Science.gov

Sample records for in-situ synchrotron x-ray

  1. In situ synchrotron x-ray photon beam characterization

    SciTech Connect

    Kyele, Nicholas R.; Silfhout, Roelof G. van; Manolopoulos, Spyros; Nikitenko, S.

    2007-03-15

    We have investigated two in situ methods of measuring x-ray beam parameters such as integrated intensity, position, and intensity distribution. These virtually transparent methods both rely on the collection of scattered radiation from a thin amorphous foil. The scattered radiation is collected by an active pixel sensor placed below the foil, well out of the direction of the beam path. These methods measure a cross-sectional image of the beam as opposed to a profile or beam centroid position provided by existing in situ detection methods. We present the results of measurements taken at a third generation synchrotron radiation source and provide analytical methods of deriving beam profile, position, and absolute intensity.

  2. In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition

    SciTech Connect

    Devloo-Casier, Kilian Detavernier, Christophe; Dendooven, Jolien

    2014-01-15

    Atomic layer deposition (ALD) is a thin film deposition technique that has been studied with a variety of in situ techniques. By exploiting the high photon flux and energy tunability of synchrotron based x-rays, a variety of new in situ techniques become available. X-ray reflectivity, grazing incidence small angle x-ray scattering, x-ray diffraction, x-ray fluorescence, x-ray absorption spectroscopy, and x-ray photoelectron spectroscopy are reviewed as possible in situ techniques during ALD. All these techniques are especially sensitive to changes on the (sub-)nanometer scale, allowing a unique insight into different aspects of the ALD growth mechanisms.

  3. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines

    SciTech Connect

    Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T.; Hu, D. Z.; Schaadt, D. M.

    2012-10-15

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  4. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

    PubMed

    Slobodskyy, T; Schroth, P; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-10-01

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  5. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors

    PubMed Central

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  6. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  7. Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Chakraborty, R.; Serdy, J.; West, B.; Stuckelberger, M.; Lai, B.; Maser, J.; Bertoni, M. I.; Culpepper, M. L.; Buonassisi, T.

    2015-11-01

    In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H2Se and H2S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuInxGa1-xSe2 (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25-400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

  8. Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy.

    PubMed

    Chakraborty, R; Serdy, J; West, B; Stuckelberger, M; Lai, B; Maser, J; Bertoni, M I; Culpepper, M L; Buonassisi, T

    2015-11-01

    In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H2Se and H2S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuIn(x)Ga(1-x)Se2 (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25-400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

  9. Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy

    SciTech Connect

    Chakraborty, R. E-mail: buonassisi@mit.edu; Serdy, J.; Culpepper, M. L.; Buonassisi, T. E-mail: buonassisi@mit.edu; West, B.; Stuckelberger, M.; Bertoni, M. I.; Lai, B.; Maser, J.

    2015-11-15

    In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H{sub 2}Se and H{sub 2}S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuIn{sub x}Ga{sub 1−x}Se{sub 2} (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25–400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

  10. In situ synchrotron x-ray studies of ferroelectric thin films.

    SciTech Connect

    Fong, D. D.; Eastman, J. A.; Stephenson, G. B.; Fuoss, P. H.; Streiffer, S. K.; Thompson, C.; Auciello, O.; Materials Science Division; Northern Illinois Univ.

    2005-03-01

    In situ synchrotron X-ray scattering was used to observe both the growth of PbTiO{sub 3} films by metal-organic chemical vapor deposition and the behavior of the ferroelectric phase transition as a function of film thickness. The dependences of growth mode and deposition rate on gas flows and substrate temperature were determined by homoepitaxial growth studies on thick films (>50 nm). These studies facilitated the growth of thin coherently strained PbTiO{sub 3} films on SrTiO{sub 3} (001) substrates, with thicknesses ranging from 2 to 42 nm. Experiments on the ferroelectric phase transition as a function of film thickness were carried out in these films under controlled mechanical and electrical boundary conditions.

  11. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    NASA Astrophysics Data System (ADS)

    Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.; Park, Jun-Sang; Almer, Jonathan D.

    2017-04-01

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix.

  12. In Situ Synchrotron X-ray Study of Ultrasound Cavitation and Its Effect on Solidification Microstructures

    NASA Astrophysics Data System (ADS)

    Mi, Jiawei; Tan, Dongyue; Lee, Tung Lik

    2015-08-01

    Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with the solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement.

  13. Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays

    SciTech Connect

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2006-01-02

    Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

  14. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell.

    PubMed

    Kunz, Martin; Caldwell, Wendel A; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-01

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  15. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  16. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  17. Geological Carbon Sequestration: new insights from in-situ Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Voltolini, M.; Kwon, T.; Ajo Franklin, J. B.

    2012-12-01

    In a world with rapidly increasing atmospheric CO2 concentrations, a variety of scalable technologies are being considered to mitigate emissions from the combustion of fossil fuels; among these approaches, geological carbon storage (GCS) is being actively tested at a variety of subsurface sites. Despite these activities, a mechanistic understanding of multiphase flow in scCO2/brine systems at the pore scale is still being developed. The distribution of scCO2 in the pore space controls a variety of processes at the continuum scale including CO2 dissolution rate (by way of brine/CO2 contact area), capillary trapping, and residual brine fraction. Virtually no dynamic measurements of the pore-scale distribution of scCO2 in real geological samples have been made in three dimensions leaving models describing multi-phase fluid dynamics, reactive transport, and geophysical properties reliant on analog systems (often using fewer spatial dimensions, different fluids, or lower pressures) or theoretical models describing phase configurations. We present dynamic pore-scale imagery of scCO2 invasion dynamics in a 3D geological sample, in this case a quartz-rich sandstone core extracted from the Domengine Fm, a regionally extensive unit which is currently a target for future GCS operations in the Sacramento Basin. This dataset, acquired using synchrotron X-ray micro tomography (SXR-μCT) and high speed radiography, was made possible by development of a controlled P/T flow-through triaxial cell compatible with X-ray imaging in the 8-40 keV range. These experiments successfully resolved scCO2 and brine phases at a spatial resolution of 4.47 μm while the sample was kept at in situ conditions (45°C, 9 MPa pore pressure, 14 MPa hydrostatic confining stress) during drainage and imbibition cycles. Image volumes of the dry, brine saturated, and partially scCO2 saturated sample were captured and were used to correlate aspects of rock microstructure to development of the invasion front

  18. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A. Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas; Weimer, Matthew S.; Yanguas-Gil, Angel; Elam, Jeffrey W.; Seifert, Sönke; Schlepütz, Christian M.; Hock, Adam S.

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  19. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sonke; Schleputz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present \\textit{in situ} results for 1.) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, 2.) grazing-incidence small angle scattering of MnO nucleation on silicon, and 3.) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  20. Corrosion of an alloy studied in situ with synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Renner, Frank; Lee, Tien-Lin; Kolb, Dieter M.; Stierle, Andreas; Dosch, Helmut; Zegenhagen, Jorg

    2004-03-01

    Corrosion processes are mostly electrochemical in nature. For the basic understanding of corrosion and similar technical processes, in-situ structural methods capable of atomic resolution, such as scanning probe microscopy or hard X-ray techniques are necessary. We used in-situ X-ray diffraction and in addition ex-situ AFM, to study Cu_3Au(111) single crystal surfaces in 0.1M H_2SO4 electrolyte as a function of electrode potential in the sub-critical regime. This binary metal alloys serves as model systems for more complicated technically utilized metal alloys. During the initial electrochemical corrosion, Cu atoms are dissolved and a passivating layer is formed. The experiments show the formation of an epitaxial and highly strained ultra-thin Cu_xAu_1-x(111) phase on the surface at a potential where Cu dissolution starts. At higher potentials, thicker epitaxial Au islands are growing on the surface. AFM images reveal a surface, densely packed with Au islands of a homogeneous size-distribution. On a prolonged timescale, a percolating, porous morphology of the surface evolves by ripening, even at an electrode potential well below the critical potential.

  1. Phase transitions in freeze-dried systems - quantification using in situ synchrotron X-ray diffractometry

    SciTech Connect

    Varshney, Dushyant B.; Sundaramurthi, Prakash; Kumar, Satyendra; Shalaev, Evgenyi Y.; Kang, Shin-Woong; Gatlin, Larry A.; Suryanarayanan, Raj

    2009-09-02

    The purpose is: (1) To develop a synchrotron X-ray diffraction (SXRD) method to monitor phase transitions during the entire freeze-drying cycle. Aqueous sodium phosphate buffered glycine solutions with initial glycine to buffer molar ratios of 1:3 (17:50 mM), 1:1 (50 mM) and 3:1 were utilized as model systems. (2) To investigate the effect of initial solute concentration on the crystallization of glycine and phosphate buffer salt during lyophilization. Phosphate buffered glycine solutions were placed in a custom-designed sample cell for freeze-drying. The sample cell, covered with a stainless steel dome with a beryllium window, was placed on a stage capable of controlled cooling and vacuum drying. The samples were cooled to -50 C and annealed at -20 C. They underwent primary drying at -25 C under vacuum until ice sublimation was complete and secondary drying from 0 to 25 C. At different stages of the freeze-drying cycle, the samples were periodically exposed to synchrotron X-ray radiation. An image plate detector was used to obtain time-resolved two-dimensional SXRD patterns. The ice, {beta}-glycine and DHPD phases were identified based on their unique X-ray peaks. When the solutions were cooled and annealed, ice formation was followed by crystallization of disodium hydrogen phosphate dodecahydrate (DHPD). In the primary drying stage, a significant increase in DHPD crystallization followed by incomplete dehydration to amorphous disodium hydrogen phosphate was evident. Complete dehydration of DHPD occurred during secondary drying. Glycine crystallization was inhibited throughout freeze-drying when the initial buffer concentration (1:3 glycine to buffer) was higher than that of glycine. A high-intensity X-ray diffraction method was developed to monitor the phase transitions during the entire freeze-drying cycle. The high sensitivity of SXRD allowed us to monitor all the crystalline phases simultaneously. While DHPD crystallizes in frozen solution, it dehydrates

  2. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.

    PubMed

    Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming

    2015-12-30

    The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior.

  3. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  4. High-Energy Synchrotron X-Ray Diffraction for In Situ Diffuse Scattering Studies of Bulk Single Crystals

    NASA Astrophysics Data System (ADS)

    Daniels, John E.; Jo, Wook; Donner, Wolfgang

    2012-01-01

    High-energy synchrotron x-ray scattering offers a powerful technique for investigation of single-crystal material structures. Large, mm-sized crystals can be used, allowing complex in situ sample environments to be employed. Here, we demonstrate how this technique can be applied for the collection of single-crystal diffuse scattering volumes from the electro-active material 96%Bi0.5Na0.5TiO3-4%BaTiO3 while electric fields are applied in situ. The data obtained allow correlation of the atomic and nanoscale structures with the observed macroscopic electro-active properties of interest. This article presents a recent study relating the nanoscale stacking fault structure in BNT-BT to the relaxor-ferroelectric nature of the material [Daniels et al. in Appl. Phys. Lett. 98, 252904 (2011)], and extends this study with further experimental description and analysis.

  5. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; James, Richard D.

    2016-05-01

    The alloy Cu25Au30Zn45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

  6. Synchrotron micro-X-ray fluorescence analysis of natural diamonds: First steps in identification of mineral inclusions in situ

    SciTech Connect

    Sitepu, Husin; Kopylova, Maya G.; Quirt, David H.; Cutler, Jeffrey N.; Kotzer, Thomas G.

    2008-06-09

    Diamond inclusions are of particular research interest in mantle petrology and diamond exploration as they provide direct information about the chemical composition of upper and lower mantle and about the petrogenetic sources of diamonds in a given deposit. The objective of the present work is to develop semi-quantitative analytical tools for non-destructive in situ identification and characterization of mineral inclusions in diamonds using synchrotron micro-X-ray Fluorescence ({mu}SXRF) spectroscopy and micro-X-ray Absorption Near Edge Structure ({mu}XANES) spectroscopy at a focused spot size of 4 to 5 micrometers. The data were collected at the Pacific Northwest Consortium (PNC-CAT) 20-ID microprobe beamline at the Advanced Photon Source, located at the Argonne National Laboratory, and yielded the first high-resolution maps of Ti, Cr, Fe, Ni, Cu, and Zn for natural diamond grains, along with quantitative {mu}SXRF analysis of select chemical elements in exposed kimberlite indicator mineral grains. The distribution of diamond inclusions inside the natural diamond host, both visible and invisible using optical transmitted-light microscopy, can be mapped using synchrotron {mu}XRF analysis. Overall, the relative abundances of chemical elements determined by {mu}SXRF elemental analyses are broadly similar to their expected ratios in the mineral and therefore can be used to identify inclusions in diamonds in situ. Synchrotron {mu}XRF quantitative analysis provides accurate estimates of Cr contents of exposed polished minerals when calibrated using the concentration of Fe as a standard. Corresponding Cr K-edge {mu}XANES analyses on selected inclusions yield unique information regarding the formal oxidation state and local coordination of Cr.

  7. In-situ early stage electromigration study in Al line using synchrotron polychromatic X-ray microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2007-10-31

    Electromigration is a phenomenon that has attracted much attention in the semiconductor industry because of its deleterious effects on electronic devices (such as interconnects) as they become smaller and current density passing through them increases. However, the effect of the electric current on the microstructure of interconnect lines during the very early stage of electromigration is not well documented. In the present report, we used synchrotron radiation based polychromatic X-ray microdiffraction for the in-situ study of the electromigration induced plasticity effects on individual grains of an Al (Cu) interconnect test structure. Dislocation slips which are activated by the electric current stressing are analyzed by the shape change of the diffraction peaks. The study shows polygonization of the grains due to the rearrangement of geometrically necessary dislocations (GND) in the direction of the current. Consequences of these findings are discussed.

  8. In Situ Synchrotron X-ray Diffraction Measurement of the Strain Distribution in Si Die for the Embedded Substrates

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh Hsien; Chen, Hao; Ouyang, Yao Tsung; Chiu, Tz Cheng; Chang, Tao Chih; Lee, Hsin Yi; Ku, Chin Shun; Wu, Albert T.

    2015-10-01

    Three-dimensional packaging provides an acceptable solution for miniaturized integrated circuits. Because of the technological flexibility required for combining various modules to form a functional system, miniaturization can be achieved by using embedded techniques that could enhance the reliability of assembled systems. Because the mismatch of the thermal expansion coefficient among the materials has been an emerging issue when embedded components are subjected to thermal cycles, this study adopted the in situ synchrotron x-ray method to measure the strain distribution of a Si die in embedded substrates at various temperatures ranging from 25°C to 150°C. The out-of-plane strain of the Si die became less compressive when the temperature was increased. The numerical simulation of the finite elements software ANSYS also indicated the similar consequence of the strain behavior.

