of the 18 genes were up-regulated in four grazers. These were a c-type lectin-like gene and an ankyrin repeat gene and the respective proteins would be likely candidates for Synechococcus binding/recognition by grazers. These results will likely help to interpret metatranscriptome studies in marine environments.

  19. Novel software package for cross-platform transcriptome analysis (CPTRA)

    PubMed Central

    2009-01-01

    Background Next-generation sequencing techniques enable several novel transcriptome profiling approaches. Recent studies indicated that digital gene expression profiling based on short sequence tags has superior performance as compared to other transcriptome analysis platforms including microarrays. However, the transcriptomic analysis with tag-based methods often depends on available genome sequence. The use of tag-based methods in species without genome sequence should be complemented by other methods such as cDNA library sequencing. The combination of different next generation sequencing techniques like 454 pyrosequencing and Illumina Genome Analyzer (Solexa) will enable high-throughput and accurate global gene expression profiling in species with limited genome information. The combination of transcriptome data acquisition methods requires cross-platform transcriptome data analysis platforms, including a new software package for data processing. Results Here we presented a software package, CPTRA: Cross-Platform TRanscriptome Analysis, to analyze transcriptome profiling data from separate methods. The software package is available at http://people.tamu.edu/~syuan/cptra/cptra.html. It was applied to the case study of non-target site glyphosate resistance in horseweed; and the data was mined to discover resistance target gene(s). For the software, the input data included a long-read sequence dataset with proper annotation, and a short-read sequence tag dataset for the quantification of transcripts. By combining the two datasets, the software carries out the unique sequence tag identification, tag counting for transcript quantification, and cross-platform sequence matching functions, whereby the short sequence tags can be annotated with a function, level of expression, and Gene Ontology (GO) classification. Multiple sequence search algorithms were implemented and compared. The analysis highlighted the importance of transport genes in glyphosate resistance and

  20. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    PubMed Central

    2010-01-01

    Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3)-β-linked glucose with a (1 → 6)-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and oxalate synthesis and to

  1. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    SciTech Connect

    Rodriguez, Marko A; Pepe, Alberto

    2009-01-01

    Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  2. In-Depth Temporal Transcriptome Profiling Reveals a Crucial Developmental Switch with Roles for RNA Processing and Organelle Metabolism That Are Essential for Germination in Arabidopsis1[W][OA

    PubMed Central

    Narsai, Reena; Law, Simon R.; Carrie, Chris; Xu, Lin; Whelan, James

    2011-01-01

    Germination represents a rapid transition from dormancy to a high level of metabolic activity. In-depth transcriptomic profiling at 10 time points in Arabidopsis (Arabidopsis thaliana), including fresh seed, ripened seed, during stratification, germination, and postgermination per se, revealed specific temporal expression patterns that to our knowledge have not previously been identified. Over 10,000 transcripts were differentially expressed during cold stratification, with subequal numbers up-regulated as down-regulated, revealing an active period in preparing seeds for germination, where transcription and RNA degradation both play important roles in regulating the molecular sequence of events. A previously unidentified transient expression pattern was observed for a group of genes, whereby a significant rise in expression was observed at the end of stratification and significantly lower expression was observed 6 h later. These genes were further defined as germination specific, as they were most highly expressed at this time in germination, in comparison with all developmental tissues in the AtGenExpress data set. Functional analysis of these genes using genetic inactivation revealed that they displayed a significant enrichment for embryo-defective or -arrested phenotype. This group was enriched in genes encoding mitochondrial and nuclear RNA-processing proteins, including more than 45% of all pentatricopeptide domain-containing proteins expressed during germination. The presence of mitochondrial DNA replication factors and RNA-processing functions in this germination-specific subset represents the earliest events in organelle biogenesis, preceding any changes associated with energy metabolism. Green fluorescent protein analysis also confirmed organellar localization for 65 proteins, largely showing germination-specific expression. These results suggest that mitochondrial biogenesis involves a two-step process to produce energetically active organelles: an

  3. An In-Depth Analysis of Concurrent B-Tree Algorithms

    DTIC Science & Technology

    1991-02-01

    MASSACHUSETTSLABORATC RY FOR INSTITUTE OF COMPUTI SCIENCE TECHNOLOGY .9 A23 j MIT/LCS/Ti &496 AlT IN-DEPTH ANALYSIS OF CONCURRENT B-TREE ALGORI -HMS...and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 545 Technology Square Information Systems Program Cabioe A019 Arlington, VA 22217 a1. TITLE...a new semantics for replicated mem- ory. Multi-version memory weakens the semantics of coherent replication by allowing readers to read "old "prsions

  4. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  5. Analysis of the Citrullus colocynthis transcriptome during water deficit stress.

    PubMed

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R; McElroy, J Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.

  6. Transcriptomics analysis and human preimplantation development.

    PubMed

    Freour, Thomas; Vassena, Rita

    2016-10-17

    The study of oocyte and preimplantation embryo biology has been regarded with great curiosity throughout scientific history, but it is not until the development of robust methods for in vitro observation and manipulation of animal gametes that developmental biology has flourished as a discipline. By far the biggest technical challenge in studying transcription in oocytes and early embryo has been the necessity of developing techniques that retain a high level of accuracy when starting from small amount of material. The objective of this narrative review is to summarize the knowledge gained about the embryonic preimplantation period in the human species from transcriptomics experiments, and to discuss technical limitations and solutions to the study of transcriptomics in these samples.

  7. An in-depth analysis of theoretical frameworks for the study of care coordination1

    PubMed Central

    Van Houdt, Sabine; Heyrman, Jan; Vanhaecht, Kris; Sermeus, Walter; De Lepeleire, Jan

    2013-01-01

    Introduction Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination. Results Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(inter)organizational outcome’. Conclusion These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive. PMID:23882171

  8. In-depth micro-spectrochemical analysis of archaeological Egyptian pottery shards

    NASA Astrophysics Data System (ADS)

    Khedr, A.; Harith, M. A.

    2013-12-01

    Old Egyptian pottery samples have been in-depth microchemically analyzed using laser induced breakdown spectroscopy (LIBS), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. Samples from two different ancient Islamic eras, Mamluk (1250-1517 AD), Fatimid (969-1169 AD) in addition to samples from the Roman period (30 BC-395 AD) were investigated. LIBS provided the analytical data necessary to study in micrometric steps the depth profiling of various elements in each sample. Common elements such as silicon, calcium, and aluminum relevant to the originally manufactured and processed clay, showed up in all the investigated samples. EDX and XRD techniques that have been used in the present work provided important chemical insight about the structure of the samples. The obtained analytical results demonstrated the possibility of using LIBS technique in performing in situ spectrochemical analysis of archaeological pottery. This leads to fast in-depth spatial characterization of the samples in the micron range with nearly invisible surface destructive effects. There is no doubt that this can help in restoration and conservation of such precious objects.

  9. Transcriptome analysis by strand-specific sequencing of complementary DNA.

    PubMed

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-10-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.

  10. Transcriptomic analysis of phenotypic changes in birch (Betula platyphylla) autotetraploids.

    PubMed

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-10-11

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees.

  11. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  12. Transcriptomic analysis of incised leaf-shape determination in birch.

    PubMed

    Mu, Huaizhi; Lin, Lin; Liu, Guifeng; Jiang, Jing

    2013-12-01

    Plant researchers have focused much attention on leaf shape because of its importance in the identification. To evaluate the impact of intraspecies leaf-shape variation on the transcriptome, a series of Betula pendula 'Dalecarlica' and B. pendula saplings were generated through tissue culture. The leaf shapes and transcriptomes of B. pendula 'Dalecarlica' clones were compared with those of B. pendula clones. The leaf shape of B. pendula 'Dalecarlica' was incised and that of B. pendula was ovate. Transcriptome data revealed numerous changes in gene expression between B. pendula 'Dalecarlica' and B. pendula, including upregulation of 8767 unigenes and downregulation of 8379 unigenes in B. pendula 'Dalecarlica'. A pathway analysis revealed that the transport and signal transduction of auxin were altered in 'Dalecarlica', which may have contributed to its altered leaf shape. These results shed light on variation in birch leaf shape and help identify important genes for the genetic engineering of birch trees.

  13. In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell.

    PubMed

    Liao, Zhi; Bao, Lin-fei; Fan, Mei-hua; Gao, Peng; Wang, Xin-xing; Qin, Chuan-Li; Li, Xiao-Min

    2015-06-03

    Mytilus is an economically important bivalve and its shell is a biomineralized tissue with various microstructures/layers. In the present study, the shell of marine mussel, Mytilus coruscus, was analyzed and three shell layers with different morphologies and polymorphs were observed, which includes nacre, fibrous prism, and myostracum strongly attached by adductor muscles to the interior of the shell surface. In order to understand whether these different shell layers contain different shell matrix proteins (SMPs), the transcriptome sequencing of M. coruscus mantle and a parallel proteomic analysis of SMPs in the three shell layers were performed. A combination of LC-MS/MS analysis with the mantle transcriptome dataset search resulted in the identification of a total of 63 proteins from M. coruscus shell. From this protein set, fifteen, fourteen, and eight proteins were found to be unique to nacre, fibrous prism, and myostracum layers, respectively. In addition, many novel shell proteins were also identified. The data in this study could be used as a background to explore the roles of SMPs in the deposition of different shell layers (nacre vs. fibrous prism vs. myostracum), the different polymorphisms of calcium carbonate (aragonite vs. calcite); and further, the identified proteins from the myostracum could provide candidates for studying the mechanism of adductor muscle-shell attachment. In this paper, we characterized for the first time the protein set from different shell layers in Mytilus. Shell matrix proteins are the major component that controls different aspects of the shell formation process and thus a source of bioactive molecules that would offer interesting perspectives in biomaterials and biomedical fields. Our data can be used as a resource for further exploring the roles of shell matrix proteins in the deposition of different shell layers (nacre vs. fibrous prism vs. myostracum) or different polymorphisms of calcium carbonate (aragonite vs. calcite

  14. Identifying causes of adverse events detected by an automated trigger tool through in-depth analysis.

    PubMed

    Muething, S E; Conway, P H; Kloppenborg, E; Lesko, A; Schoettker, P J; Seid, M; Kotagal, U

    2010-10-01

    To describe how in-depth analysis of adverse events can reveal underlying causes. Triggers for adverse events were developed using the hospital's computerised medical record (naloxone for opiate-related oversedation and administration of a glucose bolus while on insulin for insulin-related hypoglycaemia). Triggers were identified daily. Based on information from the medical record and interviews, a subject expert determined if an adverse drug event had occurred and then conducted a real-time analysis to identify event characteristics. Expert groups, consisting of frontline staff and specialist physicians, examined event characteristics and determined the apparent cause. 30 insulin-related hypoglycaemia events and 34 opiate-related oversedation events were identified by the triggers over 16 and 21 months, respectively. In the opinion of the experts, patients receiving continuous-infusion insulin and those receiving dextrose only via parenteral nutrition were at increased risk for insulin-related hypoglycaemia. Lack of standardisation in insulin-dosing decisions and variation regarding when and how much to adjust insulin doses in response to changing glucose levels were identified as common causes of the adverse events. Opiate-related oversedation events often occurred within 48 h of surgery. Variation in pain management in the operating room and post-anaesthesia care unit was identified by the experts as potential causes. Variations in practice, multiple services writing orders, multidrug regimens and variations in interpretation of patient assessments were also noted as potential contributing causes. Identification of adverse drug events through an automated trigger system, supplemented by in-depth analysis, can help identify targets for intervention and improvement.

  15. An in-depth analysis of pharmaceutical regulation in the Republic of Moldova

    PubMed Central

    2014-01-01

    Objective Regulation of the pharmaceutical system is a crucial, yet often neglected, component in ensuring access to safe and effective medicines. The aim of this study was to provide an in-depth analysis of the existing pharmaceutical regulation, including recent changes, in the Republic of Moldova. Methods Data from field work conducted by the World Health Organization (WHO) together with a review of policy documents and quantitative secondary data analysis was used to achieve this aim. Results This analysis identified several ways in which pharmaceutical regulation affects availability of quality medicines in the Republic of Moldova. These include lack of full implementation bioequivalence requirements for generics registration, incomplete implementation of good manufacturing practices and no implementation of good distribution practices, use of quality control instead of quality assurance as a method to ensure quality of medicines, frequent change of power within the Medicines and Medical Devices Agency (MMDA) leading to lack of long-term strategy and plans, conflict of interest between the different functions of the MMDA, the lack of sufficient funding for the MMDA to conduct its activities and to invest in continuous training of its staff (particularly inspectors) and very weak post-marketing control. Notably, several improvements have been recently introduced, including a roadmap for change for the MMDA, the introduction of good manufacturing practices and the drafting of a quality manual for the Agency. Conclusion Based on these findings the authors propose a set of priority actions to address existing gaps and draw lessons learned from other countries. PMID:25848544

  16. A multidimensional approach to an in-depth proteomics analysis of transcriptional regulators in neuroblastoma cells

    PubMed Central

    Li, Qing; Jain, Mohit Raja; Chen, Wei; Li, Hong

    2013-01-01

    The dynamic regulation of transcriptional events is fundamental to many aspects of neuronal cell functions. However, proteomics methods have not been routinely used in global neuroproteomics analyses of transcriptional regulators because they are much less abundant than the “house-keeping” proteins in cells and tissues. Recent improvements in both biochemical preparations of nuclear proteins and detection sensitivities of proteomics technologies have made the global analysis of nuclear transcriptional regulators possible. We report here an optimized neuroproteomic method for the analysis of transcriptional regulators in the nuclear extracts of SHSY-5Y neuroblastoma cells by combining an improved nuclear protein extraction procedure with multidimensional peptide separation approaches. We found that rigorous removal of cytoplasmic proteins and solubilization of DNA-associated proteins improved the number of nuclear proteins identified. Furthermore, we discovered that multidimensional peptide separations by either strong cation exchange (SCX) chromatography or electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) analysis detected more than 1,800 nuclear proteins through the application of our technique, which constitute one of the largest datasets of nuclear proteins reported for a neuronal cell. Thus, in-depth analyses of transcriptional regulators for studying neurological diseases are increasingly feasible. PMID:23558336

  17. Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation.

    PubMed

    Zhang, Ji-Gang; Tan, Li-Jun; Xu, Chao; He, Hao; Tian, Qing; Zhou, Yu; Qiu, Chuan; Chen, Xiang-Ding; Deng, Hong-Wen

    2015-01-01

    Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology.

  18. In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry.

    PubMed

    Darville, Lancia N F; Sokolowski, Bernd H A

    2013-08-02

    Proteomic analysis of sensory organs such as the cochlea is challenging due to its small size and difficulties with membrane protein isolation. Mass spectrometry in conjunction with separation methods can provide a more comprehensive proteome, because of the ability to enrich protein samples, detect hydrophobic proteins, and identify low abundant proteins by reducing the proteome dynamic range. GELFrEE as well as different separation and digestion techniques were combined with FASP and nanoLC-MS/MS to obtain an in-depth proteome analysis of cochlear sensory epithelium from 30-day-old mice. Digestion with LysC/trypsin followed by SCX fractionation and multiple nanoLC-MS/MS analyses identified 3773 proteins with a 1% FDR. Of these, 694 protein IDs were in the plasmalemma. Protein IDs obtained by combining outcomes from GELFrEE/LysC/trypsin with GELFrEE/trypsin/trypsin generated 2779 proteins, of which 606 additional proteins were identified using the GELFrEE/LysC/trypsin approach. Combining results from the different techniques resulted in a total of 4620 IDs, including a number of previously unreported proteins. GO analyses showed high expression of binding and catalytic proteins as well as proteins associated with metabolism. The results show that the application of multiple techniques is needed to provide an exhaustive proteome of the cochlear sensory epithelium that includes many membrane proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000231.

  19. Uncertainty Estimation for 2D PIV: An In-Depth Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Bhattacharya, Syantan; Troolin, Dan; Vlachos, Pavlos; Pothos, Stamatios

    2016-11-01

    Uncertainty quantification methods have recently made great strides in accurately predicting uncertainties for planar PIV, and several different approaches are now documented. In the present study, we provide an analysis of these methods across different experiments and different PIV processing codes. To assess the performance of said methods, we follow the approach of Sciacchitano et al. (2015) and utilize two PIV measurement systems with overlapping fields of view-one acting as a reference (which is validated using simultaneous LDV measurements) and the other as a measurement system, paying close attention to the effects of interrogation window overlap and bias errors on the analysis. A total of three experiments were performed: a jet flow and a cylinder in cross flow at two Reynolds numbers. In brief, the standard coverages (68% confidence interval) ranged from approximately 65%-77% for PPR and MI methods, 40%-50% for image matching methods. We present an in-depth survey of both global (e.g., coverage and error histograms) and local (e.g., spatially varying statistics) parameters to examine the strengths and weaknesses of each method in monitor their responses to different regions of the experimental flows.

  20. The concept of 'vulnerability' in research ethics: an in-depth analysis of policies and guidelines.

    PubMed

    Bracken-Roche, Dearbhail; Bell, Emily; Macdonald, Mary Ellen; Racine, Eric

    2017-02-07

    The concept of vulnerability has held a central place in research ethics guidance since its introduction in the United States Belmont Report in 1979. It signals mindfulness for researchers and research ethics boards to the possibility that some participants may be at higher risk of harm or wrong. Despite its important intended purpose and widespread use, there is considerable disagreement in the scholarly literature about the meaning and delineation of vulnerability, stemming from a perceived lack of guidance within research ethics standards. The aim of this study was to assess the concept of vulnerability as it is employed in major national and international research ethics policies and guidelines. We conducted an in-depth analysis of 11 (five national and six international) research ethics policies and guidelines, exploring their discussions of the definition, application, normative justification and implications of vulnerability. Few policies and guidelines explicitly defined vulnerability, instead relying on implicit assumptions and the delineation of vulnerable groups and sources of vulnerability. On the whole, we found considerable richness in the content on vulnerability across policies, but note that this relies heavily on the structure imposed on the data through our analysis. Our results underscore a need for policymakers to revisit the guidance on vulnerability in research ethics, and we propose that a process of stakeholder engagement would well-support this effort.

  1. In-depth Proteomic Analysis of Mouse Cochlear Sensory Epithelium by Mass Spectrometry

    PubMed Central

    Darville, Lancia N.F.; Sokolowski, Bernd H.A.

    2013-01-01

    Proteomic analysis of sensory organs such as the cochlea is challenging due to its small size and difficulties with membrane protein isolation. Mass spectrometry in conjunction with separation methods can provide a more comprehensive proteome, because of the ability to enrich protein samples, detect hydrophobic proteins, and identify low abundant proteins by reducing the proteome dynamic range. GELFrEE as well as different separation and digestion techniques were combined with FASP and nanoLC-MS/MS to obtain an in-depth proteome analysis of cochlear sensory epithelium from 30-day-old mice. Digestion with LysC/trypsin followed by SCX fractionation and multiple nanoLC-MS/MS analyses identified 3773 proteins with a 1% FDR. Of these, 694 protein IDs were in the plasmalemma. Protein IDs obtained by combining outcomes from GELFrEE/LysC/trypsin with GELFrEE/trypsin/trypsin generated 2779 proteins, of which 606 additional proteins were identified using the GELFrEE/LysC/trypsin approach. Combining results from the different techniques resulted in a total of 4620 IDs, including a number of previously unreported proteins. GO analyses showed high expression of binding and catalytic proteins as well as proteins associated with metabolism. The results show that the application of multiple techniques is needed to provide an exhaustive proteome of the cochlear sensory epithelium that includes many membrane proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000231. PMID:23721421

  2. Transcriptomic analysis of Salmonella desiccation resistance.

    PubMed

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  3. Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).

    PubMed

    Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo

    2017-10-05

    Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis

    PubMed Central

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T.

    2015-01-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single cell transcripts can provide detailed insight into spatiotemporal gene-expression, and could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here, we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by utilizing a laser capture microdissection instrument for single cell isolation, followed by reverse transcription via Moloney Murine Leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, ss-cDNA ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to ds-cDNA by ϕ 29 polymerase. This procedure takes ~5 days, and sufficient amounts of ds-cDNA can be obtained from single cell RNA template for further microarray analysis. PMID:26042386

  5. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    PubMed

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  6. Quantification problems in depth profiling of pwr steels using Ar+ ion sputtering and XPS analysis.

    PubMed

    Ignatova, Velislava A; Van Den Berghe, Sven; Van Dyck, Steven; Popok, Vladimir N

    2006-10-01

    The oxide scales of AISI 304 formed in boric acid solutions at 300 degrees C and pH = 4.5 have been studied using X-ray photoelectron spectroscopy (XPS) depth profiling. The present focus is depth profile quantification both in depth and chemical composition on a molecular level. The roughness of the samples is studied by atomic force microscopy before and after sputtering, and the erosion rate is determined by measuring the crater depth with a surface profilometer and vertical scanning interferometry. The resulting roughness (20-30 nm), being an order of magnitude lower than the crater depth (0.2-0.5 microm), allows layer-by-layer profiling, although the ion-induced effects result in an uncertainty of the depth calibration of a factor of 2. The XPS spectrum deconvolution and data evaluation applying target factor analysis allows chemical speciation on a molecular level. The elemental distribution as a function of the sputtering time is obtained, and the formation of two layers is observed-one hydroxide (mainly iron-nickel based) on top and a second one deeper, mainly consisting of iron-chromium oxides.

  7. In-depth pedigree analysis in a large Brazilian Nellore herd.

    PubMed

    Brito, F V; Sargolzaei, M; Braccini Neto, J; Cobuci, J A; Pimentel, C M; Barcellos, J; Schenkel, F S

    2013-11-22

    A large herd of Nellore cattle was evaluated using in-depth pedigree analyses. Taking into account the incomplete pedigree due to the use of multiple young sires for mating, the average inbreeding coefficient was calculated as 1.73% for the last generation, which was higher than the regular inbreeding coefficient (0.25%). The effective population size was estimated to be 114, 245, and 101 for the time periods 1995-1999, 1999-2003, and 2003-2007, respectively. Parameters based on the probability of gene origin were used to describe the genetic diversity over time in the herd. The effective number of founders, ancestors, and founder genomes decreased over time, showing an overall loss of genetic diversity. In the last five-year period (2003-2007), based on available pedigree information, one prominent ancestor contributed 10.6% to the gene pool of the herd, and 30% of this pool was contributed by 31 ancestors. The analysis of inbreeding under random mating indicated that the mating strategies used in the herd are slowing down inbreeding rates. However, it is advisable to continue monitoring the inbreeding rates and genetic diversity in this herd in the future.

  8. The Korean American woman's nose: an in-depth nasal photogrammatic analysis.

    PubMed

    Choe, Kyle S; Yalamanchili, Haresh R; Litner, Jason A; Sclafani, Anthony P; Quatela, Vito C

    2006-01-01

    To assess the differences in nasal anthropometric measurements between Korean American women and North American white women and to perform an in-depth nasal index calculation. This anthropometric survey included a volunteer sample of Korean American women (n = 72) aged 18 to 35 years with Korean parents and no previous nasal surgery or trauma to the nose. Standardized and referenced frontal, lateral, and basal photographs of the nose were taken of the subjects and 22 standard anthropometric measurements of the nose were determined. Results were compared with published standards for North American white women. In addition, 18 nasal indices were calculated and compared with the published standards for North American white women. The Korean American woman's nose did not fit the neoclassic facial canons. Compared with North American white women, 20 of 22 nasal measurements in Korean American women were found to be significantly different. Nasal indices also revealed significant differences in 16 of the 18 that were calculated. The Korean American woman's nose exhibits less rotation, has a flatter dorsum, and is more flared at the alae, with less definition of the nasal tip. The average Korean American and North American white female nasal anthropometric measurements are very different. As cosmetic surgery becomes more popular among Asian Americans, our findings bolster the need for a broader view of facial analysis and transcultural aesthetics.

  9. In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering.

    PubMed

    Becherer, Tobias; Heinen, Silke; Wei, Qiang; Haag, Rainer; Weinhart, Marie

    2015-10-01

    Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. In-depth Analysis of Proton Mobilities in Sulfonated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Park, Moon Jeong; Lee, Sun Ju; Kim, Sung Yeon

    2012-02-01

    Polymer electrolytes are an important component of a wide variety of electrochemical devices such as battery, fuel cell, and chemical sensor owing to their ability to provide a pathway for ion transport between electrodes. Considerable efforts have been devoted to a subject of ion transport mechanisms in polymer electrolytes since the ion mobility in the polymer electrolytes plays a central role in determining the efficiency of the devices. In present study, we carried out an in-depth analysis of proton mobilities in model ionic block copolymers. The system of interests is a series of sulfonated poly(styrene-b-methylbutylene) (PSS-b-PMB) copolymers. Dilute solutions of PSS-b-PMB copolymers in methanol, which indicate highly uniform spherical ionic micelles, were examined yields. In particular, on virtue of the self-assembly nature of block copolymers, the system revealed well-defined ionic PSS domains with different thickness ranging from 3.0 to 7.8 nm. The proton transport in PSS-PMB copolymers was found to be facilitated by the decrease in the ionic domain sizes, which was rationalized by the different proximity of acid groups at the surfaces of ionic domains.

  11. Endometriosis and its global research architecture: an in-depth density-equalizing mapping analysis.

    PubMed

    Brüggmann, Dörthe; Elizabeth-Martinez, Alexandra; Klingelhöfer, Doris; Quarcoo, David; Jaque, Jenny M; Groneberg, David A

    2016-09-21

    Endometriosis is one of the most common gynecological diseases. It is still a chameleon in many aspects and urges intense research activities in the fields of diagnosis, therapy and prevention. Despite the need to foster research in this area, no in-depth analysis of the global architecture of endometriosis research exists yet. We here used the NewQIS platform to conduct a density equalizing mapping study, using the Web of Science as database with endometriosis related entries between 1900 and 2009. Density equalizing maps of global endometriosis research encompassing country-specific publication activities, and semi-qualitative indices such as country specific citations, citation rates, h-Indices were created. In total, 11,056 entries related to endometriosis were found. The USA was leading the field with 3705 publications followed by the United Kingdom (952) and Japan (846). Concerning overall citations and country-specific h-Indices, the USA again was the leading nation with 74,592 citations and a modified h-Index of 103, followed by the UK with 15,175 citations (h-Index 57). Regarding the citation rate, Sweden and Belgium were at top positions with rates of 22.46 and 22.26, respectively. Concerning collaborative studies, there was a steep increase in numbers present; analysis of the chronological evolution indicated a strong increase in international collaborations in the past 10 years. This study is the first analysis that illustrates the global endometriosis research architecture. It shows that endometriosis research is constantly gaining importance but also underlines the need for further efforts and investments to foster research and ultimately improve endometriosis management on a global scale.

  12. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.

    PubMed

    Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J

    2015-10-01

    Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Transcriptome Analysis of Cytokinin Response in Tomato Leaves

    PubMed Central

    Shi, Xiuling; Gupta, Sarika; Lindquist, Ingrid E.; Cameron, Connor T.; Mudge, Joann; Rashotte, Aaron M.

    2013-01-01

    Tomato is one of the most economically and agriculturally important Solanaceous species and vegetable crops, serving as a model for examination of fruit biology and compound leaf development. Cytokinin is a plant hormone linked to the control of leaf development and is known to regulate a wide range of genes including many transcription factors. Currently there is little known of the leaf transcriptome in tomato and how it might be regulated by cytokinin. We employ high throughput mRNA sequencing technology and bioinformatic methodologies to robustly analyze cytokinin regulated tomato leaf transcriptomes. Leaf samples of two ages, 13d and 35d were treated with cytokinin or the solvent vehicle control dimethyl sulfoxide (DMSO) for 2 h or 24 h, after which RNA was extracted for sequencing. To confirm the accuracy of RNA sequencing results, we performed qPCR analysis of select transcripts identified as cytokinin regulated by the RNA sequencing approach. The resulting data provide the first hormone transcriptome analysis of leaves in tomato. Specifically we identified several previously untested tomato orthologs of cytokinin-related genes as well as numerous novel cytokinin-regulated transcripts in tomato leaves. Principal component analysis of the data indicates that length of cytokinin treatment and plant age are the major factors responsible for changes in transcripts observed in this study. Two hour cytokinin treatment showed a more robust transcript response indicated by both greater fold change of induced transcripts and the induction of twice as many cytokinin-related genes involved in signaling, metabolism, and transport in young vs. older leaves. This difference in transcriptome response in younger vs. older leaves was also found to a lesser extent with an extended (24 h) cytokinin treatment. Overall data presented here provides a solid foundation for future study of cytokinin and cytokinin regulated genes involved in compound leaf development or other

  14. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  15. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  16. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  17. Transcriptome analysis by strand-specific sequencing of complementary DNA

    PubMed Central

    Parkhomchuk, Dmitri; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Banaru, Maria; Hallen, Linda; Krobitsch, Sylvia; Lehrach, Hans; Soldatov, Alexey

    2009-01-01

    High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcript's expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcript's direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcript's orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online. PMID:19620212

  18. Transcriptome Analysis to Understand the Toxicity of Latrodectus tredecimguttatus Eggs

    PubMed Central

    Xu, Dehong; Wang, Xianchun

    2016-01-01

    Latrodectus tredecimguttatus is a kind of highly venomous black widow spider, with toxicity coming from not only venomous glands but also other parts of its body as well as newborn spiderlings and eggs. Up to date, although L. tredecimguttatus eggs have been demonstrated to be rich in proteinaceous toxins, there is no systematic investigation on such active components at transcriptome level. In this study, we performed a high-throughput transcriptome sequencing of L. tredecimguttatus eggs with Illumina sequencing technology. As a result, 53,284 protein-coding unigenes were identified, of which 14,185 unigenes produced significant hits in the available databases, including 280 unigenes encoding proteins or peptides homologous to known proteinaceous toxins. GO term and KEGG pathway enrichment analyses of the 280 unigenes showed that 375 GO terms and 18 KEGG pathways were significantly enriched. Functional analysis indicated that these unigene-coded toxins have the bioactivities to degrade tissue proteins, inhibit ion channels, block neuromuscular transmission, provoke anaphylaxis, induce apoptosis and hyperalgesia, etc. No known typical proteinaceous toxins in L. tredecimguttatus venomous glands, such as latrotoxins, were identified, suggesting that the eggs have a different toxicity mechanism from that of the venom. Our present transcriptome analysis not only helps to reveal the gene expression profile and toxicity mechanism of the L. tredecimguttatus eggs, but also provides references for the further related researches. PMID:27999389

  19. Transcriptomic analysis of the salivary glands of an invasive whitefly.

    PubMed

    Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly

  20. Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    PubMed Central

    Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands

  1. Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis.

    PubMed

    Públio, Juliana do Carmo; D'Arce, Maria Beatriz Freitas; Catelan, Anderson; Ambrosano, Gláucia Maria Bovi; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2016-01-01

    This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismatic enamel), and absence of enamel. The 10% carbamide peroxide (CP) and 35% hydrogen peroxide (HP) bleaching gels were applied on the enamel surface following the manufacturer's recommendations. Color of underlying dentin was evaluated at four times: after staining with tea (baseline) and after each one of the three weeks of bleaching treatment, by CIE L*a*b* system using reflectance spectrophotometer (CM 700d, Konica Minolta). The ΔE, ΔL, Δa, and Δb values were recorded and subjected to repeated measures ANOVA and Tukey's test (α=0.05). The results showed an increase on lightness (L*), with decreased redness (a*) and yellowness (b*). At first and second week, bleaching with CP showed higher whitening effectiveness compared to bleaching with HP and the presence of aprismatic enamel significantly reduced ΔE for bleaching with CP. After three weeks of bleaching, few differences were observed between CP and HP groups, and outer enamel layer caused no influence on bleaching effectiveness. Overall, both at-home and in-office bleaching treatments were effective and the presence of aprismatic enamel did not interfere on the whitening efficacy.

  2. Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis

    PubMed Central

    Públio, Juliana do Carmo; D’Arce, Maria Beatriz Freitas; Catelan, Anderson; Ambrosano, Gláucia Maria Bovi; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2016-01-01

    This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismatic enamel), and absence of enamel. The 10% carbamide peroxide (CP) and 35% hydrogen peroxide (HP) bleaching gels were applied on the enamel surface following the manufacturer's recommendations. Color of underlying dentin was evaluated at four times: after staining with tea (baseline) and after each one of the three weeks of bleaching treatment, by CIE L*a*b* system using reflectance spectrophotometer (CM 700d, Konica Minolta). The ΔE, ΔL, Δa, and Δb values were recorded and subjected to repeated measures ANOVA and Tukey’s test (α=0.05). The results showed an increase on lightness (L*), with decreased redness (a*) and yellowness (b*). At first and second week, bleaching with CP showed higher whitening effectiveness compared to bleaching with HP and the presence of aprismatic enamel significantly reduced ΔE for bleaching with CP. After three weeks of bleaching, few differences were observed between CP and HP groups, and outer enamel layer caused no influence on bleaching effectiveness. Overall, both at-home and in-office bleaching treatments were effective and the presence of aprismatic enamel did not interfere on the whitening efficacy. PMID:27708725

  3. Autosomal recessive Alport syndrome: an in-depth clinical and molecular analysis of five families.

    PubMed

    Longo, Ilaria; Scala, Elisa; Mari, Francesca; Caselli, Rossella; Pescucci, Chiara; Mencarelli, Maria Antonietta; Speciale, Caterina; Giani, Marisa; Bresin, Elena; Caringella, Domenica Angela; Borochowitz, Zvi-Uri; Siriwardena, Komudi; Winship, Ingrid; Renieri, Alessandra; Meloni, Ilaria

    2006-03-01

    Alport syndrome (ATS) is a progressive inherited nephropathy characterized by irregular thinning, thickening and splitting of the glomerular basement membrane (GBM) often associated with hearing loss and ocular symptoms. ATS has been shown to be caused by COL4A5 mutations in its X-linked form and by COL4A3 and COL4A4 mutations in its autosomal forms. Five families with a suspicion of ATS were investigated both from a clinical and molecular point of view. COL4A3 and COL4A4 genes were analysed by DHPLC. Automated sequencing was performed to identify the underlying mutation. Molecular analysis indicated that in all 5 cases the correct diagnosis was autosomal recessive ATS. In three families in which parental consanguinity clearly pinpointed to autosomal recessive ATS, we found COL4A4 homozygous mutations in two of them and COL4A3 homozygous mutation in the other one. In the remaining two families a differential diagnosis including X-linked ATS, autosomal recessive ATS and thin basement membrane nephropathy was considered. The molecular analysis demonstrated that the probands were genetic compounds for two different mutations in the COL4A4 gene pinpointing to the correct diagnosis of autosomal recessive ATS. A clinical evaluation of probands and their relatives of the five families carrying mutations in either the COL4A3 or the COL4A4 gene was carried out to underline the natural history of the autosomal recessive ATS. In addition, this paper stresses the complexity of the clinics and genetics of ATS and how a correct diagnosis is based on a combination of: (i) an in-depth clinical investigation; (ii) a detailed formal genetic analysis; (iii) a correct technical choice of the gene to be investigated; (iv) a correct technical choice of the family member to be included in the mutational screening. A correct diagnosis is the basis for an appropriate genetic counselling dealing with both the correct prognosis and the accurate recurrence risk for the patients and family

  4. Analysis of the transcriptome in molecular epidemiology studies

    PubMed Central

    McHale, Cliona M.; Zhang, Luoping; Thomas, Reuben; smith, Martyn T.

    2016-01-01

    The human transcriptome is complex, comprising multiple transcript types, mostly in the form of non-coding RNA (ncRNA). The majority of ncRNA is of the long form (lncRNA, ≥200bp), which plays an important role in gene regulation through multiple mechanisms including epigenetics, chromatin modification, control of transcription factor binding, and regulation of alternative splicing. Both mRNA and ncRNA exhibit additional variability in the form of alternative splicing and RNA editing. All aspects of the human transcriptome can potentially be dysregulated by environmental exposures. Next-generation RNA sequencing (RNA-Seq) is the best available methodology to measure this although it has limitations, including experimental bias. The third phase of the MicroArray Quality Control Consortium project (MAQC-III), also called Sequencing Quality Control (SeQC), aims to address these limitations through standardization of experimental and bioinformatic methodologies. A limited number of toxicogenomic studies have been conducted to date using RNA-Seq. This review describes the complexity of the human transcriptome, the application of transcriptomics by RNA-Seq or microarray in molecular epidemiology studies, and limitations of these approaches including the type of cell or tissue analyzed, experimental variation, and confounding. By using good study designs with precise, individual exposure measurements, sufficient power and incorporation of phenotypic anchors, studies in human populations can identify biomarkers of exposure and/or early effect and elucidate mechanisms of action underlying associated diseases, even at low doses. Analysis of datasets at the pathway level can compensate for some of the limitations of RNA-Seq and, as more datasets become available, will increasingly elucidate the exposure-disease continuum. PMID:23907930

  5. Transcriptome Analysis of the Asian Honey Bee Apis cerana cerana

    PubMed Central

    Huang, Zachary Y.; Wu, Xiao Bo; Yan, Wei Yu; Zeng, Zhi Jiang

    2012-01-01

    Background The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE) analysis. Results Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG) with a cut-off E-value of 10−5 using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens. Conclusions Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes. PMID:23112877

  6. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    PubMed

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. An Analysis of "In-Depth" Schools Conducted by Area Extension Agents in the Agricultural Industry.

    ERIC Educational Resources Information Center

    Cunningham, Clarence J.

    The Ohio Extension Service conducted "in-depth" schools on Dairy Genetics and Reproduction, Beef Cattle, Capital Management, and Fertilizer and Lime at area centers in Wooster, Defiance and Fremont, Washington Court House, and McConnellsville. Two thirds of the instructional staff were area agents; others were specialists, resident…

  8. Team Regulation in a Simulated Medical Emergency: An In-Depth Analysis of Cognitive, Metacognitive, and Affective Processes

    ERIC Educational Resources Information Center

    Duffy, Melissa C.; Azevedo, Roger; Sun, Ning-Zi; Griscom, Sophia E.; Stead, Victoria; Crelinsten, Linda; Wiseman, Jeffrey; Maniatis, Thomas; Lachapelle, Kevin

    2015-01-01

    This study examined the nature of cognitive, metacognitive, and affective processes among a medical team experiencing difficulty managing a challenging simulated medical emergency case by conducting in-depth analysis of process data. Medical residents participated in a simulation exercise designed to help trainees to develop medical expertise,…

  9. Team Regulation in a Simulated Medical Emergency: An In-Depth Analysis of Cognitive, Metacognitive, and Affective Processes

    ERIC Educational Resources Information Center

    Duffy, Melissa C.; Azevedo, Roger; Sun, Ning-Zi; Griscom, Sophia E.; Stead, Victoria; Crelinsten, Linda; Wiseman, Jeffrey; Maniatis, Thomas; Lachapelle, Kevin

    2015-01-01

    This study examined the nature of cognitive, metacognitive, and affective processes among a medical team experiencing difficulty managing a challenging simulated medical emergency case by conducting in-depth analysis of process data. Medical residents participated in a simulation exercise designed to help trainees to develop medical expertise,…

  10. Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts.