  9. Chromium Reaction Mechanisms for Speciation using Synchrotron in-Situ High-Temperature X-ray Diffraction.

    PubMed

    Low, Fiona; Kimpton, Justin; Wilson, Siobhan A; Zhang, Lian

    2015-07-07

    We use in situ high-temperature X-ray diffraction (HT-XRD), ex-situ XRD and synchrotron X-ray absorption near edge structure spectroscopy (XANES) to derive fundamental insights into mechanisms of chromium oxidation during combustion of solid fuels. To mimic the real combustion environment, mixtures of pure eskolaite (Cr(3+)2O3), lime (CaO) and/or kaolinite [Al2Si2O5(OH)4] have been annealed at 600-1200 °C in air versus 1% O2 diluted by N2. Our results confirm for the first time that (1) the optimum temperature for Cr(6+) formation is 800 °C for the coexistence of lime and eskolaite; (2) upon addition of kaolinite into oxide mixture, the temperature required to produce chromatite shifts to 1000 °C with a remarkable reduction in the fraction of Cr(6+). Beyond 1000 °C, transient phases are formed that bear Cr in intermediate valence states, which convert to different species other than Cr(6+) in the cooling stage; (3) of significance to Cr mobility from the waste products generated by combustion, chromatite formed at >1000 °C has a glassy disposition that prevents its water-based leaching; and (4) Increasing temperature facilitates the migration of eskolaite particles into bulk lime and enhances the extent to which Cr(3+) is oxidized, thereby completing the oxidation of Cr(3+) to Cr(6+) within 10 min.

  10. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction.

    PubMed

    Halasz, Ivan; Kimber, Simon A J; Beldon, Patrick J; Belenguer, Ana M; Adams, Frank; Honkimäki, Veijo; Nightingale, Richard C; Dinnebier, Robert E; Friščić, Tomislav

    2013-09-01

    We describe the only currently available protocol for in situ, real-time monitoring of mechanochemical reactions and intermediates by X-ray powder diffraction. Although mechanochemical reactions (inducing transformations by mechanical forces such as grinding and milling) are normally performed in commercially available milling assemblies, such equipment does not permit direct reaction monitoring. We now describe the design and in-house modification of milling equipment that allows the reaction jars of the operating mill to be placed in the path of a high-energy (∼90 keV) synchrotron X-ray beam while the reaction is taking place. Resulting data are analyzed using conventional software, such as TOPAS. Reaction intermediates and products are identified using the Cambridge Structural Database or Inorganic Crystal Structure Database. Reactions are analyzed by fitting the time-resolved diffractograms using structureless Pawley refinement for crystalline phases that are not fully structurally characterized (such as porous frameworks with disordered guests), or the Rietveld method for solids with fully determined crystal structures (metal oxides, coordination polymers).

  11. Compact x-ray microradiograph for in situ imaging of solidification processes: Bringing in situ x-ray micro-imaging from the synchrotron to the laboratory

    SciTech Connect

    Rakete, C.; Baumbach, C.; Goldschmidt, A.; Samberg, D.; Schroer, C. G.; Breede, F.; Stenzel, C.; Zimmermann, G.; Pickmann, C.; Houltz, Y.; Lockowandt, C.; Svenonius, O.; Wiklund, P.; Mathiesen, R. H.

    2011-10-15

    A laboratory based high resolution x-ray radiograph was developed for the investigation of solidification dynamics in alloys. It is based on a low-power microfocus x-ray tube and is potentially appropriate for x-ray diagnostics in space. The x-ray microscope offers a high spatial resolution down to approximately 5 {mu}m. Dynamic processes can be resolved with a frequency of up to 6 Hz. In reference experiments, the setup was optimized to yield a high contrast for AlCu-alloys. With samples of about 150 {mu}m thickness, high quality image sequences of the solidification process were obtained with high resolution in time and space.

  12. In-situ X-ray Synchrotron Microtomography: Real Time Pore Structure Evolution during Olivine Carbonation

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xiao, X.

    2013-12-01

    Mineral carbonation has been proposed as a promising method for long-term, secure sequestration of carbon dioxide. In porous rocks, fluid-rock interactions can significantly alter the pore space and thus exert important controls over the rate and extent of carbonation. We constructed an x-ray transparent pressure cell [Fusseis et al., 2013] to investigate the real time pore structure evolution during mineral carbonation in porous olivine aggregates. In each experiment, a sintered olivine sample was subjected to a confining pressure of 13 MPa and a pore pressure of 10 MPa, with a sodium bicarbonate solution (NaHCO3 at 1.5 M) as pore fluid. At these pressure conditions, the cell was heated to 473 K. Constant pressure and temperature conditions were maintained during the length of the experiments, lasting 72-120 hours. Using a polychromatic beam in the 2-BM upstream hutch at the Advanced Photon Source, 3-dimensional (3-D) microtomography data were collected in 20 seconds with 30-minute interval. A novel phase retrieval reconstruction algorithm [Paganin et al., 2002] was used to reconstruct microtomographic datasets with a voxel size of ~1.1 micron. The microtomography images at different stages of the carbonation process reveal progressive growth of new crystals in the pore space. Integration of a x-ray transparent pressure vessel with flow through capacity and 3-D microtomography provides a novel research direction of studying the coupled chemo-hydro-thermal-mechanical processes in rocks.

  13. In situ synchrotron X-ray diffraction analysis of deformation behaviour in Ti-Ni-based thin films.

    PubMed

    Wang, Hong; Sun, Guangai; Wang, Xiaolin; Chen, Bo; Zu, Xiaotao; Liu, Yanping; Li, Liangbin; Pan, Guoqiang; Sheng, Liusi; Liu, Yaoguang; Fu, Yong Qing

    2015-01-01

    Deformation mechanisms of as-deposited and post-annealed Ti50.2Ni49.6, Ti50.3Ni46.2Cu3.5 and Ti48.5Ni40.8Cu7.5 thin films were investigated using the in situ synchrotron X-ray diffraction technique. Results showed that initial crystalline phases determined the deformation mechanisms of all the films during tensile loading. For the films dominated by monoclinic martensites (B19'), tensile stress induced the detwinning of 〈011〉 type-II twins and resulted in the preferred orientations of (002)B19' parallel to the loading direction (∥ LD) and (020)B19' perpendicular to the LD (⊥ LD). For the films dominated by austenite (B2), the austenite directly transformed into martensitic variants (B19') with preferred orientations of (002)B19' ∥ LD and (020)B19' ⊥ LD. For the Ti50.3Ni46.2Cu3.5 and Ti48.1Ni40.8Cu7.5 films, martensitic transformation temperatures decreased apparently after post-annealing because of the large thermal stress generated in the films due to the large differences in thermal expansion coefficients between the film and substrate.

  14. A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays Final Technical Report

    SciTech Connect

    Jeremy Weiss

    2012-08-02

    This is the final technical report for the SBIR Phase I project titled 'A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays.' Experiments using diffraction of synchrotron radiation that help scientists understand engineering material failure modes, such as fracture and fatigue, require specialized machinery. This machinery must be able to induce these failure modes in a material specimen while adhering to strict size, weight, and geometric limitations prescribed by diffraction measurement techniques. During this Phase I project, Mechanical Solutions, Inc. (MSI) developed one such machine capable of applying uniaxial mechanical loading to a material specimen in both tension and compression, with zero backlash while transitioning between the two. Engineers currently compensate for a lack of understanding of fracture and fatigue by employing factors of safety in crucial system components. Thus, mechanical and structural parts are several times bigger, thicker, and heavier than they need to be. The scientific discoveries that result from diffraction experiments which utilize sophisticated mechanical loading devices will allow for broad material, weight, fuel, and cost savings in engineering design across all industries, while reducing the number of catastrophic failures in transportation, power generation, infrastructure, and all other engineering systems. With an existing load frame as the starting point, the research focused on two main areas: (1) the design of a specimen alignment and gripping system that enables pure uniaxial tension and compression loading (and no bending, shear, or torsion), and (2) development of a feedback control system that is adaptive and thus can maintain a load set point despite changing specimen material properties (e.g. a decreasing stiffness during yield).

  15. Synchrotron X-Ray Microprobe In-Situ Analysis of Extraterrestrial Particles Collected in Aerogel on the MIR Space Station

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Horz, F.

    2000-01-01

    Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.

  16. In situ synchrotron x-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction.

    SciTech Connect

    Inukai, J.; Cao, D.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H.; Univ. Illinois; Univ. Yamanashi

    2007-11-15

    We used in situ Se K-edge X-ray spectroscopy to characterize Ru nanoparticles chemically modified with submonolayers of selenium (Se/Ru) [Cao et al. J. Electrochem. Soc. 2006, 153, A869]. X-ray powder diffraction verified that the Se/Ru catalyst had metallic Ru cores. The in situ X-ray absorption near edge structure taken at the open circuit potential showed that there were both elemental and oxidized selenium on the as-prepared Se/Ru samples. All selenium oxide was reduced to the elemental form of selenium by applying negative potentials. By applying positive potentials, selenium was subsequently reoxidized. The analysis of the extended X-ray absorption fine structure shows the appearance of selenium hydration (Se-OH{sub 2}) in a deaerated solution, which was not observed during the oxygen reduction reaction. We present evidence that Se-free Ru atoms play an important role in the ORR activity of the Se/Ru catalyst studied in this paper.

  17. In-situ synchrotron x-ray spectroscopy of ruthenium nanoparticles modified with selenium for oxygen reduction reaction.

    SciTech Connect

    Inukai, J.; Cao, D.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H.; Materials Science Division; Univ. of Illinois; Univ. of Yamanashi

    2007-11-15

    We used in situ Se K-edge X-ray spectroscopy to characterize Ru nanoparticles chemically modified with submonolayers of selenium (Se/Ru) [Cao et al. J. Electrochem. Soc. 2006, 153, A869]. X-ray powder diffraction verified that the Se/Ru catalyst had metallic Ru cores. The in situ X-ray absorption near edge structure taken at the open circuit potential showed that there were both elemental and oxidized selenium on the as-prepared Se/Ru samples. All selenium oxide was reduced to the elemental form of selenium by applying negative potentials. By applying positive potentials, selenium was subsequently reoxidized. The analysis of the extended X-ray absorption fine structure shows the appearance of selenium hydration (Se-OH{sub 2}) in a deaerated solution, which was not observed during the oxygen reduction reaction. We present evidence that Se-free Ru atoms play an important role in the ORR activity of the Se/Ru catalyst studied in this paper.

  18. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  19. In-situ and operando characterization of batteries with energy-dispersive synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Paxton, William Arthur

    Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution

  20. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: In situ synchrotron small angle and wide angle X-ray scattering study

    SciTech Connect

    Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen

    2013-01-10

    A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.

  1. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  2. In-situ microscale through-silicon via strain measurements by synchrotron x-ray microdiffraction exploring the physics behind data interpretation

    SciTech Connect

    Liu, Xi; Thadesar, Paragkumar A.; Oh, Hanju; Bakir, Muhannad S.; Taylor, Christine L.; Sitaraman, Suresh K.; Kunz, Martin; Tamura, Nobumichi

    2014-09-15

    In-situ microscale thermomechanical strain measurements have been performed in combination with synchrotron x-ray microdiffraction to understand the fundamental cause of failures in microelectronics devices with through-silicon vias. The physics behind the raster scan and data analysis of the measured strain distribution maps is explored utilizing the energies of indexed reflections from the measured data and applying them for beam intensity analysis and effective penetration depth determination. Moreover, a statistical analysis is performed for the beam intensity and strain distributions along the beam penetration path to account for the factors affecting peak search and strain refinement procedure.

  3. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  4. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGES

    Singh, S. S.; Williams, J. J.; Lin, M. F.; ...

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  5. Measurement of Localized Corrosion Rates at Inclusion Particles in AA7075 by In Situ Three Dimensional (3D) X-ray Synchrotron Tomography

    SciTech Connect

    Singh, Sudhanshu S.; Williams, Jason J.; Stannard, Tyler J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2016-03-01

    In situ X-ray synchrotron tomography was used to measure the localized corrosion rate of Mg2Si particles present in 7075 aluminum alloys in deionized ultra-filtered (DIUF) water. The evolution of hydrogen bubbles was captured as a function of time and the measured volume was used to calculate the local corrosion rate of Mg2Si particles. It was shown that in the absence of chloride ions, stress was needed to create fresh particle surfaces, either by fracture or debonding, to initiate corrosion at the particles.

  6. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy

    PubMed Central

    Sloof, Willem G.; Pei, Ruizhi; McDonald, Samuel A.; Fife, Julie L.; Shen, Lu; Boatemaa, Linda; Farle, Ann-Sophie; Yan, Kun; Zhang, Xun; van der Zwaag, Sybrand; Lee, Peter D.; Withers, Philip J.

    2016-01-01

    MAX phase materials are emerging as attractive engineering materials in applications where the material is exposed to severe thermal and mechanical conditions in an oxidative environment. The Ti2AlC MAX phase possesses attractive thermomechanical properties even beyond a temperature of 1000 K. An attractive feature of this material is its capacity for the autonomous healing of cracks when operating at high temperatures. Coupling a specialized thermomechanical setup to a synchrotron X-ray tomographic microscopy endstation at the TOMCAT beamline, we captured the temporal evolution of local crack opening and healing during multiple cracking and autonomous repair cycles at a temperature of 1500 K. For the first time, the rate and position dependence of crack repair in pristine Ti2AlC material and in previously healed cracks has been quantified. Our results demonstrate that healed cracks can have sufficient mechanical integrity to make subsequent cracks form elsewhere upon reloading after healing. PMID:26972608

  7. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy.

    PubMed

    Sloof, Willem G; Pei, Ruizhi; McDonald, Samuel A; Fife, Julie L; Shen, Lu; Boatemaa, Linda; Farle, Ann-Sophie; Yan, Kun; Zhang, Xun; van der Zwaag, Sybrand; Lee, Peter D; Withers, Philip J

    2016-03-14

    MAX phase materials are emerging as attractive engineering materials in applications where the material is exposed to severe thermal and mechanical conditions in an oxidative environment. The Ti2AlC MAX phase possesses attractive thermomechanical properties even beyond a temperature of 1000 K. An attractive feature of this material is its capacity for the autonomous healing of cracks when operating at high temperatures. Coupling a specialized thermomechanical setup to a synchrotron X-ray tomographic microscopy endstation at the TOMCAT beamline, we captured the temporal evolution of local crack opening and healing during multiple cracking and autonomous repair cycles at a temperature of 1500 K. For the first time, the rate and position dependence of crack repair in pristine Ti2AlC material and in previously healed cracks has been quantified. Our results demonstrate that healed cracks can have sufficient mechanical integrity to make subsequent cracks form elsewhere upon reloading after healing.

  8. In situ synchrotron based x-ray fluorescence and scattering measurements during atomic layer deposition: Initial growth of HfO2 on Si and Ge substrates

    NASA Astrophysics Data System (ADS)

    Devloo-Casier, K.; Dendooven, J.; Ludwig, K. F.; Lekens, G.; D'Haen, J.; Detavernier, C.

    2011-06-01

    The initial growth of HfO2 was studied by means of synchrotron based in situ x-ray fluorescence (XRF) and grazing incidence small angle x-ray scattering (GISAXS). HfO2 was deposited by atomic layer deposition (ALD) using tetrakis(ethylmethylamino)hafnium and H2O on both oxidized and H-terminated Si and Ge surfaces. XRF quantifies the amount of deposited material during each ALD cycle and shows an inhibition period on H-terminated substrates. No inhibition period is observed on oxidized substrates. The evolution of film roughness was monitored using GISAXS. A correlation is found between the inhibition period and the onset of surface roughness.

  9. Phase transition in Ba{sub 2}In{sub 2}O{sub 5} studied by in situ high temperature X-ray diffraction using synchrotron radiation

    SciTech Connect

    Rey, J. F. Q.; Ferreira, F. F.; Muccillo, E. N. S.

    2009-01-29

    The order-disorder phase transition in Ba{sub 2}In{sub 2}O{sub 5} high-temperature ionic conductor was systematically studied by in situ high-temperature X-ray diffraction using synchrotron radiation and electrical conductivity. Pure barium indate was prepared by solid state reactions at 1300 deg. C. The room-temperature structural characterization showed a high degree of phase homogeneity in the prepared material. The reduction of the order-disorder phase transition temperature was verified by electrical conductivity and high-temperature X-ray diffraction. The observed features were explained based on Fourier-transform infrared spectroscopy results that revealed the presence of hydroxyl species in the crystal lattice. The increase of the intensity of few diffraction peaks near the phase transition temperature suggests the formation of a superstructure before the orthorhombic-to-tetragonal phase transition.

  10. In Situ X-ray Diffraction and Absorption Studies of the Li_xMn_2O4 Cathode Materials by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Yang, X. Q.; Mukerjee, S.; McBreen, J.; Daroux, M. L.; Xing, X. K.

    1998-03-01

    The structural and electronic states of the Li_xMn_2O4 cathode materials obtained from different commercial sources were studied in situ during charge-discharge cycle using synchrotron radiation. In x-ray diffraction studies, two or three cubic crystal phases with different lattice constants were observed during charge-discharge between 3V and 4.6V vs lithium metal anode. The number of cubic phases depends on the source of the material and the electrochemical history (the first or second cycle) of the cell. X-ray absorption spectroscopy was used to study the electronic states of the Mn cations during charge-discharge cycles. The relationships between the structural properties of Li_xMn_2O4 and battery performance will be discussed.

  11. The hydrothermal decomposition of calcium monosulfoaluminate 14-hydrate to katoite hydrogarnet and β-anhydrite: An in-situ synchrotron X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Meller, Nicola; Kyritsis, Konstantinos; Hall, Christopher

    2009-10-01

    We apply in-situ synchrotron X-ray diffraction to study the transformation of calcium monosulfoaluminate 14-hydrate Ca 4Al 2O 6(SO 4)·14H 2O [monosulfate-14] to hydrogarnet Ca 3Al 2(OH) 12 on the saturated water vapor pressure curve up to 250 °C. We use an aqueous slurry of synthetic ettringite Ca 6Al 2(SO 4) 3(OH) 12·26H 2O as the starting material; on heating, this decomposes at about 115 °C to form monosulfate-14 and bassanite CaSO 4·0.5H 2O. Above 170 °C monosulfate-14 diffraction peaks slowly diminish in intensity, perhaps as a result of loss of crystallinity and the formation of an X-ray amorphous meta-monosulfate. Hydrogarnet nucleates only at temperatures above 210 °C. Bassanite transforms to β-anhydrite (insoluble anhydrite) at about 230 °C and this transformation is accompanied by a second burst of hydrogarnet growth. The transformation pathway is more complex than previously thought. The mapping of the transformation pathway shows the value of rapid in-situ time-resolved synchrotron diffraction.

  12. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    SciTech Connect

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; Boehler, Reinhard; Shen, Guoyin

    2015-07-17

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

  13. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    DOE PAGES

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; ...

    2015-07-17

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. Furthermore, the new capabilities have demonstrated clear benefits and provide new opportunities in researchmore » areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.« less

  14. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team

    SciTech Connect

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; Shen, Guoyin; Boehler, Reinhard

    2015-07-15

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

  15. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team.

    PubMed

    Meng, Yue; Hrubiak, Rostislav; Rod, Eric; Boehler, Reinhard; Shen, Guoyin

    2015-07-01

    An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

  16. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Wilhelm, Heribert; Nestola, Fabrizio

    2015-03-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10-20 vol%; amphibole, chlorite, talc, mica: 80-90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.

  17. Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging.

    PubMed

    Karunaratne, Angelo; Esapa, Christopher R; Hiller, Jennifer; Boyde, Alan; Head, Rosie; Bassett, J H Duncan; Terrill, Nicholas J; Williams, Graham R; Brown, Matthew A; Croucher, Peter I; Brown, Steve D M; Cox, Roger D; Barber, Asa H; Thakker, Rajesh V; Gupta, Himadri S

    2012-04-01

    Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic

  18. Fast in situ x-ray-diffraction studies of chemical reactions: A synchrotron view of the hydration of tricalcium aluminate

    NASA Astrophysics Data System (ADS)

    Jupe, A. C.; Turrillas, X.; Barnes, P.; Colston, S. L.; Hall, C.; Häusermann, D.; Hanfland, M.

    1996-06-01

    We report observations on the early hydration of tricalcium aluminate, the most reactive component of Portland cement, using rapid-energy dispersive diffraction on a high brilliance synchrotron source. In situ observations of the hydration process over short time scales, and through bulk samples, reveal an intermediate calcium aluminate hydrate appearing just prior to the formation of the final stable hydrate, demonstrating the nucleating role of this intermediate. The superior quality of the data is sufficient to yield concentration versus time plots for each phase over the whole hydration sequence. This improvement derives from being able to use smaller diffracting volumes and consequent removal of time smearing due to inhomogenetics, and thus now offers the possibility of extending the technique in terms of time resolution and diversity of system.

  19. Direct Observations of Sigma Phase Formation in Duplex Stainless Steels using In Situ Synchrotron X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Specht, E D

    2006-07-03

    The formation and growth of sigma phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during 10 hr isothermal heat treatments at temperatures between 700 C and 850 C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. Differences between the calculated and measured amounts of sigma, ferrite and austenite suggest that the thermodynamic calculations underpredict the sigma dissolution temperature by approximately 50 C. The data were further analyzed using a modified Johnson-Mehl-Avrami (JMA) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. The change in the JMA exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high temperature value to room temperature.

  20. Anomalous lattice deformation in GaN/SiC(0001) measured by high-speed in situ synchrotron X-ray diffraction

    SciTech Connect

    Sasaki, Takuo Takahasi, Masamitu; Ishikawa, Fumitaro

    2016-01-04

    We report an anomalous lattice deformation of GaN layers grown on SiC(0001) by molecular beam epitaxy. The evolution of the lattice parameters during the growth of the GaN layers was measured by in situ synchrotron X-ray diffraction. The lattice parameters in the directions parallel and normal to the surface showed significant deviation from the elastic strains expected for lattice-mismatched films on substrates up to a thickness of 10 nm. The observed lattice deformation was well explained by the incorporation of hydrostatic strains due to point defects. The results indicate that the control of point defects in the initial stage of growth is important for fabricating GaN-based optoelectronic devices.

  1. In situ Raman and synchrotron X-ray diffraction study on crystallization of Choline chloride/Urea deep eutectic solvent under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Chaosheng; Chu, Kunkun; Li, Haining; Su, Lei; Yang, Kun; Wang, Yongqiang; Li, Xiaodong

    2016-09-01

    Pressure-induced crystallization of Choline chloride/Urea (ChCl/Urea) deep eutectic solvent (DES) has been investigated by in-situ Raman spectroscopy and synchrotron X-ray diffraction. The results indicated that high pressure crystals appeared at around 2.6 GPa, and the crystalline structure was different from that formed at ambient pressure. Upon increasing the pressure, the Nsbnd H stretching modes of Urea underwent dramatic change after liquid-solid transition. It appears that high pressures may enhance the hydrogen bonds formed between ChCl and Urea. P versus T phase diagram of ChCl/Urea DES was constructed, and the crystallization mechanism of ChCl/Urea DES was discussed in view of hydrogen bonds.

  2. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  3. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  4. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.; Almer, Jonathan D.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c δ hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the α-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 °C. The f.c.c δ was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region and region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 °C.

  5. (De)lithiation mechanism of Li/SeS(x) (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Cui, Yanjie; Abouimrane, Ali; Lu, Jun; Bolin, Trudy; Ren, Yang; Weng, Wei; Sun, Chengjun; Maroni, Victor A; Heald, Steve M; Amine, Khalil

    2013-05-29

    Electrical energy storage for transportation has gone beyond the limit of converntional lithium ion batteries currently. New material or new battery system development is an alternative approach to achieve the goal of new high-energy storage system with energy densities 5 times or more greater. A series of SeSx-carbon (x = 0-7) composite materials has been prepared and evaluated as the positive electrodes in secondary lithium cells with ether-based electrolyte. In situ synchrotron high-energy X-ray diffraction was utilized to investigate the crystalline phase transition during cell cycling. Complementary, in situ Se K-edge X-ray absorption near edge structure analysis was used to track the evolution of the Se valence state for both crystalline and noncrystalline phases, including amorphous and electrolyte-dissolved phases in the (de)lithiation process. On the basis of these results, a mechanism for the (de)lithiation process is proposed, where Se is reduced to the polyselenides, Li2Sen (n ≥ 4), Li2Se2, and Li2Se sequentially during the lithiation and Li2Se is oxidized to Se through Li2Sen (n ≥ 4) during the delithiation. In addition, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy demonstrated the reversibility of the Li/Se system in ether-based electrolyte and the presence of side products in the carbonate-based electrolytes. For Li/SeS2 and Li/SeS7 cells, Li2Se and Li2S are the discharged products with the presence of Se only as the crystalline phase in the end of charge.

  6. In-situ mechanical testing during X-ray diffraction

    SciTech Connect

    Van Swygenhoven, Helena Van Petegem, Steven

    2013-04-15

    Deforming metals during recording X-ray diffraction patterns is a useful tool to get a deeper understanding of the coupling between microstructure and mechanical behaviour. With the advances in flux, detector speed and focussing techniques at synchrotron facilities, in-situ mechanical testing is now possible during powder diffraction and Laue diffraction. The basic principle is explained together with illustrative examples.

  7. In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn-Bi hypoeutectic alloy under electric currents

    NASA Astrophysics Data System (ADS)

    Wang, Tongmin; Zhu, Jing; Kang, Huijun; Chen, Zongning; Fu, Yanan; Huang, Wanxia; Xiao, Tiqiao

    2014-06-01

    The growth behavior and morphological evolution of dendrites in solidifying Sn-Bi alloy under electric currents [e.g., direct current (DC) and electric current pulse (ECP)] are in situ studied using synchrotron radiation X-ray imaging technique. The suppression of dendrite growth, floating and rotation of dendrites, refinement and remelting of dendrites are investigated by analyzing a series of animated images captured during the experiments. The modification mechanisms of dendrite morphology by electric fields are discussed based on the in situ and real-time observations. When DC is imposed on the samples, the growth of dendrites is significantly suppressed due to the effect of Joule heat, and a small dendrite freely flows up and rotates due to the common effect of natural convection. When ECP is imposed in the whole solidification process, the outset of solidification is delayed by Joule heat. And due to the accumulation of undercooling, dendrites suddenly nucleate, grow and finally become fine primary dendrite arm spacing. When ECP is imposed during the crystal growth stage only, the dendrites are remelted at first and then reappear along the original growing trajectories, showing the hereditary feature.

  8. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  9. In-Situ Observations of Sigma Phase Dissolution in 2205 Duplex Stainless Steel using Synchrotron X-Ray Diffraction

    SciTech Connect

    Elmer, J; Palmer, T; Specht, E

    2006-08-08

    Synchrotron radiation was used to directly observe the transformation of ferrite, austenite and sigma phases during heating and cooling of 2205 duplex stainless steel. Sigma formed during the initial stages of heating, dissolved as the temperature was increased, and reformed on cooling. The dissolution temperature of sigma was measured to be 985 C {+-} 2.8 C at a heating rate of 0.25 C/s, and the kinetics of sigma formation at 850 C was determined to be slower after dissolving at 1000 C than before.

  10. An in situ synchrotron X-ray diffraction investigation of lepidocrocite and ferrihydrite-seeded Al(OH) 3 crystallisation from supersaturated sodium aluminate liquor

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Loan, Melissa J.; Madsen, Ian C.; Knott, Robert B.; Brodie, Greta M.; Kimpton, Justin A.

    2012-02-01

    Lepidocrocite and ferrihydrite-seeded Al(OH) 3 crystallisation from supersaturated sodium aluminate liquor at 70 °C was investigated using in situ synchrotron X-ray diffraction. The presence of iron oxides and oxyhydroxides in the Bayer process has implications for the nucleation and growth of scale on process equipment, and a greater understanding of the effect they have on Al(OH) 3 crystallisation may allow for development of methods for Al(OH) 3 scale prevention. The early stages of both crystallisation reactions were characterised by nucleation of gibbsite on the seed material. This was followed by a rapid increase in gibbsite concentration, which coincided with the appearance of the bayerite and nordstrandite polymorphs of Al(OH) 3. The lepidocrocite-seeded reaction then proceeded via a mechanism similar to that which has been observed previously for goethite, hematite and magnetite-seeded Al(OH) 3 crystallisation. Different behaviour was observed in the ferrihydrite-seeded experiment, with nucleation as well as growth occurring during the period of rapid increase in gibbsite concentration, followed by a period of diffusion controlled growth.

  11. In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary co-evaporation

    NASA Astrophysics Data System (ADS)

    Ding, Z.; Gaowei, M.; Sinsheimer, J.; Xie, J.; Schubert, S.; Padmore, H.; Muller, E.; Smedley, J.

    2017-02-01

    K2CsSb is a promising photocathode candidate to serve as an electron source in next-generation light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). As the traditional recipe for creation of K2CsSb photocathodes typically results in a rough surface that deteriorates electron beam quality, significant effort has been made to explore novel growth methods for K2CsSb photocathodes. In this paper, a method of ternary co-evaporation of K, Cs, and Sb is described. By using in-situ synchrotron X-ray techniques, the quality of the photocathode is characterized during and after the growth. K2CsSb photocathodes grown by this method on Si (100) and MgO (001) substrates show strong (222) texture, and the two photocathodes exhibit 1.7% and 3.4% quantum efficiencies at a wavelength of 530 nm, with a rms surface roughness of about 2-4 nm. This represents an order of magnitude reduction in roughness compared to typical sequential deposition and should result in a significant improvement in the brightness of the generated electron beam.

  12. Temperature Dependence of the Structural Parameters in the Transformation of Aragonite to Calcite, as Determined from In Situ Synchrotron Powder X-ray-Diffratction Data

    SciTech Connect

    Antao, Sytle M.; Hassan, Ishmael

    2011-09-06

    The temperature dependency of the crystal structure and the polymorphic transition of CaCO{sub 3} from aragonite to calcite were studied using Rietveld structure refinement and high-temperature in situ synchrotron powder X-ray-diffraction data at ambient pressure, P. The orthorhombic metastable aragonite at room P, space group Pmcn, transforms to trigonal calcite, space group R{bar 3}c, at about T{sub c} = 468 C. This transformation occurs rapidly; it starts at about 420 C and is completed by 500 C, an 80 C interval that took about 10 minutes using a heating rate of 8 C/min. Structurally, from aragonite to calcite, the distribution of the Ca atom changes from approximately hexagonal to cubic close-packing. A 5.76% discontinuous increase in volume accompanies the reconstructive first-order transition. Besides the change in coordination of the Ca atom from nine to six from aragonite to calcite, the CO{sub 3} groups change by a 30{sup o} rotation across the transition.

  13. In situ synchrotron X-ray powder diffraction for studying the role of induced structural defects on the thermoluminescence mechanism of nanocrystalline LiF.

    PubMed

    El Ashmawy, Mostafa; Amer, Hany; Abdellatief, Mahmoud

    2016-03-01

    The correlation between the thermoluminescence (TL) response of nanocrystalline LiF and its microstructure was studied. To investigate the detailed TL mechanism, the glow curves of nanocrystalline LiF samples produced by high-energy ball-milling were analyzed. The microstructure of the prepared samples was analyzed by synchrotron X-ray powder diffraction (XRPD) at room temperature. Then, the microstructure of a representative pulverized sample was investigated in detail by performing in situ XRPD in both isothermal and non-isothermal modes. In the present study, the dislocations produced by ball-milling alter the microstructure of the lattice where the relative concentration of the vacancies, responsible for the TL response, changes with milling time. An enhancement in the TL response was recorded for nanocrystalline LiF at high-temperature traps (after dislocations recovery starts >425 K). It is also found that vacancies are playing a major role in the dislocations recovery mechanism. Moreover, the interactions among vacancies-dislocations and/or dislocations-dislocations weaken the TL response.