    PubMed

    Chen, L; Luo, J; Li, J X; Li, J J; Wang, D Q; Tian, Y; Lu, L Z

    2015-06-01

    Excessive adiposity is a major problem in the duck industry, but its molecular mechanisms remain unknown. Genetic comparisons between domestic and wild animals have contributed to the exploration of genetic mechanisms responsible for many phenotypic traits. Significant differences in body fat mass have been detected between domestic and wild ducks. In this study, we used the Peking duck and Anas platyrhynchos as the domestic breed and wild counterpart respectively and performed a transcriptomic comparison of abdominal fat between the two breeds to comprehensively analyze the transcriptome basis of adiposity in ducks. We obtained approximately 350 million clean reads; assembled 61 250 transcripts, including 23 699 novel ones; and identified alternative 5' splice sites, alternative 3' splice sites, skipped exons and retained intron as the main alternative splicing events. A differential expression analysis between the two breeds showed that 753 genes exhibited differential expression. In Peking ducks, some lipid metabolism-related genes (IGF2, FABP5, BMP7, etc.) and oncogenes (RRM2, AURKA, CYR61, etc.) were upregulated, whereas genes related to tumor suppression and immunity (TNFRSF19, TNFAIP6, IGSF21, NCF1, etc.) were downregulated, suggesting adiposity might closely associate with tumorigenesis in ducks. Furthermore, 280 576 single-nucleotide variations were found differentiated between the two breeds, including 8641 non-synonymous ones, and some of the non-synonymous ones were found enriched in genes involved in lipid-associated and immune-associated pathways, suggesting abdominal fat of the duck undertakes both a metabolic function and immune-related function. These datasets enlarge our genetic information of ducks and provide valuable resources for analyzing mechanisms underlying adiposity in ducks. © 2015 Stichting International Foundation for Animal Genetics.

  11. Defense In-Depth Accident Analysis Evaluation of Tritium Facility Bldgs. 232-H, 233-H, and 234-H

    SciTech Connect

    Blanchard, A.

    1999-05-10

    'The primary purpose of this report is to document a Defense-in-Depth (DID) accident analysis evaluation for Department of Energy (DOE) Savannah River Site (SRS) Tritium Facility Buildings 232-H, 233-H, and 234-H. The purpose of a DID evaluation is to provide a more realistic view of facility radiological risks to the offsite public than the bounding deterministic analysis documented in the Safety Analysis Report, which credits only Safety Class items in the offsite dose evaluation.'

  12. Transcriptomic analysis of purple leaf determination in birch.

    PubMed

    Lin, Lin; Mu, Huaizhi; Jiang, Jing; Liu, Guifeng

    2013-09-10

    'Purple Rain', a purple cultivar of Betula pendula, has dark purple leaves throughout the vegetative period. In this study, B. pendula 'Purple Rain' was found to have a higher anthocyanidin level compared with B. pendula, Transcriptome analysis revealed numerous changes in gene expression that could be attributed to color change, including the upregulation of 2467 unigenes and the downregulation of 2299 unigenes in 'Purple Rain'. Furthermore, anthocyanidin synthesis and transcriptional regulation were altered in 'Purple Rain', which may have contributed to phenotypic changes. These results provide unique molecular insights into the biochemical pathways and regulatory networks that function in a purple variety of B. pendula.

  13. Transcriptome Analysis of Human Diabetic Kidney Disease

    PubMed Central

    Woroniecka, Karolina I.; Park, Ae Seo Deok; Mohtat, Davoud; Thomas, David B.; Pullman, James M.; Susztak, Katalin

    2011-01-01

    OBJECTIVE Diabetic kidney disease (DKD) is the single leading cause of kidney failure in the U.S., for which a cure has not yet been found. The aim of our study was to provide an unbiased catalog of gene-expression changes in human diabetic kidney biopsy samples. RESEARCH DESIGN AND METHODS Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. DKD samples were significant for their racial diversity and decreased glomerular filtration rate (~25–35 mL/min). Stringent statistical analysis, using the Benjamini-Hochberg corrected two-tailed t test, was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. Two different web-based algorithms were used to define differentially regulated pathways. RESULTS We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli, and 330 probesets were commonly differentially expressed in both compartments. Pathway analysis highlighted the regulation of Ras homolog gene family member A, Cdc42, integrin, integrin-linked kinase, and vascular endothelial growth factor signaling in DKD glomeruli. The tubulointerstitial compartment showed strong enrichment for inflammation-related pathways. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in a different set of DKD samples. CONCLUSIONS Our studies have cataloged gene-expression regulation and identified multiple novel genes and pathways that may play a role in the pathogenesis of DKD or could serve as biomarkers. PMID:21752957

  14. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).

    PubMed

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  15. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii.

    PubMed

    Chen, Quanzhu; Guo, Wenshuo; Feng, Lizhen; Ye, Xiaozhen; Xie, Wanfeng; Huang, Xiuping; Liu, Jinyan

    2015-02-06

    Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transcriptomic Analysis of Flower Development in Wintersweet (Chimonanthus praecox)

    PubMed Central

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  17. Transcriptomic Analysis of Murine Embryos Lacking Endogenous Retinoic Acid Signaling

    PubMed Central

    Paschaki, Marie; Schneider, Carole; Rhinn, Muriel; Thibault-Carpentier, Christelle; Dembélé, Doulaye; Niederreither, Karen; Dollé, Pascal

    2013-01-01

    Retinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2−/−) embryos — unable to synthesize RA from maternally-derived retinol — using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic analyses highlighted groups (clusters) of genes displaying similar behaviors in mutant tissues, and biological functions most significantly affected (e.g. mTOR, VEGF, ILK signaling in forebrain tissues; pyrimidine and purine metabolism

  18. Analysis of the brain mural cell transcriptome

    PubMed Central

    He, Liqun; Vanlandewijck, Michael; Raschperger, Elisabeth; Andaloussi Mäe, Maarja; Jung, Bongnam; Lebouvier, Thibaud; Ando, Koji; Hofmann, Jennifer; Keller, Annika; Betsholtz, Christer

    2016-01-01

    Pericytes, the mural cells of blood microvessels, regulate microvascular development and function and have been implicated in many brain diseases. However, due to a paucity of defining markers, pericyte identification and functional characterization remain ambiguous and data interpretation problematic. In mice carrying two transgenic reporters, Pdgfrb-eGFP and NG2-DsRed, we found that double-positive cells were vascular mural cells, while the single reporters marked additional, but non-overlapping, neuroglial cells. Double-positive cells were isolated by fluorescence-activated cell sorting (FACS) and analyzed by RNA sequencing. To reveal defining patterns of mural cell transcripts, we compared the RNA sequencing data with data from four previously published studies. The meta-analysis provided a conservative catalogue of 260 brain mural cell-enriched gene transcripts. We validated pericyte-specific expression of two novel markers, vitronectin (Vtn) and interferon-induced transmembrane protein 1 (Ifitm1), using fluorescent in situ hybridization and immunohistochemistry. We further analyzed signaling pathways and interaction networks of the pericyte-enriched genes in silico. This work provides novel insight into the molecular composition of brain mural cells. The reported gene catalogue facilitates identification of brain pericytes by providing numerous new candidate marker genes and is a rich source for new hypotheses for future studies of brain mural cell physiology and pathophysiology. PMID:27725773

  19. Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer.

    PubMed

    Pérez-Riesgo, Enrique; Gutiérrez, Lucía G; Ubierna, Daniel; Acedo, Alberto; Moyer, Mary P; Núñez, Lucía; Villalobos, Carlos

    2017-04-27

    Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca(2+) homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca(2+) remodeling includes critical changes in store-operated Ca(2+) entry (SOCE) and Ca(2+) store content. Some changes have been investigated at the molecular level. However, since nearly 100 genes are involved in intracellular Ca(2+) transport, a comprehensive view of Ca(2+) remodeling in CRC is lacking. We have used Next Generation Sequencing (NGS) to investigate differences in expression of 77 selected gene transcripts involved in intracellular Ca(2+) transport in CRC. To this end, mRNA from normal human colonic NCM460 cells and human colon cancer HT29 cells was isolated and used as a template for transcriptomic sequencing and expression analysis using Ion Torrent technology. After data transformation and filtering, exploratory analysis revealed that both cell types were well segregated. In addition, differential gene expression using R and bioconductor packages show significant differences in expression of selected voltage-operated Ca(2+) channels and store-operated Ca(2+) entry players, transient receptor potential (TRP) channels, Ca(2+) release channels, Ca(2+) pumps, Na⁺/Ca(2+) exchanger isoforms and genes involved in mitochondrial Ca(2+) transport. These data provide the first comprehensive transcriptomic analysis of Ca(2+) remodeling in CRC.

  20. Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer

    PubMed Central

    Pérez-Riesgo, Enrique; Gutiérrez, Lucía G.; Ubierna, Daniel; Acedo, Alberto; Moyer, Mary P.; Núñez, Lucía; Villalobos, Carlos

    2017-01-01

    Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca2+ homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca2+ remodeling includes critical changes in store-operated Ca2+ entry (SOCE) and Ca2+ store content. Some changes have been investigated at the molecular level. However, since nearly 100 genes are involved in intracellular Ca2+ transport, a comprehensive view of Ca2+ remodeling in CRC is lacking. We have used Next Generation Sequencing (NGS) to investigate differences in expression of 77 selected gene transcripts involved in intracellular Ca2+ transport in CRC. To this end, mRNA from normal human colonic NCM460 cells and human colon cancer HT29 cells was isolated and used as a template for transcriptomic sequencing and expression analysis using Ion Torrent technology. After data transformation and filtering, exploratory analysis revealed that both cell types were well segregated. In addition, differential gene expression using R and bioconductor packages show significant differences in expression of selected voltage-operated Ca2+ channels and store-operated Ca2+ entry players, transient receptor potential (TRP) channels, Ca2+ release channels, Ca2+ pumps, Na+/Ca2+ exchanger isoforms and genes involved in mitochondrial Ca2+ transport. These data provide the first comprehensive transcriptomic analysis of Ca2+ remodeling in CRC. PMID:28448473

  1. Leading edge analysis of transcriptomic changes during pseudorabies virus infection.

    PubMed

    Fleming, Damarius S; Miller, Laura C

    2016-12-01

    Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP) which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi) that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA) to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO) (GSE74473) database.

  2. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells.

  3. Simultaneous Transcriptome Analysis of Sorghum and Bipolaris sorghicola by Using RNA-seq in Combination with De Novo Transcriptome Assembly

    PubMed Central

    Yazawa, Takayuki; Kawahigashi, Hiroyuki; Matsumoto, Takashi; Mizuno, Hiroshi

    2013-01-01

    The recent development of RNA sequencing (RNA-seq) technology has enabled us to analyze the transcriptomes of plants and their pathogens simultaneously. However, RNA-seq often relies on aligning reads to a reference genome and is thus unsuitable for analyzing most plant pathogens, as their genomes have not been fully sequenced. Here, we analyzed the transcriptomes of Sorghum bicolor (L.) Moench and its pathogen Bipolaris sorghicola simultaneously by using RNA-seq in combination with de novo transcriptome assembly. We sequenced the mixed transcriptome of the disease-resistant sorghum cultivar SIL-05 and B. sorghicola in infected leaves in the early stages of infection (12 and 24 h post-inoculation) by using Illumina mRNA-Seq technology. Sorghum gene expression was quantified by aligning reads to the sorghum reference genome. For B. sorghicola, reads that could not be aligned to the sorghum reference genome were subjected to de novo transcriptome assembly. We identified genes of B. sorghicola for growth of this fungus in sorghum, as well as genes in sorghum for the defense response. The genes of B. sorghicola included those encoding Woronin body major protein, LysM domain-containing intracellular hyphae protein, transcriptional factors CpcA and HacA, and plant cell-wall degrading enzymes. The sorghum genes included those encoding two receptors of the simple eLRR domain protein family, transcription factors that are putative orthologs of OsWRKY45 and OsWRKY28 in rice, and a class III peroxidase that is a homolog involved in disease resistance in the Poaceae. These defense-related genes were particularly strongly induced among paralogs annotated in the sorghum genome. Thus, in the absence of genome sequences for the pathogen, simultaneous transcriptome analysis of plant and pathogen by using de novo assembly was useful for identifying putative key genes in the plant–pathogen interaction. PMID:23638091

  4. Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly.

    PubMed

    Yazawa, Takayuki; Kawahigashi, Hiroyuki; Matsumoto, Takashi; Mizuno, Hiroshi

    2013-01-01

    The recent development of RNA sequencing (RNA-seq) technology has enabled us to analyze the transcriptomes of plants and their pathogens simultaneously. However, RNA-seq often relies on aligning reads to a reference genome and is thus unsuitable for analyzing most plant pathogens, as their genomes have not been fully sequenced. Here, we analyzed the transcriptomes of Sorghum bicolor (L.) Moench and its pathogen Bipolaris sorghicola simultaneously by using RNA-seq in combination with de novo transcriptome assembly. We sequenced the mixed transcriptome of the disease-resistant sorghum cultivar SIL-05 and B. sorghicola in infected leaves in the early stages of infection (12 and 24 h post-inoculation) by using Illumina mRNA-Seq technology. Sorghum gene expression was quantified by aligning reads to the sorghum reference genome. For B. sorghicola, reads that could not be aligned to the sorghum reference genome were subjected to de novo transcriptome assembly. We identified genes of B. sorghicola for growth of this fungus in sorghum, as well as genes in sorghum for the defense response. The genes of B. sorghicola included those encoding Woronin body major protein, LysM domain-containing intracellular hyphae protein, transcriptional factors CpcA and HacA, and plant cell-wall degrading enzymes. The sorghum genes included those encoding two receptors of the simple eLRR domain protein family, transcription factors that are putative orthologs of OsWRKY45 and OsWRKY28 in rice, and a class III peroxidase that is a homolog involved in disease resistance in the Poaceae. These defense-related genes were particularly strongly induced among paralogs annotated in the sorghum genome. Thus, in the absence of genome sequences for the pathogen, simultaneous transcriptome analysis of plant and pathogen by using de novo assembly was useful for identifying putative key genes in the plant-pathogen interaction.

  5. Transcriptome Analysis of the Oriental Fruit Fly (Bactrocera dorsalis)

    PubMed Central

    Jiang, Hong-Bo; Yang, Wen-Jia; Jia, Fu-Xian; Hu, Fei; Cong, Lin; Wang, Jin-Jun

    2011-01-01

    Background The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most economically important pests in the world, causing serious damage to fruit production. However, lack of genetic information on this organism is an obstacle to understanding the mechanisms behind its development and its ability to resist insecticides. Analysis of the B. dorsalis transcriptome and its expression profile data is essential to extending the genetic information resources on this species, providing a shortcut that will support studies on B. dorsalis. Methodology/Principal Findings We performed de novo assembly of a transcriptome using short read sequencing technology (Illumina). The results generated 484,628 contigs, 70,640 scaffolds, and 49,804 unigenes. Of those unigenes, 27,455 (55.13%) matched known proteins in the NCBI database, as determined by BLAST search. Clusters of orthologous groups (COG), gene orthology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed to better understand the functions of these unigenes. Genes related to insecticide resistance were analyzed in additional detail. Digital gene expression (DGE) libraries showed differences in gene expression profiles at different developmental stages (eggs, third-instar larvae, pupae, and adults). To confirm the DGE results, the expression profiles of six randomly selected genes were analyzed. Conclusion/Significance This transcriptome greatly improves our genetic understanding of B. dorsalis and makes a huge number of gene sequences available for further study, including both genes of known importance and genes of unknown function. The DGE data provide comprehensive insight into gene expression profiles at different developmental stages. This facilitates the study of the role of each gene in the developmental process and in insecticide resistance. PMID:22195006

  6. Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis

    PubMed Central

    2013-01-01

    Background Latimeria menadoensis is a coelacanth species first identified in 1997 in Indonesia, at 10,000 Km of distance from its African congener. To date, only six specimens have been caught and just a very limited molecular data is available. In the present work we describe the de novo transcriptome assembly obtained from liver and testis samples collected from the fifth specimen ever caught of this species. Results The deep RNA sequencing performed with Illumina technologies generated 145,435,156 paired-end reads, accounting for ~14 GB of sequence data, which were de novo assembled using a Trinity/CLC combined strategy. The assembly output was processed and filtered producing a set of 66,308 contigs, whose quality was thoroughly assessed. The comparison with the recently sequenced genome of the African congener Latimeria chalumnae and with the available genomic resources of other vertebrates revealed a good reconstruction of full length transcripts and a high coverage of the predicted full coelacanth transcriptome. The RNA-seq analysis revealed remarkable differences in the expression profiles between the two tissues, allowing the identification of liver- and testis-specific transcripts which may play a fundamental role in important biological processes carried out by these two organs. Conclusion Given the high genomic affinity between the two coelacanth species, the here described de novo transcriptome assembly can be considered a valuable support tool for the improvement of gene prediction within the genome of L. chalumnae and a valuable resource for investigation of many aspects of tetrapod evolution. PMID:23927401

  7. Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L.

    PubMed Central

    Luo, Zhonglai; Hu, Jin; Zhao, Zhongtao; Zhang, Dianxiang

    2016-01-01

    Hermaphroditic flowers have evolved primarily under the selection on male function. Evolutionary modification often leads to stamen differentiation within flowers, or “heteranthery”, a phenomenon intrigued scientists since the 18th century until recently. However, the genetic basis and molecular regulation mechanism has barely been touched. Here we conducted comparative transcriptome profiling in Cassia biscapsularis L., a heterantherous species with representative patterns of stamen differentiation. Numerous differentially expressed genes (DEGs) were detected between the staminodes (the degenerated stamens) and fertile stamens, while much fewer genes differentially expressed among the three sets of fertile stamens. GO term enrichment and KEGG pathway analysis characterized functional properties of DEGs in different stamen types. Transcripts showing close correlation between expression pattern and stamen types were identified. Transcription factors from the bHLH family were suggested to have taken crucial part in the formation of staminodes. This first global transcriptomic analysis focusing on stamen differentiation opens the door toward a more comprehensive understanding on the molecular regulation of floral organ evolution. Especially, the generated unigene resource would be valuable for developing male sterile lines in agronomy. PMID:27527392

  8. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani.

    PubMed

    Liu, Zi-Chao; Zhang, Rong; Zhao, Feng; Chen, Zhong-Ming; Liu, Hao-Wen; Wang, Yan-Jie; Jiang, Ping; Zhang, Yong; Wu, Ying; Ding, Jiu-Ping; Lee, Wen-Hui; Zhang, Yun

    2012-12-07

    Centipedes have venom glands in their first pair of limbs, and their venoms contain a large number of components with different biochemical and pharmacological properties. However, information about the compositions and functions of their venoms is largely unknown. In this study, Scolopendra subspinipes dehaani venoms were systematically investigated by transcriptomic and proteomic analysis coupled with biological function assays. After random screening approximately 1500 independent clones, 1122 full length cDNA sequences, which encode 543 different proteins, were cloned from a constructed cDNA library using a pair of venom glands from a single centipede species. Neurotoxins, ion channel acting components and venom allergens were the main fractions of the crude venom as revealed by transcriptomic analysis. Meanwhile, 40 proteins/peptides were purified and characterized from crude venom of S. subspinipes dehaani. The N-terminal amino acid sequencing and mass spectrum results of 29 out of these 40 proteins or peptides matched well with their corresponding cDNAs. The purified proteins/peptides showed different pharmacological properties, including the following: (1) platelet aggregating activity; (2) anticoagulant activity; (3) phospholipase A(2) activity; (4) trypsin inhibiting activity; (5) voltage-gated potassium channel activities; (6) voltage-gated sodium channel activities; (7) voltage-gated calcium channel activities. Most of them showed no significant similarity to other protein sequences deposited in the known public database. This work provides the largest number of protein or peptide candidates with medical-pharmaceutical significance and reveals the toxin nature of centipede S. subspinipes dehaani venom.

  9. Transcriptome analysis of the Octopus vulgaris central nervous system.

    PubMed

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e(-5). The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e(-5)) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%-46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology.

  10. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis

    PubMed Central

    Hu, Ping; Wang, Jingzhen; Cui, Mingming; Tao, Jing; Luo, Youqing

    2016-01-01

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers. PMID:27222053

  11. Transcriptome Analysis of Oryza sativa Calli Under Microgravity

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Chen, Haiying; Cai, Weiming

    2015-11-01

    The transcriptome of Oryza sativacalli was analyzed on board the Chinese spaceship "Shenzhou 8" to study the effects of microgravity on plant signal transduction and secondary metabolism (as one of the experiments with SIMBOX on Shenzhou 8). Calli of Oryza sativa were pre-cultured for 4 days on ground and then loaded into the stationary platform or the rotating platform of a biological incubator, called SIMBOX, to grow in space under microgravity conditions or 1g-conditions, respectively. The calli were fixed by RNAlater after grew 324 h under microgravity. After 17 days, Shenzhou 8 returned to Earth carrying SIMBOX. Oryza sativa calli were recovered, and the RNA was extracted for transcriptome analysis. After comparing 1 gspaceflight controls-inflight controls with 1 g-ground controls, 157 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. When comparing spaceflight controls to 1 g-ground controls and to 1 g-inflight controls, 678 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. The fact that the same 678 probe sets were identified in these two comparisons suggests that transcription was affected under microgravity conditions. MapMan analysis was used to classify 627 microgravity responsive (MR) transcripts. The MR transcripts were mainly involved in cell wall structure, the TCA cycle, primary metabolism, transcription, protein modification and degradation, hormone metabolism, calcium regulation, receptor like kinase activity and transport.

  12. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis

    PubMed Central

    Forestan, Cristian; Aiese Cigliano, Riccardo; Farinati, Silvia; Lunardon, Alice; Sanseverino, Walter; Varotto, Serena

    2016-01-01

    Plant’s response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses. PMID:27461139

  13. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  14. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  15. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    PubMed Central

    Zhang, Xiaoshen; Deng, Minjie; Fan, Guoqiang

    2014-01-01

    Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx). About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST) search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI) non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization. PMID:24663058

  16. De novo assembly and analysis of crow lungs transcriptome.

    PubMed

    Vijayakumar, Periyasamy; Raut, Ashwin Ashok; Kumar, Pushpendra; Sharma, Deepak; Mishra, Anamika

    2014-09-01

    The jungle crow (Corvus macrorhynchos) belongs to the order Passeriformes of bird species and is important for avian ecological and evolutionary genetics studies. However, there is limited information on the transcriptome data of this species. In the present study, we report the characterization of the lung transcriptome of the jungle crow using GS FLX Titanium XLR70. Altogether, 1,510,303 high-quality sequence reads with 581,198,230 bases was de novo assembled into 22,169 isotigs (isotig represents an individual transcript) and 784,009 singletons. Using these isotigs and 581,681 length-filtered (greater than 300 bp) singletons, 20,010 unique protein-coding genes were identified by BLASTx comparison against a nonredundant (nr) protein sequence database. Comparative analysis revealed that 46,604 (70.29%) and 51,642 (72.48%) of the assembled transcripts have significant similarity to zebra finch and chicken RefSeq proteins, respectively. As determined by GO annotation and KEGG pathway mapping, functional annotation of the unigenes recovered diverse biological functions and processes. Transcripts putatively involved in the immune response were identified. Furthermore, 20,599 single nucleotide polymorphisms (SNPs) and 7525 simple sequence repeats (SSRs) were retrieved from the assembled transcript database. This resource should lay an important base for future ecological, evolutionary, and conservation genetic studies on this species and in other related species.

  17. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens

    PubMed Central

    Halimaa, Pauliina; Blande, Daniel; Aarts, Mark G. M.; Tuomainen, Marjo; Tervahauta, Arja; Kärenlampi, Sirpa

    2014-01-01

    The metal hyperaccumulator Noccaea caerulescens is an established model to study the adaptation of plants to metalliferous soils. Various comparators have been used in these studies. The choice of suitable comparators is important and depends on the hypothesis to be tested and methods to be used. In high-throughput analyses such as microarray, N. caerulescens has been compared to non-tolerant, non-accumulator plants like Arabidopsis thaliana or Thlaspi arvense rather than to the related hypertolerant or hyperaccumulator plants. An underutilized source is N. caerulescens populations with considerable variation in their capacity to accumulate and tolerate metals. Whole transcriptome sequencing (RNA-Seq) is revealing interesting variation in their gene expression profiles. Combining physiological characteristics of N. caerulescens accessions with their RNA-Seq has a great potential to provide detailed insight into the underlying molecular mechanisms, including entirely new gene products. In this review we will critically consider comparative transcriptome analyses carried out to explore metal hyperaccumulation and hypertolerance of N. caerulescens, and demonstrate the potential of RNA-Seq analysis as a tool in evolutionary genomics. PMID:24904610

  18. Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.

    PubMed

    Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco

    2017-07-03

    Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.

  19. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.

    PubMed

    Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W

    2015-08-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. A Comprehensive Analysis of Metabolomics and Transcriptomics in Cervical Cancer

    PubMed Central

    Yang, Kai; Xia, Bairong; Wang, Wenjie; Cheng, Jinlong; Yin, Mingzhu; Xie, Hongyu; Li, Junnan; Ma, Libing; Yang, Chunyan; Li, Ang; Fan, Xin; Dhillon, Harman S.; Hou, Yan; Lou, Ge; Li, Kang

    2017-01-01

    Cervical cancer (CC) still remains a common and deadly malignancy among females in developing countries. More accurate and reliable diagnostic methods/biomarkers should be discovered. In this study, we performed a comprehensive analysis of metabolomics (285 samples) and transcriptomics (52 samples) on the potential diagnostic implication and metabolic characteristic description in cervical cancer. Sixty-two metabolites were different between CC and normal controls (NOR), in which 5 metabolites (bilirubin, LysoPC(17:0), n-oleoyl threonine, 12-hydroxydodecanoic acid and tetracosahexaenoic acid) were selected as candidate biomarkers for CC. The AUC value, sensitivity (SE), and specificity (SP) of these 5 biomarkers were 0.99, 0.98 and 0.99, respectively. We further analysed the genes in 7 significantly enriched pathways, of which 117 genes, that were expressed differentially, were mainly involved in catalytic activity. Finally, a fully connected network of metabolites and genes in these pathways was built, which can increase the credibility of our selected metabolites. In conclusion, our biomarkers from metabolomics could set a path for CC diagnosis and screening. Our results also showed that variables of both transcriptomics and metabolomics were associated with CC. PMID:28225065

  1. Transcriptome Comparison Analysis of Ostrinia furnacalis in Four Developmental Stages

    PubMed Central

    Zhang, Tiantao; He, Kanglai; Wang, Zhenying

    2016-01-01

    The Asian corn borer, Ostrinia furnacalis, is one of the most destructive pests of maize and causes huge losses in maize yield each year. In order to characterize the different developmental stages, a high-throughput sequencing platform was employed to perform de novo transcriptome assembly and gene expression analysis for the egg, larva, pupa and adult stages. Approximately 185 million reads were obtained, trimmed, and assembled into 42,638 unigenes with an average length of 801.94 bp and an N50 length of 1,152 bp. These unigene sequences were annotated and classified by performing Gene Ontology (GO), Cluster of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classifications. Comparison of the gene expression profiles of the two transitional stages revealed dramatic differences. Some differentially expressed genes are associated with digestion, cuticularization olfactory recognition and wing formation as well as growth and development. In total, 12 putative insect development-related genes were identified. Real-time quantitative PCR (RT-qPCR) results and sequencing based on relative expression levels of randomly selected genes confirmed these expression patterns. These data represent the most comprehensive transcriptomic resource currently available for O. furnacalis and will facilitate the study of developmental pathways, cuticularization, wing formation and olfactory recognition. PMID:27713521

  2. Transcriptomic analysis of the myometrium during peri-implantation period and luteolysis--the study on the pig model.

    PubMed

    Franczak, Anita; Wojciechowicz, Bartosz; Kolakowska, Justyna; Zglejc, Kamila; Kotwica, Genowefa

    2014-12-01

    In pigs, implantation begins with the attachment of embryos to the endometrium. As the process is regulated by the expression of numerous genes, endometrial transcriptomic profiles have been extensively studied in early gravid pigs. However, the myometrium, a secretory tissue, should not be neglected, as it can also participate in the regulation of implantation in early pregnant pigs. To clarify this issue, the transcriptomic profile of the porcine myometrium during the peri-implantation period (i.e. on days 15 to 16 of pregnancy) was compared with the profile observed during luteolysis (i.e. on days 15 to 16 of the oestrous cycle) with an Agilent's Porcine (V2) Two-Colour Gene Expression Microarray 4 × 44 (Agilent, USA). Analysis of the microarray data revealed that of 526 unique, accurately annotated genes, the expression of 271 unique genes was upregulated, while the expression of 255 genes was downregulated in pregnant versus cyclic myometrium. The in-depth data analysis revealed differential expression of genes encoding for factors involved in immunomodulation, tissue growth and differentiation, and prostaglandin and steroid biosynthesis and action. Moreover, the comparison of the obtained data on the myometrial transcriptome with our previously published results on the endometrial transcriptome allowed us to determine substantial differences in the regulatory function of both tissues. The new insights into the function of the myometrium of early pregnant pigs obtained here are in agreement with our previous results that suggest that this tissue plays an important role in providing optimal conditions for developing embryos. Therefore, the importance of the myometrium as an active embryo signal-responsive tissue during early pregnancy cannot be underestimated.

  3. Single-cell transcriptome analysis of endometrial tissue.

    PubMed

    Krjutškov, K; Katayama, S; Saare, M; Vera-Rodriguez, M; Lubenets, D; Samuel, K; Laisk-Podar, T; Teder, H; Einarsdottir, E; Salumets, A; Kere, J

    2016-04-01

    How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603 commonly expressed genes were detected, with 241 significantly differentially expressed genes. Of these, 231 genes were up- and 10 down-regulated in cultured cells

  4. Single-cell transcriptome analysis of endometrial tissue

    PubMed Central

    Krjutškov, K.; Katayama, S.; Saare, M.; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603

  5. Analysis of Whole Transcriptome Sequencing Data: Workflow and Software

    PubMed Central

    Yang, In Seok

    2015-01-01

    RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related software, focusing particularly on transcriptome reconstruction and expression quantification. PMID:26865842

  6. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    PubMed Central

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377

  7. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox

    NASA Astrophysics Data System (ADS)

    Karimpour, Arash; Chen, Qin

    2017-09-01

    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  8. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-01-01

    Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system.

  9. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala

    PubMed Central

    Zhang, Lijing; Hu, Xiaowei; Miao, Xiumei; Chen, Xiaolong; Nan, Shuzhen; Fu, Hua

    2016-01-01

    Background Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. Results Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. Conclusion The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the

  10. Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts.

    PubMed

    Fritz, Heather M; Buchholz, Kerry R; Chen, Xiucui; Durbin-Johnson, Blythe; Rocke, David M; Conrad, Patricia A; Boothroyd, John C

    2012-01-01

    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1-10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear "off" in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle.

  11. Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts

    PubMed Central

    Fritz, Heather M.; Buchholz, Kerry R.; Chen, Xiucui; Durbin-Johnson, Blythe; Rocke, David M.

    2012-01-01

    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle

  12. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala.

    PubMed

    Zhang, Lijing; Hu, Xiaowei; Miao, Xiumei; Chen, Xiaolong; Nan, Shuzhen; Fu, Hua

    2016-01-01

    Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the fatty acid composition of oil

  13. Comprehensive analysis of circadian periodic pattern in plant transcriptome

    PubMed Central

    Ptitsyn, Andrey

    2008-01-01

    Background Circadian rhythm is a crucial factor in orchestration of plant physiology, keeping it in synchrony with the daylight cycle. Previous studies have reported that up to 16% of plant transcriptome are circadially expressed. Results Our studies of mammalian gene expression revealed circadian baseline oscillation in nearly 100% of genes. Here we present a comprehensive analysis of periodicity in two independent data sets. Application of the advanced algorithms and analytic approached already tested on animal data reveals oscillation in almost every gene of Arabidopsis thaliana. Conclusion This study indicates an even more pervasive role of oscillation in molecular physiology of plants than previously believed. Earlier studies have dramatically underestimated the prevalence of circadian oscillation in plant gene expression. PMID:18793463

  14. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  15. Transcriptome analysis of the uniparous and multiparous goats ovaries.

    PubMed

    Wang, L J; Sun, X W; Guo, F Y; Zhao, Y J; Zhang, J H; Zhao, Z Q

    2016-12-01

    Transcriptome analysis of Inner Mongolia Cashmere goat and Dazu black goat generated 38,772,947 and 38,771,668 clean pair end reads, respectively, which were assembled into 72,422 and 80,069 unigenes by Trinity, respectively. For Inner Mongolia Cashmere goat, 26,051 and 10,100 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups, respectively. A total of 32,772 unigenes can comment to SWISS-Prot database, and the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 24,420 unigenes. While annotating the unigenes about Dazu black goats, we found 29,444(45.42%), 11,271 (38.28%), 36,910(56.94%) and 27,766 (42.83%) unigenes were assigned to GO database, COG database, SWISS-Prot database and KEGG database, respectively. In addition, we performed the bioinformatics analysis of gene expression profiling aimed at the ovarian transcriptome difference between Inner Mongolia Cashmere goat and Dazu black goat. We obtained a sequencing depth of over 5.5 million and 5.8 million tags. There were 1,133 DEGs between two species, of which 632 genes upregulated in the Dazu black goat and 501 genes downregulated compared with which in Inner Mongolia Cashmere goat. By annotating the 1,133 DEGs into KEGG database, we found 525 DEGs. And there were 68 DEGs annotated in metabolic pathways, 31 DEGs annotated in ribosome, 28 DEGs annotated in focal adhesion, 27 DEGs annotated in phagosome, 26 DEGs annotated in pathways in cancer, 25 DEGs annotated in ECM-receptor interaction, 23 DEGs annotated in protein digestion and absorption, 20 DEGs annotated in oxidative phosphorylation, 17 DEGs annotated in lysosome, and 16 DEGs annotated in cell adhesion molecules. © 2016 Blackwell Verlag GmbH.

  16. A comprehensive transcriptomic analysis of infant and adult mouse ovary.

    PubMed

    Pan, Linlin; Gong, Wei; Zhou, Yuanyuan; Li, Xiaonuan; Yu, Jun; Hu, Songnian

    2014-10-01

    Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development.

  17. Transcriptome Analysis of the Octopus vulgaris Central Nervous System

    PubMed Central

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Background Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. Results With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e−5. The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e−5) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%–46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. Conclusion This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology. PMID:22768275

  18. Single cell transcriptomic analysis of prostate cancer cells.

    PubMed

    Welty, Christopher J; Coleman, Ilsa; Coleman, Roger; Lakely, Bryce; Xia, Jing; Chen, Shu; Gulati, Roman; Larson, Sandy R; Lange, Paul H; Montgomery, Bruce; Nelson, Peter S; Vessella, Robert L; Morrissey, Colm

    2013-02-16

    The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR). Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient. A transcriptomic profile can be reliably obtained from a single cell using

  19. Transcriptome analysis of a microbial coculture in which the cell populations are separated by a membrane.

    PubMed

    Hosoda, Kazufumi; Ono, Naoaki; Suzuki, Shingo; Yomo, Tetsuya

    2014-01-01

    The microbial coculture of multiple cell populations is used to study community evolution and for bioengineering applications. The cells in coculture undergo dynamic changes because of cell-cell and cell-environment interactions. Transcriptome analysis allows us to study the molecular basis of these changes in cell physiology. For transcriptome analysis, it is essential that the cell populations in the coculture are harvested separately. Here, we describe a method for transcriptome analysis of a microbial coculture in which two different cell populations are separated by a porous membrane.

  20. Analysis of Transcriptomic Dose Response Data in the ...

    EPA Pesticide Factsheets

    Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment

  1. Transcriptome analysis of zebrafish embryos exposed to deltamethrin.

    PubMed

    Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching

    2016-10-27

    Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol, 2016.

  2. Exploiting Gene Families for Phylogenomic Analysis of Myzostomid Transcriptome Data

    PubMed Central

    Hartmann, Stefanie; Helm, Conrad; Nickel, Birgit; Meyer, Matthias; Struck, Torsten H.; Tiedemann, Ralph; Selbig, Joachim; Bleidorn, Christoph

    2012-01-01

    Background In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic) protostomes that are either placed with annelids or flatworms. Methodology Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic. PMID:22276131

  3. Sequencing and Analysis of the Mediterranean Amphioxus (Branchiostoma lanceolatum) Transcriptome

    PubMed Central

    Oulion, Silvan; Bertrand, Stephanie; Belgacem, Mohamed R.; Le Petillon, Yann; Escriva, Hector

    2012-01-01

    Background The basally divergent phylogenetic position of amphioxus (Cephalochordata), as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. Results Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode). Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp). Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. Conclusion We obtained a high-quality amphioxus (B. lanceolatum) reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation between different

  4. Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    PubMed Central

    Sharov, Alexei A; Piao, Yulan; Matoba, Ryo; Dudekula, Dawood B; Qian, Yong; VanBuren, Vincent; Falco, Geppino; Martin, Patrick R; Stagg, Carole A; Bassey, Uwem C; Wang, Yuxia; Carter, Mark G; Hamatani, Toshio; Aiba, Kazuhiro; Akutsu, Hidenori; Sharova, Lioudmila; Tanaka, Tetsuya S; Kimber, Wendy L; Yoshikawa, Toshiyuki; Jaradat, Saied A; Pantano, Serafino; Nagaraja, Ramaiah; Boheler, Kenneth R; Taub, Dennis; Hodes, Richard J; Longo, Dan L; Schlessinger, David; Keller, Jonathan; Klotz, Emily; Kelsoe, Garnett; Umezawa, Akihiro; Vescovi, Angelo L; Rossant, Janet; Kunath, Tilo; Hogan, Brigid L. M; Curci, Anna; D'Urso, Michele; Kelso, Janet; Hide, Winston

    2003-01-01

    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. PMID:14691545

  5. Applying thiouracil (TU)-tagging for mouse transcriptome analysis

    PubMed Central

    Gay, Leslie; Karfilis, Kate V.; Miller, Michael R.; Doe, Chris Q.; Stankunas, Kryn

    2014-01-01

    Transcriptional profiling is a powerful approach to study mouse development, physiology, and disease models. Here, we describe a protocol for mouse thiouracil-tagging (TU-tagging), a transcriptome analysis technology that includes in vivo covalent labeling, purification, and analysis of cell type-specific RNA. TU-tagging enables 1) the isolation of RNA from a given cell population of a complex tissue, avoiding transcriptional changes induced by cell isolation trauma, and 2) the identification of actively transcribed RNAs and not pre-existing transcripts. Therefore, in contrast to other cell-specific transcriptional profiling methods based on purification of tagged ribosomes or nuclei, TU-tagging provides a direct examination of transcriptional regulation. We describe how to: 1) deliver 4-thiouracil to transgenic mice to thio-label cell lineage-specific transcripts, 2) purify TU-tagged RNA and prepare libraries for Illumina sequencing, and 3) follow a straight-forward bioinformatics workflow to identify cell type-enriched or differentially expressed genes. Tissue containing TU-tagged RNA can be obtained in one day, RNA-Seq libraries generated within two days, and, following sequencing, an initial bioinformatics analysis completed in one additional day. PMID:24457332

  6. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle.