  14. In situ synchrotron high-energy X-ray diffraction analysis on phase transformations in Ti-Al alloys processed by equal-channel angular pressing.

    PubMed

    Liss, Klaus Dieter; Whitfield, Ross E; Xu, Wei; Buslaps, Thomas; Yeoh, Lareine A; Wu, Xiaolin; Zhang, Deliang; Xia, Kenong

    2009-11-01

    Mixtures of 47-Al and 53-Ti powders (atomic %) have been consolidated using back pressure equal-channel angular pressing starting with both raw and ball-milled powders. In situ synchrotron high-energy X-ray diffraction studies are presented with continuous Rietveld analysis obtained upon a heating ramp from 300 K to 1075 K performed after the consolidation process. Initial phase distributions contain all intermetallic compounds of this system except Al, with distribution maxima in the outer regions of the concentrations (alpha-Ti, TiAl(3)). Upon annealing, the phase evolution and lattice parameter changes owing to chemical segregation, which is in favour for the more equilibrated phases such as gamma-TiAl, alpha(2)-Ti(3)Al and TiAl(2), were followed unprecedentedly in detail. An initial delta-TiH(2) content with a phase transition at about 625 K upon heating created an intermediate beta-Ti phase which played an important role in the reaction chain and gradually transformed into the final products.

  15. SYNCHROTRON X - RAY OBSERVATIONS OF A MONOLAYER TEMPLATE FOR MINERALIZATION.

    SciTech Connect

    DIMASI,E.; GOWER,L.B.

    2000-11-27

    Mineral nucleation at a Langmuir film interface has been studied by synchrotron x-ray scattering. Diluted calcium bicarbonate solutions were used as subphases for arachidic and stearic acid monolayers, compressed in a Langmuir trough. Self-assembly of the monolayer template is observed directly, and subsequent crystal growth monitored in-situ.

  16. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  17. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials.

    PubMed

    Robinson, James B; Brown, Leon D; Jervis, Rhodri; Taiwo, Oluwadamilola O; Millichamp, Jason; Mason, Thomas J; Neville, Tobias P; Eastwood, David S; Reinhard, Christina; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2014-09-01

    A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature.

  18. In-situ synchrotron radiation x-ray diffraction and visual imaging study of magnesite + quartz + water at mid-crustal temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Kerrigan, R. J.; Candela, P. A.; Piccoli, P. M.

    2009-12-01

    The system MgO-SiO2-H2O-CO2 (MSHC) has been investigated to observe the decarbonation of magnesite and the kinetics of mineral dissolution/precipitation in the presence of a silica-rich fluid. Hydrothermal experiments containing magnesite + quartz + water under greenschist to amphibolite facies temperatures and pressures (up to 765°C and 1 GPa) were conducted in a Bassett-type hydrothermal diamond anvil cell (HDAC). Two sets of experiments were conducted: (1) experiments monitored by using visible light microscopy, digitally recorded to track apparent dissolution and precipitation changes, and (2) experiments monitored over time by synchrotron radiation x-ray diffraction (SR-XRD). Our experiments have produced minerals of a fibrous habit, a morphology sometimes linked to respiratory illnesses. Understanding the conditions that promote the growth of fibrous minerals will allow us to better identify geological environments wherein they may form. The starting materials consist of two equidimensional grains of magnesite and quartz (~0.05 mm in diameter) in deionized H2O. The sample chamber is confined by the two diamonds (1mm culet) and a rhenium gasket (0.3 mm diameter, 0.15 mm thick). Experimental temperatures and pressures were progressively increased, step-wise through 450-765°C and 0.1-1GPa, with several isothermal steps of 30-90 minutes duration. Experiments were returned to 465°C before quench. The final equilibrium assemblage was dependent on the molar ratio of starting materials. Images of digitally recorded experiments were analyzed to track apparent changes of mineral proportions over time. In-situ SR-XRD, provides phase identification information and data on reaction progress through the relative abundance of reactants and products. Changes in characteristic x-ray peak intensity, morphology and cross-sectional area, allows for the determination of important physical properties and kinetic parameters for the reactant and product phases. At temperatures

  19. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge.

    PubMed

    Newton, Mark A; van Beek, Wouter

    2010-12-01

    The advantages, challenges, and future possibilities for combining synchrotron-based X-ray techniques with vibrational spectroscopies are considered in this critical review. Particular emphasis is given to (1) quantifying structure and structural change--on a wide range of length scales--in working heterogeneous catalytic systems; (2) relating that change to chemical speciation occurring at the surface of the catalyst; and (3) determining how such change relates to the overall function of the catalyst material. We will consider those resources that exist today and suggest some possible future directions yet to be ventured into or demonstrated. Lastly, we will consider how the catalysis community interacts with, and uses the resources offered by, modern synchrotron radiation facilities and whether this current relationship provides the best and most inclusive means for the exploitation of these resources in this field of research (83 references).

  20. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  1. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; Meng, Yue; Litasov, Konstantin D.; Wang, Xin; Liu, Bingbing; Cui, Tian

    2016-02-01

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Grüneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). These high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.

  2. In situ synchrotron study of liquid phase separation process in Al-10 wt.% Bi immiscible alloys by radiography and small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lu, W. Q.; Zhang, S. G.; Li, J. G.

    2016-03-01

    Liquid phase separation process of immiscible alloys has been repeatedly tuned to create special structure for developing materials with unique properties. However, the fundamental understanding of the liquid phase separation process is still under debate due to the characteristics of immiscible alloys in opacity and high temperature environment of alloy melt. Here, the liquid phase separation process in solidifying Al-Bi immiscible alloys was investigated by synchrotron radiography and small angle X-ray scattering. We provide the first direct evidence of surface segregation prior to liquid decomposition and present that the time dependence on the number of Bi droplets follows Logistic curve. The liquid decomposition results from a nucleation and growth process rather than spinodal decomposition mechanism because of the positive deviation from Porod's law. We also found that the nanometer-sized Bi-rich droplets in Al matrix melt present mass fractal characteristics.

  3. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    PubMed Central

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; Meng, Yue; Litasov, Konstantin D.; Wang, Xin; Liu, Bingbing; Cui, Tian

    2016-01-01

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Grüneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). These high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment. PMID:26883479

  4. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells.

    PubMed

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; Meng, Yue; Litasov, Konstantin D; Wang, Xin; Liu, Bingbing; Cui, Tian

    2016-02-17

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie-Grüneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). These high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.

  5. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE PAGES

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; ...

    2016-02-17

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  6. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    SciTech Connect

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; Meng, Yue; Litasov, Konstantin D.; Wang, Xin; Liu, Bingbing; Cui, Tian

    2016-02-17

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.

  7. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    PubMed

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.

  8. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  9. In situ synchrotron X-ray fluorescence mapping and speciation of CeO₂ and ZnO nanoparticles in soil cultivated soybean (Glycine max).

    PubMed

    Hernandez-Viezcas, Jose A; Castillo-Michel, Hiram; Andrews, Joy Cooke; Cotte, Marine; Rico, Cyren; Peralta-Videa, Jose R; Ge, Yuan; Priester, John H; Holden, Patricia Ann; Gardea-Torresdey, Jorge L

    2013-02-26

    With the increased use of engineered nanomaterials such as ZnO and CeO₂ nanoparticles (NPs), these materials will inevitably be released into the environment, with unknown consequences. In addition, the potential storage of these NPs or their biotransformed products in edible/reproductive organs of crop plants can cause them to enter into the food chain and the next plant generation. Few reports thus far have addressed the entire life cycle of plants grown in NP-contaminated soil. Soybean ( Glycine max ) seeds were germinated and grown to full maturity in organic farm soil amended with either ZnO NPs at 500 mg/kg or CeO₂ NPs at 1000 mg/kg. At harvest, synchrotron μ-XRF and μ-XANES analyses were performed on soybean tissues, including pods, to determine the forms of Ce and Zn in NP-treated plants. The X-ray absorption spectroscopy studies showed no presence of ZnO NPs within tissues. However, μ-XANES data showed O-bound Zn, in a form resembling Zn-citrate, which could be an important Zn complex in the soybean grains. On the other hand, the synchrotron μ-XANES results showed that Ce remained mostly as CeO₂ NPs within the plant. The data also showed that a small percentage of Ce(IV), the oxidation state of Ce in CeO₂ NPs, was biotransformed to Ce(III). To our knowledge, this is the first report on the presence of CeO₂ and Zn compounds in the reproductive/edible portion of the soybean plant grown in farm soil with CeO₂ and ZnO NPs.

  10. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  11. In situ high-pressure synchrotron X-ray diffraction study of the structural stability in NdVO{sub 4} and LaVO{sub 4}

    SciTech Connect

    Errandonea, D.; Achary, S.N.; Tyagi, A.K.; Bettinelli, M.

    2014-02-01

    Highlights: • NdVO{sub 4} and LaVO{sub 4} were studied under high pressure using synchrotron powder XRD. • Both compounds exhibit first-order phase transitions. • In NdVO{sub 4} the transition involves a symmetry breaking and in LaVO{sub 4} is isomorphic. • The crystal structures of the high-pressure phases are assigned. • Axial and bulk compressibilities are determined. - Abstract: Room-temperature angle-dispersive X-ray diffraction measurements on zircon-type NdVO{sub 4} and monazite-type LaVO{sub 4} were performed in a diamond-anvil cell up to 12 GPa. In NdVO{sub 4}, we found evidence for a non-reversible pressure-induced structural phase transition from zircon to a monazite-type structure at 6.5 GPa. Monazite-type LaVO{sub 4} also exhibits a phase transition but at 8.6 GPa. In this case the transition is reversible and isomorphic. In both compounds the pressure induced transitions involve a large volume collapse. Finally, the equations of state and axial compressibilities for the low-pressure phases are also determined.

  12. In situ strain profiling of elastoplastic bending in Ti-6Al-4V alloy by synchrotron energy dispersive x-ray diffraction

    SciTech Connect

    Croft, M.; Shukla, V.; Akdogan, E. K.; Sadangi, R.; Ignatov, A.; Balarinni, L.; Tsakalakos, T.; Jisrawi, N.; Zhong, Z.; Horvath, K.

    2009-05-01

    Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core region remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.

  13. Abundance and Charge State of Implanted Solar Wind Transition Metals in Individual Apollo 16 and 17 Lunar Soil Plagioclase Grains Determined In Situ Using Synchrotron X-ray Fluorescence

    SciTech Connect

    Kitts, K.; Sutton, S.; Newville, M.

    2007-03-06

    We report (1) a new method for determining the relative abundances in situ of Cr, Mn, Fe and Ni in implanted solar wind in individual Apollo 16 and 17 lunar plagioclases via synchrotron X-ray fluorescence and (2) the charge states of these metals. By virture of its mass alone, the Sun provides a representative composition of the solar system and can be used as a background against which to gauge excesses or deficiencies of specific components. One way of sampling the Sun is by measuring solar wind implanted ions in lunar soil grains. Such measurements are valuable because of their long exposure ages which compliment shorter time scale collections, such as those obtained by the Genesis spacecraft. Kitts et al. sought to determine the isotopic composition of solar Cr by analyzing the solar wind implanted into plagioclase grains from Apollo 16 lunar soils. The isotopic composition of the solar wind bearing fraction was anomalous and did not match any other known Cr isotopic signature. This could only be explained by either (1) an enrichment in the solar wind of heavy Cr due to spallation in the solar atmosphere or (2) that the Earth and the various parent bodies of the meteorites are distinct from the Sun and must have formed from slightly different mixes of presolar materials. To help resolve this issue, we have developed a wholly independent method for determining the relative abundances of transition metals in the solar wind implanted in individual lunar soil grains. This method is based on in situ abundance measurements by microbeam x-ray fluorescence in both the implantation zone and bulk grains using the synchrotron x-ray microprobe at the Advanced Photon Source (GSECARS sector 13) at Argonne National Laboratory. Here, we report results for Apollo 16 and 17 plagioclase grains. Additionally, a micro-XANES technique was used to determine charge states of the implanted Cr, Mn, Fe and Ni.

  14. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  15. Dynamics of mineral crystallization at inclusion-garnet interface from precipitated slab-derived fluid phase: first in-situ synchrotron x-ray measurements

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Nestola, Fabrizio

    2015-04-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. These inclusions are frequently hosted by minerals stable at mantle depths, such as garnet, and show the same textural features as fluid inclusions. The mineral infillings of the solid multiphase inclusions are generally assumed to have crystallized by precipitation from the solute load of dense supercritical fluids equilibrating with the host rock. Notwithstanding the validity of this assumption, the mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~ 4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometers and negative crystal shapes. Infilling minerals (spinel: 10-20 vol.%; amphibole, chlorite, talc, mica: 80- 90 vol.%) occur with constant volume ratios and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by means of Synchrotron Radiation at DLS-Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and their reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Epitaxy drives a first-stage nucleation of spinel under near-to-equilibrium conditions

  16. X-ray induced chemical reaction revealed by in-situ X-ray diffraction and scanning X-ray microscopy in 15 nm resolution (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ge, Mingyuan; Liu, Wenjun; Bock, David; De Andrade, Vincent; Yan, Hanfei; Huang, Xiaojing; Marschilok, Amy; Takeuchi, Esther; Xin, Huolin; Chu, Yong S.

    2016-09-01

    The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever increasing source brightness, which have significantly advanced ex-situ and in-situ research for energy materials, such as lithium-ion batteries. However, the strong beam-matter interaction arisen from the high beam flux can significantly modify the material structure. The parasitic beam-induced effect inevitably interferes with the intrinsic material property, which brings difficulties in interpreting experimental results, and therefore requires comprehensive evaluation. Here we present a quantitative in-situ study of the beam-effect on one electrode material Ag2VO2PO4 using four different X-ray probes with different radiation dose rate. The material system we reported exhibits interesting and reversible radiation-induced thermal and chemical reactions, which was further evaluated under electron microscopy to illustrate the underlying mechanism. The work we presented here will provide a guideline in using synchrotron X-rays to distinguish the materials' intrinsic behavior from extrinsic structure changed induced by X-rays, especially in the case of in-situ and operando study where the materials are under external field of either temperature or electric field.

  17. In situ defect annealing of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronal annealing betweenmore » 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO2 and ThO2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO2 and ThO2.« less

  18. In situ defect annealing of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    SciTech Connect

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; Park, Changyong; Popov, Dmitry; Trautmann, Christina; Ewing, Rodney C.; Lang, Maik

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronal annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO2 and ThO2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO2 and ThO2.

  19. On the P-induced behavior of the zeolite phillipsite: an in situ single-crystal synchrotron X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Comboni, Davide; Gatta, G. Diego; Lotti, Paolo; Merlini, Marco; Liermann, Hanns-Peter

    2017-01-01

    The elastic behavior and the structural evolution at high pressure of a natural phillipsite have been investigated by in situ single-crystal X-ray diffraction up to 9.44 GPa, using a diamond anvil cell and the nominally penetrating P-transmitting fluid methanol:ethanol:water (16:3:1) mix. Although no phase transition was observed within the P-range investigated, two different compressional regimes occur. Between 0.0001 and 2.0 GPa, the refined elastic parameters, calculated by a second-order Birch-Murnaghan equation of state (BM-EoS) fit, are V 0 = 1005(1) Å3, K 0 = 89(8) GPa for the unit-cell volume; a 0 = 9.914(7) Å, K a = 81(12) GPa for the a-axis; b 0 = 14.201(9) Å, K b = 50(5) GPa for the b-axis; and c 0 = 8.707(2) Å, K c = 107(8) GPa for the c-axis ( K a : K b : K c 1.62:1:2.14). Between 2.0 and 9.4 GPa, a P-induced change in the configuration of H2O molecules, coupled with a change in the tilting mechanisms of the framework tetrahedra, gives rise to a second compressional regime, in which the phillipsite structure is softer if compared to the first compressional range. In the second compressional regime, the refined elastic parameters, calculated by a second-order BM-EoS fit, are V 0 = 1098 (7) Å3, K 0 = 18.8(7) GPa for the unit-cell volume; a 0 = 10.07(3) Å, K a = 30(2) GPa for the a-axis; b 0 = 14.8(1) Å, K b = 11(1) GPa for the b-axis; and c 0 = 8.94(2) Å, K c = 21(1) GPa for the c-axis ( K a : K b : K c 2.72:1:1.90). The evolution of the monoclinic β angle with pressure shows two distinct trends in the two compressional regimes: with a negative slope between 0.0001 and 2.0 GPa, and a positive slope between 2.0 and 9.4 GPa. The mechanisms, at the atomic scale, that govern the two compressional regimes of the phillipsite structure are described.

  20. Larch: X-ray Analysis for Synchrotron Applications using Python

    NASA Astrophysics Data System (ADS)

    Newville, Matthew

    2017-03-01

    Larch is an open-source library and toolkit written in Python for processing and analyzing X-ray spectroscopic data. The primary emphasis is on X-ray spectroscopic and scattering data collected at modern synchrotron sources. Larch provides a wide selection of general-purpose processing, analysis, and visualization tools for processing X-ray data; its related target application areas include X-ray absorption fine structure (XAFS), micro-X-ray fluorescence (XRF) maps, quantitative X-ray fluorescence, X-ray absorption near edge spectroscopy (XANES), and X-ray standing waves and surface scattering. Larch provides a complete set of XAFS Analysis tools and has support for visualizing and analyzing XRF maps and spectra, and additional tools for X-ray spectral analysis, data handling, and general-purpose data modeling.

  1. Oxygen storage properties of La1-xSrxFeO3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    DOE PAGES

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La1–xSrxFeO3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La1–xSrxFeO3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2, 2/3, and 1, we discover anmore » envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La2/3Sr1/3FeO3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  2. Oxygen storage properties of La1-xSrxFeO3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    SciTech Connect

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; Xu, Wenqian; Rodriguez, Efrain E.; Whitfield, Pamela S.

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La1–xSrxFeO3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La1–xSrxFeO3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2, 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La2/3Sr1/3FeO3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.

  3. In situ synchrotron X-ray diffraction investigation of the evolution of a PbO₂/PbSO₄ surface layer on a copper electrowinning Pb anode in a novel electrochemical flow cell.

    PubMed

    Clancy, Marie; Styles, Mark J; Bettles, Colleen J; Birbilis, Nick; Chen, Miao; Zhang, Yansheng; Gu, Qinfen; Kimpton, Justin A; Webster, Nathan A S

    2015-03-01

    This paper describes the quantitative measurement, by in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2 and PbSO4 surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 M H2SO4 electrolyte at 318 K. This is the first report of a truly in situ S-XRD study of the surface layer evolution on a Pb substrate under cycles of galvanostatic and power interruption conditions, of key interest to the mining, solvent extraction and lead acid battery communities. The design of a novel reflection geometry electrochemical flow cell is also described. The in situ S-XRD results show that β-PbO2 forms immediately on the anode under galvanostatic conditions, and undergoes continued growth until power interruption where it transforms to PbSO4. The kinetics of the β-PbO2 to PbSO4 conversion decrease as the number of cycles increases, whilst the amount of residual PbO2 increases with the number of cycles due to incomplete conversion to PbSO4. Conversely, complete transformation of PbSO4 to β-PbO2 was observed in each cycle. The results of layer thickness calculations demonstrate a significant volume change upon PbSO4 to β-PbO2 transformation.

  4. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  5. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  6. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    NASA Astrophysics Data System (ADS)

    Kappen, P.; Arhatari, B. D.; Luu, M. B.; Balaur, E.; Caradoc-Davies, T.

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  7. In situ high-pressure synchrotron x-ray diffraction study of CeVO[subscript 4] and TbVO[subscript 4] up to 50 GPa

    SciTech Connect

    Errandonea, D.; Kumar, R.S.; Achary, S.N.; Tyagi, A.K.

    2012-02-07

    Room-temperature angle-dispersive x-ray diffraction measurements on zircon-type TbVO{sub 4} and CeVO{sub 4} were performed in a diamond-anvil cell up to 50 GPa using neon as a pressure-transmitting medium. In TbVO{sub 4}, we found at 6.4 GPa evidence of a nonreversible pressure-induced structural phase transition from zircon to a scheelite-type structure. A second transition to an M-fergusonite-type structure was found at 33.9 GPa, which is reversible. Zircon-type CeVO{sub 4} exhibits two pressure-induced transitions: first, an irreversible transition to a monazite-type structure at 5.6 GPa and, second, at 14.7 GPa, a reversible transition to an orthorhombic structure. No additional phase transitions or evidences of chemical decomposition are found in the experiments. The equations of state and axial compressibility for the different phases are also determined. Finally, the sequence of structural transitions and the compressibilities are discussed in comparison with other orhtovanadates and the influence of nonhydrostaticity commented.

  8. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  9. In situ X-ray-based imaging of nano materials

    DOE PAGES

    Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.

    2016-02-13

    We study functional nanomaterials that are heterogeneous and understanding their behavior during synthesis and operation requires high resolution diagnostic imaging tools that can be used in situ. Over the past decade, huge progress has been made in the development of X-ray based imaging, including full field and scanning microscopy and their analogs in coherent diffractive imaging. Currently, spatial resolution of about 10 nm and time resolution of sub-seconds are achievable. For catalysis, X-ray imaging allows tracking of particle chemistry under reaction conditions. In energy storage, in situ X-ray imaging of electrode particles is providing important insight into degradation processes. Recently,more » both spatial and temporal resolutions are improving to a few nm and milliseconds and these developments will open up unprecedented opportunities.« less

  10. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  11. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  12. Radiobiological studies using synchrotron-produced ultrasoft X-rays.

    PubMed

    Gould, M N; Nelms, B E; Hill, C K; Mackay, J F; Lindstrom, M J; Mackie, T R; Deluca, P M

    1999-12-01

    Ultrasoft X-rays have been extensively used to explore radiobiological mechanisms surrounding cell killing. These studies for the most part have been linked to a small number of X-ray energies. Recently, this field of study has been broadened by the availability of synchrotron-produced ultrasoft X-rays which can be produced at any desired energy. We have taken advantage of the University of Wisconsin Synchrotron to reexamine two fundamental radiobiological questions: Dose RBE vary with different ultrasoft X-ray energies? Dose the fraction of the nuclear volume exposed to equal total X-ray energy modify cell cytotoxicity? The first study focuses on the survival of Chinese hamster V79 and mouse C3H10T1/2 cells irradiated with synchrotron-produced 273 eV and 860 eV ultrasoft X-rays. These two energies, which are available by multilayer monochromatization of the synchrotron output spectrum, exhibit equal attenuation within living cells. Such an isoattenuating energy pair allows the direct examination of how biological effectiveness varies with the energy of the ultrasoft X-rays. In comparing survival results, we find similar biological effectiveness of these two energies for both the C3H10T1/2 and the V79 cells. These results are no consistent with previous findings of increasing RBE with decreasing ultrasoft X-ray energies. In addition, after correcting for mean nuclear based on measurements of cell thickness obtained with confocal microscopy, we find no significant differences in survival between the two ultrasoft X-ray energies and 250 kVp X-rays. These results suggest that RBE does not increase with decreasing energy of ultrasoft X-ray between 860 eV and 273 eV. In a second study we introduced an method which allows partial-volume irradiation of live cells using synchrotron-produced ultrasoft X-rays and micro-fabricated irradiation masks. The masks were made by X-ray lithography at the University of Wisconsin Synchrotron Radiation Center, and they consist of 1

  13. X-Ray microanalytical techniques based on synchrotron radiation.

    PubMed

    Snigireva, Irina; Snigirev, Anatoly

    2006-01-01

    The development of 3rd generation synchrotron radiation sources like European Synchrotron Radiation Facility (ESRF) in parallel with recent advances in the technology of X-ray microfocusing elements like Kirkpatrick-Baez (KB) mirrors, diffractive (Fresnel zone plates, FZP) and refractive (compound refractive lenses, CRL) optics, makes it possible to use X-ray microscopy techniques with high energy X-rays (energy superior to 4 keV). Spectroscopy, imaging, tomography and diffraction studies of samples with hard X-rays at micrometre and sub-micrometre spatial resolutions are now possible. The concept of combining these techniques as a high-energy microscopy has been proposed and successfully realized at the ESRF beamlines. Therefore a short summary of X-ray microscopy techniques is presented first. The main emphasis will be put on those methods which aim to produce sub-micron and nanometre resolution. These methods fall into three broad categories: reflective, refractive and diffractive optics. The basic principles and recent achievements will be discussed for all optical devices. Recent applications of synchrotron based microanalytical techniques to characterise radioactive fuel particles (UO(2)) released from the Chernobyl reactor are reported.

  14. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  15. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  16. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  17. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  18. Compressibility and equation of state of beryl (Be3Al2Si6O18) by using a diamond anvil cell and in situ synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Fan, Dawei; Xu, Jingui; Kuang, Yunqian; Li, Xiaodong; Li, Yanchun; Xie, Hongsen

    2015-07-01

    High-pressure single-crystal synchrotron X-ray diffraction was carried out on a single crystal of natural beryl compressed in a diamond anvil cell. The pressure-volume ( P- V) data from room pressure to 9.51 GPa were fitted by a third-order Birch-Murnaghan equation of state (BM-EoS) and resulted in unit-cell volume V 0 = 675.5 ± 0.1 Å3, isothermal bulk modulus K 0 = 180 ± 2 GPa, and its pressure derivative = 4.2 ± 0.5. We also calculated V 0 = 675.5 ± 0.1 Å3 and K 0 = 181 ± 1GPa with fixed at 4.0 and then obtained the axial moduli for a ( K a0)-axis and c ( K c0)-axis of 209 ± 1 and 141 ± 2 GPa by "linearized" BM-EoS approach. The axial compressibilities of a-axis and c-axis are β a = 1.59 × 10-3 GPa-1 and β c = 2.36 × 10-3 GPa-1 with an anisotropic ratio of β a :β c = 0.67:1.00. On the other hand, the pressure-volume-temperature ( P- V- T) EoS of the natural beryl has also been measured at temperatures up to 750 K and at pressures up to 16.81 GPa, using diamond anvil cell in conjunction with in situ synchrotron angle-dispersive powder X-ray diffraction. The P- V data at room temperature and at a pressure range of 0.0001-15.84 GPa were then analyzed by third-order BM-EoS and yielded V 0 = 675.3 ± 0.1 Å3, K 0 = 180 ± 2 GPa, = 4.2 ± 0.3. With fixed to 4.0, we also obtained V 0 = 675.2 ± 0.1 Å3 and K 0 = 182 ± 1 GPa. Consequently, we fitted the P- V- T data with high-temperature BM-EoS approach using the resultant (4.2) from room-temperature BM-EoS and then obtained the thermoelastic parameters of V 0 = 675.3 ± 0.2 Å3, K 0 = 180 ± 1 GPa, temperature derivative of the bulk modulus ( ∂K/∂T) P = -0.017 ± 0.004 GPa K-1, and thermal expansion coefficient at ambient conditions α 0 = (2.82 ± 0.74) × 10-6 K-1. Present results were also compared with previous studies for beryl. From the comparison of these fittings, we propose to constrain K 0 = 180 GPa and = 4.2 for beryl. And we also observed that beryl exhibits anisotropic thermal expansion

  19. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  20. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGES

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  1. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    SciTech Connect

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  2. SYNCHROTRON X-RAY BASED CHARACTERIZATION OF CDZNTE CRYSTALS

    SciTech Connect

    Duff, M

    2006-09-28

    Synthetic CdZnTe or 'CZT' crystals can be used for the room temperature-based detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, inclusions, and polycrystallinity can affect detector performance. We used a synchrotron-based X-ray technique, specifically extended X-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission IR imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

  3. An X-ray microprobe facility using synchrotron radiation.

    PubMed

    Gordon, B M; Jones, K W; Hanson, A L; Pounds, J G; Rivers, M L; Spanne, P; Sutton, S R

    1990-01-01

    An X-ray microprobe for trace elemental analysis at micrometer spatial resolutions, using synchrotron radiation (SR), is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present, "white light" is used for excitation of the characteristic X-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 microns2 areas in 5 min irradiation times. Scanning techniques, as well as microtomography and chemical speciation, are discussed. Application to a specific biomedical study is included.

  4. An x-ray microprobe facility using synchrotron radiation

    SciTech Connect

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Spanne, P.; Sutton, S.R.

    1989-01-01

    A x-ray microprobe for trace elemental analysis at micrometer spatial resolutions using synchrotron radiation (SR) is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present ''white light''' is used for excitation of the characteristic x-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 ..mu..m/sup 2/ areas in 5 min irradiation times. Scanning techniques as well as microtomography and chemical speciation are discussed. Application to a specific biomedical study is included. 13 refs., 2 figs.

  5. Rapid combinatorial screening by synchrotron X-ray imaging

    NASA Astrophysics Data System (ADS)

    Eba, Hiromi; Sakurai, Kenji

    2006-01-01

    An X-ray imaging system, which does not require any scans of the sample or an X-ray beam and which, therefore, dramatically reduces the amount of time required, was employed to evaluate combinatorial libraries efficiently. Two-dimensional X-ray fluorescence (XRF) images of an 8 mm × 8 mm area were observed for combinatorial substrates of manganese-cobalt spinel MnCo 2O 4 and lithium ferrite LiFeO 2 via an exposure time of 1-3 s using synchrotron X-rays. Thus, XRF signals from a whole substrate could be observed at once in a short space of time. In order to observe the chemical environment simultaneously for all materials arranged on the substrate, the fluorescent X-ray absorption fine structure (XAFS) was measured by repeating the imaging during the monochromator scans across the absorption edge for metals. This is extremely efficient because XAFS spectra for all materials placed on the common substrate are obtained from only a single energy scan. One can determine the valence numbers, as well as other aspects of the chemical environment of the metal included in each material, from the differences in spectral features and the energy shifts. Hence, combinatorial libraries can be screened very rapidly, and therefore efficiently, using the X-ray imaging system.

  6. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal

    2015-01-01

    In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes. PMID:26134795

  7. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal

    2015-07-01

    In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  8. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    SciTech Connect

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.; Zhong, Z.

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  9. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    SciTech Connect

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  10. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  11. Calcified-tissue investigations using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X. ); Bockman, R.S. . Medical Coll.); Rabinowitz, M.B. ); Hammond, P.B.; Bornschein, R.L. ); Hoeltzel, D.A. )

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 {mu}m for the emission work and 25 {mu}m for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs.