    PubMed

    Jose, V Lyju; More, Ravi P; Appoothy, Thulasi; Arun, A Sha

    2017-04-01

    Rumen houses a plethora of symbiotic microorganisms empowering the host to hydrolyze plant lignocellulose. In this study, NGS based metagenomic approach coupled with bioinformatic analysis was employed to gain an insight into the deconstruction of lignocellulose by carbohydrate-active enzymes (CAZymes) in Indian crossbred Holstein-Friesian cattle. Cattle rumen metagenomic DNA was sequenced using Illumina-MiSeq and 1.9 gigabases of data generated with an average read length of 871 bp. Analysis of the assembled sequences by Pfam-based Carbohydrate-active enzyme Analysis Toolkit identified 17,164 putative protein-encoding CAZymes belonging to different families of glycoside hydrolases (7574), glycosyltransferases (5185), carbohydrate-binding modules (2418), carbohydrate esterases (1516), auxiliary activities (434) and polysaccharide lyases (37). Phylogenetic analysis of putative CAZymes revealed that a significant proportion of CAZymes were contributed by bacteria belonging to the phylum Bacteroidetes (40%), Firmicutes (30%) and Proteobacteria (10%). The comparative analysis of HF cross rumen metagenome with other herbivore metagenomes indicated that Indian crossbred cattle rumen is endowed with a battery of CAZymes that may play a central role in lignocellulose deconstruction. The extensive catalog of enzymes reported in our study that hydrolyzes plant lignocellulose biomass, can be further explored for the better feed utilization in ruminants and also for different industrial applications.

  7. Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes

    USDA-ARS?s Scientific Manuscript database

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...

  8. Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants

    USDA-ARS?s Scientific Manuscript database

    Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo [Bower citru...

  9. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.

    PubMed

    Han, Yu; Wan, Huihua; Cheng, Tangren; Wang, Jia; Yang, Weiru; Pan, Huitang; Zhang, Qixiang

    2017-02-22

    The developmental process that produces the ornate petals of the China rose (Rosa chinensis) is complex and is thought to depend on the balanced expression of a functionally diverse array of genes; however, the molecular basis of rose petal development is largely unknown. Here, petal growth of the R. chinensis cultivar 'Old Blush' was divided into four developmental stages, and RNA-seq technology was used to analyse the dynamic changes in transcription that occur as development progresses. In total, 598 million clean reads and 61,456 successfully annotated unigenes were obtained. Differentially expressed gene (DEG) analysis comparing the transcriptomes of the developmental stages resulted in the identification of several potential candidate genes involved in petal development. DEGs involved in anthocyanin biosynthesis, petal expansion, and phytohormone pathways were considered in depth, in addition to several candidate transcription factors. These results lay a foundation for future studies on the regulatory mechanisms underlying rose petal development and may be used in molecular breeding programs aimed at generating ornamental rose lines with desirable traits.

  10. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis

    PubMed Central

    Han, Yu; Wan, Huihua; Cheng, Tangren; Wang, Jia; Yang, Weiru; Pan, Huitang; Zhang, Qixiang

    2017-01-01

    The developmental process that produces the ornate petals of the China rose (Rosa chinensis) is complex and is thought to depend on the balanced expression of a functionally diverse array of genes; however, the molecular basis of rose petal development is largely unknown. Here, petal growth of the R. chinensis cultivar ‘Old Blush’ was divided into four developmental stages, and RNA-seq technology was used to analyse the dynamic changes in transcription that occur as development progresses. In total, 598 million clean reads and 61,456 successfully annotated unigenes were obtained. Differentially expressed gene (DEG) analysis comparing the transcriptomes of the developmental stages resulted in the identification of several potential candidate genes involved in petal development. DEGs involved in anthocyanin biosynthesis, petal expansion, and phytohormone pathways were considered in depth, in addition to several candidate transcription factors. These results lay a foundation for future studies on the regulatory mechanisms underlying rose petal development and may be used in molecular breeding programs aimed at generating ornamental rose lines with desirable traits. PMID:28225056

  11. Subjective and Objective Evaluation of Hypertext Reading Performance: In-Depth Analysis of Contributing Factors

    ERIC Educational Resources Information Center

    Tseng, Min-chen

    2010-01-01

    The purpose of the study was to investigate the effects of reading hypertext on EFL learners' reading comprehension and analysis of contributing factors. Eighty-eight students joined the study. They took two reading comprehension tests: Hypertext Version and Printed text Version. After the tests, they were asked to fill out a questionnaire of…

  12. Effect-directed analysis supporting monitoring of aquatic environments - An in-depth overview

    EPA Science Inventory

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that...

  13. Effect-directed analysis supporting monitoring of aquatic environments - An in-depth overview

    EPA Science Inventory

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that...

  14. Simulated flight through JAWS wind shear - In-depth analysis results. [Joint Airport Weather Studies

    NASA Technical Reports Server (NTRS)

    Frost, W.; Chang, H.-P.; Elmore, K. L.; Mccarthy, J.

    1984-01-01

    The Joint Airport Weather Studies (JAWS) field experiment was carried out in 1982 near Denver. An analysis is presented of aircraft performance in the three-dimensional wind fields. The fourth dimension, time, is not considered. The analysis seeks to prepare computer models of microburst wind shear from the JAWS data sets for input to flight simulators and for research and development of aircraft control systems and operational procedures. A description is given of the data set and the method of interpolating velocities and velocity gradients for input to the six-degrees-of-freedom equations governing the motion of the aircraft. The results of the aircraft performance analysis are then presented, and the interpretation classifies the regions of shear as severe, moderate, or weak. Paths through the severe microburst of August 5, 1982, are then recommended for training and operational applications. Selected subregions of the flow field defined in terms of planar sections through the wind field are presented for application to simulators with limited computer storage capacity, that is, for computers incapable of storing the entire array of variables needed if the complete wind field is programmed.

  15. Fluorescent and photoactivable probes in depth-dependent analysis of membranes.

    PubMed

    Lala, Anil K

    2002-06-01

    This report summarizes our efforts towards depth-dependent analysis of membranes by design of suitable fluorescent and photoactivable lipid probes, which can be incorporated into membranes. The objective of depth-dependent analysis has been two fold, one to obtain information on lipid domains and other on transmembrane domains of membrane-bound proteins. In view of increasing importance of lipid rafts and other localized domain and limited success in case of structure determination of membrane-bound proteins vis-à-vis their soluble counterparts, it is tempting to rapidly attach fluorescent or photoactivable probes to lipids to get a probes where relatively little attention is paid to design of such probes. We have shown here how careful design of such probes is required to immobilize such probes in membranes for effective depth-dependent analysis of membranes. An effective design has become important when identification of putative transmembrane domains predicted primarily from the genome data based on hydropathy plots, often needs confirmation by contemporary methodology.

  16. In-depth analysis of the interfaces in InGaP/GaAs heterosystems

    NASA Astrophysics Data System (ADS)

    Pelosi, C.; Attolini, G.; Frigeri, C.; Bersani, M.; Giubertoni, D.; Vanzetti, L.; Kudela, R.

    2004-07-01

    Different GaAs-matched epitaxial structures based on InGaP and InGaAlP layers were prepared by LP MOVPE. The suitable p- and n-type sequence of these layers will be used as active elements in high efficiency solar cells. The layers were grown on (001) GaAs substrates oriented 2° off towards (110) using trimethylgallium (TMG), trimethylaluminium (TMA), trimethylindium (TMI), arsine (AsH3) and phosphine (PH3) as main reagents and dimethylzinc (DMZ) and silane (SiH4) as p- and n-type doping reagents, respectively. The layers have been analyzed as regards their compositional homogeneity, interface abruptness and doping concentration by different techniques such as SIMS, TEM and AFM. The combined analysis of SIMS and TEM has been of great usefulness in order to define the abruptness of composition change. Moreover an analysis of autodoping effects is reported as regards the arsenic diffusion in InGaP matrix and the analysis of different samples is reported.

  17. In-depth performance analysis of an EEG based neonatal seizure detection algorithm.

    PubMed

    Mathieson, S; Rennie, J; Livingstone, V; Temko, A; Low, E; Pressler, R M; Boylan, G B

    2016-05-01

    To describe a novel neurophysiology based performance analysis of automated seizure detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures and causes of false detections to identify areas for algorithmic improvement. EEGs of 20 term neonates were recorded (10 seizure, 10 non-seizure). Seizures were annotated by an expert and characterized using a novel set of 10 criteria. ANSeR seizure detection algorithm (SDA) seizure annotations were compared to the expert to derive detected and non-detected seizures at three SDA sensitivity thresholds. Differences in seizure characteristics between groups were compared using univariate and multivariate analysis. False detections were characterized. The expert detected 421 seizures. The SDA at thresholds 0.4, 0.5, 0.6 detected 60%, 54% and 45% of seizures. At all thresholds, multivariate analyses demonstrated that the odds of detecting seizure increased with 4 criteria: seizure amplitude, duration, rhythmicity and number of EEG channels involved at seizure peak. Major causes of false detections included respiration and sweat artefacts or a highly rhythmic background, often during intermediate sleep. This rigorous analysis allows estimation of how key seizure features are exploited by SDAs. This study resulted in a beta version of ANSeR with significantly improved performance. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. In-depth performance analysis of an EEG based neonatal seizure detection algorithm

    PubMed Central

    Mathieson, S.; Rennie, J.; Livingstone, V.; Temko, A.; Low, E.; Pressler, R.M.; Boylan, G.B.

    2016-01-01

    Objective To describe a novel neurophysiology based performance analysis of automated seizure detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures and causes of false detections to identify areas for algorithmic improvement. Methods EEGs of 20 term neonates were recorded (10 seizure, 10 non-seizure). Seizures were annotated by an expert and characterized using a novel set of 10 criteria. ANSeR seizure detection algorithm (SDA) seizure annotations were compared to the expert to derive detected and non-detected seizures at three SDA sensitivity thresholds. Differences in seizure characteristics between groups were compared using univariate and multivariate analysis. False detections were characterized. Results The expert detected 421 seizures. The SDA at thresholds 0.4, 0.5, 0.6 detected 60%, 54% and 45% of seizures. At all thresholds, multivariate analyses demonstrated that the odds of detecting seizure increased with 4 criteria: seizure amplitude, duration, rhythmicity and number of EEG channels involved at seizure peak. Major causes of false detections included respiration and sweat artefacts or a highly rhythmic background, often during intermediate sleep. Conclusion This rigorous analysis allows estimation of how key seizure features are exploited by SDAs. Significance This study resulted in a beta version of ANSeR with significantly improved performance. PMID:27072097

  19. Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus

    PubMed Central

    Miao, Liyun; Zhang, Libin; Raboanatahiry, Nadia; Lu, Guangyuan; Zhang, Xuekun; Xiang, Jun; Gan, Jianping; Fu, Chunhua; Li, Maoteng

    2016-01-01

    Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in ‘Phenylpropanoid biosynthesis’ pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways. PMID:27708656

  20. Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish

    PubMed Central

    Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté

    2013-01-01

    Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899

  1. Analysis of SOX2-Regulated Transcriptome in Glioma Stem Cells

    PubMed Central

    Acanda de la Rocha, Arlet M.; López-Bertoni, Hernando; Guruceaga, Elizabeth; González-Huarriz, Marisol; Martínez-Vélez, Naiara; Xipell, Enric; Fueyo, Juan; Gomez-Manzano, Candelaria

    2016-01-01

    Introduction Glioblastoma is the most malignant brain tumor in adults and is associated with poor survival despite multimodal treatments. Glioma stem-like cells (GSCs) are cells functionally defined by their self-renewal potential and the ability to reconstitute the original tumor upon orthotopic implantation. They have been postulated to be the culprit of glioma chemo- and radio-resistance ultimately leading to relapse. Understanding the molecular circuits governing the GSC compartment is essential. SOX2, a critical transcription regulator of embryonic and neural stem cell function, is deregulated in GSCs however; the precise molecular pathways regulated by this gene in GSCs remain poorly understood. Results We performed a genome-wide analysis of SOX2-regulated transcripts in GSCs, using a microarray. We identified a total of 2048 differentially expressed coding transcripts and 261 non-coding transcripts. Cell adhesion and cell-cell signaling are among the most enriched terms using Gene Ontology (GO) classification. The pathways altered after SOX2 down-modulation includes multiple cellular processes such as amino-acid metabolism and intercellular signaling cascades. We also defined and classified the set of non-coding transcripts differentially expressed regulated by SOX2 in GSCs, and validated two of them. Conclusions We present a comprehensive analysis of the transcriptome controlled by SOX2 in GSCs, gaining insights in the understanding of the potential roles of SOX2 in glioblastoma. PMID:27669421

  2. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation

    PubMed Central

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12–30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  3. Function-informed transcriptome analysis of Drosophila renal tubule

    PubMed Central

    Wang, Jing; Kean, Laura; Yang, Jingli; Allan, Adrian K; Davies, Shireen A; Herzyk, Pawel; Dow, Julian AT

    2004-01-01

    Background Comprehensive, tissue-specific, microarray analysis is a potent tool for the identification of tightly defined expression patterns that might be missed in whole-organism scans. We applied such an analysis to Drosophila melanogaster Malpighian (renal) tubule, a defined differentiated tissue. Results The transcriptome of the D. melanogaster Malpighian tubule is highly reproducible and significantly different from that obtained from whole-organism arrays. More than 200 genes are more than 10-fold enriched and over 1,000 are significantly enriched. Of the top 200 genes, only 18 have previously been named, and only 45% have even estimates of function. In addition, 30 transcription factors, not previously implicated in tubule development, are shown to be enriched in adult tubule, and their expression patterns respect precisely the domains and cell types previously identified by enhancer trapping. Of Drosophila genes with close human disease homologs, 50 are enriched threefold or more, and eight enriched 10-fold or more, in tubule. Intriguingly, several of these diseases have human renal phenotypes, implying close conservation of renal function across 400 million years of divergent evolution. Conclusions From those genes that are identifiable, a radically new view of the function of the tubule, emphasizing solute transport rather than fluid secretion, can be obtained. The results illustrate the phenotype gap: historically, the effort expended on a model organism has tended to concentrate on a relatively small set of processes, rather than on the spread of genes in the genome. PMID:15345053

  4. Transcriptome Sequencing and Positive Selected Genes Analysis of Bombyx mandarina

    PubMed Central

    Wu, Yuqian; Long, Renwen; Liu, Chun; Xia, Qingyou

    2015-01-01

    The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research. PMID:25806526

  5. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm

    PubMed Central

    Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi

    2015-01-01

    Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis. PMID:26274803

  6. Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm.

    PubMed

    Liu, Peigang; Wang, Yongqiang; Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi

    2015-01-01

    Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis.

  7. In-depth analysis of tandem mass spectrometry data from disparate instrument types.

    PubMed

    Chalkley, Robert J; Baker, Peter R; Medzihradszky, Katalin F; Lynn, Aenoch J; Burlingame, A L

    2008-12-01

    Mass spectrometric analyses of protein digests produce large numbers of fragmentation spectra that are not identified by routine database searching strategies. Some of these spectra could be identified by development of improved search engines. However, many of these spectra represent fragmentation of peptide components bearing modifications that are not routinely considered in database searches. Here we present new software within Protein Prospector that allows comprehensive analysis of data sets by analyzing the data at increasing levels of depth. Analysis of published data sets is presented to illustrate that the software is not biased to any instrument types. The results show that these data sets contain many modified peptides. As well as searching for known modification types, Protein Prospector permits the detection and identification of unexpected or novel modifications by searching for any mass shift within a user-specified mass range to any chosen amino acid(s). Several modifications never previously reported in proteomics data were identified in these standard data sets using this mass modification searching approach.

  8. Managing the delivery of bad news: an in-depth analysis of doctors' delivery style.

    PubMed

    Shaw, Joanne; Dunn, Stewart; Heinrich, Paul

    2012-05-01

    The purpose of this study was to identify and describe the delivery styles doctors typically use when breaking bad news (BBN). Thirty one doctors were recruited to participate in two standardised BBN consultations involving a sudden death. Delivery styles were determined using time to deliver the bad news as a standardised differentiation as well as qualitative analysis of interaction content and language style. Communication performance was also assessed. Analysis of BBN interactions revealed three typical delivery styles. A blunt style characterised by doctors delivering news within the first 30 s of the interaction; Forecasting, a staged delivery of the news within the first 2 min and a stalling approach, delaying news delivery for more than 2 min. This latter avoidant style relies on the news recipient reaching a conclusion about event outcome without the doctor explicitly conveying the news. Three typical bad news delivery styles used by doctors when BBN were confirmed both semantically and operationally in the study. The relationship between delivery style and the overall quality of BBN interactions was also investigated. This research provides a new template for approaching BBN training and provides evidence for a need for greater flexibility when communicating bad news. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT)

    SciTech Connect

    Samih, Y.; Beausir, B.; Bolle, B.; Grosdidier, T.

    2013-09-15

    Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustrated through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.

  10. In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses

    NASA Astrophysics Data System (ADS)

    R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.

    2007-10-01

    In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.

  11. Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine.

    PubMed

    Hogan, Marie C; Johnson, Kenneth L; Zenka, Roman M; Charlesworth, M Cristine; Madden, Benjamin J; Mahoney, Doug W; Oberg, Ann L; Huang, Bing Q; Leontovich, Alexey A; Nesbitt, Lisa L; Bakeberg, Jason L; McCormick, Daniel J; Bergen, H Robert; Ward, Christopher J

    2014-05-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40-200 nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm-Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV)-enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin-positive irregularly shaped membranous vesicles and podocin/podocalyxin-negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton, and Rho GDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases, and complement proteins involved in glomerular disease are in GMVs and some were only shed in the disease state (nephrin, TRPC6, INF2 and phospholipase A2 receptor). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome, and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease.

  12. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  13. Integration of monocular motion signals and the analysis of interocular velocity differences for the perception of motion-in-depth.

    PubMed

    Shioiri, Satoshi; Kakehi, Daisuke; Tashiro, Tomoyoshi; Yaguchi, Hirohisa

    2009-12-09

    We investigated how the mechanism for perceiving motion-in-depth based on interocular velocity differences (IOVDs) integrates signals from the motion spatial frequency (SF) channels. We focused on the question whether this integration is implemented before or after the comparison of the velocity signals from the two eyes. We measured spatial frequency selectivity of the MAE of motion in depth (3D MAE). The 3D MAE showed little spatial frequency selectivity, whereas the 2D lateral MAE showed clear spatial frequency selectivity in the same condition. This indicates that the outputs of the monocular motion SF channels are combined before analyzing the IOVD. The presumption was confirmed by the disappearance of the 3D MAE after exposure to superimposed gratings with different spatial frequencies moving in opposite directions. The direction of the 2D MAE depended on the test spatial frequency in the same condition. These results suggest that the IOVD is calculated at a relatively later stage of the motion analysis, and that some monocular information is preserved even after the integration of the motion SF channel outputs.

  14. Micropipet-based pico force transducer: in depth analysis and experimental verification.

    PubMed Central

    Simson, D A; Ziemann, F; Strigl, M; Merkel, R

    1998-01-01

    Measurements of forces in the piconewton range are very important for the study of molecular adhesion and mechanics. Recently, a micropipet-based force transducer for this type of experiment was presented (E. Evans, K. Ritchie, and R. Merkel, 1995, Biophys. J., 68:2580-2587). In the present article we give a detailed mechanical analysis of this transducer, including nonlinear effects. An analytical expression for the transducer stiffness at small elongations is given. Using magnetic tweezers (F. Ziemann, J. Rädler, and E. Sackmann, 1994, Biophys. J., 66:2210-2216), we were able to determine the force displacement relation of this transducer experimentally. Forces from approximately 10 pN to 500 pN were applied. Theoretical predictions and experimental results coincide remarkably well. PMID:9545067

  15. An In-Depth Cost Analysis for New Light-Duty Vehicle ...

    EPA Pesticide Factsheets

    Within the transportation sector, light-duty vehicles are the predominant source of greenhouse gas (GHG) emissions, principally exhaust CO2 and refrigerant leakage from vehicle air conditioners. EPA has contracted with FEV to estimate the costs of technologies that may be employed to reduce these emissions. The purpose of this work is to determine accurate costs for GHG-reducing technologies. This is of paramount importance in setting the appropriate GHG standards. EPA has contracted with FEV to perform this cost analysis through tearing down vehicles, engines and components, both with and without these technologies, and evaluating, part by part, the observed differences in size, weight, materials, machining steps, and other cost-affecting parameters.

  16. FINDING PERSISTENT SOURCES WITH THE BeppoSAX/WIDE FIELD CAMERA: AN IN-DEPTH ANALYSIS

    SciTech Connect

    Capitanio, F.; Fiocchi, M.; Ubertini, P.; Bird, A. J.; Scaringi, S.

    2011-07-01

    During the operational life of the Italian/Dutch X-ray satellite (1996-2002), BeppoSAX, its two Wide Field Cameras (WFCs) performed observations that covered the full sky at different epochs. Although the majority of analysis performed on BeppoSAX WFC data concentrated on the detection of transient sources, we have now applied the same techniques developed for the INTEGRAL/IBIS survey to produce the same work with the BeppoSAX WFC data. This work represents the first unbiased source list compilation produced from the overall WFC data set optimized for faint persistent source detection. This approach recovered 182 more sources compared to the previous WFC catalog reported in Verrecchia et al. The catalog contains 404 sources detected between 3 and 17 keV, 10 of which are yet to be seen by the new generation of telescopes.

  17. In-Depth Analysis on Influencing Factors of Adjacent Segment Degeneration After Cervical Fusion.

    PubMed

    Yu, Chaojie; Mu, Xiaoping; Wei, Jianxun; Chu, Ye; Liang, Bin

    2016-12-14

    BACKGROUND To explore the related influencing factors of adjacent segment degeneration (ASD) after cervical discectomy and fusion (ACDF). MATERIAL AND METHODS A retrospective analysis of 263 patients who underwent ACDF was carried out. Cervical x-ray and magnetic resonance imaging (MRI) were required before operation, after operation, and at the last follow-up. General information and some radiographic parameters of all patients were measured and recorded. According to the imaging data, patients were put into one of two groups: non-ASD group and ASD group. The differences between the two groups were compared by t-test and χ²-test, and the related influencing factors of ASD were analyzed by logistic regression. RESULTS In all, 138 patients had imaging ASD. Comparing the age, the postoperative cervical arc chord distance (po-CACD), and the plate to disc distance (PDD) of the two groups, differences were statistically significant (p<0.05). The gender, the fusion segment number, the pre-CACD, the pre-and-po CACD, the preoperative cervical spinal canal ratio, and the upper and lower disc height (DH) showed no statistical difference between the two groups (p>0.05). The results of logistic regression analysis showed that there were significant correlations in the following characteristics: age, postoperative po-CACD, and the PDD (p<0.05). Of all these characteristics, the correlation of age was the highest (R=1.820). CONCLUSIONS Age, po-CACD, and PDD were risk factors for ASD after ACDF. The older the operation age, the worse the recovery was of postoperative physiological curvature of cervical spine, and a PDD < 5 mm was more likely to lead to ASD.

  18. In-Depth Analysis on Influencing Factors of Adjacent Segment Degeneration After Cervical Fusion

    PubMed Central

    Yu, Chaojie; Mu, Xiaoping; Wei, Jianxun; Chu, Ye; Liang, Bin

    2016-01-01

    Background To explore the related influencing factors of adjacent segment degeneration (ASD) after cervical discectomy and fusion (ACDF). Material/Methods A retrospective analysis of 263 patients who underwent ACDF was carried out. Cervical x-ray and magnetic resonance imaging (MRI) were required before operation, after operation, and at the last follow-up. General information and some radiographic parameters of all patients were measured and recorded. According to the imaging data, patients were put into one of two groups: non-ASD group and ASD group. The differences between the two groups were compared by t-test and χ2-test, and the related influencing factors of ASD were analyzed by logistic regression. Results In all, 138 patients had imaging ASD. Comparing the age, the postoperative cervical arc chord distance (po-CACD), and the plate to disc distance (PDD) of the two groups, differences were statistically significant (p<0.05). The gender, the fusion segment number, the pre-CACD, the pre-and-po CACD, the preoperative cervical spinal canal ratio, and the upper and lower disc height (DH) showed no statistical difference between the two groups (p>0.05). The results of logistic regression analysis showed that there were significant correlations in the following characteristics: age, postoperative po-CACD, and the PDD (p<0.05). Of all these characteristics, the correlation of age was the highest (R=1.820). Conclusions Age, po-CACD, and PDD were risk factors for ASD after ACDF. The older the operation age, the worse the recovery was of postoperative physiological curvature of cervical spine, and a PDD < 5 mm was more likely to lead to ASD. PMID:27965512

  19. An In-depth Study of Grid-based Asteroseismic Analysis

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne

    2011-04-01

    NASA's Kepler mission is providing basic asteroseismic data for hundreds of stars. One of the more common ways of determining stellar characteristics from these data is by the so-called grid-based modeling. We have made a detailed study of grid-based analysis techniques to study the errors (and error correlations) involved. As had been reported earlier, we find that it is relatively easy to get very precise values of stellar radii using grid-based techniques. However, we find that there are small, but significant, biases that can result because of the grid of models used. The biases can be minimized if metallicity is known. Masses cannot be determined as precisely as the radii and suffer from larger systematic effects. We also find that the errors in mass and radius are correlated. A positive consequence of this correlation is that log g can be determined both precisely and accurately with almost no systematic biases. Radii and log g can be determined with almost no model dependence to within 5% for realistic estimates of errors in asteroseismic and conventional observations. Errors in mass can be somewhat higher unless accurate metallicity estimates are available. Age estimates of individual stars are the most model dependent. The errors are larger, too. However, we find that for star clusters, it is possible to get a relatively precise age if one assumes that all stars in a given cluster have the same age.

  20. VarifocalReader--In-Depth Visual Analysis of Large Text Documents.

    PubMed

    Koch, Steffen; John, Markus; Wörner, Michael; Müller, Andreas; Ertl, Thomas

    2014-12-01

    Interactive visualization provides valuable support for exploring, analyzing, and understanding textual documents. Certain tasks, however, require that insights derived from visual abstractions are verified by a human expert perusing the source text. So far, this problem is typically solved by offering overview-detail techniques, which present different views with different levels of abstractions. This often leads to problems with visual continuity. Focus-context techniques, on the other hand, succeed in accentuating interesting subsections of large text documents but are normally not suited for integrating visual abstractions. With VarifocalReader we present a technique that helps to solve some of these approaches' problems by combining characteristics from both. In particular, our method simplifies working with large and potentially complex text documents by simultaneously offering abstract representations of varying detail, based on the inherent structure of the document, and access to the text itself. In addition, VarifocalReader supports intra-document exploration through advanced navigation concepts and facilitates visual analysis tasks. The approach enables users to apply machine learning techniques and search mechanisms as well as to assess and adapt these techniques. This helps to extract entities, concepts and other artifacts from texts. In combination with the automatic generation of intermediate text levels through topic segmentation for thematic orientation, users can test hypotheses or develop interesting new research questions. To illustrate the advantages of our approach, we provide usage examples from literature studies.

  1. The most massive heartbeat: an in-depth analysis of ι Orionis

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert; Richardson, N. D.; Fuller, J.; Rowe, J.; Moffat, A. F. J.; Kuschnig, R.; Popowicz, A.; Handler, G.; Neiner, C.; Pigulski, A.; Wade, G. A.; Weiss, W.; Buysschaert, B.; Ramiaramanantsoa, T.; Bratcher, A. D.; Gerhartz, C. J.; Greco, J. J.; Hardegree-Ullman, K.; Lembryk, L.; Oswald, W. L.

    2017-05-01

    ι Ori is a well-studied massive binary consisting of an O9 III + B1 III/IV star. Due to its high eccentricity (e = 0.764) and short orbital period (Porb = 29.133 76 d), it has been considered to be a good candidate to show evidence of tidal effects; however, none have previously been identified. Using photometry from the BRIght Target Explorer (BRITE)-Constellation space photometry mission, we have confirmed the existence of tidal distortions through the presence of a heartbeat signal at periastron. We combine spectroscopic and light-curve analyses to measure the masses and radii of the components, revealing ι Ori to be the most massive heartbeat system known to date. In addition, using a thorough frequency analysis, we also report the unprecedented discovery of multiple tidally induced oscillations in an O star. The amplitudes of the pulsations allow us to empirically estimate the tidal circularization rate, yielding an effective tidal quality factor Q ˜ 4 × 104.

  2. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata

    PubMed Central

    Liu, Chuang; Li, Shiguo; Kong, Jingjing; Liu, Yangjia; Wang, Tianpeng; Xie, Liping; Zhang, Rongqing

    2015-01-01

    The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment. PMID:26608573

  3. Comprehensive analysis of Sichuan white geese (Anser cygnoides) transcriptome.

    PubMed

    Ding, Ning; Han, Qing; Li, Qin; Zhao, Xianzhi; Li, Jing; Su, Jian; Wang, Qigui

    2014-06-01

    High-throughput RNA sequencing was performed for comprehensively analyzing the transcriptome of geese. A total of 28,803,759 bp of raw sequence data was generated by 454 GS Flx+. After removal of adaptor sequences, 28,730,361 bp remained and 117,279 reads were obtained, with an average length of 244 bases. Simultaneously, complementary DNA samples from two different reproductive stages of goose ovarian, hypothalamus and pituitary tissue were sequenced separately using Illumina MiSeq platform. A total of 12 688 673 148 bp of raw sequence data were generated by Illumina MiSeq. After removal of adaptor sequences, 8 198 126 562 bp remained and 60 382 786 clean reads were obtained, with an average length of 135 bases. Assembly of all the reads from both 454 Flx+ and Illumina platforms formed 56,839 contigs. The sequence size ranges from 38 to 28,206 bp in size, with an average size of 2584 bp and an N50 of 4624. The assembly produced a substantial number of large contigs: 35,545 (62.5%) were longer than 1 kb, of which 8850 (15.6%) were longer than 5 kb. The sequencing depth was 85 X on average. We performed comprehensive function annotations on unigenes including protein sequence similarity, gene ontology (GO) term classification, and Kyoto Encylcopedia of Genes and Genomes (KEGG) pathway enrichment. GO analysis showed that approximately 63% of the contigs had annotation information, among the 35,953 annotated isotigs in Nr database, 24,783 (68.9%) sequences were assigned with one or more GO terms. There were 14,634 (40.7%) isotigs for biological processes, 10,557(29.3%) isotigs for cellular component, 22,607 (62.9%) isotigs for molecular function. The result of KEGG pathway mapping 8926 sequences had the pathway annotation, and took part in 477 pathways. Additionally, 10,685 simple sequence repeat (SSR) markers were identified from the assembled sequences. The most frequent repeat motifs were trinucleotides, which accounted for 53.03% of all SSRs

  4. The quality of Internet advertising in aesthetic surgery: an in-depth analysis.

    PubMed

    Wong, Wendy W; Camp, Matthew C; Camp, Jennifer S; Gupta, Subhas C

    2010-09-01

    The aesthetic market is a growing business, as evidenced by the American Society for Aesthetic Plastic Surgery (ASAPS) reporting an increase of 147% in the number of cosmetic procedures performed by members since 1997. This market is consumer-oriented, relying heavily on advertising for survival amid the increasing provider competition. The authors evaluate trends, ethics, and efficacy of Internet advertising in aesthetic surgery. Medical cosmetic providers in Southern California and their Web sites were catalogued through sales lists from manufacturers (Medicis and Allergan) and combined with advertised providers of surgical treatments. Using the ASAPS/American Society of Aesthetic Plastic Surgeons (ASPS) and American Medical Association Codes of Ethics as guidelines, scores were assigned to each Web site and evaluated with the provider's board certification. A geographical analysis determined whether the presence of high numbers of competitors had an impact on the adherence to ethical guidelines for advertising. To examine patient preferences in physician advertising, a survey was conducted online. Board-certified plastic surgeons showed the highest total ethical scores, followed by otolaryngologists, oromaxillofacial surgeons, and ophthalmologists. No decrement in the quality of the advertising was found in densely competitive environments. A consistent correlation was found between superior compliance with ethical guidelines and board certification in plastic surgery. The patient preference survey of 208 individuals demonstrated their desire for a well-trained, board-certified plastic surgeon to perform their cosmetic procedures. Although plastic surgeons demonstrate greater overall compliance with the ASAPS/ASPS Advertising Code of Ethics, they can continue to improve. With the large variety of cosmetic physicians offering the same procedures, maintaining open, honest, and forthright communication with the public is essential.

  5. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    NASA Astrophysics Data System (ADS)

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.

    2011-05-01

    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method [2] to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  6. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree).

    PubMed

    Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2013-05-01

    The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches-resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9-194.2 kDa and in isoelectric point values of 4.0-11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.

  7. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    SciTech Connect

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.

    2011-05-20

    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  8. Dissecting the determinants of depressive disorders outcome: an in depth analysis of two clinical cases

    PubMed Central

    Serretti, Alessandro; Calati, Raffaella; Oasi, Osmano; De Ronchi, Diana; Colombo, Cristina

    2007-01-01

    Clinicians face everyday the complexity of depression. Available pharmacotherapies and psychotherapies improve patients suffering in a large part of subjects, however up to half of patients do not respond to treatment. Clinicians may forecast to a good extent if a given patient will respond or not, based on a number of data and sensations that emerge from face to face assessment. Conversely, clinical predictors of non response emerging from literature are largely unsatisfactory. Here we try to fill this gap, suggesting a comprehensive assessment of patients that may overcome the limitation of standardized assessments and detecting the factors that plausibly contribute to so marked differences in depressive disorders outcome. For this aim we present and discuss two clinical cases. Mr. A was an industrial manager who came to psychiatric evaluation with a severe depressive episode. His employment was demanding and the depressive episode undermined his capacity to manage it. Based on standardized assessment, Mr. A condition appeared severe and potentially dramatic. Mrs. B was a housewife who came to psychiatric evaluation with a moderate depressive episode. Literature predictors would suggest Mrs. B state as associated with a more favourable outcome. However the clinician impression was not converging with the standardized assessment and in fact the outcome will reverse the prediction based on the initial formal standard evaluation. Although the present report is based on two clinical cases and no generalizability is possible, a more detailed analysis of personality, temperament, defense mechanisms, self esteem, intelligence and social adjustment may allow to formalize the clinical impressions used by clinicians for biologic and pharmacologic studies. PMID:17286859

  9. Comprehensive Transcriptome Analysis of the Periodontopathogenic Bacterium Porphyromonas gingivalis W83

    PubMed Central

    Høvik, Hedda; Yu, Wen-Han; Olsen, Ingar

    2012-01-01

    High-density tiling microarray and RNA sequencing technologies were used to analyze the transcriptome of the periodontopathogenic bacterium Porphyromonas gingivalis. The compiled P. gingivalis transcriptome profiles were based on total RNA samples isolated from three different laboratory culturing conditions, and the strand-specific transcription profiles generated covered the entire genome, including both protein coding and noncoding regions. The transcription profiles revealed various operon structures, 5′- and 3′-end untranslated regions (UTRs), differential expression patterns, and many novel, not-yet-annotated transcripts within intergenic and antisense regions. Further transcriptome analysis identified the majority of the genes as being expressed within operons and most 5′ and 3′ ends to be protruding UTRs, of which several 3′ UTRs were extended to overlap genes carried on the opposite/antisense strand. Extensive antisense RNAs were detected opposite most insertion sequence (IS) elements. Pairwise comparative analyses were also performed among transcriptome profiles of the three culture conditions, and differentially expressed genes and metabolic pathways were identified. With the growing realization that noncoding RNAs play important biological functions, the discovery of novel RNAs and the comprehensive transcriptome profiles compiled in this study may provide a foundation to further understand the gene regulation and virulence mechanisms in P. gingivalis. The transcriptome profiles can be viewed at and downloaded from the Microbial Transcriptome Database website, http://bioinformatics.forsyth.org/mtd. PMID:22037400

  10. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    PubMed Central

    Casas, Laura; Saborido-Rey, Fran; Ryu, Taewoo; Michell, Craig; Ravasi, Timothy; Irigoien, Xabier

    2016-01-01

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites. PMID:27748421

  11. Integrated Analysis of Transcriptome in Cancer Patient-Derived Xenografts

    PubMed Central

    Li, Hong; Zhu, Yinjie; Tang, Xiaoyan; Li, Junyi; Li, Yuanyuan; Zhong, Zhaomin; Ding, Guohui; Li, Yixue

    2015-01-01

    Patient-derived xenograft (PDX) tumor model is a powerful technology in evaluating anti-cancer drugs and facilitating personalized medicines. Multiple research centers and commercial companies have put huge efforts into building PDX mouse models. However, PDX models have not been widely available and their molecular features have not been systematically characterized. In this study, we provided a comprehensive survey of PDX transcriptome by integrating analysis of 58 patients involving 8 different tumors. The median correlation coefficient between patients and xenografts is 0.94, which is higher than that between patients and cell line panel or between patients with the same tumor. Major differential gene expressions in PDX occur in the engraftment of human tumor tissue into mice, while gene expressions are relatively stable over passages. 48 genes are frequently differentially expressed in PDX mice of multiple cancers. They are enriched in extracellular matrix and immune response, and some are reported as targets for anticancer drugs. A simulation study showed that expression change between PDX and patient tumor (6%) would result in acceptable change in drug sensitivity (3%). Our findings demonstrate that PDX mice represent the gene-expression and drug-response features of primary tumors effectively, and it is recommended to monitoring the overall expression profiles and drug target genes in clinical application. PMID:25951608

  12. Comparative transcriptome analysis of grapevine in response to copper stress

    PubMed Central

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  13. Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda.

    PubMed

    León-Ramírez, C G; Cabrera-Ponce, J L; Martínez-Soto, D; Sánchez-Arreguin, A; Aréchiga-Carvajal, E T; Ruiz-Herrera, J

    2017-03-07

    Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.

  14. Comparative transcriptome analysis of grapevine in response to copper stress.

    PubMed

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-12-17

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars.

  15. Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler).

    PubMed

    Matsumoto, Yukiko; Suetsugu, Yoshitaka; Nakamura, Masatoshi; Hattori, Makoto

    2014-12-01

    The green rice leafhopper (GRH), Nephotettix cincticeps, is one of the most important pests of rice in temperate Asian countries. GRH, a vascular feeder, secretes watery and gelling saliva in the process of feeding on phloem and xylem sap. It is known that GRH saliva contains several bioactive proteins, including enzymes such as laccase and beta-glucosidase. In this study, we performed transcriptome analysis of salivary glands of GRH using Illumina paired-end sequencing. Of 51,788 assembled contigs, 16,017 (30.9%) showed significant similarity to known proteins in the NCBI nr database, while 34,978 (67.5%) could not be annotated by similarity search, Pfam, or gene ontology (GO). Contigs (905) with predicted signal peptides and no putative transmembrane domains are suggested to represent secreted protein coding genes. Among the 76 most highly expressed putative secretory protein contigs, 68 transcripts were found to be salivary gland-specific or at least -dominant, but not expressed in stomach or Malpighian tubules. However, 45 of the 68 transcripts were unknown proteins. These findings suggest that most of the GRH transcripts encoding secreted proteins expressed in salivary glands are species and/or tissue specific. Our results provide a fundamental list of genes involved in GRH-Poaceae host plant interactions including successful feeding and plant pathogen transmission.