  12. An in situ electrochemical soft X-ray spectromicroscopy investigation of Fe galvanically coupled to Au.

    PubMed

    Gianoncelli, A; Kaulich, B; Kiskinova, M; Prasciolu, M; Urzo, B D; Bozzini, B

    2011-06-01

    In this paper we report a pioneering electrochemical study of the galvanic coupling of Au and Fe in neutral aqueous solutions containing sulphate and fluoride ions, carried out by synchrotron-based in situ soft X-ray imaging and X-ray absorption microspectroscopy. The investigation was performed at the TwinMic X-ray Microscopy station at Elettra synchrotron facility combining X-ray imaging with μ-XAS with sub-micron lateral resolution. Using a purposely developed model thin-layer wet cell the morphology and chemical evolution of Fe electrodes in contact with aqueous solutions containing Na2SO4 and NaF have been investigated. The obtained results shed light on fundamental aspects regarding stability of Fe-based metallic bipolar plates in different electrochemical environments, an important issue for durability of polymer-electrolyte fuel cells. Imaging morphological features typical of the relevant electrochemical processes with chemical contrast, yields details on the spatial distribution and speciation of Fe resulting from corrosion of the Fe electrodes in the working fuel cells.

  13. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  14. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  15. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  16. Applications of synchrotron X-rays to radiotherapy

    NASA Astrophysics Data System (ADS)

    Blattmann, H.; Gebbers, J.-O.; Bräuer-Krisch, E.; Bravin, A.; Le Duc, G.; Burkard, W.; Di Michiel, M.; Djonov, V.; Slatkin, D. N.; Stepanek, J.; Laissue, J. A.

    2005-08-01

    Radiotherapy is among the most useful treatments of cancer. Penetrating radiation (ionizing particles or bremsstrahlung photons) is aimed toward the tumor-bearing target, gradually delivering as high radiation to it as is usefully suppressive of tumor growth, yet tolerated by normal vital tissues inevitably irradiated with the tumor. The high collimation and dose rate of synchrotron X-ray beams, even when monochromatized, favor radiotherapy. Photon activation therapy, tomotherapy, microbeam radiation therapy, and radiosurgery mediated by synchrotron wigglers are conceptually promising for difficult tumors. Radiotherapy of malignant brain tumors in rats has been encouraging, but suitable beam lines exist at only a few research facilities and much basic work must be done before the promise of synchrotron-based radiotherapy can be realized clinically.

  17. Synchrotron x-ray ultrafast x-ray imaging on dynamic multiphase flow studies

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Fezzaa, Kamel; Wang, Jin; Im, Kyoung-Su

    2007-03-01

    To overcome the long-exposure time of x-ray imaging for liquid systems. In the past year, we have developed the first ultrafast white-beam synchrotron x-ray phase-contrast imaging technique in the world. With its unprecedented temporal (0.5 μs) and spatial resolutions (1 μm), this new technique has already shown great promises in the study of complex fluid mechanical systems. It can probe complex surface morphology and transient dynamics of these interfaces of fluid mechanical systems without the nuisance of multiple scattering. This technique is a big step forward in comparison to millisecond-temporal and micrometer-spatial imaging resolutions normally achieved at various synchrotron sources. With the development of this new technique, we can already carry out research in fluid mechanical systems in competition with world-leading research groups. Our study of the primary breakup process of a coaxial air-assisted liquid jet revealed that the dynamics is dominated by a ``liquid membrane breakup'' process instead of a simple ``ligament mediated breakup'' process owing to our far superior temporal and spatial resolutions. This observation will naturally lead to a cascade idea for the unified treatment of liquid jets, droplets, and liquid membranes breakup mechanism.

  18. Pulsars, X-ray synchrotron nebulae, and guest stars

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.; Wang, Zhen-Ru

    1988-01-01

    X-ray observations of supernova remnants and radio pulsars are used to derive luminosities of neutron stars and synchrotron nebulae. Observations of known isolated pulsars are used to develop an empirical relationship between the X-ray luminosity and the rate of loss of rotational energy. This is used to derive the characteristics of pulsars hidden in remnants which show evidence for a central compact object or associated nebular emission, but no clear pulsed signal from the neutron star itself. Possible periods and period derivatives for the hidden pulsars are discussed. Some might have periods as long as 0.5 s, and period derivatives considerably higher than that of PSR 1509 - 58, currently the pulsar with the highest known period derivative.

  19. Miniature pulsed magnet system for synchrotron x-ray measurements

    SciTech Connect

    Linden, Peter J. E. M. van der; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-15

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulses/min was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 {mu}s and 1 ms. The setup was used for nuclear forward scattering measurements on {sup 57}Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  20. Miniature pulsed magnet system for synchrotron x-ray measurements.

    PubMed

    van der Linden, Peter J E M; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-01

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulsesmin was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 mus and 1 ms. The setup was used for nuclear forward scattering measurements on 57Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  1. Diffraction imaging for in situ characterization of double-crystal X-ray monochromators

    SciTech Connect

    Stoupin, Stanislav; Liu, Zunping; Heald, Steve M.; Brewe, Dale; Meron, Mati

    2015-10-30

    In this paper, imaging of the Bragg-reflected X-ray beam is proposed and validated as an in situ method for characterization of the performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared with the results of finite element analysis. Finally, the imaging method offers an additional insight into the local intrinsic crystal quality over the footprint of the incident X-ray beam.

  2. Diffraction imaging for in situ characterization of double-crystal X-ray monochromators

    DOE PAGES

    Stoupin, Stanislav; Liu, Zunping; Heald, Steve M.; ...

    2015-10-30

    In this paper, imaging of the Bragg-reflected X-ray beam is proposed and validated as an in situ method for characterization of the performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared with the results of finite element analysis. Finally,more » the imaging method offers an additional insight into the local intrinsic crystal quality over the footprint of the incident X-ray beam.« less

  3. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  4. MAX200x: In-situ X-ray Measurements at High Pressure and High Temperatures.

    NASA Astrophysics Data System (ADS)

    Lathe, C.; Mueller, H. J.; Wehber, M.; Lauterjung, J.; Schilling, F. R.

    2009-05-01

    Twenty years ago geoscientists from all over the world launched in-situ X-ray diffraction experiments under extreme pressure and temperature conditions at synchrotron beamlines. One of the first apparatus was installed at HASYLAB, MAX80, a single-stage multi-anvil system. MAX80 allows in-situ diffraction studies in conjunction with the simultaneous measurement of elastic properties up to 12 GPa and 1600 K. This very successful experiment, unique in Europe, is operated by Helmholtz Centre Potsdam and is used by more than twenty groups from different countries every year. Experiments for both, applied and basic research are conducted, ranging from life-sciences, chemistry, physics, over material sciences to geosciences. Today new materials and the use of high brilliant synchrotron sources allow constructing double-stage multi-anvil systems for X-ray diffraction to reach much higher pressures. The newly designed high-flux hard wiggler (HARWI-II) beamline is an ideal X-ray source for this kind of experiments. As only the uppermost few kilometres of the Earth (less than 0.1% of its radius) are accessible for direct observations (e.g. deep drilling), sophisticated techniques are required to observe and to understand the processes in the deep interior of our planet. In-situ studies are an excellent tool to investigate ongoing geodynamic processes within the laboratory. One of the fundamental regions to study geodynamic processes seems to be the so-called transition zone, the boundary between upper and lower Earth's mantle between 410 and 670 km depth. Mineral reactions, phase transitions, as wheel as fluid rock interaction in this area might have the potential to strongly influence and control the dynamic motions within our whole planet. Around 25 GPa and 2 000 K are required to simulate these processes in the laboratory. The new MAX200x will be an excellent tool for these ambitious experiments.

  5. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    SciTech Connect

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P.; Schuren, Jay C.

    2013-03-15

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 Degree-Sign C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  6. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  7. Orthoclase surface structure dissolution measured in situ by x-ray reflectivity and atomic force microscopy.

    SciTech Connect

    Sturchio, N. C.; Fenter, P.; Cheng, L.; Teng, H.

    2000-11-28

    Orthoclase (001) surface topography and interface structure were measured during dissolution by using in situ atomic force microscopy (AFM) and synchrotrons X-ray reflectivity at pH 1.1-12.9 and T = 25-84 C. Terrace roughening at low pH and step motion at high pH were the main phenomena observed, and dissolution rates were measured precisely. Contrasting dissolution mechanisms are inferred for low- and high-pH conditions. These observations clarify differences in alkali feldspar dissolution mechanisms as a function of pH, demonstrate a new in situ method for measuring face-specific dissolution rates on single crystals, and improve the fundamental basis for understanding alkali feldspar weathering processes.

  8. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  9. Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments

    PubMed Central

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-01-01

    This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study “Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments” [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in situ live animal assessments. The data presented were obtained from three dimensional imaging of scaffolds in situ cartilage by means of synchrotron-based computed tomography-diffraction enhanced imaging (CT-DEI), analyzer based imaging (CT-ABI), and in-line phase contrast imaging (CT-PCI) at standard and low dose imaging modalities. PMID:26909381

  10. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    PubMed

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  11. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    NASA Astrophysics Data System (ADS)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  12. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    SciTech Connect

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha; Meid, Carla; Wischek, Janine; Bartsch, Marion; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  13. High-energy synchrotron x-ray techniques for studying irradiated materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...

    2015-03-20

    High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less

  14. Source assemblage types for cratonic diamonds from X-ray synchrotron diffraction

    NASA Astrophysics Data System (ADS)

    Nestola, F.; Alvaro, M.; Casati, M. N.; Wilhelm, H.; Kleppe, A. K.; Jephcoat, A. P.; Domeneghetti, M. C.; Harris, J. W.

    2016-11-01

    Three single crystals of clinopyroxene trapped within three different gem-quality diamonds from the Udachnaya kimberlite (Siberia, Russia) were analysed in situ by single-crystal synchrotron X-ray diffraction in order to obtain information on their chemical composition and infer source assemblage type. A non-destructive approach was used with high-energy (≈ 60 keV; λ ≈ 0.206 Å) at I15, the extreme-conditions beamline at Diamond Light Source. A dedicated protocol was used to center the mineral inclusions located deep inside the diamonds in the X-ray beam. Our results reveal that two of the inclusions can be associated with peridotitic paragenesis whereas the third is eclogitic. This study also demonstrates that this non-destructive experimental approach is extremely efficient in evaluating the origin of minerals trapped in their diamond hosts.

  15. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    PubMed Central

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-01-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms. PMID:27658854

  16. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-09-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.

  17. High-energy synchrotron x-ray techniques for studying irradiated materials

    SciTech Connect

    Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; Kenesei, Peter; Hoelzer, David; Li, Meimei; Almer, Jonathan

    2015-03-20

    High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures or subject to irradiation are examined using these techniques.

  18. Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Schlegel, M. C.; Stroh, J.; Malaga, K.; Meng, B.; Panne, U.; Emmerling, F.

    2015-06-01

    Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism.

  19. Picosecond x-ray diagnostics for third and fourth generation synchrotron sources

    SciTech Connect

    DeCamp, Matthew

    2016-03-30

    In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies at a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.

  20. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    SciTech Connect

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; Senanayake, Sanjaya D.

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystal growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.

  1. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    DOE PAGES

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; ...

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less

  2. Development of an x-ray microprobe using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thompson, Albert C.; Chapman, Karen L.; Underwood, James H.

    1993-01-01

    An X-ray microprobe is being built that will use a bending magnet port on the new Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory. A pair of elliptical multi-layer mirrors will be used to focus and monochromatize the white radiation beam from the synchrotron. A beam spot size of 1 micrometers X 1 micrometers will be produced with a bandwidth of 1 keV at 10 keV. The energy of the beam will be variable from 3 keV to 12 keV. With a counting time of 30 sec it should be possible to simultaneously measure femtogram amounts of elements from potassium to zinc.

  3. Synchrotron X-ray diffraction for pyrolytic magnetic carbon

    NASA Astrophysics Data System (ADS)

    Kamishima, K.; Noda, T.; Kadonome, F.; Kakizaki, K.; Hiratsuka, N.

    We have prepared pyrolytic carbon samples from triethylamine and investigated their magnetic and crystallographic properties. The magnetic property depends on pyrolysis temperatures. A ferromagnetic sample with M=5×10-1 emu/g was obtained from the pyrolysis products even at room temperature. The synchrotron X-ray diffraction experiments were performed for the pyrolytic carbon samples in order to see the crystal structure of ferromagnetic samples. Diffraction peaks of iron or iron oxides were not observed for the ferromagnetic samples, whereas the major diffraction peak of the intermediate graphite-diamond (IGD) structure was clearly observed for ferromagnetic and nonmagnetic samples. Therefore, the IGD structure is not the direct cause of ferromagnetism. The ferromagnetism may be related to the graphite-like structure.

  4. Evaluation of RBC aggregation using synchrotron X-ray speckles

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Nam, Kwon-Ho; Lee, Sang Joon

    2010-11-01

    When a coherent beam illuminates spatially-disordered particles, speckles are usually generated by the inference of the scattered light waves. The speckle has been known to contain the information of the objects under near-field condition. In this study, we hypothesized that the speckle patterns of the red blood cells are related to the aggregation shape and the size of RBCs in the medium. The speckle patterns of RBCs in static condition were investigated by transmitting the monochromatic synchrotron X-ray beam to the sample with varying hematocrit(10-80 %) and medium type(phosphate buffered saline, autologous plasma and 0.75 % polyvinylpyrrolidone 360 in phosphate buffered saline). The temporal variation of speckle patterns after sudden removal of shear rate was observed by stopping the blood flow in a tube. The size of aggregated RBCs is closely correlated with the characteristic features of the speckle patterns.

  5. Synchrotron X-ray tomographic microscopy of fossil embryos.

    PubMed

    Donoghue, Philip C J; Bengtson, Stefan; Dong, Xi-ping; Gostling, Neil J; Huldtgren, Therese; Cunningham, John A; Yin, Chongyu; Yue, Zhao; Peng, Fan; Stampanoni, Marco

    2006-08-10

    Fossilized embryos from the late Neoproterozoic and earliest Phanerozoic have caused much excitement because they preserve the earliest stages of embryology of animals that represent the initial diversification of metazoans. However, the potential of this material has not been fully realized because of reliance on traditional, non-destructive methods that allow analysis of exposed surfaces only, and destructive methods that preserve only a single two-dimensional view of the interior of the specimen. Here, we have applied synchrotron-radiation X-ray tomographic microscopy (SRXTM), obtaining complete three-dimensional recordings at submicrometre resolution. The embryos are preserved by early diagenetic impregnation and encrustation with calcium phosphate, and differences in X-ray attenuation provide information about the distribution of these two diagenetic phases. Three-dimensional visualization of blastomere arrangement and diagenetic cement in cleavage embryos resolves outstanding questions about their nature, including the identity of the columnar blastomeres. The anterior and posterior anatomy of embryos of the bilaterian worm-like Markuelia confirms its position as a scalidophoran, providing new insights into body-plan assembly among constituent phyla. The structure of the developing germ band in another bilaterian, Pseudooides, indicates a unique mode of germ-band development. SRXTM provides a method of non-invasive analysis that rivals the resolution achieved even by destructive methods, probing the very limits of fossilization and providing insight into embryology during the emergence of metazoan phyla.