  16. Disorganized care: the findings of an iterative, in-depth analysis of surgical morbidity and mortality.

    PubMed

    Anderson, Cheryl I; Nelson, Catherine S; Graham, Corey F; Mosher, Benjamin D; Gohil, Kartik N; Morrison, Chet A; Schneider, Paul D; Kepros, John P

    2012-09-01

    Performance improvement driven by the review of surgical morbidity and mortality is often limited to critiques of individual cases with a focus on individual errors. Little attention has been given to an analysis of why a decision seemed right at the time or to lower-level root causes. The application of scientific performance improvement has the potential to bring to light deeper levels of understanding of surgical decision-making, care processes, and physician psychology. A comprehensive retrospective chart review of previously discussed morbidity and mortality cases was performed with an attempt to identify areas where we could better understand or influence behavior or systems. We avoided focusing on traditional sources of human error such as lapses of vigilance or memory. An iterative process was used to refine the practical areas for possible intervention. Definitions were then created for the major categories and subcategories. Of a sample of 152 presented cases, the root cause for 96 (63%) patient-related events was identified as uni-factorial in origin, with 51 (34%) cases strictly related to patient disease with no other contributing causes. Fifty-six cases (37%) had multiple causes. The remaining 101 cases (66%) were categorized into two areas where the ability to influence outcomes appeared possible. Technical issues were found in 27 (18%) of these cases and 74 (74%) were related to disorganized care problems. Of the 74 cases identified with disorganized care, 42 (42%) were related to failures in critical thinking, 18 (18%) to undisciplined treatment strategies, 8 (8%) to structural failures, and 6 (6%) were related to failures in situational awareness. On a comprehensive review of cases presented at the morbidity and mortality conference, disorganized care played a large role in the cases presented and may have implications for future curriculum changes. The failure to think critically, to deliver disciplined treatment strategies, to recognize

  17. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.

    PubMed

    Weirather, Jason L; de Cesare, Mariateresa; Wang, Yunhao; Piazza, Paolo; Sebastiano, Vittorio; Wang, Xiu-Jie; Buck, David; Au, Kin Fai

    2017-01-01

    Background: Given the demonstrated utility of Third Generation Sequencing [Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)] long reads in many studies, a comprehensive analysis and comparison of their data quality and applications is in high demand. Methods: Based on the transcriptome sequencing data from human embryonic stem cells, we analyzed multiple data features of PacBio and ONT, including error pattern, length, mappability and technical improvements over previous platforms. We also evaluated their application to transcriptome analyses, such as isoform identification and quantification and characterization of transcriptome complexity, by comparing the performance of size-selected PacBio, non-size-selected ONT and their corresponding Hybrid-Seq strategies (PacBio+Illumina and ONT+Illumina). Results: PacBio shows overall better data quality, while ONT provides a higher yield. As with data quality, PacBio performs marginally better than ONT in most aspects for both long reads only and Hybrid-Seq strategies in transcriptome analysis. In addition, Hybrid-Seq shows superior performance over long reads only in most transcriptome analyses. Conclusions: Both PacBio and ONT sequencing are suitable for full-length single-molecule transcriptome analysis. As this first use of ONT reads in a Hybrid-Seq analysis has shown, both PacBio and ONT can benefit from a combined Illumina strategy. The tools and analytical methods developed here provide a resource for future applications and evaluations of these rapidly-changing technologies.

  18. A genome survey and postharvest transcriptome analysis in Lentinula edodes.

    PubMed

    Sakamoto, Yuichi; Nakade, Keiko; Sato, Shiho; Yoshida, Kentaro; Miyazaki, Kazuhiro; Natsume, Satoshi; Konno, Naotake

    2017-03-17

    Lentinula edodes is a popular cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction of Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and long reads by PacBio, resulting in a contig number of 1951 and an N50 of 1 Mb. Further, we predicted genes by Augustus using RNA-seq data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in Lentinula edodes postharvest fruiting body quality loss, transcriptome analysis was carried out using Super-SAGE. This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as β-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families 5, 16, 30, 55, 128, and thaumatin-like proteins. In addition, we found several chitin-related genes are upregulated, such as putative chitinases in GH family18, exo-chitinases in GH 20, and a putative chitosanase in GH 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high mobility group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.Importance Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for postharvest quality loss newly found in this research will be targets for future breeding of strains that can keep freshness longer than present strains. De novo Lentinula edodes genome assembly data will be used for construction of the complete Lentinula edodes chromosome map for the future

  19. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica

    PubMed Central

    de Sá, Maria Eugênia Lisei; Conceição Lopes, Marcus José; de Araújo Campos, Magnólia; Paiva, Luciano Vilela; dos Santos, Regina Maria Amorim; Beneventi, Magda Aparecida; Firmino, Alexandre Augusto Pereira; de Sá, Maria Fátima Grossi

    2012-01-01

    Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J2) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen. PMID:22802712

  20. Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica.

    PubMed

    de Sá, Maria Eugênia Lisei; Conceição Lopes, Marcus José; de Araújo Campos, Magnólia; Paiva, Luciano Vilela; Dos Santos, Regina Maria Amorim; Beneventi, Magda Aparecida; Firmino, Alexandre Augusto Pereira; de Sá, Maria Fátima Grossi

    2012-06-01

    Soybean is an important crop for Brazilian agribusiness. However, many factors can limit its production, especially root-knot nematode infection. Studies on the mechanisms employed by the resistant soybean genotypes to prevent infection by these nematodes are of great interest for breeders. For these reasons, the aim of this work is to characterize the transcriptome of soybean line PI 595099-Meloidogyne javanica interaction through expression analysis. Two cDNA libraries were obtained using a pool of RNA from PI 595099 uninfected and M. javanica (J(2)) infected roots, collected at 6, 12, 24, 48, 96, 144 and 192 h after inoculation. Around 800 ESTs (Expressed Sequence Tags) were sequenced and clustered into 195 clusters. In silico subtraction analysis identified eleven differentially expressed genes encoding putative proteins sharing amino acid sequence similarities by using BlastX: metallothionein, SLAH4 (SLAC1 Homologue 4), SLAH1 (SLAC1 Homologue 1), zinc-finger proteins, AN1-type proteins, auxin-repressed proteins, thioredoxin and nuclear transport factor 2 (NTF-2). Other genes were also found exclusively in nematode stressed soybean roots, such as NAC domain-containing proteins, MADS-box proteins, SOC1 (suppressor of overexpression of constans 1) proteins, thioredoxin-like protein 4-Coumarate-CoA ligase and the transcription factor (TF) MYBZ2. Among the genes identified in non-stressed roots only were Ser/Thr protein kinases, wound-induced basic protein, ethylene-responsive family protein, metallothionein-like protein cysteine proteinase inhibitor (cystatin) and Putative Kunitz trypsin protease inhibitor. An understanding of the roles of these differentially expressed genes will provide insights into the resistance mechanisms and candidate genes involved in soybean-M. javanica interaction and contribute to more effective control of this pathogen.

  1. Transcriptomic analysis of cyclic AMP response in bovine cumulus cells.

    PubMed

    Khan, D R; Guillemette, C; Sirard, M A; Richard, F J

    2015-09-01

    Acquisition of oocyte developmental competence needs to be understood to improve clinical outcomes of assisted reproduction. The stimulation of cumulus cell concentration of cyclic adenosine 3'5'-monophosphate (cAMP) by pharmacological agents during in vitro maturation (IVM) participates in improvement of oocyte quality. However, precise coordination and downstream targets of cAMP signaling in cumulus cells are largely unknown. We have previously demonstrated better embryo development after cAMP stimulation for first 6 h during IVM. Using this model, we investigated cAMP signaling in cumulus cells through in vitro culture of cumulus-oocyte complexes (COCs) in the presence of cAMP raising agents: forskolin, IBMX, and dipyridamole (here called FID treatment). Transcriptomic analysis of cumulus cells indicated that FID-induced differentially expressed transcripts were implicated in cumulus expansion, steroidogenesis, cell metabolism, and oocyte competence. Functional genomic analysis revealed that protein kinase-A (PKA), extracellular signal regulated kinases (ERK1/2), and calcium (Ca(2+)) pathways as key regulators of FID signaling. Inhibition of PKA (H89) in FID-supplemented COCs or substitution of FID with calcium ionophore (A23187) demonstrated that FID activated primarily the PKA pathway which inhibited ERK1/2 phosphorylation and was upstream of calcium signaling. Furthermore, inhibition of ERK1/2 phosphorylation by FID supported a regulation by dual specific phosphatase (DUSP1) via PKA. Our findings imply that cAMP (FID) regulates cell metabolism, steroidogenesis, intracellular signaling and cumulus expansion through PKA which modulates these functions through optimization of ERK1/2 phosphorylation and coordination of calcium signaling. These findings have implications for development of new strategies for improving oocyte in vitro maturation leading to better developmental competence.

  2. Transcriptomic analysis of porcine PBMCs in response to FMDV infection.

    PubMed

    Zhao, Fu-Rong; Xie, Yin-Li; Liu, Ze-Zhong; Shao, Jun-Jun; Li, Shi-Fang; Zhang, Yong-Guang; Chang, Hui-Yun

    2017-09-01

    one or more of the three categories: biological process, cellular component, and molecular function. According to KEGG analysis,the main pathway was represented including protein processing in endoplasmic reticulum, phagosome, cell cycle and cytokine-cytokine receptor interaction. Some key DE genes related to immune process and signaling pathways were analyzed and quantified by RT-PCR. This is the first systematical transcriptome analysis of pig PBMCs infected by FMDV. These findings will help us better understand the host Cell-FMDV interaction and its relationship to pathogenesis, as well as contribute to the prevention and control of FMDV. Copyright © 2017. Published by Elsevier B.V.

  3. Transcriptome analysis of the silkworm (Bombyx mori) by high-throughput RNA sequencing.

    PubMed

    Li, Yinü; Wang, Guozeng; Tian, Jian; Liu, Huifen; Yang, Huipeng; Yi, Yongzhu; Wang, Jinhui; Shi, Xiaofeng; Jiang, Feng; Yao, Bin; Zhang, Zhifang

    2012-01-01

    The domestic silkworm, Bombyx mori, is a model insect with important economic value for silk production that also acts as a bioreactor for biomaterial production. The functional complexity of the silkworm transcriptome has not yet been fully elucidated, although genomic sequencing and other tools have been widely used in its study. We explored the transcriptome of silkworm at different developmental stages using high-throughput paired-end RNA sequencing. A total of about 3.3 gigabases (Gb) of sequence was obtained, representing about a 7-fold coverage of the B. mori genome. From the reads that were mapped to the genome sequence; 23,461 transcripts were obtained, 5,428 of them were novel. Of the 14,623 predicted protein-coding genes in the silkworm genome database, 11,884 of them were found to be expressed in the silkworm transcriptome, giving a coverage of 81.3%. A total of 13,195 new exons were detected, of which, 5,911 were found in the annotated genes in the Silkworm Genome Database (SilkDB). An analysis of alternative splicing in the transcriptome revealed that 3,247 genes had undergone alternative splicing. To help with the data analysis, a transcriptome database that integrates our transcriptome data with the silkworm genome data was constructed and is publicly available at http://124.17.27.136/gbrowse2/. To our knowledge, this is the first study to elucidate the silkworm transcriptome using high-throughput RNA sequencing technology. Our data indicate that the transcriptome of silkworm is much more complex than previously anticipated. This work provides tools and resources for the identification of new functional elements and paves the way for future functional genomics studies.

  4. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate.

    PubMed

    Hu, Kun; Ma, Rong-Rong; Cheng, Jun-Ming; Ye, Xin; Sun, Qi; Yuan, Hai-Lan; Liang, Nan; Fang, Wen-Hong; Li, Hao-Ran; Yang, Xian-Le

    2016-01-01

    Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate-treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.

  5. Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines.

    PubMed

    Traverso, Lucila; Sierra, Ivana; Sterkel, Marcos; Francini, Flavio; Ons, Sheila

    2016-12-18

    Chagas' disease, affecting up to 6-7 million people worldwide, is transmitted to humans through the feces of triatomine kissing bugs. From these, Rhodnius prolixus, Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis are important vectors distributed throughout the Latin American subcontinent. Resistance to pyrethroids has been developed by some triatomine populations, especially T. infestans, obstructing their control. Given their role in the regulation of physiological processes, neuroendocrine-derived factors have been proposed as a source of molecular targets for new-generation insecticides. However, the involvement of neuropeptides in insecticide metabolism and resistance in insects has been poorly studied. In the present work, the sequences of 20 neuropeptide precursor genes in T. infestans, 16 in T. dimidiata, and 13 in T. pallidipennis detected in transcriptomic databases are reported, and a comparative analysis in triatomines is presented. A total of 59 neuropeptides were validated by liquid chromatography-tandem mass spectrometry in brain and nervous ganglia from T. infestans, revealing the existence of differential post-translational modifications, extended and truncated forms. The results suggest a high sequence conservation in some neuropeptide systems in triatomines, whereas remarkable differences occur in several others within the core domains. Comparisons of the basal expression levels for several neuropeptide precursor genes between pyrethroid sensitive and resistant population of T. infestans are also presented here, in order to introduce a proof of concept to test the involvement of neuropeptides in insecticide resistance. From the precursors tested, NVP and ITG peptides are significantly higher expressed in the resistant population. To our knowledge, this is the first report to associate differential neuropeptide expression with insecticide resistance. The information provided here contributes to creating conditions to widely

  6. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate

    PubMed Central

    Ye, Xin; Sun, Qi; Yuan, Hai-Lan; Liang, Nan; Fang, Wen-Hong; Li, Hao-Ran; Yang, Xian-Le

    2016-01-01

    Background Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate—treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. Results The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Conclusion Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism. PMID:26895329

  7. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction

    PubMed Central

    2014-01-01

    Background Higher plants exhibit a remarkable phenotypic plasticity to adapt to adverse environmental changes. The Greater Duckweed Spirodela, as an aquatic plant, presents exceptional tolerance to cold winters through its dormant structure of turions in place of seeds. Abundant starch in turions permits them to sink and escape the freezing surface of waters. Due to their clonal propagation, they are the fastest growing biomass on earth, providing yet an untapped source for industrial applications. Results We used next generation sequencing technology to examine the transcriptome of turion development triggered by exogenous ABA. A total of 208 genes showed more than a 4-fold increase compared with 154 down-regulated genes in developing turions. The analysis of up-regulated differential expressed genes in response to dormancy exposed an enriched interplay among various pathways: signal transduction, seed dehydration, carbohydrate and secondary metabolism, and senescence. On the other side, the genes responsible for rapid growth and biomass accumulation through DNA assembly, protein synthesis and carbon fixation are repressed. Noticeably, three members of late embryogenesis abundant protein family are exclusively expressed during turion formation. High expression level of key genes in starch synthesis are APS1, APL3 and GBSSI, which could artificially be reduced for re-directing carbon flow from photosynthesis to create a higher energy biomass. Conclusions The identification and functional annotation of differentially expressed genes open a major step towards understanding the molecular network underlying vegetative frond dormancy. Moreover, genes have been identified that could be engineered in duckweeds for practical applications easing agricultural production of food crops. PMID:24456086

  8. A comprehensive analysis of the human placenta transcriptome

    USDA-ARS?s Scientific Manuscript database

    As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 ...

  9. Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters

    PubMed Central

    Keren, Iris; Minami, Shoko; Rubin, Eric; Lewis, Kim

    2011-01-01

    ABSTRACT Tuberculosis continues to be a major public health problem in many parts of the world. Significant obstacles in controlling the epidemic are the length of treatment and the large reservoir of latently infected people. Bacteria form dormant, drug-tolerant persister cells, which may be responsible for the difficulty in treating both acute and latent infections. We find that in Mycobacterium  tuberculosis, low numbers of drug-tolerant persisters are present in lag and early exponential phases, increasing sharply at late exponential and stationary phases to make up ~1% of the population. This suggests that persister formation is governed by both stochastic and deterministic mechanisms. In order to isolate persisters, an exponentially growing population was treated with d-cycloserine, and cells surviving lysis were collected by centrifugation. A transcriptome of persisters was obtained by using hybridization to an Affymetrix array. The transcriptome shows downregulation of metabolic and biosynthetic pathways, consistent with a certain degree of dormancy. A set of genes was upregulated in persisters, and these are likely involved in persister formation and maintenance. A comparison of the persister transcriptome with transcriptomes obtained for several in vitro dormancy models identified a small number of genes upregulated in all cases, which may represent a core dormancy response. PMID:21673191

  10. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  11. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    PubMed Central

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  12. In-Depth Analysis of Simulation Engine Codes for Comparison with DOE s Roof Savings Calculator and Measured Data

    SciTech Connect

    New, Joshua Ryan; Levinson, Ronnen; Huang, Yu; Sanyal, Jibonananda; Miller, William A.; Mellot, Joe; Childs, Kenneth W.; Kriner, Scott

    2014-06-01

    The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNL studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.

  13. In-Depth Characterization and Functional Analysis of Clonal Variants in a Mycobacterium tuberculosis Strain Prone to Microevolution.

    PubMed

    Navarro, Yurena; Pérez-Lago, Laura; Herranz, Marta; Sierra, Olalla; Comas, Iñaki; Sicilia, Javier; Bouza, Emilio; García de Viedma, Darío

    2017-01-01

    The role of clonal complexity has gradually been accepted in infection by Mycobacterium tuberculosis (MTB), although analyses of this issue are limited. We performed an in-depth study of a case of recurrent MTB infection by integrating genotyping, whole genome sequencing, analysis of gene expression and infectivity in in vitro and in vivo models. Four different clonal variants were identified from independent intrapatient evolutionary branches. One of the single-nucleotide polymorphisms in the variants mapped in mce3R, which encodes a repressor of an operon involved in virulence, and affected expression of the operon. Competitive in vivo and in vitro co-infection assays revealed higher infective efficiency for one of the clonal variants. A new clonal variant, which had not been observed in the clinical isolates, emerged in the infection assays and showed higher fitness than its parental strain. The analysis of other patients involved in the same transmission cluster revealed new clonal variants acquired through novel evolutionary routes, indicating a high tendency toward microevolution in some strains that is not host-dependent. Our study highlights the need for integration of various approaches to advance our knowledge of the role and significance of microevolution in tuberculosis.

  14. In-Depth Characterization and Functional Analysis of Clonal Variants in a Mycobacterium tuberculosis Strain Prone to Microevolution

    PubMed Central

    Navarro, Yurena; Pérez-Lago, Laura; Herranz, Marta; Sierra, Olalla; Comas, Iñaki; Sicilia, Javier; Bouza, Emilio; García de Viedma, Darío

    2017-01-01

    The role of clonal complexity has gradually been accepted in infection by Mycobacterium tuberculosis (MTB), although analyses of this issue are limited. We performed an in-depth study of a case of recurrent MTB infection by integrating genotyping, whole genome sequencing, analysis of gene expression and infectivity in in vitro and in vivo models. Four different clonal variants were identified from independent intrapatient evolutionary branches. One of the single-nucleotide polymorphisms in the variants mapped in mce3R, which encodes a repressor of an operon involved in virulence, and affected expression of the operon. Competitive in vivo and in vitro co-infection assays revealed higher infective efficiency for one of the clonal variants. A new clonal variant, which had not been observed in the clinical isolates, emerged in the infection assays and showed higher fitness than its parental strain. The analysis of other patients involved in the same transmission cluster revealed new clonal variants acquired through novel evolutionary routes, indicating a high tendency toward microevolution in some strains that is not host-dependent. Our study highlights the need for integration of various approaches to advance our knowledge of the role and significance of microevolution in tuberculosis. PMID:28484440

  15. Aerospace Toolbox--a flight vehicle design, analysis, simulation, and software development environment II: an in-depth overview

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.

    2002-07-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provided a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed included its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics that were covered in part I included flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this series will cover a more in-depth look at the analysis and simulation capability and provide an update on the toolbox enhancements. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment (IMD).

  16. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    PubMed

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  17. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal the necessity of personalized therapy.

    PubMed

    Yan, Shixu E; Lemmin, Thomas; Salvi, Suzanne; Lausch, Ekkehart; Superti-Furga, Andrea; Rokicki, Dariusz; Dal Peraro, Matteo; van der Goot, F Gisou

    2013-07-01

    Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences. © 2013 WILEY PERIODICALS, INC.

  18. Transcriptome analysis of the response of Burmese python to digestion

    PubMed Central

    Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J.

    2017-01-01

    Abstract Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. PMID:28873961

  19. Transcriptomic Dose-Response Analysis for Mode of Action ...

    EPA Pesticide Factsheets

    Microarray and RNA-seq technologies can play an important role in assessing the health risks associated with environmental exposures. The utility of gene expression data to predict hazard has been well documented. Early toxicogenomics studies used relatively high, single doses with minimal replication. Thus, they were not useful in understanding health risks at environmentally-relevant doses. Until the past decade, application of toxicogenomics in dose response assessment and determination of chemical mode of action has been limited. New transcriptomic biomarkers have evolved to detect chemical hazards in multiple tissues together with pathway methods to study biological effects across the full dose response range and critical time course. Comprehensive low dose datasets are now available and with the use of transcriptomic benchmark dose estimation techniques within a mode of action framework, the ability to incorporate informative genomic data into human health risk assessment has substantially improved. The key advantage to applying transcriptomic technology to risk assessment is both the sensitivity and comprehensive examination of direct and indirect molecular changes that lead to adverse outcomes. Book Chapter with topic on future application of toxicogenomics technologies for MoA and risk assessment

  20. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    PubMed

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A Lane; Voigt, Thomas; Lee, D K

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  1. Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis.

    PubMed

    Pallavicini, Alberto; Canapa, Adriana; Barucca, Marco; Alfőldi, Jessica; Biscotti, Maria Assunta; Buonocore, Francesco; De Moro, Gianluca; Di Palma, Federica; Fausto, Anna Maria; Forconi, Mariko; Gerdol, Marco; Makapedua, Daisy Monica; Turner-Meier, Jason; Olmo, Ettore; Scapigliati, Giuseppe

    2013-08-08

    Latimeria menadoensis is a coelacanth species first identified in 1997 in Indonesia, at 10,000 Km of distance from its African congener. To date, only six specimens have been caught and just a very limited molecular data is available. In the present work we describe the de novo transcriptome assembly obtained from liver and testis samples collected from the fifth specimen ever caught of this species. The deep RNA sequencing performed with Illumina technologies generated 145,435,156 paired-end reads, accounting for ~14 GB of sequence data, which were de novo assembled using a Trinity/CLC combined strategy. The assembly output was processed and filtered producing a set of 66,308 contigs, whose quality was thoroughly assessed. The comparison with the recently sequenced genome of the African congener Latimeria chalumnae and with the available genomic resources of other vertebrates revealed a good reconstruction of full length transcripts and a high coverage of the predicted full coelacanth transcriptome. Given the high genomic affinity between the two coelacanth species, the here described de novo transcriptome assembly can be considered a valuable support tool for the improvement of gene prediction within the genome of L. chalumnae and a valuable resource for investigation of many aspects of tetrapod evolution.

  2. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  3. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  4. In depth analysis of the in vivo toxicity of venom from the jellyfish Stomolophus meleagris.

    PubMed

    Li, Rongfeng; Yu, Huahua; Yue, Yang; Liu, Song; Xing, Ronge; Chen, Xiaolin; Wang, Xueqin; Li, Pengcheng

    2014-12-15

    Jellyfish Stomolophus meleagris, a synonym of Nemopilema nomurai, which has often bloomed in the China Sea in recent years, is becoming an increasing threat to human health and life as a result of its strong toxicity. Each year, hundreds of thousands of people were stung, especially in the high season, and the victims suffered itch, edema, myalgia, dyspnea, hypotension, shock and even death. Here, we present the in-depth analysis of the in vivo toxicity of the venom from the jellyfish S. meleagris by using both an acute toxicological approach and pathological analyses. The venom showed an LD50 of approximately 2.92 μg/g body weight in mice following an intravenous injection and caused renal glomerular swelling, renal vesicle stricture, renal tubules dilatation, hepatic blood sinusoid dilatation, pulmonary edema and malignant pleural effusion. The pathological sections analysis showed that the kidney and liver were significantly damaged, but the heart, spleen and stomach had no observed changes. Additionally, the hemanalysis showed an increase of white blood cells (WBC), middle cells (Mid), alanine aminotransferase (ALT), blood urine nitrogen (BUN) and uric acid (UA) in the blood. Moreover, the mice also displayed convulsions, mouth bleeding, piloerection, dyspnea and death after the injection of the venom. In conclusion, this venom has a strong toxicity to the kidney of the mice and the acute renal failure might be one of the most important factors for the death after a severe sting. Hopefully, the present study will provide a significant reference for the treatment of stings by the jellyfish S. meleagris in the future.

  5. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.

    PubMed

    Fish, Rachel N; Bostick, Magnolia; Lehman, Alisa; Farmer, Andrew

    2016-10-10

    RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  6. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism.

    PubMed

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-06-29

    Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins were subjected to protamine sulfate precipitation for the enrichment of low-abundance proteins and utilized for proteome analysis. A total of 14 differential proteins were identified on 2-DE, whereas label-free quantification resulted in the identification of 1626 non-redundant proteins. Of these identified proteins, 146 showed significant changes in protein abundance, where 5 and 141 had increased and decreased abundances, respectively while 352 proteins were completely degraded during CDT. Gene ontology and KEGG analyses suggested the association of differential proteins with primary metabolism, ROS detoxification, translation elongation and initiation, protein folding, and proteolysis, where most, if not all, had decreased abundance during CDT. Western blotting confirmed reduced level of antioxidant enzymes (DHAR, APx1, MDAR, and SOD) upon CDT. This in-depth integrated study reveals a major downshift in seed metabolism upon CDT. Reported data here serve as a resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality. Controlled deterioration treatment (CDT) is one of the major events that negatively affects the quality and nutrient composition of agricultural seeds. However, the molecular mechanism of CDT is largely unknown. A combination of gel-based and gel-free proteomic approach was utilized to investigate the effects of CDT in soybean seeds. Moreover, we utilized protamine sulfate precipitation method for enrichment of low-abundance proteins, which are generally masked due to the presence of high-abundance seed storage proteins. Reported data here serve as resource for its

  7. Transcriptome Sequencing (RNA-seq) Analysis of the Effects of Metal Nanoparticle Exposure on the Transcriptome of Chlamydomonas reinhardtii

    PubMed Central

    Simon, Dana F.; Domingos, Rute F.; Hauser, Charles; Hutchins, Colin M.

    2013-01-01

    The widespread use of nanoparticles (NPs) raises concern over their potential toxicological effects in humans and ecosystems. Here we used transcriptome sequencing (RNA-seq) to evaluate the effects of exposure to four different metal-based NPs, nano-Ag (nAg), nano-TiO2 (nTiO2), nano-ZnO (nZnO), and CdTe/CdS quantum dots (QDs), in the eukaryotic green alga Chlamydomonas reinhardtii. The transcriptome was characterized before and after exposure to each NP type. Specific toxicological effects were inferred from the functions of genes whose transcripts either increased or decreased. Data analysis resulted in important differences and also similarities among the NPs. Elevated levels of transcripts of several marker genes for stress were observed, suggesting that only nZnO caused nonspecific global stress to the cells under environmentally relevant conditions. Genes with photosynthesis-related functions were decreased drastically during exposure to nTiO2 and slightly during exposures to the other NP types. This pattern suggests either toxicological effects in the chloroplast or effects that mimic a transition from low to high light. nAg exposure dramatically elevated the levels of transcripts encoding known or predicted components of the cell wall and the flagella, suggesting that it damages structures exposed to the external milieu. Exposures to nTiO2, nZnO, and QDs elevated the levels of transcripts encoding subunits of the proteasome, suggesting proteasome inhibition, a phenomenon believed to underlie the development and progression of several major diseases, including Alzheimer's disease, and used in chemotherapy against multiple myeloma. PMID:23728819

  8. Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis.

    PubMed

    Tu, Qiang; Cameron, R Andrew; Worley, Kim C; Gibbs, Richard A; Davidson, Eric H

    2012-10-01

    A comprehensive transcriptome analysis has been performed on protein-coding RNAs of Strongylocentrotus purpuratus, including 10 different embryonic stages, six feeding larval and metamorphosed juvenile stages, and six adult tissues. In this study, we pooled the transcriptomes from all of these sources and focused on the insights they provide for gene structure in the genome of this recently sequenced model system. The genome had initially been annotated by use of computational gene model prediction algorithms. A large fraction of these predicted genes were recovered in the transcriptome when the reads were mapped to the genome and appropriately filtered and analyzed. However, in a manually curated subset, we discovered that more than half the computational gene model predictions were imperfect, containing errors such as missing exons, prediction of nonexistent exons, erroneous intron/exon boundaries, fusion of adjacent genes, and prediction of multiple genes from single genes. The transcriptome data have been used to provide a systematic upgrade of the gene model predictions throughout the genome, very greatly improving the research usability of the genomic sequence. We have constructed new public databases that incorporate information from the transcriptome analyses. The transcript-based gene model data were used to define average structural parameters for S. purpuratus protein-coding genes. In addition, we constructed a custom sea urchin gene ontology, and assigned about 7000 different annotated transcripts to 24 functional classes. Strong correlations became evident between given functional ontology classes and structural properties, including gene size, exon number, and exon and intron size.

  9. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

    PubMed

    Kelkar, Dhanashree S; Provost, Elayne; Chaerkady, Raghothama; Muthusamy, Babylakshmi; Manda, Srikanth S; Subbannayya, Tejaswini; Selvan, Lakshmi Dhevi N; Wang, Chieh-Huei; Datta, Keshava K; Woo, Sunghee; Dwivedi, Sutopa B; Renuse, Santosh; Getnet, Derese; Huang, Tai-Chung; Kim, Min-Sik; Pinto, Sneha M; Mitchell, Christopher J; Madugundu, Anil K; Kumar, Praveen; Sharma, Jyoti; Advani, Jayshree; Dey, Gourav; Balakrishnan, Lavanya; Syed, Nazia; Nanjappa, Vishalakshi; Subbannayya, Yashwanth; Goel, Renu; Prasad, T S Keshava; Bafna, Vineet; Sirdeshmukh, Ravi; Gowda, Harsha; Wang, Charles; Leach, Steven D; Pandey, Akhilesh

    2014-11-01

    Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.

  10. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    PubMed

    Wang, Ying; Ding, Jia-Tong; Yang, Hai-Ming; Yan, Zheng-Jie; Cao, Wei; Li, Yang-Bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  11. In-Depth Global Analysis of Transcript Abundance Levels in Porcine Alveolar Macrophages Following Infection with Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Miller, Laura C.; Neill, John D.; Harhay, Gregory P.; Lager, Kelly M.; Laegreid, William W.; Kehrli, Marcus E.

    2010-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide and causes considerable economic loss. Identifying specific cell signaling or activation pathways that associate with variation in PRRSV replication and macrophage function may lead to identification of novel gene targets for the control of PRRSV infection. Serial Analysis of Gene Expression (SAGE) was used to create and survey the transcriptome of in vitro mock-infected and PRRSV strain VR-2332-infected porcine alveolar macrophages (PAM) at 0, 6, 12, 16, and 24 hours after infection. The transcriptome data indicated changes in transcript abundance occurring in PRRSV-infected PAMs over time after infection with more than 590 unique tags with significantly altered transcript abundance levels identified (P < .01). Strikingly, innate immune genes (whose transcript abundances are typically altered in response to other pathogens or insults including IL-8, CCL4, and IL-1β) showed no or very little change at any time point following infection. PMID:22331987

  12. Mechanisms of motor vehicle crashes related to burns--an analysis of the German In depth Accident Study (GIDAS) database.

    PubMed

    Brand, S; Otte, D; Stübig, T; Petri, M; Ettinger, M; Mueller, C W; Krettek, C; Haasper, C; Probst, C

    2013-12-01

    Patients of motor vehicle crashes (MVCs) suffering burns are challenging for the rescue team and the admitting hospital. These patients often face worse outcomes than crash patients with trauma only. Our analysis of the German In-depth Accident Study (GIDAS) database researches the detailed crash mechanisms to identify potential prevention measures. We analyzed the 2011 GIDAS database comprising 14,072 MVC patients and compared individuals with (Burns) and without (NoBurns) burns. Only complete data sets were included. Patients with burns obviously resulting of air bag deployment only were not included in the Burns group. Data acquisition by an on call team of medical and technical researchers starts at the crash scene immediately after the crash and comprises technical data as well as medical information until discharge from the hospital. Statistical analysis was done by Mann-Whitney-U-test. Level of significance was p < 0.05. 14,072 MVC patients with complete data sets were included in the analysis. 99 individuals suffered burns (0.7%; group "Burns"). Demographic data and injury severity showed no statistical significant difference between the two groups of Burns and NoBurns. Injury severity was measured using the Injury Severity Score (ISS). Direct frontal impact (Burns: 48.5% vs. NoBurns: 33%; p < 0.05) and high-energy impacts as represented by delta-v (m/s) (Burns: 33.5 ± 21.4 vs. NoBurns: 25.2 ± 15.9; p < 0.05) were significantly different between groups as was mortality (Burns: 12.5% vs. NoBurns: 2.1%; p < 0.05). Type of patients' motor vehicles and type of crash opponent showed no differences. Our results show, that frontal and high-energy impacts are associated with a frequency of burns. This may serve automobile construction companies to improve the burn safety to prevent flames spreading from the motor compartment to the passenger compartment. Communities may impose speed limits in local crash hot spots. Copyright © 2013 Elsevier Ltd and ISBI. All

  13. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii

    PubMed Central

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20–25 day-old adult males and 20–25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  14. Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi.

    PubMed

    Song, Zhangyong; Yin, Youping; Jiang, Shasha; Liu, Juanjuan; Chen, Huan; Wang, Zhongkang

    2013-06-19

    Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development. A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR). Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We believe that the transcriptome

  15. Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi

    PubMed Central

    2013-01-01

    Background Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development. Results A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR). Conclusion Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We

  16. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection.

    PubMed

    Xue, Shuxia; Liu, Yichen; Zhang, Yichen; Sun, Yan; Geng, Xuyun; Sun, Jinsheng

    2013-01-01

    White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.

  17. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    PubMed Central

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  18. Transcriptome Analysis of Nine Tissues to Discover Genes Involved in the Biosynthesis of Active Ingredients in Sophora flavescens.

    PubMed

    Han, Rongchun; Takahashi, Hiroki; Nakamura, Michimi; Bunsupa, Somnuk; Yoshimoto, Naoko; Yamamoto, Hirobumi; Suzuki, Hideyuki; Shibata, Daisuke; Yamazaki, Mami; Saito, Kazuki

    2015-01-01

    Sophora flavescens AITON (kurara) has long been used to treat various diseases. Although several research findings revealed the biosynthetic pathways of its characteristic chemical components as represented by matrine, insufficient analysis of transcriptome data hampered in-depth analysis of the underlying putative genes responsible for the biosynthesis of pharmaceutical chemical components. In this study, more than 200 million fastq format reads were generated by Illumina's next-generation sequencing approach using nine types of tissue from S. flavescens, followed by CLC de novo assembly, ultimately yielding 83,325 contigs in total. By mapping the reads back to the contigs, reads per kilobase of the transcript per million mapped reads values were calculated to demonstrate gene expression levels, and overrepresented gene ontology terms were evaluated using Fisher's exact test. In search of the putative genes relevant to essential metabolic pathways, all 1350 unique enzyme commission numbers were used to map pathways against the Kyoto Encyclopedia of Genes and Genomes. By analyzing expression patterns, we proposed some candidate genes involved in the biosynthesis of isoflavonoids and quinolizidine alkaloids. Adopting RNA-Seq analysis, we obtained substantially credible contigs for downstream work. The preferential expression of the gene for putative lysine/ornithine decarboxylase committed in the initial step of matrine biosynthesis in leaves and stems was confirmed in semi-quantitative polymerase chain reaction (PCR) analysis. The findings in this report may serve as a stepping-stone for further research into this promising medicinal plant.

  19. Investigating Pre-Service Candidates' Images of Mathematical Reasoning: An In-Depth Online Analysis of Common Core Mathematics Standards

    ERIC Educational Resources Information Center

    Davis, C. E.; Osler, James E.

    2013-01-01

    This paper details the outcomes of a qualitative in-depth investigation into teacher education mathematics preparation. This research is grounded in the notion that mathematics teacher education students (as "degree seeking candidates") need to develop strong foundations of mathematical practice as defined by the Common Core State…

  20. Transcriptome Analysis of Early Fruit Development in Three Seedy Citrus Genotypes and Their Seedless Mutants

    USDA-ARS?s Scientific Manuscript database

    Seedlessness is desirable for most citrus fruit, and identification of spontaneous or irradiated seedless mutants is important in developing citrus cultivars. We conducted a transcriptome analysis in early fruit development of three seedy citrus types (‘Fallglo’, a largely C. reticulata hybrid; ‘Pi...

  1. Comprehensive transcriptome analysis identifies pathways with therapeutic potential in locally advanced cervical cancer.

    PubMed

    Campos-Parra, Alma Delia; Padua-Bracho, Alejandra; Pedroza-Torres, Abraham; Figueroa-González, Gabriela; Fernández-Retana, Jorge; Millan-Catalan, Oliver; Peralta-Zaragoza, Oscar; Cantú de León, David; Herrera, Luis A; Pérez-Plasencia, Carlos

    2016-11-01

    The objective of the present study was to provide genomic and transcriptomic information that may improve clinical outcomes for locally advanced cervical cancer (LACC) patients by searching for therapeutic targets or potential biomarkers through the analysis of significantly altered signaling pathways in LACC. Microarray-based transcriptome profiling of 89 tumor samples from women with LACC was performed. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, significantly over-expressed genes in LACC were identified; these genes were validated by quantitative reverse transcription-polymerase chain reaction in an independent cohort, and the protein expression data were obtained from the Human Protein Atlas. A transcriptome analysis revealed 7530 significantly over-expressed genes in LACC samples. By KEGG analysis, we found 93 dysregulated signaling pathways, including the JAK-STAT, NOTCH and mTOR-autophagy pathways, which were significantly upregulated. We confirmed the overexpression of the relevant genes of each pathway, such as NOTCH1, JAK2, STAM1, SOS1, ADAM17, PSEN1, NCSTN, RPS6, STK11/LKB1 and MLTS8/GBL in LACC compared with normal cervical tissue epithelia. Through comprehensive genomic and transcriptomic analyses, this work provides information regarding signaling pathways with promising therapeutic targets, suggesting novel target therapies to be considered in future clinical trials for LACC patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A comprehensive analysis of the human placenta transcriptome.