  6. Synchrotron x-ray study of multilayers in Laue geometry

    SciTech Connect

    Kang, H C; Stephenson, G B; Liu, C; Conley, R; Macrander, A T; Maser, J; Bajt, S; Chapman, H N

    2004-07-21

    Zone plates with depth to zone-width ratios as large as 100 are needed for focusing of hard x-rays. Such high aspect ratios are challenging to produce by lithography. We are investigating the fabrication of high-aspect-ratio linear zone plates by multilayer deposition followed by sectioning. As an initial step in this work, we present a synchrotron x-ray study of constant-period multilayers diffracting in Laue (transmission) geometry. Data are presented from two samples: a 200 period W/Si multilayer with d-spacing of 29 nm, and a 2020 period Mo/Si multilayer with d-spacing of 7 nm. By cutting and polishing we have successfully produced thin cross sections with section depths ranging from 2 to 12 {micro}m. Transverse scattering profiles (rocking curves) across the Bragg reflection exhibit well-defined interference fringes originating from the depth of the sample, in agreement with dynamical diffraction theory for a multilayer in Laue geometry.

  7. X-ray and synchrotron studies of porous silicon

    SciTech Connect

    Sivkov, V. N.; Lomov, A. A.; Vasil'ev, A. L.; Nekipelov, S. V.; Petrova, O. V.

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  8. In situ determination of the spinel-post-spinel transition in Fe3O4 at high pressure and temperature by synchrotron X-ray diffraction

    SciTech Connect

    Schollenbruch, K; Woodland, A B; Frost, D J; Wang, Y; Sanehira, T; Langenhorst, F

    2011-08-10

    The position of the spinel-post-spinel phase transition in Fe3O4 has been determined in pressure-temperature space by in situ measurements using a multi-anvil press combined with white synchrotron radiation. Pressure measurement using the equation of state for MgO permitted pressure changes to be monitored at high temperature. The phase boundary was determined by the first appearance of diffraction peaks of the high-pressure polymorph (h-Fe3O4) during pressure increase and the disappearance of these peaks on pressure decrease along several isotherms. We intersected the phase boundary over the temperature interval of 700-1400 ºC. The boundary is linear and nearly isobaric, with a slightly positive slope. Post-experiment investigation by TEM confirms that the reverse reaction from h-Fe 3O4 to magnetite during decompression leads to the formation of microtwins on the (311) plane in the newly formed magnetite. Observations made during the phase transition suggest that the transition has a pseudomartensitic character, explaining in part why magnetite persists at conditions well within the stability field of h-Fe3O4, even at high temperatures. This study emphasizes the utility of studying phase transitions in situ at simultaneously high temperatures and pressures since the reaction kinetics may not be favorable at room temperature.

  9. An apparatus for in situ x-ray scattering measurements during polymer injection molding.

    PubMed

    Rendon, Stanley; Fang, Jun; Burghardt, Wesley R; Bubeck, Robert A

    2009-04-01

    We report a novel instrument for synchrotron-based in situ x-ray scattering measurements during injection molding processing. It allows direct, real-time monitoring of molecular-scale structural evolution in polymer materials undergoing a complex processing operation. The instrument is based on a laboratory-scale injection molding machine, and employs customized mold tools designed to allow x-ray access during mold filling and subsequent solidification, while providing sufficient robustness to withstand high injection pressures. The use of high energy, high flux synchrotron radiation, and a fast detector allows sufficiently rapid data acquisition to resolve time-dependent orientation dynamics in this transient process. Simultaneous monitoring of temperature and pressure signals allows transient scattering data to be referenced to various stages of the injection molding cycle. Representative data on a commercial liquid crystalline polymer, Vectra(R) B950, are presented to demonstrate the features of this apparatus; however, it may find application in a wide range of polymeric materials such as nanocomposites, semicrystalline polymers and fiber-reinforced thermoplastics.

  10. A 1800 K furnace designed for in situ synchrotron microtomography.

    PubMed

    Grupp, R; Henkel, F; Nöthe, M; Banhart, J; Kieback, B; Haibel, A

    2009-07-01

    A radiation furnace that covers the temperature range from room temperature up to 1800 K has been designed and constructed for in situ synchrotron microtomography. The furnace operates under a vacuum or under any inert gas atmosphere. The two 1000 W halogen heating lamps are water- and air-cooled. The samples are located at the focus of these lamp reflectors on a rotary feedthrough that is connected to a driving rotation stage below the furnace. The X-ray beam penetrates the furnace through two X-ray-transparent vacuum-sealed windows. Further windows can be used for temperature control, sample changing and gas inflow and outflow.

  11. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  12. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  13. X-ray and synchrotron methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Koval'chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu.; Prosekov, P. A.; Dyakova, Yu. A.

    2016-09-01

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  14. Formation of ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, AFt, and monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Christensen, Axel Nørlund; Jensen, Torben R.; Hanson, Jonathan C.

    2004-06-01

    In the hydration of calcium aluminum oxide-gypsum mixtures, i.e., Ca 3Al 2O 6, Ca 12Al 14O 33 and CaSO 4·2H 2O, the reaction products can be ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, or the calcium aluminum oxide hydrate, Ca 4Al 2O 7·19H 2O. Ettringite is formed if sufficient CaSO 4·2H 2O is present in the mixture. Ettringite is converted to monosulfate when all CaSO 4·2H 2O is consumed in the synthesis of ettringite. The reactions were investigated in the temperature range 25-170°C using in situ synchrotron X-ray powder diffraction. This technique allows the study of very fast chemical reactions that are observed here under hydrothermal conditions. A new experimental approach was developed to perform in situ mixing of the reactants during X-ray data collection.

  15. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    PubMed Central

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-01-01

    The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β2-adrenoreceptor–Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development. PMID

  16. In meso in situ serial X-ray crystallography of soluble and membrane proteins.

    PubMed

    Huang, Chia Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-06-01

    The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β2-adrenoreceptor-Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development.

  17. Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Qin, Z.; Rosendahl, S. M.; Lee, V.; Reynolds, M.; Hosseinkhannazer, H.

    2016-01-01

    Soft X-ray scanning transmission X-ray microscopy (STXM) was used to investigate Cu deposition onto, and stripping from a Au surface. Cu 2p spectromicroscopy was used to analyze initial and final states (ex situ processing) and follow the processes in situ. The in situ experiments were carried out using a static electrochemical cell with an electrolyte layer thickness of ˜1 μm. A new apparatus for in situ electrochemical STXM is described.

  18. Note: High-pressure in situ x-ray laminography using diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuichi; Uesugi, Kentaro

    2016-04-01

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences.

  19. Synchrotron X-ray bio-imaging of natural and synthetic bone-graft materials in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Gun; Bark, Chung Wung

    2014-11-01

    Bone-graft materials in dentistry have osteoinductive and osteoconductive abilities, which depend on their microstructural characteristics, such as their porosity, particle size, micro channels, and absorption. These characteristics have been observed using various imaging techniques, such as optical microscopy and scanning electron microscopy (SEM). However, most techniques cannot provide images in water, even though graft materials in vivo are invariably in contact with different water-based fluids. Synchrotron X-ray imaging allows sample microenvironments to be controlled as X-ray beams easily penetrate air and water. In this report, we used the synchrotron X-ray imaging technique to provide in-situ images of various bone-graft materials in aqueous environments. We observed internal microstructural images of bone-graft materials in real-time in 0.9% saline solution and interactions between bone-graft materials and saline, that is, hydration patterns and bone-graft expansion.

  20. Orthorhombic boron oxide under pressure: In situ study by X-ray diffraction and Raman scattering

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill A.; Le Godec, Yann; Kalinko, Aleksandr; Mezouar, Mohamed; Solozhenko, Vladimir L.

    2016-11-01

    High-pressure phase of boron oxide, orthorhombic β-B2O3, has been studied in situ by synchrotron X-ray diffraction to 22 GPa and Raman scattering to 46 GPa at room temperature. The bulk modulus of β-B2O3 has been found to be 169(3) GPa that is in good agreement with our ab initio calculations. Raman and IR spectra of β-B2O3 have been measured at ambient pressure; all experimentally observed bands have been attributed to the theoretically calculated ones, and the mode assignment has been performed. Based on the data on Raman shift as a function of pressure, combined with equation-of-state data, the Grüneisen parameters of all experimentally observed Raman bands have been calculated. β-B2O3 enriched by 10B isotope has been synthesized, and the effect of boron isotopic substitution on Raman spectra has been studied.

  1. Compact low power infrared tube furnace for in situ X-ray powder diffraction.

    PubMed

    Doran, A; Schlicker, L; Beavers, C M; Bhat, S; Bekheet, M F; Gurlo, A

    2017-01-01

    We describe the development and implementation of a compact, low power, infrared heated tube furnace for in situ powder X-ray diffraction experiments. Our silicon carbide (SiC) based furnace design exhibits outstanding thermal performance in terms of accuracy control and temperature ramping rates while simultaneously being easy to use, robust to abuse and, due to its small size and low power, producing minimal impact on surrounding equipment. Temperatures in air in excess of 1100 °C can be controlled at an accuracy of better than 1%, with temperature ramping rates up to 100 °C/s. The complete "add-in" device, minus power supply, fits in a cylindrical volume approximately 15 cm long and 6 cm in diameter and resides as close as 1 cm from other sensitive components of our experimental synchrotron endstation without adverse effects.

  2. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  3. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    SciTech Connect

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-05-14

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at

  4. Microbial biofilm study by synchrotron X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  5. Time-resolved and in-situ X-ray scattering methods beyond photoactivation: Utilizing high-flux X-ray sources for the study of ubiquitous non-photoactive proteins.

    PubMed

    Jain, Rohit; Techert, Simone

    2016-01-01

    X-ray scattering technique, comprising of small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. It is a method of choice to characterize the flexible, partially folded and unfolded protein systems. X-ray scattering is the last resort for proteins that cannot be investigated by crystallography or NMR and acts as a complementary technique with different biophysical techniques to answer challenging scientific questions. The marriage of the X-ray scattering technique with the fourth dimension "time" yields structural dynamics and kinetics information for protein motions in hierarchical timescales from picoseconds to days. The arrival of the high-flux X-ray beam at third generation synchrotron sources, exceptional X-ray optics, state-of-the-art detectors, upgradation of X-ray scattering beamlines with microfluidics devices and advanced X-ray scattering data analysis procedures are the important reasons behind the shining years of X-ray scattering technique. The best days of the X-ray scattering technique are on the horizon with the advent of the nanofocus X-ray scattering beamlines and fourth generation X-ray lightsources, i.e., free electron lasers (XFELs). Complementary to the photon-triggered time-resolved X-ray scattering techniques, we will present an overview of the time-resolved and in-situ X-ray scattering techniques for structural dynamics of ubiquitous non-photoactive proteins.

  6. Bismuth tri- and tetraarylcarboxylates: crystal structures, in situ X-ray diffraction, intermediates and luminescence.

    PubMed

    Feyand, Mark; Köppen, Milan; Friedrichs, Gernot; Stock, Norbert

    2013-09-09

    A systematic investigation of the systems Bi(3+)/carboxylic acid/HNO3 for the tri- and tetracarboxylic acids pyromellitic acid (H4Pyr), trimellitic acid (H3Tri) and trimesic acid (H3BTC) acid led to the discovery of five new bismuth carboxylates. Structural characterisation allowed the influence of the linker geometry and the Bi(3+):linker molar ratio in the starting solution on the crystal structure to be determined. The crystallisation of three selected compounds was investigated by in situ energy-dispersive X-ray diffraction. Three new crystalline intermediates were observed within minutes, and two of them could be isolated by quenching of the reaction mixture. Their crystal structures were determined from laboratory and synchrotron X-ray powder diffraction data and allowed a possible reaction pathway to be established. In depth characterisation of the luminescence properties of the three bismuth pyromellate compounds was carried out. Fluorescence and phosphorescence could be assigned to (mainly) ligand- and metal-based transitions. The polymorphs of Bi(HPyr) exhibit different luminescence properties, although their structures are very similar. Surprisingly, doping of the three host structures with Eu(3+) and Tb(3+) ions was only successful for one of the polymorphs.

  7. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  8. An x-ray microprobe using focussing optics with a synchrotron radiation source

    SciTech Connect

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 /mu/m /times/ 10 /mu/m to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs.

  9. Synchrotron X-Ray Synthesized Gold Nanoparticles for Tumor Therapy

    SciTech Connect

    Chien, C. C.; Wang, C. H.; Tseng, P. Y.; Yang, T. Y.; Hua, T. E.; Hwu, Y.; Chen, Y. J.; Chung, K. H.; Je, J. H.; Margaritondo, G.

    2007-01-19

    Highly concentrated gold nanoparticles (20 {+-} 5 nm) were produced by an x-ray irradiation method. The particles were then examined for the interactions between gold and tumor cells under x-ray radiation conditions. The biological effects of gold nanoparticles were investigated in terms of the internalization, cytotoxicity and capability to enhance x-ray radiotherapy. The results of this investigation indicated that x-ray derived gold nanoparticles were nontoxic to CT-26 cell line and immobilized within cytoplasm. The irradiation experiments provided further evidence that gold nanoparticles were capable of enhancing the efficiency of radiotherapy.

  10. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    SciTech Connect

    Paterson, D.; Jonge, M. D. de; Howard, D. L.; Lewis, W.; McKinlay, J.; Starritt, A.; Kusel, M.; Ryan, C. G.; Kirkham, R.; Moorhead, G.; Siddons, D. P.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  11. Note: Experiments in hard x-ray chemistry: In situ production of molecular hydrogen and x-ray induced combustion

    SciTech Connect

    Pravica, Michael; Bai Ligang; Liu Yu; Galley, Martin; Robinson, John; Park, Changyong; Hatchett, David

    2012-03-15

    We have successfully loaded H{sub 2} into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of NH{sub 3}BH{sub 3}. In a second set of studies, radiation-assisted release of O{sub 2} from KCLO{sub 3}, H{sub 2} release from NH{sub 3}BH{sub 3}, and reaction of these gases in a mixture of the reactants to form liquid water using x-rays at ambient conditions was observed. Similar observations were made using a KCLO{sub 3} and NaBH{sub 4} mixture. Depending on reaction conditions, an explosive or far slower reaction producing water was observed.

  12. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  13. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.

  14. True-3D Strain Mapping for Assessment of Material Deformation by Synchrotron X-Ray Microtomography

    SciTech Connect

    Ahn, J.J.; Toda, H.; Niinomi, M.; Kobayashi, T.; Akahori, T.; Uesugi, K.

    2005-04-09

    Downsizing of products with complex shapes has been accelerated thanks to the rapid development of electrodevice manufacturing technology. Micro electromechanical systems (MEMS) are one of such typical examples. 3D strain measurement of such miniature products is needed to ensure their reliability. In the present study, as preliminary trial for it 3D tensile deformation behavior of a pure aluminum wire is examined using the synchrotron X-ray microtomography technique at Spring-8, Japan. Multipurpose in-situ tester is used to investigate real-time tensile deformation behavior of the Al wire. Tensile tests are carried out under strokes of 0, 0.005, 0.01 and 0.015mm. It measures 3D local deformation of a region of interest by tracking a relative movement of a pair of particles at each point. Local deformation behavior of the Al wire is identified to be different from macroscopic deformation behavior. It may be closely associated with underlying microstructure.

  15. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  16. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    SciTech Connect

    Courty, Olivier Fabrice; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-01-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  17. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.

    PubMed

    Bürgi, J; Neuenschwander, R; Kellermann, G; García Molleja, J; Craievich, A F; Feugeas, J

    2013-01-01

    The purpose of the designed reactor is (i) to obtain polycrystalline and∕or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, θ-2θ scanning, fixed α-2θ scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  18. System for in situ studies of atmospheric corrosion of metal films using soft x-ray spectroscopy and quartz crystal microbalance.