    PubMed

    Saben, J; Zhong, Y; McKelvey, S; Dajani, N K; Andres, A; Badger, T M; Gomez-Acevedo, H; Shankar, K

    2014-02-01

    As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 healthy women with uncomplicated pregnancies using RNA-seq. To identify genes that were highly expressed and unique to the placenta we compared placental RNA-seq data to data from 7 other tissues (adipose, breast, hear, kidney, liver, lung, and smooth muscle) and identified several genes novel to placental biology (QSOX1, DLG5, and SEMA7A). Semi-quantitative RT-PCR confirmed the RNA-seq results and immunohistochemistry indicated these proteins were highly expressed in the placental syncytium. Additionally, we mined our RNA-seq data to map the relative expression of key developmental gene families (Fox, Sox, Gata, Tead, and Wnt) within the placenta. We identified FOXO4, GATA3, and WNT7A to be amongst the highest expressed members of these families. Overall, these findings provide a new reference for understanding of placental transcriptome and can aid in the identification of novel pathways regulating placenta physiology that may be dysregulated in placental disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A Comprehensive Analysis of the Human Placenta Transcriptome

    PubMed Central

    Saben, Jessica; Zhong, Ying; McKelvey, Samantha; Dajani, Nafisa K.; Andres, Aline; Badger, Thomas M.; Gomez-Acevedo, Horacio; Shankar, Kartik

    2014-01-01

    As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 healthy women with uncomplicated pregnancies using RNA-seq. To identify genes that were highly expressed and unique to the placenta we compared placental RNA-seq data to data from 7 other tissues (adipose, breast, hear, kidney, liver, lung, and smooth muscle) and identified several genes novel to placental biology (QSOX1, DLG5, and SEMA7A). Semi-quantitative RT-PCR confirmed the RNA-seq results and immunohistochemistry indicated these proteins were highly expressed in the placental syncytium. Additionally, we mined our RNA-seq data to map the relative expression of key developmental gene families (Fox, Sox, Gata, Tead, and Wnt) within the placenta. We identified FOXO4, GATA3, and WNT7A to be amongst the highest expressed members of these families. Overall, these findings provide a new reference for understanding of placental transcriptome and can aid in the identification of novel pathways regulating placenta physiology that may be dysregulated in placental disease. PMID:24333048

  4. De Novo Assembly and Transcriptome Analysis of Contrasting Sugarcane Varieties

    PubMed Central

    Mancini, Melina Cristina; Balsalobre, Thiago Willian Almeida; Canesin, Lucas Eduardo Costa; Pinto, Luciana Rossini; Carneiro, Monalisa Sampaio; Garcia, Antonio Augusto Franco; de Souza, Anete Pereira; Vicentini, Renato

    2014-01-01

    Sugarcane is an important crop and a major source of sugar and alcohol. In this study, we performed de novo assembly and transcriptome annotation for six sugarcane genotypes involved in bi-parental crosses. The de novo assembly of the sugarcane transcriptome was performed using short reads generated using the Illumina RNA-Seq platform. We produced more than 400 million reads, which were assembled into 72,269 unigenes. Based on a similarity search, the unigenes showed significant similarity to more than 28,788 sorghum proteins, including a set of 5,272 unigenes that are not present in the public sugarcane EST databases; many of these unigenes are likely putative undescribed sugarcane genes. From this collection of unigenes, a large number of molecular markers were identified, including 5,106 simple sequence repeats (SSRs) and 708,125 single-nucleotide polymorphisms (SNPs). This new dataset will be a useful resource for future genetic and genomic studies in this species. PMID:24523899

  5. Transcriptome and Genome Size Analysis of the Venus Flytrap

    PubMed Central

    Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin’s studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations. PMID:25886597

  6. Transcriptome and genome size analysis of the Venus flytrap.

    PubMed

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations.

  7. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    PubMed

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  8. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  9. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    PubMed

    Zou, Zhen; Souza-Neto, Jayme; Xi, Zhiyong; Kokoza, Vladimir; Shin, Sang Woon; Dimopoulos, George; Raikhel, Alexander

    2011-11-01

    The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+) or REL2 (REL2+) in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated) and 299 (123 up- and 176 down-regulated) genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi)-depleted mosquitoes (50%). In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated), suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated) relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating the

  10. A transcriptome analysis of the Aedes aegypti vitellogenic fat body

    PubMed Central

    Feitosa, Fabiana M.; Calvo, Eric; Merino, Emilio F.; Durham, Alan M.; James, Anthony A.; de Bianchi, Antonio G.; Marinotti, Osvaldo; Capurro, Margareth L.

    2006-01-01

    Aedes (Stegomyia) aegypti is an important dengue vector in tropical and subtropical zones throughout the world. A transcriptome of Ae. aegypti vitellogenic fat bodies is described here. The fat body is a dynamic tissue that participates in multiple biochemical functions of intermediate metabolism. A total of 589 randomly selected cDNAs were assembled into 262 clusters based on their primary sequence similarities. The putative translated proteins were classified into categories based on their function in accordance with significant similarity using the BlastX at NCBI FTP site and Pfam (Bateman et al. 2000) and SMART (Schultz et al. 2000) databases. The characterization of transcripts expressed in the fat body of Ae. aegypti at 24 hours post blood meal provides a basic tool for understanding the processes occurring in this organ and could identify putative new genes whose promoters can be used to specifically express transgenes in the fat bodies of Ae. aegypti. PMID:19537968

  11. A Systematic Heritability Analysis of the Human Whole Blood Transcriptome

    PubMed Central

    Huan, Tianxiao; Liu, Chunyu; Joehanes, Roby; Zhang, Xiaoling; Chen, Brian H.; Johnson, Andrew D.; Yao, Chen; Courchesne, Paul; O'Donnell, Christopher J.; Munson, Peter J.; Levy, Daniel

    2015-01-01

    Genome-wide expression quantitative trait locus (eQTL) mapping may reveal common genetic variants regulating gene expression. In addition to mapping eQTLs, we systematically evaluated the heritability of the whole blood transcriptome in 5626 participants from the Framingham Heart Study. Of all gene expression measurements, about 40% exhibit evidence of being heritable (hgeneExp2>0, (p<0.05]), the average heritability was estimated to be 0.13, and 10% display hgeneExp2>0.2. In order to identify the role of eQTLs in promoting phenotype differences and disease susceptibility, we investigated the proportion of cis/trans eQTLs in different heritability categories and discovered that genes with higher heritability are more likely to have cis eQTLs that explain large proportions of variance in the expression of the corresponding genes. Single cis eQTLs explain 0.33–0.53 of variance in transcripts on average, whereas single trans eQTLs only explain 0.02–0.07. The top cis eQTLs tend to explain more variance in the corresponding gene when its hgeneExp2 is greater. Taking body mass index (BMI) as a case study, we cross-linked cis/trans eQTLs with both GWAS SNPs and differentially expressed genes for BMI. We discovered that BMI GWAS SNPs in 16p11.2 (e.g., rs7359397) are associated with several BMI differentially expressed genes in a cis manner (e.g. SULT1A1, SPNS1, and TUFM). These BMI signature genes explain a much larger proportion of variance in BMI than do the GWAS SNPs. Our results shed light the impact of eQTLs on the heritability of the human whole blood transcriptome and its relations to phenotype differences. PMID:25585846

  12. Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana.

    PubMed

    Liu, Yanan; Wang, Baoju; Wang, Lu; Vikash, Vikash; Wang, Qin; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2016-01-01

    The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development

  13. Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana

    PubMed Central

    Wang, Lu; Vikash, Vikash; Wang, Qin; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2016-01-01

    The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development

  14. Comparative transcriptome analysis of flower heterosis in two soybean F1 hybrids by RNA-seq

    PubMed Central

    Zhang, Chunbao; Lin, Chunjing; Zhong, Xiaofang; Peng, Bao; Yan, Hao; Zhang, Jingyong; Zhang, Weilong; Wang, Pengnian; Ding, Xiaoyang; Zhang, Wei; Zhao, Limei

    2017-01-01

    Heterosis has been widely exploited as an approach to enhance crop traits during breeding. However, its underlying molecular genetic mechanisms remain unclear. Recent advances in RNA sequencing technology (RNA-seq) have provided an opportunity to conduct transcriptome profiling for heterosis studies. We used RNA-seq to analyze the flower transcriptomes of two F1 hybrid soybeans (HYBSOY-1 and HYBSOY-5) and their parents. More than 385 million high-quality reads were generated and aligned against the soybean reference genome. A total of 681 and 899 genes were identified as being differentially expressed between HYBSOY-1 and HYBSOY-5 and their parents, respectively. These differentially expressed genes (DEGs) were categorized into four major expression categories with 12 expression patterns. Furthermore, gene ontology (GO) term analysis showed that the DEGs were enriched in the categories metabolic process and catalytic activity, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that metabolic pathway and biosynthesis of secondary metabolites were enriched in the two F1 hybrids. Comparing the DEGs of the two F1 hybrids by GO term and KEGG pathway analyses identified 26 common DEGs that showed transgressive up-regulation, and which could be considered potential candidate genes for heterosis in soybean F1 hybrids. This identification of an extensive transcriptome dataset gives a comprehensive overview of the flower transcriptomes in two F1 hybrids, and provides useful information for soybean hybrid breeding. These findings lay the foundation for future studies on molecular mechanisms underlying soybean heterosis. PMID:28708857

  15. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    PubMed

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-04

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  16. Comparative transcriptome analysis of climacteric fruit of Chinese pear (Pyrus ussuriensis) reveals new insights into fruit ripening.

    PubMed

    Huang, Guohui; Li, Tong; Li, Xinyue; Tan, Dongmei; Jiang, Zhongyu; Wei, Yun; Li, Juncai; Wang, Aide

    2014-01-01

    The fruit of Pyrus ussuriensis is typically climacteric. During ripening, the fruits produce a large amount of ethylene, and their firmness drops rapidly. Although the molecular basis of climacteric fruit ripening has been studied in depth, some aspects remain unclear. Here, we compared the transcriptomes of pre- and post-climacteric fruits of Chinese pear (P. ussuriensis c.v. Nanguo) using RNA-seq. In total, 3,279 unigenes were differentially expressed between the pre- and post-climacteric fruits. Differentially expressed genes (DEGs) were subjected to Gene Ontology analysis, and 31 categories were significantly enriched in the groups 'biological process', 'molecular function' and 'cellular component'. The DEGs included genes related to plant hormones, such as ethylene, ABA, auxin, GA and brassinosteroid, and transcription factors, such as MADS, NAC, WRKY and HSF. Moreover, genes encoding enzymes related to DNA methylation, cytoskeletal proteins and heat shock proteins (HSPs) showed differential expression between the pre- and post-climacteric fruits. Select DEGs were subjected to further analysis using quantitative RT-PCR (qRT-PCR), and the results were consistent with those of RNA-seq. Our data suggest that in addition to ethylene, other hormones play important roles in regulating fruit ripening and may interact with ethylene signaling during this process. DNA methylation-related methyltransferase and cytoskeletal protein genes are also involved in fruit ripening. Our results provide useful information for future research on pear fruit ripening.

  17. Comparative Transcriptome Analysis of Climacteric Fruit of Chinese Pear (Pyrus ussuriensis) Reveals New Insights into Fruit Ripening

    PubMed Central

    Tan, Dongmei; Jiang, Zhongyu; Wei, Yun; Li, Juncai; Wang, Aide

    2014-01-01

    The fruit of Pyrus ussuriensis is typically climacteric. During ripening, the fruits produce a large amount of ethylene, and their firmness drops rapidly. Although the molecular basis of climacteric fruit ripening has been studied in depth, some aspects remain unclear. Here, we compared the transcriptomes of pre- and post-climacteric fruits of Chinese pear (P. ussuriensis c.v. Nanguo) using RNA-seq. In total, 3,279 unigenes were differentially expressed between the pre- and post-climacteric fruits. Differentially expressed genes (DEGs) were subjected to Gene Ontology analysis, and 31 categories were significantly enriched in the groups ‘biological process’, ‘molecular function’ and ‘cellular component’. The DEGs included genes related to plant hormones, such as ethylene, ABA, auxin, GA and brassinosteroid, and transcription factors, such as MADS, NAC, WRKY and HSF. Moreover, genes encoding enzymes related to DNA methylation, cytoskeletal proteins and heat shock proteins (HSPs) showed differential expression between the pre- and post-climacteric fruits. Select DEGs were subjected to further analysis using quantitative RT-PCR (qRT-PCR), and the results were consistent with those of RNA-seq. Our data suggest that in addition to ethylene, other hormones play important roles in regulating fruit ripening and may interact with ethylene signaling during this process. DNA methylation-related methyltransferase and cytoskeletal protein genes are also involved in fruit ripening. Our results provide useful information for future research on pear fruit ripening. PMID:25215597

  18. Transcriptome Analysis and Gene Expression Profiling of Abortive and Developing Ovules during Fruit Development in Hazelnut

    PubMed Central

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    Background A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. Methodology/Principal Findings In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. Conclusions/Significance The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut. PMID:25836368

  19. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    PubMed Central

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were

  20. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development.

    PubMed

    Wang, Xiao-Wei; Luan, Jun-Bo; Li, Jun-Min; Bao, Yan-Yuan; Zhang, Chuan-Xi; Liu, Shu-Sheng

    2010-06-24

    Whitefly (Bemisia tabaci) causes extensive crop damage throughout the world by feeding directly on plants and by vectoring hundreds of species of begomoviruses. Yet little is understood about its genes involved in development, insecticide resistance, host range plasticity and virus transmission. To facilitate research on whitefly, we present a method for de novo assembly of whitefly transcriptome using short read sequencing technology (Illumina). In a single run, we produced more than 43 million sequencing reads. These reads were assembled into 168,900 unique sequences (mean size = 266 bp) which represent more than 10-fold of all the whitefly sequences deposited in the GenBank (as of March 2010). Based on similarity search with known proteins, these analyses identified 27,290 sequences with a cut-off E-value above 10-5. Assembled sequences were annotated with gene descriptions, gene ontology and clusters of orthologous group terms. In addition, we investigated the transcriptome changes during whitefly development using a tag-based digital gene expression (DGE) system. We obtained a sequencing depth of over 2.5 million tags per sample and identified a large number of genes associated with specific developmental stages and insecticide resistance. Our data provides the most comprehensive sequence resource available for whitefly study and demonstrates that the Illumina sequencing allows de novo transcriptome assembly and gene expression analysis in a species lacking genome information. We anticipate that next generation sequencing technologies hold great potential for the study of the transcriptome in other non-model organisms.

  1. Transcriptomic and Proteomic Analysis of Arion vulgaris—Proteins for Probably Successful Survival Strategies?

    PubMed Central

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J.; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  2. Transcriptomic and Proteomic Analysis of Arion vulgaris--Proteins for Probably Successful Survival Strategies?

    PubMed

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.

  3. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45

    PubMed Central

    Zhi, Yan; Wu, Qun; Xu, Yan

    2017-01-01

    Natural Bacillus isolates generate limited amounts of surfactin (<10% of their biomass), which functions as an antibiotic or signalling molecule in inter-/intra-specific interactions. However, overproduction of surfactin in Bacillus amyloliquefaciens MT45 was observed at a titre of 2.93 g/l, which is equivalent to half of the maximum biomass. To systemically unravel this efficient biosynthetic process, the genome and transcriptome of this bacterium were compared with those of B. amyloliquefaciens type strain DSM7T. MT45 possesses a smaller genome while containing more unique transporters and resistance-associated genes. Comparative transcriptome analysis revealed notable enrichment of the surfactin synthesis pathway in MT45, including central carbon metabolism and fatty acid biosynthesis to provide sufficient quantities of building precursors. Most importantly, the modular surfactin synthase overexpressed (9 to 49-fold) in MT45 compared to DSM7T suggested efficient surfactin assembly and resulted in the overproduction of surfactin. Furthermore, based on the expression trends observed in the transcriptome, there are multiple potential regulatory genes mediating the expression of surfactin synthase. Thus, the results of the present study provide new insights regarding the synthesis and regulation of surfactin in high-producing strain and enrich the genomic and transcriptomic resources available for B. amyloliquefaciens. PMID:28112210

  4. Transcriptomic and proteomic analysis of mouse radiation-induced acute myeloid leukaemia (AML)

    PubMed Central

    Badie, Christophe; Blachowicz, Agnieszka; Barjaktarovic, Zarko; Finnon, Rosemary; Michaux, Arlette; Sarioglu, Hakan; Brown, Natalie; Manning, Grainne; Benotmane, M. Abderrafi; Tapio, Soile; Polanska, Joanna; Bouffler, Simon D.

    2016-01-01

    A combined transcriptome and proteome analysis of mouse radiation-induced AMLs using two primary AMLs, cell lines from these primaries, another cell line and its in vivo passage is reported. Compared to haematopoietic progenitor and stem cells (HPSC), over 5000 transcriptome alterations were identified, 2600 present in all materials. 55 and 3 alterations were detected in the proteomes of the cell lines and primary/in vivo passage material respectively, with one common to all materials. In cell lines, approximately 50% of the transcriptome changes are related to adaptation to cell culture, and in the proteome this proportion was higher. An AML ‘signature’ of 17 genes/proteins commonly deregulated in primary AMLs and cell lines compared to HPSCs was identified and validated using human AML transcriptome data. This also distinguishes primary AMLs from cell lines and includes proteins such as Coronin 1, pontin/RUVBL1 and Myeloperoxidase commonly implicated in human AML. C-Myc was identified as having a key role in radiation leukaemogenesis. These data identify novel candidates relevant to mouse radiation AML pathogenesis, and confirm that pathways of leukaemogenesis in the mouse and human share substantial commonality. PMID:27250028

  5. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed Central

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides. PMID:27625674

  6. Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data

    PubMed Central

    2014-01-01

    Background High-throughput omics technologies have enabled the measurement of many genes or metabolites simultaneously. The resulting high dimensional experimental data poses significant challenges to transcriptomics and metabolomics data analysis methods, which may lead to spurious instead of biologically relevant results. One strategy to improve the results is the incorporation of prior biological knowledge in the analysis. This strategy is used to reduce the solution space and/or to focus the analysis on biological meaningful regions. In this article, we review a selection of these methods used in transcriptomics and metabolomics. We combine the reviewed methods in three groups based on the underlying mathematical model: exploratory methods, supervised methods and estimation of the covariance matrix. We discuss which prior knowledge has been used, how it is incorporated and how it modifies the mathematical properties of the underlying methods. PMID:25033193

  7. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development.

    PubMed

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-10-10

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.

  8. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development

    PubMed Central

    Wong, Yue Him; Ryu, Taewoo; Seridi, Loqmane; Ghosheh, Yanal; Bougouffa, Salim; Qian, Pei-Yuan; Ravasi, Timothy

    2014-01-01

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids. PMID:25300304

  9. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells.

    PubMed

    Charlebois, Audrey; Jacques, Mario; Archambault, Marie

    2016-10-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxaemias in animal species. Recently, C. perfringens was shown to form biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. However, very little is known on the subject and no information is available on gene expression in C. perfringens biofilms. To gain insights into the differences between free-living C. perfringens cells and those in biofilms, we used RNA sequencing. In total, 25.7% of genes showed differential expression in the two growth modes; about 12.8% of genes were up-regulated and about 12.9% were down-regulated in biofilms. We show that 772 genes were significantly differentially expressed between biofilms and planktonic cells from the supernatant of biofilms. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in virulence, energy production, amino acid, nucleotide and carbohydrate metabolism, and in translation and ribosomal structure. Genes up-regulated in biofilm cells were mainly involved in amino acid and carbohydrate metabolism, transcription, inorganic ion metabolism and in defence mechanisms. This study provides new insights into the transcriptomic response of C. perfringens during biofilm formation.

  10. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles

    PubMed Central

    Lefebvre, Fabio Alexis; Benoit Bouvrette, Louis Philip; Perras, Lilyanne; Blanchet-Cohen, Alexis; Garnier, Delphine; Rak, Janusz; Lécuyer, Éric

    2016-01-01

    Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing specific repertoires of genetic material. In mammals, EVs can mediate the horizontal transfer of various cargos and signaling molecules, notably miRNA and mRNA species. Whether this form of intercellular communication prevails in other metazoans remains unclear. Here, we report the first parallel comparative morphologic and transcriptomic characterization of EVs from Drosophila and human cellular models. Electronic microscopy revealed that human and Drosophila cells release similar EVs with diameters ranging from 30 to 200 nm, which contain complex populations of transcripts. RNA-seq identified abundant ribosomal RNAs, related pseudogenes and retrotransposons in human and Drosophila EVs. Vault RNAs and Y RNAs abounded in human samples, whereas small nucleolar RNAs involved in pseudouridylation were most prevalent in Drosophila EVs. Numerous mRNAs were identified, largely consisting of exonic sequences displaying full-length read coverage and enriched for translation and electronic transport chain functions. By analogy with human systems, these sizeable similarities suggest that EVs could potentially enable RNA-mediated intercellular communication in Drosophila. PMID:27282340

  11. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

    PubMed Central

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-01-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family. PMID:26743902

  12. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa.

    PubMed

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-02-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.

  13. Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis)

    PubMed Central

    2012-01-01

    Background Plants have evolved a complicated resistance system and exhibit a variety of defense patterns in response to different attackers. Previous studies have shown that responses of plants to chewing insects and phloem-feeding insects are significantly different. Less is known, however, regarding molecular responses to leafminer insects. To investigate plant transcriptome response to leafminers, we selected the leafminer Liriomyza huidobrensis, which has a special feeding pattern more similar to pathogen damage than that of chewing insects, as a model insect, and Arabidopsis thaliana as a response plant. Results We first investigated local and systemic responses of A. thaliana to leafminer feeding using an Affymetrix ATH1 genome array. Genes related to metabolic processes and stimulus responses were highly regulated. Most systemically-induced genes formed a subset of the local response genes. We then downloaded gene expression data from online databases and used hierarchical clustering to explore relationships among gene expression patterns in A. thaliana damaged by different attackers. Conclusions Our results demonstrate that plant response patterns are strongly coupled to damage patterns of attackers. PMID:23231622

  14. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  15. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    PubMed

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.

  16. De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress.

    PubMed

    Zhan, Xiangqiang; Yang, Lan; Wang, Dong; Zhu, Jian Kang; Lang, Zhaobo

    2016-03-09

    Ocimum americanum var. pilosum is a chilling-sensitive, widely distributed plant that is consumed as a vegetable in central and southern China. To increase our understanding of cold stress responses in this species, we performed de novo transcriptome assembly for O. americanum var. pilosum and compared the transcriptomes of plants grown under normal and low temperatures. A total of 115,022,842 high quality, clean reads were obtained from four libraries (two replicates of control samples and two replicates of chilling-treated samples) and were used to perform de novo transcriptome assembly. After isoforms were considered, 42,816 unigenes were generated, 30,748 of which were similar to known proteins as determined by a BLASTx search (E-value < =1.0E-05) against NCBI non-redundant, Swiss-Prot, Gene Ontology, KEGG, and Cluster of COG databases. Comparative analysis of transcriptomes revealed that 5179 unigenes were differentially expressed (with at least 2-fold changes, FDR < 0.01) in chilling-treated samples, and that 2344 and 2835 unigenes were up- and down-regulated by chilling stress, respectively. Expression of the 10 most up-regulated and the five most down-regulated unigenes was validated by qRT-PCR. To increase our understanding of these differentially expressed unigenes, we performed Gene ontology and KEGG pathway enrichment analyses. The CBF-mediated transcriptional cascade, a well-known cold tolerance pathway, was reconstructed using our de novo assembled transcriptome. Our study has generated a genome-wide transcript profile of O. americanum var. pilosum and a de novo assembled transcriptome, which can be used to characterize genes related to diverse biological processes. This is the first study to assess the cold-responsive transcriptome in an Ocimum species. Our results suggest that cold temperature significantly affects genes related to protein translation and cellular metabolism in this chilling sensitive species. Although most of the CBF

  17. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  18. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.

    PubMed

    Pfeifer-Sancar, Katharina; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2013-12-17

    The use of RNAseq to resolve the transcriptional organization of an organism was established in recent years and also showed the complexity and dynamics of bacterial transcriptomes. The aim of this study was to comprehensively investigate the transcriptome of the industrially relevant amino acid producer and model organism Corynebacterium glutamicum by RNAseq in order to improve its genome annotation and to describe important features for transcription and translation. RNAseq data sets were obtained by two methods, one that focuses on 5'-ends of primary transcripts and another that provides the overall transcriptome with an improved resolution of 3'-ends of transcripts. Subsequent data analysis led to the identification of more than 2,000 transcription start sites (TSSs), the definition of 5'-UTRs (untranslated regions) for annotated protein-coding genes, operon structures and many novel transcripts located between or in antisense orientation to protein-coding regions. Interestingly, a high number of mRNAs (33%) is transcribed as leaderless transcripts. From the data, consensus promoter and ribosome binding site (RBS) motifs were identified and it was shown that the majority of genes in C. glutamicum are transcribed monocistronically, but operons containing up to 16 genes are also present. The comprehensive transcriptome map of C. glutamicum established in this study represents a major step forward towards a complete definition of genetic elements (e.g. promoter regions, gene starts and stops, 5'-UTRs, RBSs, transcript starts and ends) and provides the ideal basis for further analyses on transcriptional regulatory networks in this organism. The methods developed are easily applicable for other bacteria and have the potential to be used also for quantification of transcriptomes, replacing microarrays in the near future.

  19. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique

    PubMed Central

    2013-01-01

    Background The use of RNAseq to resolve the transcriptional organization of an organism was established in recent years and also showed the complexity and dynamics of bacterial transcriptomes. The aim of this study was to comprehensively investigate the transcriptome of the industrially relevant amino acid producer and model organism Corynebacterium glutamicum by RNAseq in order to improve its genome annotation and to describe important features for transcription and translation. Results RNAseq data sets were obtained by two methods, one that focuses on 5′-ends of primary transcripts and another that provides the overall transcriptome with an improved resolution of 3′-ends of transcripts. Subsequent data analysis led to the identification of more than 2,000 transcription start sites (TSSs), the definition of 5′-UTRs (untranslated regions) for annotated protein-coding genes, operon structures and many novel transcripts located between or in antisense orientation to protein-coding regions. Interestingly, a high number of mRNAs (33%) is transcribed as leaderless transcripts. From the data, consensus promoter and ribosome binding site (RBS) motifs were identified and it was shown that the majority of genes in C. glutamicum are transcribed monocistronically, but operons containing up to 16 genes are also present. Conclusions The comprehensive transcriptome map of C. glutamicum established in this study represents a major step forward towards a complete definition of genetic elements (e.g. promoter regions, gene starts and stops, 5′-UTRs, RBSs, transcript starts and ends) and provides the ideal basis for further analyses on transcriptional regulatory networks in this organism. The methods developed are easily applicable for other bacteria and have the potential to be used also for quantification of transcriptomes, replacing microarrays in the near future. PMID:24341750

  20. Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate.

    PubMed

    Chen, Shu-Hwa; Li, Kun-Lin; Lu, I-Hsuan; Wang, Yu-Bin; Tung, Che-Huang; Ting, Hsiu-Chi; Lin, Ching-Yi; Lin, Chung-Yen; Su, Yi-Hsien; Yu, Jr-Kai

    2014-06-01

    Hemichordates are the sister group of echinoderms, and together they are closely related to chordates within the deuterostome lineage. Therefore, hemichordates represent an important animal group for the understanding of both the evolution of developmental mechanisms in deuterostome animals and the origin of chordates. Recently, the majority of studies investigating hemichordates have focused on the direct-developing enteropneust hemichordate Saccoglossus kowalevskii; few have focused on the indirect-developing hemichordates, partly because of the lack of extensive genomic resources in these animals. In this study, we report the sequencing and analysis of a transcriptome from an indirect-developing enteropneust hemichordate Ptychodera flava. We sequenced a mixed cDNA library from six developmental stages using the Roche GS FLX Titanium System to generate more than 879,000 reads. These reads were assembled into 17,990 contigs with an average length of 1316bp. We found that 60% of the assembled contigs, along with 28% of the unassembled singleton reads, had significant hits to sequences in the NCBI database by a BLASTx search, and we also annotated these sequences and obtained Gene Ontology (GO) terms for 6744 contigs and 5802 singletons. We further identified candidate P. flava transcripts corresponding to genes involved in major developmental signaling pathways, including the Wnt, Notch and TGF-β signaling pathways. Using available genome/transcriptome datasets from the direct-developing hemichordate S. kowalevskii, the echinoderm Strongylocentrotus purpuratus and the chordate Branchiostoma floridae, we found that 90%, 80% and 73% of the annotated protein sequences in these respective species matched our P. flava transcriptome in a homology search. We also constructed a database for the P. flava transcriptome, and researchers can easily access this dataset online. Our dataset significantly increases the amount of available P. flava sequence data and can serve as a

  1. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius.

    PubMed

    Hu, Ruibo; Xu, Yan; Yu, Changjiang; He, Kang; Tang, Qi; Jia, Chunlin; He, Guo; Wang, Xiaoyu; Kong, Yingzhen; Zhou, Gongke

    2017-08-22

    Miscanthus is a promising lignocellulosic bioenergy crop for bioethanol production. To identify candidate genes and regulation networks involved in secondary cell wall (SCW) development in Miscanthus, we performed de novo transcriptome analysis of a developing internode. According to the histological and in-situ histochemical analysis, an elongating internode of M. lutarioriparius can be divided into three distinct segments, the upper internode (UI), middle internode (MI) and basal internode (BI), each representing a different stage of SCW development. The transcriptome analysis generated approximately 300 million clean reads, which were de novo assembled into 79,705 unigenes. Nearly 65% of unigenes was annotated in seven public databases. Comparative profiling among the UI, MI and BI revealed four distinct clusters. Moreover, detailed expression profiling was analyzed for gene families and transcription factors (TFs) involved in SCW biosynthesis, assembly and modification. Based on the co-expression patterns, putative regulatory networks between TFs and SCW-associated genes were constructed. The work provided the first transcriptome analysis of SCW development in M. lutarioriparius. The results obtained provide novel insights into the biosynthesis and regulation of SCW in Miscanthus. In addition, the genes identified represent good candidates for further functional studies to unravel their roles in SCW biosynthesis and modification.

  2. Visual Analysis of Transcriptome Data in the Context of Anatomical Structures and Biological Networks

    PubMed Central

    Junker, Astrid; Rohn, Hendrik; Schreiber, Falk

    2012-01-01

    The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks. PMID:23162564

  3. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus

    PubMed Central

    Kozlov, Sergey A.; Lazarev, Vassili N.; Kostryukova, Elena S.; Selezneva, Oksana V.; Ospanova, Elena A.; Alexeev, Dmitry G.; Govorun, Vadim M.; Grishin, Eugene V.

    2014-01-01

    A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2–261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found. PMID:25977780

  4. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    PubMed

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transcriptome analysis of scorpion species belonging to the Vaejovis genus.

    PubMed

    Quintero-Hernández, Verónica; Ramírez-Carreto, Santos; Romero-Gutiérrez, María Teresa; Valdez-Velázquez, Laura L; Becerril, Baltazar; Possani, Lourival D; Ortiz, Ernesto

    2015-01-01

    Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.

  6. A preliminary transcriptomic analysis of lichen Dirinaria sp.

    NASA Astrophysics Data System (ADS)

    Nurhani, A. R. Siti; Munir, A. M. Abdul; Wahid, S. Mohd; Diba, A. B. Farah

    2013-11-01

    Lichen is a slow-growing symbiotic organism that consists of a fungus and a photobiont, comprising either an algae or a cyanobacterium living together in a single composite body, known as a thallus. Lichens have a remarkable ability to survive in extreme environmental conditions on earth that makes them a great biological indicator of air quality. The primary goal of this study is to discover the genes that may unravel the mechanism behind the tolerance of this lichen towards air pollution. Lichen samples of Dirinaria sp. were collected from two sites - Jerantut (J) as having a relatively good air quality and Klang (K), an area of bad air quality. Total RNA extraction was carried out, followed by sample preparation prior to transcriptomic sequencing. Altogether 21.7 million and 30.5 million high quality sequence reads from samples J and K, respectively were de novo assembled into 106884 and 88116 transcripts. The assembled sequences were annotated by BLASTX comparison against a non-redundant protein sequence database with 59403 sequences (67.4%) of sample K and 68972 sequences (64.5%) of sample J had a match in the database with a cut-off value of 1e-06. A total of 42175 sequences (47.8%) of sample K and 25648 sequences (24%) of sample J had a Gene Ontology term match. The sequences were assigned to Kyoto Encyclopedia of Genes and Genome (KEGG) pathways, resulting in 129 KEGG pathways generated from sample K, whilst 123 KEGG pathways were produced from sample J.

  7. Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus

    PubMed Central

    Quintero-Hernández, Verónica; Ramírez-Carreto, Santos; Romero-Gutiérrez, María Teresa; Valdez-Velázquez, Laura L.; Becerril, Baltazar; Possani, Lourival D.; Ortiz, Ernesto

    2015-01-01

    Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist’s attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family. PMID:25659089

  8. Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L.

    PubMed Central

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for

  9. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  10. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further

  11. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

    PubMed

    Kolbusz, Magdalena Anna; Di Falco, Marcos; Ishmael, Nadeeza; Marqueteau, Sandrine; Moisan, Marie-Claude; Baptista, Cassio da Silva; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Transcriptome Analysis of Catharanthus roseus for Gene Discovery and Expression Profiling

    PubMed Central

    Sharma, Raghvendra; Sinha, Alok K.; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  13. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.

    PubMed

    Sun, Na; Pan, Cuiping; Nickell, Stephan; Mann, Matthias; Baumeister, Wolfgang; Nagy, István

    2010-09-03

    A comparative proteome and transcriptome analysis of Thermoplasma acidophilum cultured under aerobic and anaerobic conditions has been performed. One-thousand twenty-five proteins were identified covering 88% of the cytosolic proteome. Using a label-free quantitation method, we found that approximately one-quarter of the identified proteome (263 proteins) were significantly induced (>2 fold) under anaerobic conditions. Thirty-nine macromolecular complexes were identified, of which 28 were quantified and 15 were regulated under anaerobiosis. In parallel, a whole genome cDNA microarray analysis was performed showing that the expression levels of 445 genes were influenced by the absence of oxygen. Interestingly, more than 40% of the membrane protein-encoding genes (145 out of 335 ORFs) were up- or down-regulated at the mRNA level. Many of these proteins are functionally associated with extracellular protein or peptide degradation or ion and amino acid transport. Comparison of the transcriptome and proteome showed only a weak positive correlation between mRNA and protein expression changes, which is indicative of extensive post-transcriptional regulatory mechanisms in T. acidophilum. Integration of transcriptomics and proteomics data generated hypotheses for physiological adaptations of the cells to anaerobiosis, and the quantitative proteomics data together with quantitative analysis of protein complexes provide a platform for correlation of MS-based proteomics studies with cryo-electron tomography-based visual proteomics approaches.

  14. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis.

    PubMed

    Yang, Weizhao; Qi, Yin; Fu, Jinzhong

    2016-10-03

    High-altitude adaptation provides an excellent system for studying how organisms cope with multiple environmental stressors and interacting genetic modifications. To explore the genetic basis of high-altitude adaptation in poikilothermic animals, we acquired transcriptome sequences from a high-altitude population and a low-altitude population of the Asiatic toad (Bufo gargarizans). Transcriptome data from another high-altitude amphibian, Rana kukunoris and its low-altitude relative R. chensiensis, which are from a previous study, were also incorporated into our comparative analysis. More than 40,000 transcripts were obtained from each transcriptome, and 5107 one-to-one orthologs were identified among the four taxa for comparative analysis. A total of 29 (Bufo) and 33 (Rana) putative positively selected genes were identified for the two high-altitude species, which were mainly concentrated in nutrient metabolism related functions. Using SNP-tagging and FST outlier analysis, we further tested 89 other nutrient metabolism related genes for signatures of natural selection, and found that two genes, CAPN2 and ITPR1, were likely under balancing selection. We did not detect any positively selected genes associated with response to hypoxia. Amphibians clearly employ different genetic mechanisms for high-altitude adaptation compared to endotherms. Modifications of genes associated with nutrient metabolism feature prominently while genes related to hypoxia tolerance appear to be insignificant. Poikilotherms represent the majority of animal diversity, and we hope that our results will provide useful directions for future studies of amphibians as well as other poikilotherms.

  15. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions.

    PubMed

    Yoshida, Yuta; Tomiyama, Takuya; Maruta, Takanori; Tomita, Masaru; Ishikawa, Takahiro; Arakawa, Kazuharu

    2016-03-03

    The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena, the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions. The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis, of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans-splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel β-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these

  16. IMPROVED PERFORMANCE OF GENE SET ANALYSIS ON GENOME-WIDE TRANSCRIPTOMICS DATA WHEN USING GENE ACTIVITY STATE ESTIMATES.

    PubMed

    Kamp, Thomas; Adams, Micah; Disselkoen, Craig; Tintle, Nathan

    2016-01-01

    Gene set analysis methods continue to be a popular and powerful method of evaluating genome-wide transcriptomics data. These approach require a priori grouping of genes into biologically meaningful sets, and then conducting downstream analyses at the set (instead of gene) level of analysis. Gene set analysis methods have been shown to yield more powerful statistical conclusions than single-gene analyses due to both reduced multiple testing penalties and potentially larger observed effects due to the aggregation of effects across multiple genes in the set. Traditionally, gene set analysis methods have been applied directly to normalized, log-transformed, transcriptomics data. Recently, efforts have been made to transform transcriptomics data to scales yielding more biologically interpretable results. For example, recently proposed models transform log-transformed transcriptomics data to a confidence metric (ranging between 0 and 100%) that a gene is active (roughly speaking, that the gene product is part of an active cellular mechanism). In this manuscript, we demonstrate, on both real and simulated transcriptomics data, that tests for differential expression between sets of genes using are typically more powerful when using gene activity state estimates as opposed to log-transformed gene expression data. Our analysis suggests further exploration of techniques to transform transcriptomics data to meaningful quantities for improved downstream inference.

  17. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays.

    PubMed

    Degletagne, Cyril; Keime, Céline; Rey, Benjamin; de Dinechin, Marc; Forcheron, Fabien; Chuchana, Paul; Jouventin, Pierre; Gautier, Christian; Duchamp, Claude

    2010-05-31

    Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions.

  18. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    PubMed Central

    2010-01-01

    Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions. PMID:20509979

  19. jNMFMA: a joint non-negative matrix factorization meta-analysis of transcriptomics data.

    PubMed

    Wang, Hong-Qiang; Zheng, Chun-Hou; Zhao, Xing-Ming

    2015-02-15

    Tremendous amount of omics data being accumulated poses a pressing challenge of meta-analyzing the heterogeneous data for mining new biological knowledge. Most existing methods deal with each gene independently, thus often resulting in high false positive rates in detecting differentially expressed genes (DEG). To our knowledge, no or little effort has been devoted to methods that consider dependence structures underlying transcriptomics data for DEG identification in meta-analysis context. This article proposes a new meta-analysis method for identification of DEGs based on joint non-negative matrix factorization (jNMFMA). We mathematically extend non-negative matrix factorization (NMF) to a joint version (jNMF), which is used to simultaneously decompose multiple transcriptomics data matrices into one common submatrix plus multiple individual submatrices. By the jNMF, the dependence structures underlying transcriptomics data can be interrogated and utilized, while the high-dimensional transcriptomics data are mapped into a low-dimensional space spanned by metagenes that represent hidden biological signals. jNMFMA finally identifies DEGs as genes that are associated with differentially expressed metagenes. The ability of extracting dependence structures makes jNMFMA more efficient and robust to identify DEGs in meta-analysis context. Furthermore, jNMFMA is also flexible to identify DEGs that are consistent among various types of omics data, e.g. gene expression and DNA methylation. Experimental results on both simulation data and real-world cancer data demonstrate the effectiveness of jNMFMA and its superior performance over other popular approaches. R code for jNMFMA is available for non-commercial use via http://micblab.iim.ac.cn/Download/. hqwang@ustc.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development

    PubMed Central

    Lee, Xin-Wei; Mat-Isa, Mohd-Noor; Mohd-Elias, Nur-Atiqah; Aizat-Juhari, Mohd Afiq; Goh, Hoe-Han; Dear, Paul H.; Chow, Keng-See; Haji Adam, Jumaat; Mohamed, Rahmah; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2016-01-01

    Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development. PMID:27977777

  1. Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development.

    PubMed

    Lee, Xin-Wei; Mat-Isa, Mohd-Noor; Mohd-Elias, Nur-Atiqah; Aizat-Juhari, Mohd Afiq; Goh, Hoe-Han; Dear, Paul H; Chow, Keng-See; Haji Adam, Jumaat; Mohamed, Rahmah; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2016-01-01

    Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development.

  2. Comparative transcriptomic analysis between an artificially induced SIRS in healthy individuals and spontaneous sepsis.

    PubMed

    Monteiro Sousa, Claudio; Boissel, Jean-Pierre; Gueyffier, François; Olivera-Botello, Gustavo

    2015-10-01

    Sepsis is defined as a syndrome combining a systemic inflammatory response with a documented infection. It may progress to more serious cases such as septic shock following the failure of one or more organs and the emergence of hemodynamic defects. Assuming that the emergence of serious septic syndromes may be partially explained by the early loss of regulation of the inflammatory response, we decided to compare, in a transcriptomic perspective, the biological mechanisms expressed during an induced systemic inflammatory response with those expressed during severe septic syndromes. By using open-access transcriptomic databases, we first studied the kinetics of an induced inflammatory response. The use of functional analysis helped us identify discriminating biological mechanisms, such as the mTOR signaling pathway, between the pathological cases of sepsis and non-pathological (i.e., the artificially induced SIRS) cases. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques

    PubMed Central

    Virtaneva, Kimmo; Porcella, Stephen F.; Graham, Morag R.; Ireland, Robin M.; Johnson, Claire A.; Ricklefs, Stacy M.; Babar, Imran; Parkins, Larye D.; Romero, Romina A.; Corn, G. Judson; Gardner, Don J.; Bailey, John R.; Parnell, Michael J.; Musser, James M.

    2005-01-01

    Identification of the genetic events that contribute to host–pathogen interactions is important for understanding the natural history of infectious diseases and developing therapeutics. Transcriptome studies conducted on pathogens have been central to this goal in recent years. However, most of these investigations have focused on specific end points or disease phases, rather than analysis of the entire time course of infection. To gain a more complete understanding of how bacterial gene expression changes over time in a primate host, the transcriptome of group A Streptococcus (GAS) was analyzed during an 86-day infection protocol in 20 cynomolgus macaques with experimental pharyngitis. The study used 260 custom Affymetrix (Santa Clara, CA) chips, and data were confirmed by TaqMan analysis. Colonization, acute, and asymptomatic phases of disease were identified. Successful colonization and severe inflammation were significantly correlated with an early onset of superantigen gene expression. The differential expression of two-component regulators covR and spy0680 (M1_spy0874) was significantly associated with GAS colony-forming units, inflammation, and phases of disease. Prophage virulence gene expression and prophage induction occurred predominantly during high pathogen cell densities and acute inflammation. We discovered that temporal changes in the GAS transcriptome were integrally linked to the phase of clinical disease and host-defense response. Knowledge of the gene expression patterns characterizing each phase of pathogen–host interaction provides avenues for targeted investigation of proven and putative virulence factors and genes of unknown function and will assist vaccine research. PMID:15956184

  4. Analysis of upland cotton (Gossypium hirsutum) response to Verticillium dahliae inoculation by transcriptome sequencing.

    PubMed

    Shao, B X; Zhao, Y L; Chen, W; Wang, H M; Guo, Z J; Gong, H Y; Sang, X H; Cui, Y L; Wang, C H

    2015-10-27

    Verticillium wilt is one of the main diseases in cotton (Gossypium hirsutum), severely reduces yield and fiber quality, and is difficult to be con-trolled effectively. At present, the molecular mechanism that confers resistance to this disease is unclear. Transcriptome sequencing is an important method to detect resistance genes, explore metabolic pathways, and study resistance mechanisms. In this study, the transcriptome of a disease-resistant inbred cot-ton line inoculated with Verticillium dahliae was sequenced. A total of 126,402 unigenes were obtained using de novo assembly and data analysis, 99,712 (78.88%) of which were annotated into the Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. The expression patterns of 16 candidate disease-resis-tance genes showed that some genes were upregulated soon after V. dahliae inoculation and others were upregulated later, which may indicate instanta-neous basal defense and lagged specific defense, respectively. We conducted a preliminary analysis of the transcriptome database, which will contribute to further research regarding the cloning of disease-resistance genes.

  5. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism. PMID:26193085

  6. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis.

    PubMed

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism.

  7. Transcriptome analysis of Cucumis sativus infected by Cucurbit chlorotic yellows virus.

    PubMed

    Sun, Xinyan; Wang, Zhenyue; Gu, Qinsheng; Li, Honglian; Han, Weili; Shi, Yan

    2017-02-02

    Cucurbit chlorotic yellows virus (CCYV) is a recently reported bipartite crinivirus that causes chlorotic leaf spots and yellowing symptoms on the leaves of cucurbit plants. The virus-host interaction of CCYV remains to be elucidated, and the influence of criniviruses on the host gene transcriptome requires analysis. We used transcriptome sequencing to analyse the differentially expressed genes (DEGs) caused by CCYV infection. CCYV infection resulted in 865 DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified 67 pathways, and the three major enrichment pathways (according to the P-values) were photosynthesis-antenna proteins (KO00196), phenylalanine metabolism (KO00360a), and phenylpropanoid biosynthesis (KO00940). Of the 13 DEGs identified in phenylalanine metabolism, 11 genes encode disease resistance-related phenylalanine ammonia-lyase (PAL) genes. Using quantitative real-time PCR, we validated the differential expression of 12 genes. Our study based on the CCYV-cucumber interaction provides comprehensive transcriptomic information, and will improve our understanding of host-crinivirus interactions.

  8. Transcriptome sequencing and analysis of leaf tissue of Avicennia marina using the Illumina platform.

    PubMed

    Huang, Jianzi; Lu, Xiang; Zhang, Wanke; Huang, Rongfeng; Chen, Shouyi; Zheng, Yizhi

    2014-01-01

    Avicennia marina is a widely distributed mangrove species that thrives in high-salinity habitats. It plays a significant role in supporting coastal ecosystem and holds unique potential for studying molecular mechanisms underlying ecological adaptation. Despite and sometimes because of its numerous merits, this species is facing increasing pressure of exploitation and deforestation. Both study on adaptation mechanisms and conservation efforts necessitate more genomic resources for A. marina. In this study, we used Illumina sequencing of an A. marina foliar cDNA library to generate a transcriptome dataset for gene and marker discovery. We obtained 40 million high-quality reads and assembled them into 91,125 unigenes with a mean length of 463 bp. These unigenes covered most of the publicly available A. marina Sanger ESTs and greatly extended the repertoire of transcripts for this species. A total of 54,497 and 32,637 unigenes were annotated based on homology to sequences in the NCBI non-redundant and the Swiss-prot protein databases, respectively. Both Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed some transcriptomic signatures of stress adaptation for this halophytic species. We also detected an extraordinary amount of transcripts derived from fungal endophytes and demonstrated the utility of transcriptome sequencing in surveying endophyte diversity without isolating them out of plant tissues. Additionally, we identified 3,423 candidate simple sequence repeats (SSRs) from 3,141 unigenes with a density of one SSR locus every 8.25 kb sequence. Our transcriptomic data will provide valuable resources for ecological, genetic and evolutionary studies in A. marina.

  9. Transcriptome Sequencing and Analysis of Leaf Tissue of Avicennia marina Using the Illumina Platform

    PubMed Central

    Zhang, Wanke; Huang, Rongfeng; Chen, Shouyi; Zheng, Yizhi

    2014-01-01

    Avicennia marina is a widely distributed mangrove species that thrives in high-salinity habitats. It plays a significant role in supporting coastal ecosystem and holds unique potential for studying molecular mechanisms underlying ecological adaptation. Despite and sometimes because of its numerous merits, this species is facing increasing pressure of exploitation and deforestation. Both study on adaptation mechanisms and conservation efforts necessitate more genomic resources for A. marina. In this study, we used Illumina sequencing of an A. marina foliar cDNA library to generate a transcriptome dataset for gene and marker discovery. We obtained 40 million high-quality reads and assembled them into 91,125 unigenes with a mean length of 463 bp. These unigenes covered most of the publicly available A. marina Sanger ESTs and greatly extended the repertoire of transcripts for this species. A total of 54,497 and 32,637 unigenes were annotated based on homology to sequences in the NCBI non-redundant and the Swiss-prot protein databases, respectively. Both Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed some transcriptomic signatures of stress adaptation for this halophytic species. We also detected an extraordinary amount of transcripts derived from fungal endophytes and demonstrated the utility of transcriptome sequencing in surveying endophyte diversity without isolating them out of plant tissues. Additionally, we identified 3,423 candidate simple sequence repeats (SSRs) from 3,141 unigenes with a density of one SSR locus every 8.25 kb sequence. Our transcriptomic data will provide valuable resources for ecological, genetic and evolutionary studies in A. marina. PMID:25265387

  10. Transcriptome Analysis of Hamelia patens (Rubiaceae) Anthers Reveals Candidate Genes for Tapetum and Pollen Wall Development

    PubMed Central

    Yue, Lin; Twell, David; Kuang, Yanfeng; Liao, Jingping; Zhou, Xianqiang

    2017-01-01

    Studies of the anther transcriptome on non-model plants without a known genome are surprisingly scarce. RNA-Seq and digital gene expression (DGE) profiling provides a comprehensive approach to identify candidate genes contributing to developmental processes in non-model species. Here we built a transcriptome library of developing anthers of Hamelia patens and analyzed DGE profiles from each stage to identify genes that regulate tapetum and pollen development. In total 7,720 putative differentially expressed genes across four anther stages were identified. The number of putative stage-specific genes was: 776 at microspore mother cell stage, 807 at tetrad stage, 322 at uninucleate microspore stage, and the highest number (1,864) at bicellular pollen stage. GO enrichment analysis revealed 243 differentially expressed and 108 stage-specific genes that are potentially related to tapetum development, sporopollenin synthesis, and pollen wall. The number of expressed genes, their function and expression profiles were all significantly correlated with anther developmental processes. Overall comparisons of anther and pollen transcriptomes with those of rice and Arabidopsis together with the expression profiles of homologs of known anther-expressed genes, revealed conserved patterns and also divergence. The divergence may reflect taxon-specific differences in gene expression, the use RNA-seq as a more sensitive methodology, variation in tissue composition and sampling strategies. Given the lack of genomic sequence, this study succeeded in assigning putative identity to a significant proportion of anther-expressed genes and genes relevant to tapetum and pollen development in H. patens. The anther transcriptome revealed a molecular distinction between developmental stages, serving as a resource to unravel the functions of genes involved in anther development in H. patens and informing the analysis of other members of the Rubiaceae. PMID:28119704

  11. Proteomic and transcriptomic analysis of saliva components from the hematophagous reduviid Triatoma pallidipennis.

    PubMed

    Hernández-Vargas, María J; Gil, Jeovanis; Lozano, Luis; Pedraza-Escalona, Martha; Ortiz, Ernesto; Encarnación-Guevara, Sergio; Alagón, Alejandro; Corzo, Gerardo

    2017-06-06

    Species belonging to the Triatominae subfamily are commonly associated with Chagas disease, as they are potential vectors of the parasite Trypanosoma cruzi. However, their saliva contains a cocktail of diverse anti-hemostatic proteins that prevent blood coagulation, vasodilation and platelet aggregation of blood; components with indisputable therapeutic potential. We performed a transcriptomic and proteomic analyses of salivary glands and protein spots from 2DE gels of milked saliva, respectively, from the Mexican Triatoma pallidipennis. Massive sequencing techniques were used to reveal this protein diversity. A total of 78 out of 233 transcripts were identified as proteins in the saliva, divided among 43 of 55 spots from 2DE gels of saliva, identified by LC-MS/MS analysis. Some of the annotated transcripts putatively code for anti-hemostatic proteins, which share sequence similarities with proteins previously described for South American triatomines. The most abundant as well as diverse transcripts and proteins in the saliva were the anti-hemostatic triabins. For the first time, a transcriptomic analysis uncovered other unrelated but relevant components in triatomines, including antimicrobial and thrombolytic polypeptides. Likewise, unique proteins such as the angiotensin-converting enzyme were identified not just in the salivary gland transcriptome but also at saliva proteome of this North American bloodsucking insect. This manuscript is the first report of the correlation between proteome and transcriptome of Triatoma pallidipennis, which shows for the first time the presence of proteins in this insect that have not been characterized in other species of this family. This information contributes to a better understanding of the multiple host defense mechanisms that are being affected at the moment of blood ingestion by the insect. Furthermore, this report gives a repertoire of possible therapeutic proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism.

    PubMed

    Guo, Weihua; Feng, Xueyang

    2016-01-01

    Constraint-based metabolic modeling such as flux balance analysis (FBA) has been widely used to simulate cell metabolism. Thanks to its simplicity and flexibility, numerous algorithms have been developed based on FBA and successfully predicted the phenotypes of various biological systems. However, their phenotype predictions may not always be accurate in FBA because of using the objective function that is assumed for cell metabolism. To overcome this challenge, we have developed a novel computational framework, namely omFBA, to integrate multi-omics data (e.g. transcriptomics) into FBA to obtain omics-guided objective functions with high accuracy. In general, we first collected transcriptomics data and phenotype data from published database (e.g. GEO database) for different microorganisms such as Saccharomyces cerevisiae. We then developed a "Phenotype Match" algorithm to derive an objective function for FBA that could lead to the most accurate estimation of the known phenotype (e.g. ethanol yield). The derived objective function was next correlated with the transcriptomics data via regression analysis to generate the omics-guided objective function, which was next used to accurately simulate cell metabolism at unknown conditions. We have applied omFBA in studying sugar metabolism of S. cerevisiae and found that the ethanol yield could be accurately predicted in most of the cases tested (>80%) by using transcriptomics data alone, and revealed valuable metabolic insights such as the dynamics of flux ratios. Overall, omFBA presents a novel platform to potentially integrate multi-omics data simultaneously and could be incorporated with other FBA-derived tools by replacing the arbitrary objective function with the omics-guided objective functions.

  13. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

    PubMed

    Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun

    2016-07-01

    The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.

  14. Characterization of the Floral Transcriptome of Moso Bamboo (Phyllostachys edulis) at Different Flowering Developmental Stages by Transcriptome Sequencing and RNA-Seq Analysis

    PubMed Central

    Zhang, Chunling; Qi, Feiyan; Li, Xueping; Mu, Shaohua; Peng, Zhenhua

    2014-01-01

    Background As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla Carrière) is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first time, we investigated the transcriptome of developing flowers in Moso bamboo by using high-throughput Illumina GAII sequencing and mapping short reads to the Moso bamboo genome and reference genes. We performed RNA-seq analysis on four important stages of flower development, and obtained extensive gene and transcript abundance data for the floral transcriptome of this key bamboo species. Results We constructed a cDNA library using equal amounts of RNA from Moso bamboo leaf samples from non-flowering plants (CK) and mixed flower samples (F) of four flower development stages. We generated more than 67 million reads from each of the CK and F samples. About 70% of the reads could be uniquely mapped to the Moso bamboo genome and the reference genes. Genes detected at each stage were categorized to putative functional categories based on their expression patterns. The analysis of RNA-seq data of bamboo flowering tissues at different developmental stages reveals key gene expression properties during the flower development of bamboo. Conclusion We showed that a combination of transcriptome sequencing and RNA-seq analysis was a powerful approach to identifying candidate genes related to floral transition and flower development in bamboo species. The results give a better insight into the mechanisms of Moso bamboo flowering and ageing. This transcriptomic data also provides an important gene resource for improving breeding for Moso bamboo. PMID:24915141

  15. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis.

    PubMed

    Gao, Jian; Zhang, Ying; Zhang, Chunling; Qi, Feiyan; Li, Xueping; Mu, Shaohua; Peng, Zhenhua

    2014-01-01

    As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla Carrière) is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first time, we investigated the transcriptome of developing flowers in Moso bamboo by using high-throughput Illumina GAII sequencing and mapping short reads to the Moso bamboo genome and reference genes. We performed RNA-seq analysis on four important stages of flower development, and obtained extensive gene and transcript abundance data for the floral transcriptome of this key bamboo species. We constructed a cDNA library using equal amounts of RNA from Moso bamboo leaf samples from non-flowering plants (CK) and mixed flower samples (F) of four flower development stages. We generated more than 67 million reads from each of the CK and F samples. About 70% of the reads could be uniquely mapped to the Moso bamboo genome and the reference genes. Genes detected at each stage were categorized to putative functional categories based on their expression patterns. The analysis of RNA-seq data of bamboo flowering tissues at different developmental stages reveals key gene expression properties during the flower development of bamboo. We showed that a combination of transcriptome sequencing and RNA-seq analysis was a powerful approach to identifying candidate genes related to floral transition and flower development in bamboo species. The results give a better insight into the mechanisms of Moso bamboo flowering and ageing. This transcriptomic data also provides an important gene resource for improving breeding for Moso bamboo.

  16. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  17. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset

  18. Annotation of the Transcriptome from Taenia pisiformis and Its Comparative Analysis with Three Taeniidae Species

    PubMed Central

    Yang, Deying; Fu, Yan; Wu, Xuhang; Xie, Yue; Nie, Huaming; Chen, Lin; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yan, Ning; Zhang, Runhui; Zheng, Wanpeng; Yang, Guangyou

    2012-01-01

    Background Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts) and Cysticercus pisiformis (rabbits as intermediate hosts) cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. Methodology/Principal Findings In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy) were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis]), with the cluster of orthologous groups (COG) and gene ontology (GO) functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. Conclusion This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug targets and

  19. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells

    PubMed Central

    Burnik Papler, Tanja; Vrtacnik Bokal, Eda; Maver, Ales; Kopitar, Andreja Natasa; Lovrečić, Luca

    2015-01-01

    Specific gene expression in oocytes and its surrounding cumulus (CC) and granulosa (GC) cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10−4); of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2), higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK), higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology. PMID:26313571

  20. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

    PubMed

    Pattison, Richard J; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-08-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs.

  1. Transcriptome profiling and digital gene expression analysis of Nile tilapia (Oreochromis niloticus) infected by Streptococcus agalactiae.

    PubMed

    Zhang, Rui; Zhang, Li-li; Ye, Xing; Tian, Yuan-yuan; Sun, Cheng-fei; Lu, Mai-xin; Bai, Jun-jie

    2013-10-01

    Tilapia is an important freshwater aquaculture species worldwide. In recent years, streptococcal diseases have severely threatened development of tilapia aquaculture, while effective prevention and control methods have not yet been established. In order to understand the immunological response of tilapia to infection by Streptococcus agalactiae (S. agalactiae), this study employed Solexa/Illumina RNA-seq and digital gene expression (DGE) technology to investigate changes in the tilapia transcriptome before and after S. agalactiae infection. We obtained 82,799 unigenes (mean size: 618 bp) using de novo assembly. Unigenes were annotated by comparing against databases including Nr, Swissprot, cluster of orthologous groups of proteins, Kyoto encyclopedia of genes and genomes, and gene ontology. Combined with DGE technology, transcriptomic changes in tilapia before and after bacteria challenging were examined. A total of 774 significantly up-regulated and 625 significantly down-regulated unigenes were identified, among which 293 were mapped to 181 signaling pathways including 17 immune-related pathways involving 65 differentially expressed genes. We observed a change in the expression of six genes in the Toll-like receptor signaling pathway, and this was subsequently confirmed via quantitative real-time PCR. This comparative study of the tilapia transcriptome before and after S. agalactiae infection identified important differentially-expressed immune-related genes and signaling pathways that will provide useful insights for further analysis of the mechanisms of tilapia defense against S. agalactiae infection.

  2. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes.

    PubMed

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37-100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins.

  3. Comparative analysis of the brain transcriptome in a hyper-aggressive fruit fly, Drosophila prolongata.

    PubMed

    Kudo, Ayumi; Shigenobu, Shuji; Kadota, Koji; Nozawa, Masafumi; Shibata, Tomoko F; Ishikawa, Yukio; Matsuo, Takashi

    2017-03-01

    Aggressive behavior is observed in many animals, but its intensity differs between species. In a model animal of genetics, Drosophila melanogaster, genetic basis of aggressive behavior has been studied intensively, including transcriptome analyses to identify genes whose expression level was associated with intra-species variation in aggressiveness. However, whether these genes are also involved in the evolution of aggressiveness among different species has not been examined. In this study, we performed de novo transcriptome analysis in the brain of Drosophila prolongata to identify genes associated with the evolution of aggressiveness. Males of D. prolongata were hyper-aggressive compared with closely related species. Comparison of the brain transcriptomes identified 21 differentially expressed genes in males of D. prolongata. They did not overlap with the list of aggression-related genes identified in D. melanogaster, suggesting that genes involved in the evolution of aggressiveness were independent of those associated with the intra-species variation in aggressiveness in Drosophila. Although females of D. prolongata were not aggressive as the males, expression levels of the 21 genes identified in this study were more similar between sexes than between species.

  4. Transcriptomic Analysis of Laribacter hongkongensis Reveals Adaptive Response Coupled with Temperature

    PubMed Central

    Kong, Hoi-Kuan; Law, Hon-Wai; Liu, Xuan; Law, Carmen O. K.; Pan, Qing; Gao, Lin; Xiong, Lifeng; Lau, Susanna K. P.; Woo, Patrick C. Y.; Lau, Terrence chi kong

    2017-01-01

    Bacterial adaptation to different hosts requires transcriptomic alteration in response to the environmental conditions. Laribacter hongkongensis is a gram-negative, facultative anaerobic, urease-positive bacillus caused infections in liver cirrhosis patients and community-acquired gastroenteritis. It was also found in intestine from commonly consumed freshwater fishes and drinking water reservoirs. Since L. hongkongensis could survive as either fish or human pathogens, their survival mechanisms in two different habitats should be temperature-regulated and highly complex. Therefore, we performed transcriptomic analysis of L. hongkongensis at body temperatures of fish and human in order to elucidate the versatile adaptation mechanisms coupled with the temperatures. We identified numerous novel temperature-induced pathways involved in host pathogenesis, in addition to the shift of metabolic equilibriums and overexpression of stress-related proteins. Moreover, these pathways form a network that can be activated at a particular temperature, and change the physiology of the bacteria to adapt to the environments. In summary, the dynamic of transcriptomes in L. hongkongensis provides versatile strategies for the bacterial survival at different habitats and this alteration prepares the bacterium for the challenge of host immunity. PMID:28085929

  5. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes

    PubMed Central

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37–100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins. PMID:26284934

  6. Transcriptome analysis of leaf tissue of Raphanus sativus by RNA sequencing.

    PubMed

    Zhang, Libin; Jia, Haibo; Yin, Yongtai; Wu, Gang; Xia, Heng; Wang, Xiaodong; Fu, Chunhua; Li, Maoteng; Wu, Jiangsheng

    2013-01-01

    Raphanus sativus is not only a popular edible vegetable but also an important source of medicinal compounds. However, the paucity of knowledge about the transcriptome of R. sativus greatly impedes better understanding of the functional genomics and medicinal potential of R. sativus. In this study, the transcriptome sequencing of leaf tissues in R. sativus was performed for the first time. Approximately 22 million clean reads were generated and used for transcriptome assembly. The generated unigenes were subsequently annotated against gene ontology (GO) database. KEGG analysis further revealed two important pathways in the bolting stage of R.sativus including spliceosome assembly and alkaloid synthesis. In addition, a total of 6,295 simple sequence repeats (SSRs) with various motifs were identified in the unigene library of R. sativus. Finally, four unigenes of R. sativus were selected for alignment with their homologs from other plants, and phylogenetic trees for each of the genes were constructed. Taken together, this study will provide a platform to facilitate gene discovery and advance functional genomic research of R. sativus.

  7. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    PubMed Central

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  8. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

    PubMed

    Niida, Atsushi; Imoto, Seiya; Nagasaki, Masao; Yamaguchi, Rui; Miyano, Satoru

    2010-01-01

    Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

  9. Transcriptome Analysis of Thapsia laciniata Rouy Provides Insights into Terpenoid Biosynthesis and Diversity in Apiaceae

    PubMed Central

    Drew, Damian Paul; Dueholm, Bjørn; Weitzel, Corinna; Zhang, Ye; Sensen, Christoph W.; Simonsen, Henrik Toft

    2013-01-01

    Thapsia laciniata Rouy (Apiaceae) produces irregular and regular sesquiterpenoids with thapsane and guaiene carbon skeletons, as found in other Apiaceae species. A transcriptomic analysis utilizing Illumina next-generation sequencing enabled the identification of novel genes involved in the biosynthesis of terpenoids in Thapsia. From 66.78 million HQ paired-end reads obtained from T. laciniata roots, 64.58 million were assembled into 76,565 contigs (N50: 1261 bp). Seventeen contigs were annotated as terpene synthases and five of these were predicted to be sesquiterpene synthases. Of the 67 contigs annotated as cytochromes P450, 18 of these are part of the CYP71 clade that primarily performs hydroxylations of specialized metabolites. Three contigs annotated as aldehyde dehydrogenases grouped phylogenetically with the characterized ALDH1 from Artemisia annua and three contigs annotated as alcohol dehydrogenases grouped with the recently described ADH1 from A. annua. ALDH1 and ADH1 were characterized as part of the artemisinin biosynthesis. We have produced a comprehensive EST dataset for T. laciniata roots, which contains a large sample of the T. laciniata transcriptome. These transcriptome data provide the foundation for future research into the molecular basis for terpenoid biosynthesis in Thapsia and on the evolution of terpenoids in Apiaceae. PMID:23698765

  10. Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer.

    PubMed

    Oyama, Masaaki; Nagashima, Takeshi; Suzuki, Takashi; Kozuka-Hata, Hiroko; Yumoto, Noriko; Shiraishi, Yuichi; Ikeda, Kazuhiro; Kuroki, Yoko; Gotoh, Noriko; Ishida, Takanori; Inoue, Satoshi; Kitano, Hiroaki; Okada-Hatakeyama, Mariko

    2011-01-07

    Quantitative phosphoproteome and transcriptome analysis of ligand-stimulated MCF-7 human breast cancer cells was performed to understand the mechanisms of tamoxifen resistance at a system level. Phosphoproteome data revealed that WT cells were more enriched with phospho-proteins than tamoxifen-resistant cells after stimulation with ligands. Surprisingly, decreased phosphorylation after ligand perturbation was more common than increased phosphorylation. In particular, 17β-estradiol induced down-regulation in WT cells at a very high rate. 17β-Estradiol and the ErbB ligand heregulin induced almost equal numbers of up-regulated phospho-proteins in WT cells. Pathway and motif activity analyses using transcriptome data additionally suggested that deregulated activation of GSK3β (glycogen-synthase kinase 3β) and MAPK1/3 signaling might be associated with altered activation of cAMP-responsive element-binding protein and AP-1 transcription factors in tamoxifen-resistant cells, and this hypothesis was validated by reporter assays. An examination of clinical samples revealed that inhibitory phosphorylation of GSK3β at serine 9 was significantly lower in tamoxifen-treated breast cancer patients that eventually had relapses, implying that activation of GSK3β may be associated with the tamoxifen-resistant phenotype. Thus, the combined phosphoproteome and transcriptome data set analyses revealed distinct signal transcription programs in tumor cells and provided a novel molecular target to understand tamoxifen resistance.

  11. Transcriptome Sequencing and De Novo Analysis of the Copepod Calanus sinicus Using 454 GS FLX

    PubMed Central

    Ning, Juan; Wang, Minxiao; Li, Chaolun; Sun, Song

    2013-01-01

    Background Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. Results Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs) that provide a resource for gene function studies. Conclusion Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species. PMID:23671698

  12. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus)

    PubMed Central

    Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  13. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer.

    PubMed

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L; Huang, Stephen; Lira, Maruja E; Emmanuel, Yvette; Perez, Omar D; Irwin, Darryl; Fellowes, Andrew P; Wong, Stephen Q; Fox, Stephen B

    2017-02-09

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86-96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof-of-principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting.

  14. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep.

    PubMed

    Wang, Xiaolong; Zhou, Guangxian; Xu, Xiaochun; Geng, Rongqing; Zhou, Jiping; Yang, Yuxin; Yang, Zhaoxia; Chen, Yulin

    2014-10-10

    Recent studies in domestic animals have used RNA-seq to explore the transcriptome of different tissues in a limited number of individuals. In the present study, de novo transcriptome sequencing was used to compare sheep adipose tissue transcriptome profiles between a fat-tailed breed (Kazak sheep; KS) and a short-tailed (Tibetan sheep; TS). The RNA-seq data from these two groups revealed that 646 genes were differentially expressed between the KS and TS groups, including 280 up-regulated and 366 down-regulated genes. We identified genes relevant to fat metabolism in adipose tissues, including two top genes with the largest fold change (NELL1 and FMO3). Pathway analysis revealed that the differentially expressed genes between the KS and TS breeds belong to fatty acid metabolism relevant pathways (e.g. fat digestion and absorption, glycine, serine, and threonine metabolism) and cell junction-related pathways (e.g. cell adhesion molecules) which contribute to fat deposition. This work highlighted potential genes and gene networks that affect fat deposition and meat quality in sheep. Copyright © 2014. Published by Elsevier B.V.

  15. Transcriptome Analysis of Leaf Tissue of Raphanus sativus by RNA Sequencing

    PubMed Central

    Yin, Yongtai; Wu, Gang; Xia, Heng; Wang, Xiaodong; Fu, Chunhua; Li, Maoteng; Wu, Jiangsheng

    2013-01-01

    Raphanus sativus is not only a popular edible vegetable but also an important source of medicinal compounds. However, the paucity of knowledge about the transcriptome of R. sativus greatly impedes better understanding of the functional genomics and medicinal potential of R. sativus. In this study, the transcriptome sequencing of leaf tissues in R. sativus was performed for the first time. Approximately 22 million clean reads were generated and used for transcriptome assembly. The generated unigenes were subsequently annotated against gene ontology (GO) database. KEGG analysis further revealed two important pathways in the bolting stage of R.sativus including spliceosome assembly and alkaloid synthesis. In addition, a total of 6,295 simple sequence repeats (SSRs) with various motifs were identified in the unigene library of R. sativus. Finally, four unigenes of R. sativus were selected for alignment with their homologs from other plants, and phylogenetic trees for each of the genes were constructed. Taken together, this study will provide a platform to facilitate gene discovery and advance functional genomic research of R. sativus. PMID:24265813

  16. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species.

  17. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq

    PubMed Central

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan

    2015-01-01

    Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal

  18. De novo assembly of a tadpole shrimp (Triops newberryi) transcriptome and preliminary differential gene expression analysis.

    PubMed

    Horn, Rebekah L; Ramaraj, Thiruvarangan; Devitt, Nicholas P; Schilkey, Faye D; Cowley, David E

    2017-03-01

    Next-generation sequencing techniques, such as RNA sequencing, have provided a wealth of genomic information for nonmodel species. Transcriptomic information can be used to quantify the patterns of gene expression, which can identify how environmental differences invoke organismal stress responses and provide a gauge in predicting species adaptability. In our study, we used RNA sequencing to characterize the first transcriptome from a naupliar tadpole shrimp (Triops newberryi) to identify the genes expressed during the early life history stages and which could be important for future genomic studies. RNA was extracted from naupliar T. newberryi that were reared in a laboratory-controlled setting and in two different water types, a native and a non-native condition. A total of six replicates, three per condition, were sequenced with the Illumina Hi-Seq 2000 achieving 365 M 50-nt reads. High-quality reads were produced and de novo assembly was used to construct a T. newberryi transcriptome that was approximately 24.8 M base pairs. More than 10 000 peptides were predicted from the assembly, and genes were sorted into gene ontology categories. The use of different water conditions allowed for a preliminary differential gene expression analysis in order to compare the changes in gene expression between conditions. There were 299 differentially expressed genes between water conditions that might serve as a focal point for future genomic studies of Triops acclimation to different environments. The Triops transcriptome could serve as vital genomic information for additional studies on Branchiopod crustaceans. © 2016 John Wiley & Sons Ltd.

  19. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua

    PubMed Central

    2013-01-01

    Background The medicinal plant Artemisia annua is covered with filamentous trichomes and glandular, artemisinin producing trichomes. A high artemisinin supply is needed at a reduced cost for treating malaria. Artemisinin production in bioreactors can be facilitated if a better insight is obtained in the biosynthesis of artemisinin and other metabolites. Therefore, metabolic activities of glandular and filamentous trichomes were investigated at the transcriptome level. Results By laser pressure catapulting, glandular and filamentous trichomes as well as apical and sub-apical cells from glandular trichomes were collected and their transcriptome was sequenced using Illumina RNA-Seq. A de novo transcriptome was assembled (Trinity) and studied with a differential expression analysis (edgeR). A comparison of the transcriptome from glandular and filamentous trichomes shows that MEP, MVA, most terpene and lipid biosynthesis pathways are significantly upregulated in glandular trichomes. Conversely, some transcripts coding for specific sesquiterpenoid and triterpenoid enzymes such as 8-epi-cedrol synthase and an uncharacterized oxidosqualene cyclase were significantly upregulated in filamentous trichomes. All known artemisinin biosynthesis genes are upregulated in glandular trichomes and were detected in both the apical and sub-apical cells of the glandular trichomes. No significant differential expression could be observed between the apical and sub-apical cells. Conclusions Our results underscore the vast metabolic capacities of A. annua glandular trichomes but nonetheless point to the existence of specific terpene metabolic pathways in the filamentous trichomes. Candidate genes that might be involved in artemisinin biosynthesis are proposed based on their putative function and their differential expression level. PMID:24359620

  20. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis - response to oxalic acid.

    PubMed

    Grąz, Marcin; Jarosz-Wilkołazka, Anna; Janusz, Grzegorz; Mazur, Andrzej; Wielbo, Jerzy; Koper, Piotr; Żebracki, Kamil; Kubik-Komar, Agnieszka

    2017-06-01

    In this study, the transcriptomic-based response of the white rot fungus Abortiporus biennis to oxalic acid induction was reported. The whole transcriptome of A. biennis was analysed using the RNA-based sequencing technology and Solid 5500 platform. De novo assembly of reads generated 37,719 contigs. A molecular function for 26,280 unique transcripts was assigned. The analysis of the A. biennis transcriptome predicted 635 hypothetical open reading frames encoding carbohydrate active enzymes distributed in 122 families. 82 genes were identified, whose expression level was significantly changed after oxalic acid addition. Among them, 18 genes were up-regulated and 64 genes were down-regulated. Genes coding for putative cellulose and hemicellulose degrading enzymes were predominantly up-regulated in the mycelium induced with oxalic acid; it was in the case of cellulases and xylanases (hemicellulases), in particular, β-glucosidase and endo-1,4-β-xylanases. On the contrary, several genes coding for lignolytic enzymes were down-regulated, with the significant repression level in the case of versatile peroxidase. Finally, we identified putative genes involved in oxalate metabolism. Among the transcripts detected in the A. biennis transcriptome, one was annotated as coding for putative oxalate decarboxylase (ODC) and nine transcripts were annotated as formate dehydrogenases (FDH). The addition of oxalic acid to the culture caused upregulation of the gene coding for ODC and three genes for FDH. Amongst the transcripts of putative FDH genes, one designated as NODE_36057, demonstrated the highest induction level recorded in this study after the oxalic acid addition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD.

    PubMed

    de Almeida, Rita M C; Clendenon, Sherry G; Richards, William G; Boedigheimer, Michael; Damore, Michael; Rossetti, Sandro; Harris, Peter C; Herbert, Britney-Shea; Xu, Wei Min; Wandinger-Ness, Angela; Ward, Heather H; Glazier, James A; Bacallao, Robert L

    2016-11-21

    Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. We used the de Almeida laboratory's sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD's mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.

  2. Effect of rosemary polyphenols on human colon cancer cells: transcriptomic profiling and functional enrichment analysis.

    PubMed

    Valdés, Alberto; García-Cañas, Virginia; Rocamora-Reverte, Lourdes; Gómez-Martínez, Angeles; Ferragut, José Antonio; Cifuentes, Alejandro

    2013-01-01

    In this work, the effect of rosemary extracts rich on polyphenols obtained using pressurized fluids was investigated on the gene expression of human SW480 and HT29 colon cancer cells. The application of transcriptomic profiling and functional enrichment analysis was done via two computational approaches, Ingenuity Pathway Analysis and Gene Set Enrichment Analysis. These two approaches were used for functional enrichment analysis as a previous step for a reliable interpretation of the data obtained from microarray analysis. Reverse transcription quantitative-PCR was used to confirm relative changes in mRNA levels of selected genes from microarrays. The selection of genes was based on their expression change, adjusted p value, and known biological function. According to genome-wide transcriptomics analysis, rosemary polyphenols altered the expression of ~4 % of the genes covered by the Affymetrix Human Gene 1.0ST chip in both colon cancer cells. However, only ~18 % of the differentially expressed genes were common to both cell lines, indicating markedly different expression profiles in response to the treatment. Differences in induction of G2/M arrest observed by rosemary polyphenols in the two colon adenocarcinoma cell lines suggest that the extract may be differentially effective against tumors with specific mutational pattern. From our results, it is also concluded that rosemary polyphenols induced a low degree of apoptosis indicating that other multiple signaling pathways may contribute to colon cancer cell death.

  3. Transcriptome Analysis of Pacific White Shrimp (Litopenaeus vannamei) Hepatopancreas in Response to Taura Syndrome Virus (TSV) Experimental Infection

    PubMed Central

    Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan

    2013-01-01

    Background The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. Methodology/Principal Findings We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10−5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. Conclusions/Significance This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp. PMID:23469011

  4. Transcriptome analysis of feline infectious peritonitis virus infection.

    PubMed

    Mehrbod, Parvaneh; Harun, Mohammad Syamsul Reza; Shuid, Ahmad Naqib; Omar, Abdul Rahman

    2015-01-01

    Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV). There are no effective vaccines or treatment available, and the virus virulence determinants and pathogenesis are not fully understood. Here, we describe the sequencing of RNA extracted from Crandell Rees Feline Kidney (CRFK) cells infected with FIPV using the Illumina next-generation sequencing approach. Bioinformatics analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench is used to map both control and infected cells. Kal's Z test statistical analysis is used to analyze the differentially expressed genes from the infected CRFK cells. In addition, RT-qPCR analysis is used for further transcriptional profiling of selected genes in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diagnosed cats.

  5. Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows.

    PubMed

    Casey, Theresa; Dover, Heather; Liesman, James; DeVries, Lindsey; Kiupel, Matti; Vandehaar, Michael; Plaut, Karen

    2011-01-01

    Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17). Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathways Analysis (IPA) showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production.

  6. Transcriptome Analysis of Epithelial and Stromal Contributions to Mammogenesis in Three Week Prepartum Cows

    PubMed Central

    Casey, Theresa; Dover, Heather; Liesman, James; DeVries, Lindsey; Kiupel, Matti; VandeHaar, Michael; Plaut, Karen

    2011-01-01

    Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17). Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathways Analysis (IPA) showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production. PMID:21829467

  7. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.

    PubMed

    Brooks, Matthew J; Rajasimha, Harsha K; Roger, Jerome E; Swaroop, Anand

    2011-01-01

    Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl(-/-)) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows-Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT-PCR validation was performed using TaqMan and SYBR Green assays. Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl(-/-) mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT-PCR. RNA-seq data had a linear relationship with qRT-PCR for more than four orders of magnitude and a goodness of fit (R(2)) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl(-/-) retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT-PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA

  8. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus.

    PubMed

    Wagstaff, Simon C; Sanz, Libia; Juárez, Paula; Harrison, Robert A; Calvete, Juan J

    2009-01-30

    Snakebite in Africa causes thousands of deaths annually and considerable permanent physical disability. The saw-scaled viper, Echis ocellatus, represents the single most medically important snake species in West Africa. To provide a detailed compositional analysis of the venom of E. ocellatus for designing novel toxin-specific immunotherapy and to delineate sequence structure-function relationships of individual toxins, we characterised the venom proteome and the venom gland transcriptome. Whole E. ocellatus venom was fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction using a combination of SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS of tryptic peptides. This analysis identified around 35 distinct proteins of molecular masses in the range of 5.5-110 kDa belonging to 8 different toxin families (disintegrin, DC-fragment, phospholipase A(2), cysteine-rich secretory protein, serine proteinase, C-type lectin, l-amino acid oxidase, and Zn(2+)-dependent metalloprotease). Comparison of the toxin composition of E. ocellatus venom determined using a proteomic approach, with the predicted proteome derived from assembly of 1000 EST sequences from a E. ocellatus venom gland cDNA library, shows some differences. Most notably, peptides derived from 26% of the venom proteins could not be ascribed an exact match in the transcriptome. Similarly, 64 (67%) out of the 95 putative toxin clusters reported in the transcriptome did not match to peptides detected in the venom proteome. These data suggest that the final composition of venom is influenced by transcriptional and post-translational mechanisms that may be more complex than previously appreciated. This, in turn, emphasises the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the precise composition of snake venom, than would be gleaned from using one analysis alone. From a clinical perspective, the large

  9. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes

    PubMed Central

    Xu, Wenying; Di, Chao; Zhou, Shaoxia; Liu, Jia; Li, Li; Liu, Fengxia; Yang, Xinling; Ling, Yun; Su, Zhen

    2015-01-01

    Quinclorac is a highly selective auxin-type herbicide and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world's rice yield. The herbicide mode of action of quinclorac has been proposed, and hormone interactions affecting quinclorac signaling has been identified. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and other environmental health problems. In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate genes of P450 families such as CYP81, CYP709C, and CYP72A were universally induced by different herbicides. Some Arabidopsis genes of the same P450 family were up-regulated under quinclorac treatment. We conducted rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution. PMID:26483837

  10. Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy.

    PubMed

    Bai, Songling; Saito, Takanori; Sakamoto, Daisuke; Ito, Akiko; Fujii, Hiroshi; Moriguchi, Takaya

    2013-07-01

    The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular function category, a result consistent with previous observations of notable changes in hydrogen peroxide concentration during endodormancy release. In the GO categories related to biological process, the abundance of DNA methylation-related gene transcripts also significantly changed during endodormancy release, indicating the involvement of epigenetic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also showed the changes in transcript abundance of genes involved in the metabolism of various phytohormones. Genes for both ABA and gibberellin biosynthesis were down-regulated, whereas the genes encoding their degradation enzymes were up-regulated during endodormancy release. In the ethylene pathway, 1-aminocyclopropane-1-carboxylate synthase (ACS), a gene encoding the rate-limiting enzyme for ethylene biosynthesis, was induced towards endodormancy release. All of these results indicated the involvement of phytohormones in endodormancy release. Furthermore, the expression of dormancy-associated MADS-box (DAM) genes was down-regulated concomitant with endodormancy release, although changes in the abundance of these gene transcripts were not as significant as those identified by transcriptome analysis. Consequently, characterization of the Japanese pear transcriptome during the transition from endormancy to ecodormancy will provide researchers with useful information for data mining and will facilitate further experiments on endodormancy especially in rosaceae fruit trees.

  11. A transcriptomic analysis of the adult stage of the bovine lungworm, Dictyocaulus viviparus

    PubMed Central

    2007-01-01

    Background Lungworms of the genus Dictyocaulus (family Dictyocaulidae) are parasitic nematodes of major economic importance. They cause pathological effects and clinical disease in various ruminant hosts, particularly in young animals. Dictyocaulus viviparus, called the bovine lungworm, is a major pathogen of cattle, with severe infections being fatal. In this study, we provide first insights into the transcriptome of the adult stage of D. viviparus through the analysis of expressed sequence tags (ESTs). Results Using our EST analysis pipeline, we estimate that the present dataset of 4436 ESTs is derived from 2258 genes based on cluster and comparative genomic analyses of the ESTs. Of the 2258 representative ESTs, 1159 (51.3%) had homologues in the free-living nematode C. elegans, 1174 (51.9%) in parasitic nematodes, 827 (36.6%) in organisms other than nematodes, and 863 (38%) had no significant match to any sequence in the current databases. Of the C. elegans homologues, 569 had observed 'non-wildtype' RNAi phenotypes, including embryonic lethality, maternal sterility, sterility in progeny, larval arrest and slow growth. We could functionally classify 776 (35%) sequences using the Gene Ontologies (GO) and established pathway associations to 696 (31%) sequences in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we predicted 85 secreted proteins which could represent potential candidates for developing novel anthelmintics or vaccines. Conclusion The bioinformatic analyses of ESTs data for D. viviparus has elucidated sets of relatively conserved and potentially novel genes. The genes discovered in this study should assist research toward a better understanding of the basic molecular biology of D. viviparus, which could lead, in the longer term, to novel intervention strategies. The characterization of the D. viviparus transcriptome also provides a foundation for whole genome sequence analysis and future comparative transcriptomic analyses. PMID:17784965

  12. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress.

    PubMed

    Vojta, Petr; Kokáš, Filip; Husičková, Alexandra; Grúz, Jiří; Bergougnoux, Veronique; Marchetti, Cintia F; Jiskrová, Eva; Ježilová, Eliška; Mik, Václav; Ikeda, Yoshihisa; Galuszka, Petr

    2016-09-25

    Cytokinin plant hormones have been shown to play an important role in plant response to abiotic stresses. Herein, we expand upon the findings of Pospíšilová et al. [30] regarding preparation of novel transgenic barley lines overexpressing cytokinin dehydrogenase 1 gene from Arabidopsis under the control of mild root-specific promotor of maize β-glycosidase. These lines showed drought-tolerant phenotype mainly due to alteration of root architecture and stronger lignification of root tissue. A detailed transcriptomic analysis of roots of transgenic plants subjected to revitalization after drought stress revealed attenuated response through the HvHK3 cytokinin receptor and up-regulation of two transcription factors implicated in stress responses and abscisic acid sensitivity. Increased expression of several genes involved in the phenylpropanoid pathway as well as of genes encoding arogenate dehydratase/lyase participating in phenylalanine synthesis was found in roots during revitalization. Although more precursors of lignin synthesis were present in roots after drought stress, final lignin accumulation did not change compared to that in plants grown under optimal conditions. Changes in transcriptome indicated a higher auxin turnover in transgenic roots. The same analysis in leaves revealed that genes encoding putative enzymes responsible for production of jasmonates and other volatile compounds were up-regulated. Although transgenic barley leaves showed lower chlorophyll content and down-regulation of genes encoding proteins involved in photosynthesis than did wild-type plants when cultivated under optimal conditions, they did show a tendency to return to initial photochemical activities faster than did wild-type leaves when re-watered after severe drought stress. In contrast to optimal conditions, comparative transcriptomic analysis of revitalized leaves displayed up-regulation of genes encoding enzymes and proteins involved in photosynthesis, and especially

  13. Transcriptomic Analysis of Oenococcus oeni SD-2a Response to Acid Shock by RNA-Seq.

    PubMed

    Liu, Longxiang; Zhao, Hongyu; Peng, Shuai; Wang, Tao; Su, Jing; Liang, Yanying; Li, Hua; Wang, Hua

    2017-01-01

    Oenococcus oeni can be applied to conduct malolactic fermentation (MLF), but also is the main species growing naturally in wine. Due to the high stress tolerance, it is an interesting model for investigating acid response mechanisms. In this study, the changes in the transcriptome of O.oeni SD-2a during the adaptation period have been studied. RNA-seq was introduced for the transcriptomic analysis of O. oeni samples treated with pH 4.8 and pH 3.0 at 0 and 1 h, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) were performed to compare the transcriptome data between different treatments. From GO analysis, the majority of differentially expressed genes (DEGs) (pH 3.0_1 h-VS-pH 4.8_1 h, pH 3.0_1 h-VS-pH 4.8_0 h, and pH 4.8_1 h-VS-pH 4.8_0 h) were found to be involved in the metabolic process, catalytic activity, cellular process, and binding. KEGG analysis reveals that the most functional gene categories affected by acid are membrane transport, amino acid metabolism and carbohydrate metabolism. Some genes, like the heat shock protein Hsp20, malate transporter and malate permease, were also over-expressed in response to acid stress. In addition, a considerable proportion of gene indicate a significantly different expression in this study, are novel, which needs to be investigated further. These results provide a new viewpoint and crucial resource on the acid stress response in O. oeni.

  14. Comparative transcriptome analysis of ginger variety Suprabha from two different agro-climatic zones of Odisha.

    PubMed

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Mohanty, Sujata; Joshi, Raj Kumar; Subudhi, Enketeswara

    2016-09-01

    Ginger (Zingiber officinale Rosc.), a well-known member of family Zingiberaceae, is bestowed with number of medicinal properties which is because of the secondary metabolites, essential oil and oleoresin, it contains in its rhizome. The drug yielding potential is known to depend on agro-climatic conditions prevailing at the place cultivation. Present study deals with comparative transcriptome analysis of two sample of elite ginger variety Suprabha collected from two different agro-climatic zones of Odisha. Transcriptome assembly for both the samples was done using next generation sequencing methodology. The raw data of size 10.8 and 11.8 GB obtained from analysis of two rhizomes S1Z4 and S2Z5 collected from Bhubaneswar and Koraput and are available in NCBI accession number SAMN03761169 and SAMN03761176 respectively. We identified 60,452 and 54,748 transcripts using trinity tool respectively from ginger rhizome of S1Z4 and S2Z5. The transcript length varied from 300 bp to 15,213 bp and 8988 bp and N50 value of 1415 bp and 1334 bp respectively for S1Z4 and S2Z5. To the best of our knowledge, this is the first comparative transcriptome analysis of elite ginger cultivars Suprabha from two different agro-climatic conditions of Odisha, India which will help to understand the effect of agro-climatic conditions on differential expression of secondary metabolites.

  15. Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers.

    PubMed

    Kuasne, Hellen; Cólus, Ilce Mara de Syllos; Busso, Ariane Fidelis; Hernandez-Vargas, Hector; Barros-Filho, Mateus Camargo; Marchi, Fabio Albuquerque; Scapulatempo-Neto, Cristovam; Faria, Eliney Ferreira; Lopes, Ademar; Guimarães, Gustavo Cardoso; Herceg, Zdenko; Rogatto, Silvia Regina

    2015-01-01

    Despite penile carcinoma (PeCa) being a relatively rare neoplasm, it remains an important public health issue for poor and developing countries. Contrary to most tumors, limited data are available for markers that are capable of assisting in diagnosis, prognosis, and treatment of PeCa. We aimed to identify molecular markers for PeCa by evaluating their epigenomic and transcriptome profiles and comparing them with surrounding non-malignant tissue (SNT) and normal glans (NG). Genome-wide methylation analysis revealed 171 hypermethylated probes in PeCa. Transcriptome profiling presented 2,883 underexpressed and 1,378 overexpressed genes. Integrative analysis revealed a panel of 54 genes with an inverse correlation between methylation and gene expression levels. Distinct methylome and transcriptome patterns were found for human papillomavirus (HPV)-positive (38.6%) and negative tumors. Interestingly, grade 3 tumors showed a distinct methylation profile when compared to grade 1. In addition, univariate analysis revealed that low BDNF methylation was associated with lymph node metastasis and shorter disease-free survival. CpG hypermethylation and gene underexpression were confirmed for a panel of genes, including TWIST1, RSOP2, SOX3, SOX17, PROM1, OTX2, HOXA3, and MEIS1. A unique methylome signature was found for PeCa compared to SNT, with aberrant DNA methylation appearing to modulate the expression of specific genes. This study describes new pathways with the potential to regulate penile carcinogenesis, including stem cell regulatory pathways and markers associated to a worse prognosis. These findings may be instrumental in the discovery and application of new genetic and epigenetic biomarkers in PeCa.

  16. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus.

    PubMed

    Kazemi-Lomedasht, Fatemeh; Khalaj, Vahid; Bagheri, Kamran Pooshang; Behdani, Mahdi; Shahbazzadeh, Delavar

    2017-01-01

    Hemiscorpius lepturus scorpion is one of the most venomous members of the Hemiscorpiidae family. H. lepturus is distributed in Iran, Iraq and Yemen. The prevalence and severity of scorpionism is high and health services are not able to control it. Scorpionism in Iran especially in the southern regions (Khuzestan, Sistan and Baluchestan, Hormozgan, Ilam) is one of the main health challenges. Due to the medical and health importance of scorpionism, the focus of various studies has been on the identification of H. lepturus venom components. Nevertheless, until now, only a few percent of H. lepturus venom components have been identified and there is no complete information about the venom components of H. lepturus. The current study reports transcriptome analysis of the venom gland of H. lepturus scorpion. Illumina Next Generation Sequencing results identified venom components of H. lepturus. When compared with other scorpion's venom, the venom of H. lepturus consists of mixtures of peptides, proteins and enzymes such as; phospholipases, metalloproteases, hyaluronidases, potassium channel toxins, calcium channel toxins, antimicrobial peptides (AMPs), venom proteins, venom toxins, allergens, La1-like peptides, proteases and scorpine-like peptides. Comparison of identified components of H. lepturus venom was carried out with venom components of reported scorpions and various identities and similarities between them were observed. With transcriptome analysis of H. lepturus venom unique sequences, coding venom components were investigated. Moreover, our study confirmed transcript expression of previously reported peptides; Hemitoxin, Hemicalcin and Hemilipin. The gene sequences of venom components were investigated employing transcriptome analysis of venom gland of H. lepturus. In summary, new bioactive molecules identified in this study, provide basis for venomics studies of scorpions of Hemiscorpiidae family and promises development of novel biotherapeutics

  17. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment

    PubMed Central

    Watson, Hannah; Videvall, Elin; Andersson, Martin N.; Isaksson, Caroline

    2017-01-01

    Identifying the molecular basis of environmentally induced phenotypic variation presents exciting opportunities for furthering our understanding of how ecological processes and the environment can shape the phenotype. Urban and rural environments present free-living organisms with different challenges and opportunities, which have marked consequences for the phenotype, yet little is known about responses at the molecular level. We characterised transcriptomes from an urban and a rural population of great tits Parus major, demonstrating striking differences in gene expression profiles in both blood and liver tissues. Differentially expressed genes had functions related to immune and inflammatory responses, detoxification, protection against oxidative stress, lipid metabolism, and regulation of gene expression. Many genes linked to stress responses were expressed at higher levels in the urban birds, in accordance with our prediction that urban animals are exposed to greater environmental stress. This is one of the first studies to reveal transcriptional differences between urban- and rural-dwelling animals and suggests an important role for epigenetics in mediating environmentally induced physiological variation. The study provides valuable resources for developing further in-depth studies of the mechanisms driving phenotypic variation in the urban context at larger spatial and temporal scales. PMID:28290496

  18. Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae.

    PubMed

    Yang, Dan; Chen, Changlong; Liu, Qian; Jian, Heng

    2017-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a devastating pathogen of wheat and barley crops in many countries. We aimed to prioritize genetic and molecular targets for H. avenae control via the powerful and integrative bioinformatics platform. Here, we sequenced mRNA isolated from Chinese H. avenae at pre-parasitic (consisting of egg, J1 and hatched-J2) stages and post-parasitic (consisting of parasitic-J2, J3, J4 and adults) stages. Total 1,066,719 reads of whole life cycle transcriptomes were assembled into 10,811 contigs with N50 length of 1754 bp and 71,401 singletons. Comparative analyses of orthologous among H. avenae and 7 other nematodes with various life-styles revealed the significance and peculiarity of neurological system for sedentary phytonematode. KEGG pathway enrichment demonstrated active crosstalk events of nervous system at pre-parasitic stages, and 6 FMRFamide-like neuropeptides were verified to display an expression peak at the hatched-J2 stage in H. avenae. Furthermore, multiple approaches were undertaken to mine putative effectors and parasitism-specific genes. Notably, H. avenae might represent the first phytonematode reported to possess the pioneer effectors with RxLR motif and potential effectors with homologies to Ant-5/Ant-34. Our work provides valuable resources for in-depth understanding the parasitism and pathogenicity of H. avenae, as well as developing new targets-oriented strategies on effective managements.

  19. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment.

    PubMed

    Watson, Hannah; Videvall, Elin; Andersson, Martin N; Isaksson, Caroline

    2017-03-14

    Identifying the molecular basis of environmentally induced phenotypic variation presents exciting opportunities for furthering our understanding of how ecological processes and the environment can shape the phenotype. Urban and rural environments present free-living organisms with different challenges and opportunities, which have marked consequences for the phenotype, yet little is known about responses at the molecular level. We characterised transcriptomes from an urban and a rural population of great tits Parus major, demonstrating striking differences in gene expression profiles in both blood and liver tissues. Differentially expressed genes had functions related to immune and inflammatory responses, detoxification, protection against oxidative stress, lipid metabolism, and regulation of gene expression. Many genes linked to stress responses were expressed at higher levels in the urban birds, in accordance with our prediction that urban animals are exposed to greater environmental stress. This is one of the first studies to reveal transcriptional differences between urban- and rural-dwelling animals and suggests an important role for epigenetics in mediating environmentally induced physiological variation. The study provides valuable resources for developing further in-depth studies of the mechanisms driving phenotypic variation in the urban context at larger spatial and temporal scales.

  20. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    PubMed

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides.

  1. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.

    PubMed

    Polen, Tino; Schluesener, Daniela; Poetsch, Ansgar; Bott, Michael; Wendisch, Volker F

    2007-08-01

    Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. To characterize the citrate utilization in C. glutamicum on a genomewide scale, a comparative analysis was carried out by combining transcriptome and proteome analysis. In cells grown on citrate, transcriptome analysis revealed highest expression changes for two different citrate-uptake systems encoded by citM and tctCBA, whereas genes encoding uptake systems for the glucose- (ptsG), sucrose- (ptsS) and fructose- (ptsF) specific PTS components and permeases for gluconate (gntP) and glutamate (gluC) displayed decreased mRNA levels in citrate-grown cells. This pattern was also observed when cells grown in Luria-Bertani (LB) medium plus citrate were compared with cells grown in LB medium, indicating some kind of catabolite repression. Genes encoding enzymes of the tricarboxylic acid cycle (aconitase, succinyl-CoA synthetase, succinate dehydrogenase and fumarase), malic enzyme, PEP carboxykinase, gluconeogenic glyceraldehyde-3-phosphate dehydrogenase and ATP synthase displayed increased expression in cells grown on citrate. Accordingly, proteome analysis revealed elevated protein levels of these enzymes and showed a good correlation with the mRNA levels. In conclusion, this study revealed the citrate stimulon in C. glutamicum and the regulated central metabolic genes when grown on citrate.

  2. Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis

    PubMed Central

    Yamashita, Riu; Sathira, Nuankanya P.; Kanai, Akinori; Tanimoto, Kousuke; Arauchi, Takako; Tanaka, Yoshiaki; Hashimoto, Shin-ichi; Sugano, Sumio; Nakai, Kenta; Suzuki, Yutaka

    2011-01-01

    We performed a genome-wide analysis of transcriptional start sites (TSSs) in human genes by multifaceted use of a massively parallel sequencer. By analyzing 800 million sequences that were obtained from various types of transcriptome analyses, we characterized 140 million TSS tags in 12 human cell types. Despite the large number of TSS clusters (TSCs), the number of TSCs was observed to decrease sharply with increasing expression levels. Highly expressed TSCs exhibited several characteristic features: Nucleosome-seq analysis revealed highly ordered nucleosome structures, ChIP-seq analysis detected clear RNA polymerase II binding signals in their surrounding regions, evaluations of previously sequenced and newly shotgun-sequenced complete cDNA sequences showed that they encode preferable transcripts for protein translation, and RNA-seq analysis of polysome-incorporated RNAs yielded direct evidence that those transcripts are actually translated into proteins. We also demonstrate that integrative interpretation of transcriptome data is essential for the selection of putative alternative promoter TSCs, two of which also have protein consequences. Furthermore, discriminative chromatin features that separate TSCs at different expression levels were found for both genic TSCs and intergenic TSCs. The collected integrative information should provide a useful basis for future biological characterization of TSCs. PMID:21372179

  3. Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants.

    PubMed

    Hagel, Jillian M; Morris, Jeremy S; Lee, Eun-Jeong; Desgagné-Penix, Isabel; Bross, Crystal D; Chang, Limei; Chen, Xue; Farrow, Scott C; Zhang, Ye; Soh, Jung; Sensen, Christoph W; Facchini, Peter J

    2015-09-18

    Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites sharing a common biosynthetic origin beginning with tyrosine. Many BIAs have potent pharmacological activities, and plants accumulating them boast long histories of use in traditional medicine and cultural practices. The decades-long focus on a select number of plant species as model systems has allowed near or full elucidation of major BIA pathways, including those of morphine, sanguinarine and berberine. However, this focus has created a dearth of knowledge surrounding non-model species, which also are known to accumulate a wide-range of BIAs but whose biosynthesis is thus far entirely unexplored. Further, these non-model species represent a rich source of catalyst diversity valuable to plant biochemists and emerging synthetic biology efforts. In order to access the genetic diversity of non-model plants accumulating BIAs, we selected 20 species representing 4 families within the Ranunculales. RNA extracted from each species was processed for analysis by both 1) Roche GS-FLX Titanium and 2) Illumina GA/HiSeq platforms, generating a total of 40 deep-sequencing transcriptome libraries. De novo assembly, annotation and subsequent full-length coding sequence (CDS) predictions indicated greater success for most species using the Illumina-based platform. Assembled data for each transcriptome were deposited into an established web-based BLAST portal ( www.phytometasyn.ca) to allow public access. Homology-based mining of libraries using BIA-biosynthetic enzymes as queries yielded ~850 gene candidates potentially involved in alkaloid biosynthesis. Expression analysis of these candidates was performed using inter-library FPKM normalization methods. These expression data provide a basis for the rational selection of gene candidates, and suggest possible metabolic bottlenecks within BIA metabolism. Phylogenetic analysis was performed for each of 15 different enzyme/protein groupings

  4. Transcriptome profile analysis of floral sex determination in cucumber.

    PubMed

    Wu, Tao; Qin, Zhiwei; Zhou, Xiuyan; Feng, Zhuo; Du, Yalin

    2010-07-15

    Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process.

  5. RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing

    PubMed Central

    Kim, Sunyoung; Park, Jungwook; Kim, Ji Hyeon; Lee, Jongyun; Bang, Bongjun; Hwang, Ingyu; Seo, Young-Su

    2013-01-01

    Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::Ω) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::Ω). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes. PMID:25288952

  6. Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand.

    PubMed

    Rossi, Pellegrino; Lolicato, Francesca; Grimaldi, Paola; Dolci, Susanna; Di Sauro, Annarita; Filipponi, Doria; Geremia, Raffaele

    2008-01-01

    Kit ligand (KL) is a survival factor and a mitogenic stimulus for differentiating spermatogonia. However, it is not known whether KL also plays a role in the differentiative events that lead to meiotic entry of these cells. We performed a wide genome analysis of difference in gene expression induced by treatment with KL of spermatogonia from 7-day-old mice, using gene chips spanning the whole mouse genome. The analysis revealed that the pattern of RNA expression induced by KL is compatible with the qualitative changes of the cell cycle that occur during the subsequent cell divisions in type A and B spermatogonia, i.e. the progressive lengthening of the S phase and the shortening of the G2/M transition. Moreover, KL up-regulates in differentiating spermatogonia the expression of early meiotic genes (for instance: Lhx8, Nek1, Rnf141, Xrcc3, Tpo1, Tbca, Xrcc2, Mesp1, Phf7, Rtel1), whereas it down-regulates typical spermatogonial markers (for instance: Pole, Ptgs2, Zfpm2, Egr2, Egr3, Gsk3b, Hnrpa1, Fst, Ptch2). Since KL modifies the expression of several genes known to be up-regulated or down-regulated in spermatogonia during the transition from the mitotic to the meiotic cell cycle, these results are consistent with a role of the KL/kit interaction in the induction of their meiotic differentiation.

  7. RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing.

    PubMed

    Kim, Sunyoung; Park, Jungwook; Kim, Ji Hyeon; Lee, Jongyun; Bang, Bongjun; Hwang, Ingyu; Seo, Young-Su

    2013-09-01

    Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::Ω) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::Ω). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.

  8. Whole Transcriptome Profiling of Successful Immune Response to Vibrio Infections in the Oyster Crassostrea gigas by Digital Gene Expression Analysis

    PubMed Central

    de Lorgeril, Julien; Zenagui, Reda; Rosa, Rafael D.; Piquemal, David; Bachère, Evelyne

    2011-01-01

    The cultivated Pacific oyster Crassostrea gigas has suffered for decades large scale summer mortality phenomenon resulting from the interaction between the environment parameters, the oyster physiological and/or genetic status and the presence of pathogenic microorganisms including Vibrio species. To obtain a general picture of the molecular mechanisms implicated in C. gigas immune responsiveness to circumvent Vibrio infections, we have developed the first deep sequencing study of the transcriptome of hemocytes, the immunocompetent cells. Using Digital Gene Expression (DGE), we generated a transcript catalog of up-regulated genes from oysters surviving infection with virulent Vibrio strains (Vibrio splendidus LGP32 and V. aestuarianus LPi 02/41) compared to an avirulent one, V. tasmaniensis LMG 20012T. For that an original experimental infection protocol was developed in which only animals that were able to survive infections were considered for the DGE approach. We report the identification of cellular and immune functions that characterize the oyster capability to survive pathogenic Vibrio infections. Functional annotations highlight genes related to signal transduction of immune response, cell adhesion and communication as well as cellular processes and defence mechanisms of phagocytosis, actin cytosqueleton reorganization, cell trafficking and autophagy, but also antioxidant and anti-apoptotic reactions. In addition, quantitative PCR analysis reveals the first identification of pathogen-specific signatures in oyster gene regulation, which opens the way for in depth molecular studies of oyster-pathogen interaction and pathogenesis. This work is a prerequisite for the identification of those physiological traits controlling oyster capacity to survive a Vibrio infection and, subsequently, for a better understanding of the phenomenon of summer mortality. PMID:21829707

  9. Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis.

    PubMed

    de Lorgeril, Julien; Zenagui, Reda; Rosa, Rafael D; Piquemal, David; Bachère, Evelyne

    2011-01-01

    The cultivated Pacific oyster Crassostrea gigas has suffered for decades large scale summer mortality phenomenon resulting from the interaction between the environment parameters, the oyster physiological and/or genetic status and the presence of pathogenic microorganisms including Vibrio species. To obtain a general picture of the molecular mechanisms implicated in C. gigas immune responsiveness to circumvent Vibrio infections, we have developed the first deep sequencing study of the transcriptome of hemocytes, the immunocompetent cells. Using Digital Gene Expression (DGE), we generated a transcript catalog of up-regulated genes from oysters surviving infection with virulent Vibrio strains (Vibrio splendidus LGP32 and V. aestuarianus LPi 02/41) compared to an avirulent one, V. tasmaniensis LMG 20012(T). For that an original experimental infection protocol was developed in which only animals that were able to survive infections were considered for the DGE approach. We report the identification of cellular and immune functions that characterize the oyster capability to survive pathogenic Vibrio infections. Functional annotations highlight genes related to signal transduction of immune response, cell adhesion and communication as well as cellular processes and defence mechanisms of phagocytosis, actin cytosqueleton reorganization, cell trafficking and autophagy, but also antioxidant and anti-apoptotic reactions. In addition, quantitative PCR analysis reveals the first identification of pathogen-specific signatures in oyster gene regulation, which opens the way for in depth molecular studies of oyster-pathogen interaction and pathogenesis. This work is a prerequisite for the identification of those physiological traits controlling oyster capacity to survive a Vibrio infection and, subsequently, for a better understanding of the phenomenon of summer mortality.

  10. Transcriptome Analysis in Domesticated Species: Challenges and Strategies

    PubMed Central

    Hekman, Jessica P.; Johnson, Jennifer L.; Kukekova, Anna V.

    2015-01-01

    Domesticated species occupy a special place in the human world due to their economic and cultural value. In the era of genomic research, domesticated species provide unique advantages for investigation of diseases and complex phenotypes. RNA sequencing, or RNA-seq, has recently emerged as a new approach for studying transcriptional activity of the whole genome, changing the focus from individual genes to gene networks. RNA-seq analysis in domesticated species may complement genome-wide association studies of complex traits with economic importance or direct relevance to biomedical research. However, RNA-seq studies are more challenging in domesticated species than in model organisms. These challenges are at least in part associated with the lack of quality genome assemblies for some domesticated species and the absence of genome assemblies for others. In this review, we discuss strategies for analyzing RNA-seq data, focusing particularly on questions and examples relevant to domesticated species. PMID:26917953

  11. Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis

    PubMed Central

    Spies, Daniel; Ciaudo, Constance

    2015-01-01

    Analysis of gene expression has contributed to a plethora of biological and medical research studies. Microarrays have been intensively used for the profiling of gene expression during diverse developmental processes, treatments and diseases. New massively parallel sequencing methods, often named as RNA-sequencing (RNA-seq) are extensively improving our understanding of gene regulation and signaling networks. Computational methods developed originally for microarrays analysis can now be optimized and applied to genome-wide studies in order to have access to a better comprehension of the whole transcriptome. This review addresses current challenges on RNA-seq analysis and specifically focuses on new bioinformatics tools developed for time series experiments. Furthermore, possible improvements in analysis, data integration as well as future applications of differential expression analysis are discussed. PMID:26430493

  12. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  13. In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature.

    PubMed

    Pesciotta, Esther N; Lam, Ho-Sun; Kossenkov, Andrew; Ge, Jingping; Showe, Louise C; Mason, Philip J; Bessler, Monica; Speicher, David W

    2015-01-01

    Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein

  14. Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06.

    PubMed

    Han, Lin-Li; Shao, Huan-Huan; Liu, Yong-Cheng; Liu, Gang; Xie, Chao-Ying; Cheng, Xiao-Jie; Wang, Hai-Yan; Tan, Xue-Mei; Feng, Hong

    2017-07-11

    Bacillus pumilus can secret abundant extracellular enzymes, and may be used as a potential host for the industrial production of enzymes. It is necessary to understand the metabolic processes during cellular growth. Here, an RNA-seq based transcriptome analysis was applied to examine B. pumilus BA06 across various growth stages to reveal metabolic changes under two conditions. Based on the gene expression levels, changes to metabolism pathways that were specific to various growth phases were enriched by KEGG analysis. Upon entry into the transition from the exponential growth phase, striking changes were revealed that included down-regulation of the tricarboxylic acid cycle, oxidative phosphorylation, flagellar assembly, and chemotaxis signaling. In contrast, the expression of stress-responding genes was induced when entering the transition phase, suggesting that the cell may suffer from stress during this growth stage. As expected, up-regulation of sporulation-related genes was continuous during the stationary growth phase, which was consistent with the observed sporulation. However, the expression pattern of the various extracellular proteases was different, suggesting that the regulatory mechanism may be distinct for various proteases. In addition, two protein secretion pathways were enriched with genes responsive to the observed protein secretion in B. pumilus. However, the expression of some genes that encode sporulation-related proteins and extracellular proteases was delayed by the addition of gelatin to the minimal medium. The transcriptome data depict global alterations in the genome-wide transcriptome across the various growth phases, which will enable an understanding of the physiology and phenotype of B. pumilus through gene expression.

  15. Transcriptome Analysis in Sheepgrass (Leymus chinensis): A Dominant Perennial Grass of the Eurasian Steppe

    PubMed Central

    Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe

    2013-01-01

    Background Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. Results The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. Conclusions This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species. PMID:23861841

  16. Sugarcane Giant Borer Transcriptome Analysis and Identification of Genes Related to Digestion

    PubMed Central

    de Assis Fonseca, Fernando Campos; Firmino, Alexandre Augusto Pereira; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; de Sousa Júnior, José Dijair Antonino; Silva-Junior, Orzenil Bonfim; Togawa, Roberto Coiti; Pappas, Georgios Joannis; de Góis, Luiz Avelar Brandão; da Silva, Maria Cristina Mattar; Grossi-de-Sá, Maria Fátima

    2015-01-01

    Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect’s biology and to guide the development of new strategies for insect-pest control. PMID:25706301

  17. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression

    PubMed Central

    Lamontagne, Jason; Mell, Joshua C.; Bouchard, Michael J.

    2016-01-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication. PMID:26891448

  18. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer

    PubMed Central

    Bova, G. Steven; Kallio, Heini M.L.; Annala, Matti; Kivinummi, Kati; Högnäs, Gunilla; Häyrynen, Sergei; Rantapero, Tommi; Kivinen, Virpi; Isaacs, William B.; Tolonen, Teemu; Nykter, Matti; Visakorpi, Tapio

    2016-01-01

    We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials. PMID:27148588

  19. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    PubMed Central

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  20. Transcriptome Analysis of a Petal Anthocyanin Polymorphism in the Arctic Mustard, Parrya nudicaulis

    PubMed Central

    Butler, Timothy; Dick, Cynthia; Carlson, Matthew L.; Whittall, Justen B.

    2014-01-01

    Angiosperms are renown for their diversity of flower colors. Often considered adaptations to pollinators, the most common underlying pigments, anthocyanins, are also involved in plants’ stress response. Although the anthocyanin biosynthetic pathway is well characterized across many angiosperms and is composed of a few candidate genes, the consequences of blocking this pathway and producing white flowers has not been investigated at the transcriptome scale. We take a transcriptome-wide approach to compare expression differences between purple and white petal buds in the arctic mustard, Parrya nudicaulis, to determine which genes’ expression are consistently correlated with flower color. Using mRNA-Seq and de novo transcriptome assembly, we assembled an average of 722 bp per gene (49.81% coding sequence based on the A. thaliana homolog) for 12,795 genes from the petal buds of a pair of purple and white samples. Our results correlate strongly with qRT-PCR analysis of nine candidate genes in the anthocyanin biosynthetic pathway where chalcone synthase has the greatest difference in expression between color morphs (P/W = ∼7×). Among the most consistently differentially expressed genes between purple and white samples, we found 3× more genes with higher expression in white petals than in purple petals. These include four unknown genes, two drought-response genes (CDSP32, ERD5), a cold-response gene (GR-RBP2), and a pathogen defense gene (DND1). Gene ontology analysis of the top 2% of genes with greater expression in white relative to purple petals revealed enrichment in genes associated with stress responses including cold, drought and pathogen defense. Unlike the uniform downregulation of chalcone synthase that may be directly involved in the loss of petal anthocyanins, the variable expression of several genes with greater expression in white petals suggest that the physiological and ecological consequences of having white petals may be microenvironment

  1. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis.

    PubMed

    Cornman, R Scott; Bennett, Anna K; Murray, K Daniel; Evans, Jay D; Elsik, Christine G; Aronstein, Kate

    2012-06-29

    We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.

  2. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer.

    PubMed

    Bova, G Steven; Kallio, Heini M L; Annala, Matti; Kivinummi, Kati; Högnäs, Gunilla; Häyrynen, Sergei; Rantapero, Tommi; Kivinen, Virpi; Isaacs, William B; Tolonen, Teemu; Nykter, Matti; Visakorpi, Tapio

    2016-05-01

    We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials.

  3. Transcriptome Analysis in Sheepgrass (Leymus chinensis). A Dominant Perennial Grass of the Eurasian Steppe

    SciTech Connect

    Chen, Shuangyan; Huang, Xin; Yang, Xiaohan; Liu, Gongshe

    2013-07-04

    BACKGROUND: Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. RESULTS: The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. CONCLUSIONS: This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.

  4. Comparative Analysis of Proteome and Transcriptome Variation in Mouse

    PubMed Central

    Hagopian, Raffi; Mungrue, Imran N.; Farber, Charles R.; Sinsheimer, Janet; Kang, Hyun M.; Furlotte, Nicholas; Park, Christopher C.; Wen, Ping-Zi; Brewer, Heather; Weitz, Karl; Camp, David G.; Pan, Calvin; Yordanova, Roumyana; Neuhaus, Isaac; Tilford, Charles; Siemers, Nathan; Gargalovic, Peter; Eskin, Eleazar; Kirchgessner, Todd; Smith, Desmond J.; Smith, Richard D.; Lusis, Aldons J.

    2011-01-01

    The relationships between the levels of transcripts and the levels of the proteins they encode have not been examined comprehensively in mammals, although previous work in plants and yeast suggest a surprisingly modest correlation. We have examined this issue using a genetic approach in which natural variations were used to perturb both transcript levels and protein levels among inbred strains of mice. We quantified over 5,000 peptides and over 22,000 transcripts in livers of 97 inbred and recombinant inbred strains and focused on the 7,185 most heritable transcripts and 486 most reliable proteins. The transcript levels were quantified by microarray analysis in three replicates and the proteins were quantified by Liquid Chromatography–Mass Spectrometry using O(18)-reference-based isotope labeling approach. We show that the levels of transcripts and proteins correlate significantly for only about half of the genes tested, with an average correlation of 0.27, and the correlations of transcripts and proteins varied depending on the cellular location and biological function of the gene. We examined technical and biological factors that could contribute to the modest correlation. For example, differential splicing clearly affects the analyses for certain genes; but, based on deep sequencing, this does not substantially contribute to the overall estimate of the correlation. We also employed genome-wide association analyses to map loci controlling both transcript and protein levels. Surprisingly, little overlap was observed between the protein- and transcript-mapped loci. We have typed numerous clinically relevant traits among the strains, including adiposity, lipoprotein levels, and tissue parameters. Using correlation analysis, we found that a low number of clinical trait relationships are preserved between the protein and mRNA gene products and that the majority of such relationships are specific to either the protein levels or transcript levels. Surprisingly

  5. Comparative analysis of proteome and transcriptome variation in mouse.

    PubMed

    Ghazalpour, Anatole; Bennett, Brian; Petyuk, Vladislav A; Orozco, Luz; Hagopian, Raffi; Mungrue, Imran N; Farber, Charles R; Sinsheimer, Janet; Kang, Hyun M; Furlotte, Nicholas; Park, Christopher C; Wen, Ping-Zi; Brewer, Heather; Weitz, Karl; Camp, David G; Pan, Calvin; Yordanova, Roumyana; Neuhaus, Isaac; Tilford, Charles; Siemers, Nathan; Gargalovic, Peter; Eskin, Eleazar; Kirchgessner, Todd; Smith, Desmond J; Smith, Richard D; Lusis, Aldons J

    2011-06-01

    The relationships between the levels of transcripts and the levels of the proteins they encode have not been examined comprehensively in mammals, although previous work in plants and yeast suggest a surprisingly modest correlation. We have examined this issue using a genetic approach in which natural variations were used to perturb both transcript levels and protein levels among inbred strains of mice. We quantified over 5,000 peptides and over 22,000 transcripts in livers of 97 inbred and recombinant inbred strains and focused on the 7,185 most heritable transcripts and 486 most reliable proteins. The transcript levels were quantified by microarray analysis in three replicates and the proteins were quantified by Liquid Chromatography-Mass Spectrometry using O(18)-reference-based isotope labeling approach. We show that the levels of transcripts and proteins correlate significantly for only about half of the genes tested, with an average correlation of 0.27, and the correlations of transcripts and proteins varied depending on the cellular location and biological function of the gene. We examined technical and biological factors that could contribute to the modest correlation. For example, differential splicing clearly affects the analyses for certain genes; but, based on deep sequencing, this does not substantially contribute to the overall estimate of the correlation. We also employed genome-wide association analyses to map loci controlling both transcript and protein levels. Surprisingly, little overlap was observed between the protein- and transcript-mapped loci. We have typed numerous clinically relevant traits among the strains, including adiposity, lipoprotein levels, and tissue parameters. Using correlation analysis, we found that a low number of clinical trait relationships are preserved between the protein and mRNA gene products and that the majority of such relationships are specific to either the protein levels or transcript levels. Surprisingly

  6. Deep SAGE analysis of the Caenorhabditis elegans transcriptome.

    PubMed

    Ruzanov, Peter; Riddle, Donald L

    2010-06-01

    We employed the Tag-seq technique to generate global transcription profiles for different strains and life stages of the nematode C. elegans. Tag-seq generates cDNA tags as does Serial Analysis of Gene Expression (SAGE), but the method yields a much larger number of tags, generating much larger data sets than SAGE. We examined differences in the performance of SAGE and Tag-seq by comparing gene expression data for 13 pairs of libraries. We identified genes for which expression was consistently changed in long-lived worms. Additional genes emerged in the deeper Tag-seq profiles, including several 'signature' genes found among those zup-regulated in long-lived dauer larvae (cki-1, aak-2 and daf-16). Fifty to sixty percent of the genes differentially expressed in daf-2(-) versus daf-2(+) adults had fragmentary or no functional annotation, suggesting the involvement of as yet unstudied pathways in aging. We were able to distinguish between changes in gene expression associated with altered genotype or altered growth conditions. We found 62 cases of possible mRNA isoform switching in the 13 Tag-seq libraries, whereas the 13 SAGE libraries allowed detection of only 15 such occurrences. We observed strong expression of anti-sense transcripts for several mitochondrial genes, but nuclear anti-sense transcripts were neither abundant nor consistently expressed among the libraries.

  7. Transcriptomic analysis of mononuclear phagocyte differentiation and activation.

    PubMed

    Hume, David A; Freeman, Tom C

    2014-11-01

    Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the sets of genes that are associated with specific functions and the mechanisms by which thousands of genes are regulated in response to pathogen challenge. In large datasets, it is possible to identify large sets of genes that are coregulated with the transcription factors that regulate them. They include macrophage-specific genes, interferon-responsive genes, early inflammatory genes, and those associated with endocytosis. Such analyses can also extract macrophage-associated signatures from large cancer tissue datasets. However, cluster analysis provides no support for a signature that distinguishes macrophages from antigen-presenting dendritic cells, nor the classification of macrophage activation states as classical versus alternative, or M1 versus M2. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.

  8. A transcriptome analysis of mitten crab testes (Eriocheir sinensis)

    PubMed Central

    Zhang, Wei; Wan, Haolei; Jiang, Hui; Zhao, Yunlong; Zhang, Xiaowei; Hu, Songnian; Wang, Qun

    2011-01-01

    The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs – six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology. PMID:21637557

  9. Global transcriptome analysis and identification of genes involved in nutrients accumulation during seed development of rice tartary buckwheat (Fagopyrum Tararicum).

    PubMed

    Huang, Juan; Deng, Jiao; Shi, Taoxiong; Chen, Qijiao; Liang, Chenggang; Meng, Ziye; Zhu, Liwei; Wang, Yan; Zhao, Fengli; Yu, Shizhou; Chen, Qingfu

    2017-09-18

    Tartary buckwheat seeds are rich in various nutrients, such as storage proteins, starch, and flavonoids. To get a good knowledge of the transcriptome dynamics and gene regulatory mechanism during the process of seed development and nutrients accumulation, we performed a comprehensive global transcriptome analysis using rice tartary buckwheat seeds at different development stages, namely pre-filling stage, filling stage, and mature stage. 24 819 expressed genes, including 108 specifically expressed genes, and 11 676 differentially expressed genes (DEGs) were identified. qRT-PCR analysis was performed on 34 DEGs to validate the transcriptome data, and a good consistence was obtained. Based on their expression patterns, the identified DEGs were classified to eight clusters, and the enriched GO items in each cluster were analyzed. In addition, 633 DEGs related to plant hormones were identified. Furthermore, genes in the biosynthesis pathway of nutrients accumulation were analyzed, including 10, 20, and 23 DEGs corresponding to the biosynthesis of seed storage proteins, flavonoids, and starch, respectively. This is the first transcriptome analysis during seed development of tartary buckwheat. It would provide us a comprehensive understanding of the complex transcriptome dynamics during seed development and gene regulatory mechanism of nutrients accumulation.

  10. Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.

    PubMed Central

    Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng

    2015-01-01

    Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice. PMID:26571372

  11. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment

    PubMed Central

    Ma, Yingmei; Shukla, Vijaya; Merewitz, Emily B.

    2017-01-01

    Creeping bentgrass is an important cool-season turfgrass species sensitive to drought. Treatment with polyamines (PAs) has been shown to improve drought tolerance; however, the mechanism is not yet fully understood. Therefore, this study aimed to evaluate transcriptome changes of creeping bentgrass in response to drought and exogenous spermidine (Spd) application using RNA sequencing (RNA-Seq). The high-quality sequences were assembled and 18,682 out of 49,190 (38%) were detected as coding sequences. A total of 22% and 19% of genes were found to be either up- or down-regulated due to drought while 20% and 34% genes were either up- or down- regulated in response to Spd application under drought conditions, respectively. Gene ontology (GO) and enrichment analysis were used to interpret the biological processes of transcripts and relative transcript abundance. Enriched or differentially expressed transcripts due to drought stress and/or Spd application were primarily associated with energy metabolism, transport, antioxidants, photosynthesis, signaling, stress defense, and cellular response to water deprivation. This research is the first to provide transcriptome data for creeping bentgrass under an abiotic stress using RNA-Seq analysis. Differentially expressed transcripts identified here could be further investigated for use as molecular markers or for functional analysis in responses to drought and Spd. PMID:28445484

  12. Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants

    PubMed Central

    Zhang, Shujian; Shi, Qingchun; Albrecht, Ute; Shatters, Robert G; Stange, Ric; McCollum, Greg; Zhang, Shuo; Fan, Chengming; Stover, Ed

    2017-01-01

    Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo (Bower citrus hybrid (Citrus reticulata×C. reticulata×C. paradisi)×Temple (C. reticulata×C. sinensis)), grapefruit (C. paradisi), Pineapple sweet orange (C. sinensis), and their seedless mutants. Seed abortion in seedless mutants was observed at 26 days post anthesis (Time point 2). Affymetrix transcriptomic analysis revealed 359 to 1077 probe sets with differential transcript abundance in the comparison of seedless versus seedy fruits for each citrus genotypes and time points. The GDTA identified by 18 microarray probe sets were validated by qPCR. Hierarchical clustering analysis revealed a range of GDTA associated with development, hormone and protein metabolism, all of which may reflect genes associated with seedless fruit development. There were 14, 9 and 12 genes found exhibiting similar abundance ratios in all three seedless versus seedy genotype comparisons at time point 1, 2 and 3, respectively. Among those genes were genes coding for an aspartic protease and a cysteine protease, which may play important roles in seedless fruit development. New insights into seedless citrus fruit development may contribute to biotech approaches to create seedless cultivars. PMID:28904803

  13. Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus Olivier attacks

    PubMed Central

    Giovino, Antonio; Bertolini, Edoardo; Fileccia, Veronica; Al Hassan, Mohamad; Labra, Massimo; Martinelli, Federico

    2015-01-01

    Red Palm Weevil (RPW, Rhynchophorus ferrugineus Olivier) threatens most palm species worldwide. Until now, no studies have analyzed the gene regulatory networks of Phoenix canariensis (Chabaud) in response to RPW attacks. The aim of this study was to fill this knowledge gap. Providing this basic knowledge is very important to improve its management. Results: A deep transcriptome analysis was performed on fully expanded leaves of healthy non-infested trees and attacked trees at two symptom stages (middle and late infestation). A total of 54 genes were significantly regulated during middle stage. Pathway enrichment analysis showed that phenylpropanoid-related pathways were induced at this stage. More than 3300 genes were affected during late stage of attacks. Higher transcript abundances were observed for lipid fatty acid metabolism (fatty acid and glycerolipids), tryptophan metabolism, phenylpropanoid metabolism. Key RPW-modulated genes involved in innate response mediated by hormone crosstalk were observed belonging to auxin, jasmonate and salicylic acid (SA) pathways. Among transcription factors, some WRKYs were clearly induced. qRT-PCR validation confirmed the upregulation of key genes chosen as validation of transcriptomic analysis. Conclusion: A subset of these genes may be further analyzed in future studies to confirm their specificity to be induced by RPW infestations. PMID:26528297

  14. Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.

    PubMed

    Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng

    2015-01-01

    Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice.

  15. Gut transcriptome analysis on females of Ornithodoros mimon (Acari: Argasidae) and phylogenetic inference of ticks.

    PubMed

    Landulfo, Gabriel Alves; Patané, José Salvatore Leister; Silva, Dalton Giovanni Nogueira da; Junqueira-de-Azevedo, Inácio Loiola Meirelles; Mendonca, Ronaldo Zucatelli; Simons, Simone Michaela; Carvalho, Eneas de; Barros-Battesti, Darci Moraes

    2017-01-01

    Ornithodoros mimon is an argasid tick that parasitizes bats, birds and opossums and is also harmful to humans. Knowledge of the transcripts present in the tick gut helps in understanding the role of vital molecules in the digestion process and parasite-host relationship, while also providing information about the evolution of arthropod hematophagy. Thus, the present study aimed to know and ascertain the main molecules expressed in the gut of argasid after their blood meal, through analysis on the gut transcriptome of engorged females of O. mimon using 454-based RNA sequencing. The gut transcriptome analysis reveals several transcripts associated with hemoglobin digestion, such as serine, cysteine, aspartic proteases and metalloenzymes. The phylogenetic analysis on the peptidases confirmed that most of them are clustered with other tick genes. We recorded the presence a cathepsin O peptidase-coding transcript in ticks. The topology of the phylogenetic inferences, based on transcripts of inferred families of homologues, was similar to that of previous reports based on mitochondrial genome and nuclear rRNA sequences. We deposited 2,213 sequence of O. mimon to the public databases. Our findings may help towards better understanding of important argasid metabolic processes, such as digestion, nutrition and immunity.

  16. Transcriptome Analysis of Differentially Expressed Genes Provides Insight into Stolon Formation in Tulipa edulis.

    PubMed

    Miao, Yuanyuan; Zhu, Zaibiao; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    Tulipa edulis (Miq.) Baker is an important medicinal plant with a variety of anti-cancer properties. The stolon is one of the main asexual reproductive organs of T. edulis and possesses a unique morphology. To explore the molecular mechanism of stolon formation, we performed an RNA-seq analysis of the transcriptomes of stolons at three developmental stages. In the present study, 15.49 Gb of raw data were generated and assembled into 74,006 unigenes, and a total of 2,811 simple sequence repeats were detected in T. edulis. Among the three libraries of stolons at different developmental stages, there were 5,119 differentially expressed genes (DEGs). A functional annotation analysis based on sequence similarity queries of the GO, COG, KEGG databases showed that these DEGs were mainly involved in many physiological and biochemical processes, such as material and energy metabolism, hormone signaling, cell growth, and transcription regulation. In addition, quantitative real-time PCR analysis revealed that the expression patterns of the DEGs were consistent with the transcriptome data, which further supported a role for the DEGs in stolon formation. This study provides novel resources for future genetic and molecular studies in T. edulis.

  17. Transcriptome Analysis of Differentially Expressed Genes Provides Insight into Stolon Formation in Tulipa edulis

    PubMed Central

    Miao, Yuanyuan; Zhu, Zaibiao; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    Tulipa edulis (Miq.) Baker is an important medicinal plant with a variety of anti-cancer properties. The stolon is one of the main asexual reproductive organs of T. edulis and possesses a unique morphology. To explore the molecular mechanism of stolon formation, we performed an RNA-seq analysis of the transcriptomes of stolons at three developmental stages. In the present study, 15.49 Gb of raw data were generated and assembled into 74,006 unigenes, and a total of 2,811 simple sequence repeats were detected in T. edulis. Among the three libraries of stolons at different developmental stages, there were 5,119 differentially expressed genes (DEGs). A functional annotation analysis based on sequence similarity queries of the GO, COG, KEGG databases showed that these DEGs were mainly involved in many physiological and biochemical processes, such as material and energy metabolism, hormone signaling, cell growth, and transcription regulation. In addition, quantitative real-time PCR analysis revealed that the expression patterns of the DEGs were consistent with the transcriptome data, which further supported a role for the DEGs in stolon formation. This study provides novel resources for future genetic and molecular studies in T. edulis. PMID:27064558

  18. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development.

    PubMed

    Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen

    2017-07-11

    Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.

  19. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    SciTech Connect

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  20. Transcriptome analysis of genes involved in defence response in Polyporus umbellatus with Armillaria mellea infection

    PubMed Central

    Liu, Meng-Meng; Xing, Yong-Mei; Zhang, Da-Wei; Guo, Shun-Xing

    2015-01-01

    Polyporus umbellatus, a species symbiotic with Armillaria mellea and it also exhibits substantial defence response to Armillaria mellea infection. There are no genomics resources databases for understanding the molecular mechanism underlying the infection stress of P. umbellatus. Therefore, we performed a large-scale transcriptome sequencing of this fungus with A. mellea infection using Illumina sequencing technology. The assembly of the clean reads resulted in 120,576 transcripts, including 38,444 unigenes. Additionally, we performed a gene expression profiling analysis upon infection treatment. The results indicated significant differences in the gene expression profiles between the control and the infection group. In total, 10933 genes were identified between the two groups. Based on the differentially expressed genes, a Gene Ontology annotation analysis showed many defence-relevant categories. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered some important pathways. Furthermore, the expression patterns of 13 putative genes that are involved in defence response resulting from quantitative real-time PCR were consistent with their transcript abundance changes as identified by RNA-seq. The sequenced genes covered a considerable proportion of the P. umbellatus transcriptome, and the expression results may be useful to strengthen the knowledge on the defence response of this fungus defend against Armillaria mellea invasion. PMID:26526032

  1. Transcriptomic and Genetic Analysis of Direct Interspecies Electron Transfer

    PubMed Central

    Rotaru, Amelia-Elena; Summers, Zarath M.; Shrestha, Minita; Liu, Fanghua; Lovley, Derek R.

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbinolicus, which relies on HIT. Transcript abundance for G. sulfurreducens uptake hydrogenase genes was 7-fold lower in cocultures with G. metallireducens than in cocultures with P. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures with G. metallireducens than in cocultures with P. carbinolicus. The pilin gene pilA was moderately expressed despite a mutation that might be expected to repress pilA expression. Lower transcript abundance for G. sulfurreducens genes associated with acetate metabolism in the cocultures with P. carbinolicus was consistent with the repression of these genes by H2 during HIT. Genes for the biogenesis of pili and flagella and several c-type cytochrome genes were among the most highly expressed in G. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surface c-type cytochrome encoded by Gmet_2896 were not able to form cocultures with G. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments. PMID:23377933

  2. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  3. In Depth Proteome Analysis of Ripening Muscadine Grape Berry cv. Carlos Reveals Proteins Associated with Flavor and Aroma Compounds.

    PubMed

    Kambiranda, Devaiah; Basha, Sheikh M; Singh, Rakesh K; He, Huan; Calvin, Kate; Mercer, Roger

    2016-09-02

    Ripening in nonclimacteric fruits such as grape involves complex chemical changes that have a profound influence on the accumulation of flavor and aroma compounds distinct to a particular grape genotype. In this study, proteome characterization of wine type bronze muscadine grape (Vitis rotundifolia cv. Carlos), primarily grown in the Southeastern United States was performed during berry ripening. Stage-specific protein expression was obtained among different stages of berries. Differential analysis showed the expression of 522 proteins that regulate diverse biological processes and metabolic pathways. Of these, 30 proteins are associated with the production of key phenolic compounds, whereas 25 are associated with the production of muscadine aroma compounds. These proteins are involved in the phenylpropanoid pathway, terpene synthesis, fatty acid derived volatiles and esters that affect muscadine berry flavor and aroma characteristics. Further, gene expression analysis during ripening validated the expression pattern of 12 proteins. Catechin, epicatechin, and four stilbenes were quantified to correlate observed proteome changes. This study not only revealed biochemical changes during muscadine berry ripening but also offers indicators for marker-assisted breeding to enhance organoleptic properties of muscadine grape to improve its flavor and aroma properties.

  4. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  5. Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis.

    PubMed

    Zarei, Mostafa; Sprenger, Adrian; Rackiewicz, Michal; Dengjel, Joern

    2016-01-01

    Mass spectrometry-based phosphoproteomic analysis is a powerful method for gaining a global, unbiased understanding of cellular signaling. Its accuracy and comprehensiveness stands or falls with the quality and choice of the applied phosphopeptide prefractionation strategy. This protocol covers a powerful but simple and rapid strategy for phosphopeptide prefractionation. The combinatorial use of two distinct chromatographic techniques that address the inverse physicochemical properties of peptides allows for superior fractionation efficiency of multiple phosphorylated peptides. In the first step, multiphosphorylated peptides are separated according to the number of negatively charged phosphosites by electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). A subsequent strong cation exchange (SCX) step separates mostly singly phosphorylated peptides in the ERLIC flow-through according to their positive charge. The presented strategy is inexpensive and adaptable to large and small amounts of starting material, and it allows highly multiplexed sample preparation. Because of its implementation as solid-phase extraction, the entire workflow takes only 2 h to complete.

  6. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying

  7. Access to Transplantation and Transplant Outcome Measures (ATTOM): study protocol of a UK wide, in-depth, prospective cohort analysis

    PubMed Central

    Oniscu, Gabriel C; Ravanan, Rommel; Wu, Diana; Gibbons, Andrea; Li, Bernadette; Tomson, Charles; Forsythe, John L; Bradley, Clare; Cairns, John; Dudley, Christopher; Watson, Christopher J E; Bolton, Eleanor M; Draper, Heather; Robb, Matthew; Bradbury, Lisa; Pruthi, Rishi; Metcalfe, Wendy; Fogarty, Damian; Roderick, Paul; Bradley, J Andrew

    2016-01-01

    Introduction There is significant intercentre variability in access to renal transplantation in the UK due to poorly understood factors. The overarching aims of this study are to improve equity of access to kidney and kidney–pancreas transplantation across the UK and to optimise organ allocation to maximise the benefit and cost-effectiveness of transplantation. Methods and analysis 6844 patients aged 18–75 years starting dialysis and/or receiving a transplant together with matched patients active on the transplant list from all 72 UK renal units were recruited between November 2011 and March 2013 and will be followed for at least 3 years. The outcomes of interest include patient survival, access to the transplant list, receipt of a transplant, patient-reported outcome measures (PROMs) including quality of life, treatment satisfaction, well-being and health status on different forms of renal replacement therapy. Sociodemographic and clinical data were prospectively collected from case notes and from interviews with patients and local clinical teams. Qualitative process exploration with clinical staff will help identify unit-specific factors that influence access to renal transplantation. A health economic analysis will explore costs and outcomes associated with alternative approaches to organ allocation. The study will deliver: (1) an understanding of patient and unit-specific factors influencing access to renal transplantation in the UK, informing potential changes to practices and policies to optimise outcomes and reduce intercentre variability; (2) a patient-survival probability model to standardise access to the renal transplant list and (3) an understanding of PROMs and health economic impact of kidney and kidney–pancreas transplantation to inform the development of a more sophisticated and fairer organ allocation algorithm. Ethics and dissemination The protocol has been independently peer reviewed by National Institute for Health Research (NIHR) and

  8. Determinants of child stunting in the Royal Kingdom of Bhutan: an in-depth analysis of nationally representative data

    PubMed Central

    Aguayo, Victor M; Badgaiyan, Nina; Paintal, Kajali

    2015-01-01

    Stunting is associated with poor survival and development in children. Our analysis identifies the factors most significantly associated with child stunting in Bhutan using a nationally representative sample of 2085 children 0–23 months old. We find that 27.5% of children were stunted and almost half (42.6%) of the stunted children were severely stunted. Children's mean height-for-age z-score deteriorated significantly with age (from −0.23 in infants 0–5 months old to −1.60 in children 18–23 months old) and levels of severe stunting were significantly higher among boys. Multivariate regression analysis indicates that children from the Eastern/Western regions had a 64% higher odds of being stunted than children from the Central region (OR 1.64; 95% CI 1.29–2.07); similarly, children from the two lower wealth quintiles had 37% higher odds of being stunted than children from the two upper wealth quintiles (OR 1.37; 95% CI 1.00–1.87). Children whose mothers received three or fewer antenatal care visits during the last pregnancy had a 31% higher odds of being stunted (OR 1.31; 95% CI 1.01–1.69) while children whose mothers did not receive antenatal care from a doctor, nurse or midwife had a 51% higher odds of being stunted (OR 1.51; 95% CI 1.18–1.92). Recommended complementary feeding practices tended to be associated with lower odds of stunting, particularly in the first year of life. Specifically, children who were not fed complementary foods at 6–8 months had about threefold higher odds of being severely stunted than children who were fed complementary foods (OR 2.73; 95% CI 1.06–7.02). PMID:25536283

  9. In-depth proteomic analysis of six types of exudative pleural effusions for nonsmall cell lung cancer biomarker discovery.

    PubMed

    Liu, Pei-Jun; Chen, Chi-De; Wang, Chih-Liang; Wu, Yi-Cheng; Hsu, Chia-Wei; Lee, Chien-Wei; Huang, Lien-Hung; Yu, Jau-Song; Chang, Yu-Sun; Wu, Chih-Ching; Yu, Chia-Jung

    2015-04-01

    Pleural effusion (PE), a tumor-proximal body fluid, may be a promising source for biomarker discovery in human cancers. Because a variety of pathological conditions can lead to PE, characterization of the relative PE proteomic profiles from different types of PEs would accelerate discovery of potential PE biomarkers specifically used to diagnose pulmonary disorders. Using quantitative proteomic approaches, we identified 772 nonredundant proteins from six types of exudative PEs, including three malignant PEs (MPE, from lung, breast, and gastric cancers), one lung cancer paramalignant PE, and two benign diseases (tuberculosis and pneumonia). Spectral counting was utilized to semiquantify PE protein levels. Principal component analysis, hierarchical clustering, and Gene Ontology of cellular process analyses revealed differential levels and functional profiling of proteins in each type of PE. We identified 30 candidate proteins with twofold higher levels (q<0.05) in lung cancer MPEs than in the two benign PEs. Three potential markers, MET, DPP4, and PTPRF, were further verified by ELISA using 345 PE samples. The protein levels of these potential biomarkers were significantly higher in lung cancer MPE than in benign diseases or lung cancer paramalignant PE. The area under the receiver-operator characteristic curve for three combined biomarkers in discriminating lung cancer MPE from benign diseases was 0.903. We also observed that the PE protein levels were more clearly discriminated in effusions in which the cytological examination was positive and that they would be useful in rescuing the false negative of cytological examination in diagnosis of nonsmall cell lung cancer-MPE. Western blotting analysis further demonstrated that MET overexpression in lung cancer cells would contribute to the elevation of soluble MET in MPE. Our results collectively demonstrate the utility of label-free quantitative proteomic approaches in establishing differential PE proteomes and

  10. Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing

    PubMed Central

    2011-01-01

    Background Common bean (Phaseolus vulgaris) is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt). These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC) end sequences, and a total of 21% of the unigenes (12,724) including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs) and transcription factors were also identified in this study. Conclusions This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and will aid in the

  11. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    PubMed Central

    Botton, Alessandro; Galla, Giulio; Conesa, Ana; Bachem, Christian; Ramina, Angelo; Barcaccia, Gianni

    2008-01-01

    Background After 10-year-use of AFLP (Amplified Fragment Length Polymorphism) technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and are being extensively exploited for genome scanning and gene mapping, as well as cDNA-AFLP for transcriptome profiling and differentially expressed gene cloning. The evaluation, annotation and classification of genomic markers and expressed transcripts would be of great utility for both functional genomics and systems biology research in plants. This may be achieved by means of the Gene Ontology (GO), consisting in three structured vocabularies (i.e. ontologies) describing genes, transcripts and proteins of any organism in terms of their associated cellular component, biological process and molecular function in a species-independent manner. In this paper, the functional annotation of about 8,000 AFLP-derived ESTs retrieved in the NCBI databases was carried out by using GO terminology. Results Descriptive statistics on the type, size and nature of gene sequences obtained by means of AFLP technology were calculated. The gene products associated with mRNA transcripts were then classified according to the three main GO vocabularies. A comparison of the functional content of cDNA-AFLP records was also performed by splitting the sequence dataset into monocots and dicots and by comparing them to all annotated ESTs of Arabidopsis and rice, respectively. On the whole, the statistical parameters adopted for the in silico AFLP-derived transcriptome-anchored sequence analysis proved to be critical for obtaining reliable GO results. Such an exhaustive annotation may offer a suitable platform for functional genomics, particularly useful in non-model species. Conclusion Reliable GO annotations of AFLP-derived sequences can be gathered through the optimization of the experimental steps

  12. Transcriptome analysis of sex-related genes in the blood clam Tegillarca granosa.

    PubMed

    Chen, Heng; Xiao, Guoqiang; Chai, Xueliang; Lin, Xingguan; Fang, Jun; Teng, Shuangshuang

    2017-01-01

    polymorphisms (SNPs) were identified from the RNA-seq results. This study provided the first complete gonadal transcriptome data for the blood clam and allowed us to search many aspects of gene sequence information, not limited to gender. This data will improve our understanding of the transcriptomics and reproductive biology of the blood clam. Furthermore, molecular markers such as SSRs and SNPs will be useful in the analysis of genetic evolution, bulked segregant analysis (BSA) and genome-wide association studies (GWAS). Our transcriptome data will therefore provide important genetic information for the breeding and conservation of germplasm.

  13. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.

    PubMed

    Kohrs, F; Heyer, R; Magnussen, A; Benndorf, D; Muth, T; Behne, A; Rapp, E; Kausmann, R; Heiermann, M; Klocke, M; Reichl, U

    2014-10-01

    Biogas production from energy crops and biodegradable waste is one of the major sources for renewable energies in Germany. Within a biogas plant (BGP) a complex microbial community converts biomass to biogas. Unfortunately, disturbances of the biogas process occur occasionally and cause economic losses of varying extent. Besides technical failures the microbial community itself is commonly assumed as a reason for process instability. To improve the performance and efficiency of BGP, a deeper knowledge of the composition and the metabolic state of the microbial community is required and biomarkers for monitoring of process deviations or even the prediction of process failures have to be identified. Previous work based on 2D-electrophoresis demonstrated that the analysis of the metaproteome is well suited to provide insights into the apparent metabolism of the microbial communities. Using SDS-PAGE with subsequent mass spectrometry, stable protein patterns were evaluated for a number of anaerobic digesters. Furthermore, it was shown that severe changes in process parameters such as acidification resulted in significant modifications of the metaproteome. Monitoring of changing protein patterns derived from anaerobic digesters, however, is still a challenge due to the high complexity of the metaproteome. In this study, different combinations of separation techniques to reduce the complexity of proteomic BGP samples were compared with respect to the subsequent identification of proteins by tandem mass spectrometry (MS/MS): (i) 1D: proteins were tryptically digested and the resulting peptides were separated by reversed phase chromatography prior to MS/MS. (ii) 2D: proteins were separated by GeLC-MS/MS according to proteins molecular weights before tryptic digestion, (iii) 3D: proteins were separated by gel-free fractionation using isoelectric focusing (IEF) conducted before GeLC-MS/MS. For this study, a comparison of two anaerobic digesters operated at mesophilic and at

  14. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

    PubMed

    Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B

    2016-02-04

    Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with

  15. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources.

    PubMed

    Burgherr, Peter

    2007-02-09

    This study gives a global overview of accidental oil spills from all sources (> or =700t) for the period 1970-2004, followed by a detailed examination of trends in accidental tanker spills. The present analysis of the number and volume of tanker spills includes temporal and spatial spill trends, aspects of spill size distribution as well as trends of key factors (i.e., flag state, hull type, tanker age, accident cause and sensitivity of location). Results show that the total number and volume of tanker spills have significantly decreased since the 1970s, which is in contrast to increases in maritime transport of oil and to popular perceptions following recent catastrophic events. However, many spills still occur in ecologically sensitive locations because the major maritime transport routes often cross the boundaries of the Large Marine Ecosystems, but the substantially lower total spill volume is an important contribution to potentially reduce overall ecosystem impacts. In summary, the improvements achieved in the past decades have been the result of a set of initiatives and regulations implemented by governments, international organizations and the shipping industry.

  16. In-Depth Proteomic and Glycomic Analysis of the Adult-Stage Cooperia oncophora Excretome/Secretome

    PubMed Central

    Borloo, Jimmy; De Graef, Jessie; Peelaers, Iris; Nguyen, D. Linh; Mitreva, Makedonka; Devreese, Bart; Hokke, Cornelis H.; Vercruysse, Jozef; Claerebout, Edwin; Geldhof, Peter

    2013-01-01

    Cooperia oncophora is one of the most common intestinal parasitic nematodes in cattle worldwide. To date, C. oncophora infections are treated using broad-spectrum anthelmintics. However, during the past decade, reports of anthelmintic resistance in this parasite species have emerged worldwide, necessitating new avenues for its control, possibly through vaccination. In this frame, we analyzed the adult-stage C. oncophora excretome/secretome (ES), covering both the protein and glycan components, since this fraction constitutes the primary interface between parasite and host and may hold potential vaccine candidates. Two-dimensional gel electrophoretic separation of the ES material enabled the MALDI-TOF mass spectrometry (MS)-directed identification of 12 distinct proteins, grouped in three separate molecular weight fractions: (i) a high molecular weight fraction consisting of a double-domain activation-associated secreted protein (ASP), (ii) a midmolecular weight fraction predominantly containing a single-domain ASP, a thioredoxin peroxidase and innexin, and (iii) a low molecular weight protein pool essentially holding two distinct low molecular weight antigens. Further MS-driven glycan analysis mapped a variety of N-glycans to the midmolecular weight single-domain ASP, with Man6GlcNAc2 oligomannosyl glycans as the major species. The predominance of the nonglycosylated double-domain ASP in the high-molecular weight fraction renders it ideal for advancement toward vaccine trials and development. PMID:23895670

  17. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves.

    PubMed

    Piasecka, Anna; Sawikowska, Aneta; Krajewski, Paweł; Kachlicki, Piotr

    2015-03-01

    Structural analysis via HPLC-ESI-MSn, UPLC-HESI-MS/MS and NMR reported 152 phenolic secondary metabolites in spring barley seedlings (Hordeum vulgare L.). Flavonoids with various patterns of glycosylation and acylation, as well as hydroxycinnamic acid glycosides, esters and amides, were identified in methanolic extracts from leaves of nine varieties of barley originating from different regions of the world. Hordatines derivatives, flavones acylated directly on the aglycone, and hydroxyferulic acid derivatives deserve special attention. Preparative chromatography enabled characterization of a number of compounds at trace levels with the 6-C-[6″-O-glycosyl]-glycosides and the 6-C-[2″,6″-di-O-glycosides]-glucoside structure of flavones. Derivatives of flavonols, quercetin and isorhamnetin were observed only in Syrian varieties. The ultra performance liquid chromatography profiles of UV-absorbing secondary metabolites were used for chemotaxonomic comparison between nine varieties of barley from different climatic conditions. The hierarchical clustering of bred lines from the Fertile Crescent and European and American varieties indicates a great diversity of chemical phenotypes within barley species.

  18. In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis.

    PubMed

    Sheng, X G; Zhao, Z Q; Yu, H F; Wang, J S; Zheng, C F; Gu, H H

    2016-07-15

    Quantitative reverse-transcription PCR (qRT-PCR) is a versatile technique for the analysis of gene expression. The selection of stable reference genes is essential for the application of this technique. Cauliflower (Brassica oleracea L. var. botrytis) is a commonly consumed vegetable that is rich in vitamin, calcium, and iron. Thus far, to our knowledge, there have been no reports on the validation of suitable reference genes for the data normalization of qRT-PCR in cauliflower. In the present study, we analyzed 12 candidate housekeeping genes in cauliflower subjected to different abiotic stresses, hormone treatment conditions, and accessions. geNorm and NormFinder algorithms were used to assess the expression stability of these genes. ACT2 and TIP41 were selected as suitable reference genes across all experimental samples in this study. When different accessions were compared, ACT2 and UNK3 were found to be the most suitable reference genes. In the hormone and abiotic stress treatments, ACT2, TIP41, and UNK2 were the most stably expressed. Our study also provided guidelines for selecting the best reference genes under various experimental conditions.

  19. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts.

    PubMed

    Le Bihan, Marie-Catherine; Bigot, Anne; Jensen, Søren Skov; Dennis, Jayne L; Rogowska-Wrzesinska, Adelina; Lainé, Jeanne; Gache, Vincent; Furling, Denis; Jensen, Ole Nørregaard; Voit, Thomas; Mouly, Vincent; Coulton, Gary R; Butler-Browne, Gillian

    2012-12-21

    Efficient muscle regeneration requires cross talk between multiple cell types via secreted signaling molecules. However, as yet there has been no comprehensive analysis of this secreted signaling network in order to understand how it regulates myogenesis in humans. Using integrated proteomic and genomic strategies, we show that human muscle cells release not only soluble secreted proteins through conventional secretory mechanisms but also complex protein and nucleic acid cargos via membrane microvesicle shedding. The soluble secretome of muscle cells contains 253 conventionally secreted signaling proteins, including 43 previously implicated in myogenesis, while others are known to modulate various cell types thus implying a much broader role for myoblasts in muscle remodeling. We also isolated and characterized two types of secreted membrane-derived vesicles: nanovesicles harboring typical exosomal features and larger, morphologically distinct, microvesicles. While they share some common features, their distinct protein and RNA cargos suggest independent functions in myogenesis. We further demonstrate that both types of microvesicles can dock and fuse with adjacent muscle cells but also deliver functional protein cargo. Thus, the intercellular signaling networks invoked during muscle differentiation and regeneration may employ conventional soluble signaling molecules acting in concert with muscle derived microvesicles delivering their cargos directly into target cells.

  20. In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor.

    PubMed

    Zhang, Guoan; Bowling, Heather; Hom, Nancy; Kirshenbaum, Kent; Klann, Eric; Chao, Moses V; Neubert, Thomas A

    2014-12-05

    Measuring the synthesis of new proteins in the context of a much greater number of pre-existing proteins can be difficult. To overcome this obstacle, bioorthogonal noncanonical amino acid tagging (BONCAT) can be combined with stable isotope labeling by amino acid in cell culture (SILAC) for comparative proteomic analysis of de novo protein synthesis (BONLAC). In the present study, we show that alkyne resin-based isolation of l-azidohomoalanine (AHA)-labeled proteins using azide/alkyne cycloaddition minimizes contamination from pre-existing proteins. Using this approach, we isolated and identified 7414 BONCAT-labeled proteins. The nascent proteome isolated by BONCAT was very similar to the steady-state proteome, although transcription factors were highly enriched by BONCAT. About 30% of the methionine residues were replaced by AHA in our BONCAT samples, which allowed for identification of methionine-containing peptides. There was no bias against low-methionine proteins by BONCAT at the proteome level. When we applied the BONLAC approach to screen for brain-derived neurotrophic factor (BDNF)-induced protein synthesis, 53 proteins were found to be significantly changed 2 h after BDNF stimulation. Our study demonstrated that the newly synthesized proteome, even after a short period of stimulation, can be efficiently isolated by BONCAT and analyzed to a depth that is similar to that of the steady-state proteome.

  1. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

    PubMed Central

    2011-01-01

    Background The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist. Results We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly. A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format. Conclusions We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will

  2. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome

    PubMed Central

    2012-01-01

    Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L. dendroidea in the primary

  3. Transcriptome-wide analysis supports environmental adaptations of two Pinus pinaster populations from contrasting habitats.

    PubMed

    Cañas, Rafael A; Feito, Isabel; Fuente-Maqueda, José Francisco; Ávila, Concepción; Majada, Juan; Cánovas, Francisco M

    2015-11-06

    Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions. An oligonucleotide microarray (PINARRAY3) and RNA-Seq were used for whole-transcriptome analyses, and we found that 90.95% of the data were concordant between the two platforms. Furthermore, the two methods identified very similar percentages of differentially expressed genes with values of 5.5% for PINARRAY3 and 5.7% for RNA-Seq. In total, 6,023 transcripts were shared and 88 differentially expressed genes overlapped in the two platforms. Among the differentially expressed genes, all transport related genes except aquaporins were expressed at higher levels in Tamrabta than in Leiria. In contrast, genes involved in secondary metabolism were expressed at higher levels in Tamrabta, and photosynthesis-related genes were expressed more highly in Leiria. The genes involved in light sensing in plants were well represented in the differentially expressed groups of genes. In addition, increased levels of hormones such as abscisic acid, gibberellins, jasmonic and salicylic acid were observed in Leiria. Both transcriptome platforms have proven to be useful resources, showing complementary and reliable results. The results presented here highlight the different abilities of the two maritime pine populations to sense environmental conditions and reveal one type of regulation that can be ascribed to different genetic and epigenetic backgrounds.

  4. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism

    PubMed Central

    Zheng, Jian; Hu, Zenghui; Guan, Xuelian; Dou, Dequan; Bai, Guo; Wang, Yu; Guo, Yingtian; Li, Wei; Leng, Pingsheng

    2015-01-01

    Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp), 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.