    PubMed

    Forsberg, J; Duda, L-C; Olsson, A; Schmitt, T; Andersson, J; Nordgren, J; Hedberg, J; Leygraf, C; Aastrup, T; Wallinder, D; Guo, J-H

    2007-08-01

    We present a versatile chamber ("atmospheric corrosion cell") for soft x-ray absorption/emission spectroscopy of metal surfaces in a corrosive atmosphere allowing novel in situ electronic structure studies. Synchrotron x rays passing through a thin window separating the corrosion cell interior from a beamline vacuum chamber probe a metal film deposited on a quartz crystal microbalance (QCM) or on the inside of the window. We present some initial results on chloride induced corrosion of iron surfaces in humidified synthetic air. By simultaneous recording of QCM signal and soft x-ray emission from the corroding sample, correlation between mass changes and variations in spectral features is facilitated.

  19. X-ray Spectroscopy and Diffraction at HPCAT - An Integrated High Pressure Synchrotron Facility

    NASA Astrophysics Data System (ADS)

    Mao, H.; Hemley, R. J.; Hausermann, D.; Hu, M.; Meng, Y.; Somayazulu, M.

    2002-05-01

    High Pressure Collaborative Access Team (HPCAT) is a new facility dedicated for high-pressure research using the high-energy synchrotron beams at the Advanced Photon Source for in-situ investigations of crystallographic, elastic, rheologic, electronic, and magnetic properties of solids, liquids, and amorphous materials at high P and simultaneous high T or cryogenic T. The HPCAT high-brilliance undulator beamline is optimized for a full range of high-pressure x-ray spectroscopy. For instance, nuclear resonant inelastic scattering measures phonon densities of state of Fe-containing samples that yield valuable information on acoustic wave velocity, elasticity, elastic anisotropy, and thermodynamic quantities (vibrational energy, heat capacity, entropy, Debye temperature, and Gr\\x81neisen parameter) of materials at high pressures. Nuclear resonant x-ray forward scattering measures M”ssbauer spectra in the time domain that yield information on magnetism, site occupancy, oxidation states, and the Lamb-M”ssbauer coefficient of Fe. Resonant inelastic x-ray scattering measures element-specific electronic transitions. The medium-resolution (10-100 meV) non-resonant x-ray inelastic scattering measures electronic energies and dispersions that yield information on plasmons, excitons, electronic band structures, and chemical bondings, and high-resolution (<10 meV) inelastic scattering measures phonon dispersions that yield information on acoustic wave velocity and elasticity as a function of crystallographic orientation. X-ray emission spectroscopy yields information on valence electrons and spin states of d-electrons. A diamond branch monochromator diverts a full-intensity undulator monochromatic beam at energies up to 35 keV for full-time x-ray diffraction studies of crystallography, phase transitions, and equations of state in a side station without affecting the simultaneous operation of the main undualtor beamline. The HPCAT bending-magnet beamline is divided into two

  20. Optoelectronic measurement of x-ray synchrotron pulses: A proof of concept demonstration

    NASA Astrophysics Data System (ADS)

    Durbin, Stephen M.; Mahmood, Aamer; Caffee, Marc; Savikhin, Sergei; Dufresne, Eric M.; Wen, Haidan; Li, Yuelin

    2013-02-01

    Optoelectronic detection using photoconductive coplanar stripline devices has been applied to measuring the time profile of x-ray synchrotron pulses, a proof of concept demonstration that may lead to improved time-resolved x-ray studies. Laser sampling of current vs time delay between 12 keV x-ray and 800 nm laser pulses reveal the ˜50 ps x-ray pulse width convoluted with the ˜200 ps lifetime of the conduction band carriers. For GaAs implanted with 8 MeV protons, a time profile closer to the x-ray pulse width is observed. The protons create defects over the entire depth sampled by the x-rays, trapping the x-ray excited conduction electrons and minimizing lifetime broadening of the electrical excitation.

  1. X-ray photochemical alteration of planetary samples during in situ micro-XRF analysis

    NASA Astrophysics Data System (ADS)

    Flannery, D. T.; Tuite, M. L., Jr.; Hodyss, R. P.; Allwood, A.; Bhartia, R.; Abbey, W. J.; Williford, K. H.

    2015-12-01

    PIXL (Planetary Instrument for X-ray Lithochemistry; selected for the Mars 2020 mission contact science payload) uses a polycapillary to focus X-rays to a ~100 μm spot on sample surfaces, providing higher spatial resolution, higher X-ray flux, and higher fluorescence counts compared to previously flown planetary XRF instruments. Photochemical changes in organic materials occurring during investigations employing x-rays have been reported, particularly for biological samples examined in synchrotrons (e.g. George et al., J. Synchrotron Radiation, 19:875-876). However, little is known about the effect energies and fluxes typical to micro-XRF instruments may have on the organic molecules that are commonly preserved in rocks and sediments. In particular, it is essential to understand the effect of micro-XRF on organics preserved near surfaces that are later subjected to contact science that focuses on organic geochemistry (e.g. UV Raman/fluorescence instruments). We report results of an investigation in which samples containing organic molecules were exposed to X-ray energies and fluxes typical to micro-XRF. Samples containing alkanes and polycyclic aromatic hydrocarbons were characterized by GC-MS and UV Raman/fluorescence before being subjected to various X-ray energies and fluxes typical of PIXL. Following x-ray irradiation, samples were again characterized by GC-MS and UV Raman/fluorescence in order to characterize photochemical effects.

  2. Synchrotron X-ray Studies of Vulcanized Rubbers and Thermoplastic Elastomers

    SciTech Connect

    Toki,S.; Hsiao, B.; Kohjiya, S.; Tosaka, M.; Tosaka, A.; Tsou, A.; Datta, S.

    2006-01-01

    Synchrotron X-ray diffraction technique has revealed strain-induced crystallization and molecular orientation in vulcanized rubbers and thermoplastic elastomers (TPE) during deformation in real time. The stress-strain curves and wide angle X-ray diffraction (WAXD) patterns in vulcanized rubbers and TPE were measured simultaneously. In-situ WAXD patterns were taken not only at different strains during uniaxial deformation but also at different temperatures at a constant strain. Results lead to several new insights. (i) Strain-induced crystallization is a common phenomenon in vulcanized rubbers, except SBR (styrene-butadiene rubber), and in TPE (with crystalline hard segments). (ii) Strain-induced crystallization decreases the stress and increases the elongation in the strained rubber. (iii) The hybrid structure of chemical networks and strain-induced crystallites is responsible to the tensile strength and elongation at break for both systems. (iiii) Some original crystal fraction (hard segment domain) in TPE is destroyed. During deformation, strain-induced crystallization increases with strain. Upon retraction even to stress zero, the majority of oriented strain-induced crystallites remains in tack with preferred orientation.

  3. Intermetallic phase detection in lead-free solders using synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jackson, Gavin J.; Lu, Hua; Durairaj, Raj; Hoo, Nick; Bailey, Chris; Ekere, Ndy N.; Wright, Jon

    2004-12-01

    The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

  4. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  5. X-ray microtomography at Shanghai Synchrotron Radiation facility

    NASA Astrophysics Data System (ADS)

    Chen, Rongchang; Xie, Honglan; Deng, Biao; Du, Guohao; Ren, Yuqi; Wang, Yudan; Zhou, Guangzhao; Tan, Hai; Yang, Yiming; Xu, Liang; Hu, Tao; Li, Qiao; Feng, Binggang; Wang, Feixiang; Xiao, Tiqiao

    2016-10-01

    BL13W, an X-ray imaging beamline has been built and opened to users since May 6, 2009. More than 70 user proposals per year are granted and implemented at the beamline, with about 500 user visits/year. Up to now, X-ray microtomography (XMCT) is the dominated method for BL13W user operation, more than 70% user experiments were carried out with XMCT, covering the research fields in material science, biomedicine, physics, environmental science, archaeology and paleontology. To meet the user requirements, micro-CT imaging methods based on a variety of contrast mechanisms, including absorption, phase contrast, X-ray fluorescence, have been developed. Algorithms and related software have been developed achieve the low dose and fast data collection. Quantitative analysis to the three dimensional CT images is highly emphasized and related software for 3D information extraction with high precision and high efficiency, has been developed. Three-dimensional structure evolution has been attracting more and more attention in many scientific research fields. Two-Hertz dynamic phase contrast CT based on monochromatic SR beam was established at SSRF. The limitation of fluorescence X-ray CT from practical applications is the data-collection efficiency. The ordered-subsets expectation maximization algorithm was inducted to improve practicability of X-ray fluorescence computed tomography (XFCT), greatly. A scheme for full field XFCT was also proposed.

  6. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  7. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  8. Actinide science with soft x-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shuh, David K.

    2000-07-01

    The primary methods for the experimental investigation of actinide materials in the VUV/soft x-ray region are the complementary photoelectron spectroscopies, near-edge x-ray absorption fine structure (NEXAFS), and x-ray emission spectroscopy (XES) techniques. Resonant photoemission techniques capable of resolving the 5f electron contributions to actinide bonding along with angle-resolving measurements for band structure and surface structure determinations, have clear and immediate applications. Venerable angle-integrating core and valence band photoelectron spectroscopy are valuable for characterization and analytical purposes. Combined with results from NEXAFS measurements, these techniques will provide the information needed to develop improved understandings of the electronic structure of actinide materials and their surface chemistries/physics.

  9. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  10. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    PubMed Central

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole

    2016-01-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  11. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  12. X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy

    SciTech Connect

    Serrano, A.; Galvez, F.; Rodriguez de la Fuente, O.; Garcia, M. A.

    2013-03-21

    We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index. Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X-ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time.

  13. Rapid thermal processing chamber for in-situ x-ray diffraction

    SciTech Connect

    Ahmad, Md. Imteyaz; Van Campen, Douglas G.; Yu, Jiafan; Pool, Vanessa L.; Van Hest, Maikel F. A. M.; Toney, Michael F.; Fields, Jeremy D.; Parilla, Philip A.; Ginley, David S.

    2015-01-15

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs{sup −1}, and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi{sub 2}O{sub 3}-SiO{sub 2} glass frit obtained during heating with ramp rates 5 °C s{sup −1} and 100 °C s{sup −1}, revealing numerous phase changes.

  14. Geopolymerisation Kinetics. 1. In situ Energy-Dispersive X-ray Diffractometry

    SciTech Connect

    Provis,J.; van Deventer, J.

    2007-01-01

    In situ energy-dispersive X-ray diffractometry, using a polychromatic synchrotron beam and a 'laboratory-sized' sample, is used to provide a direct measurement of the kinetics of geopolymerisation. The effects of sample SiO{sub 2}/Al{sub 2}O{sub 3} ratio, Na/(Na+K) ratio and reaction temperature are investigated. The results obtained support recent propositions that the initial gel phase formed during geopolymerisation is later transformed to a second, probably more-ordered gel phase, and provide detailed information regarding the rate of formation of the first gel phase during the first 3 h of reaction. Increasing the SiO{sub 2}/Al{sub 2}O{sub 3} ratio generally decreases the initial rate of reaction, with the highest SiO{sub 2}/Al{sub 2}O{sub 3} ratio samples showing what appears to be a pause in the reaction corresponding roughly to the solidification of the geopolymeric binder. Mixed (Na,K)-aluminosilicate geopolymers with moderate SiO{sub 2}/Al{sub 2}O{sub 3} ratios behave similarly to pure Na- or K-aluminosilicate compositions of higher SiO{sub 2}/Al{sub 2}O{sub 3} ratio. Fitting a simplified first-order rate expression to the overall reaction process at different temperatures allows the calculation of an effective overall activation energy, which may be useful in comparing geopolymerisation of slurries with different compositions.

  15. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  16. High pressure and high temperature in situ X-ray diffraction studies in the Paris-Edinburgh cell using a laboratory X-ray source†

    NASA Astrophysics Data System (ADS)

    Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed

    2014-04-01

    We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.

  17. Determination of the solubility of tin indium oxide using in situ and ex x-ray diffraction

    SciTech Connect

    Gonzalez, G. B.; Mason, T. O.; Okasinski, J. S.; Buslaps, T.; Honkimaki, V.

    2012-02-01

    A novel approach to determine the thermodynamic solubility of tin in indium oxide via the exsolution from tin overdoped nano-ITO powders is presented. High-energy, in situ and ex situ synchrotron X-ray diffraction was utilized to study the solubility limit at temperatures ranging from 900 C to 1375 C. The tin exsolution from overdoped nanopowders and the formation of In{sub 4}Sn{sub 3}O{sub 12} were observed in situ during the first 4-48 h of high-temperature treatment. Samples annealed between 900 C and 1175 C were also studied ex situ with heat treatments for up to 2060 h. Structural results obtained from Rietveld analysis include compositional phase analysis, atomic positions, and lattice parameters. The tin solubility in In{sub 2}O{sub 3} was determined using the phase analysis compositions from X-ray diffraction and the elemental compositions obtained from X-ray fluorescence. Experimental complications that can lead to incorrect tin solubility values in the literature are discussed.

  18. Assessment of Barium Sulphate Formation and Inhibition at Surfaces with Synchrotron X-ray Diffraction (SXRD)

    SciTech Connect

    E Mavredaki; A Neville; K Sorbie

    2011-12-31

    The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylic acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.

  19. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  20. (Synchrotron studies of x-ray reflectivity from surfaces)

    SciTech Connect

    Pershan, P.S.

    1992-03-03

    Following a long period of theoretical interest, but only limited measurements, there has recently been an increased number of attempts to expand the relative paucity of experimental information on the structure of liquid surfaces using techniques as diverse as ellipsometry, micro-force balances, non-linear optics, Auger and photoelectron spectroscopy, and x-ray scattering. Our group has played a leading role in the currently expanding application of scattering techniques to the general problem of characterizing the microscopic structure of liquid surfaces and we propose here that this work be extended specifically to liquid metals. In the following sections we will briefly describe the salient features of x-ray scattering that are relevant to the current project, the progress that we have made in the current grant period and the work that we propose to carry out in the forthcoming grant period.

  1. Synchrotron x-ray study of a Fibonacci superlattice

    SciTech Connect

    Todd, J.; Merlin, R.; Clarke, R.; Mohanty, K.M.; Axe, J.D.

    1986-09-01

    Quasiperiodic ordering is studied in a GaAs-AlAs Fibonacci superlattice by high-resolution x-ray scattering. The data are consistent with the predicted dense set of diffraction vectors. Moderately large growth fluctuations in the sequential deposition of GaAs and AlAs layers do not appear to disturb seriously the quasiperiodic order. The effects of randomness are analyzed in a computer simulation.

  2. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  3. Soft x-ray spectrometer for in situ monitoring of thin-film growth

    NASA Astrophysics Data System (ADS)

    Skytt, Per; Englund, Carl J.; Wassdahl, Nial; Mancini, Derrick C.; Nordgren, Joseph

    1994-11-01

    We have designed and constructed a compact spectrometer dedicated to in-situ characterization of thin films during deposition, using soft x-ray emission spectroscopy. It consists of a Rowland-circle mounted spherical grating and entrance slit, or slit array to enhance throughput. A 2D position-sensitive detector (microchannel plate stack and resistive anode) is mounted tangent to the image of the slit(s) on the Rowland circle. The instrument covers an energy range of 240 - 700 eV using a 300 1/mm grating in the first order. Thus, the spectrometer simultaneously records K emission for low-Z elements C through F, while L emission for 3D metals can be recorded in first or higher orders. The resolution is approximately 300, allowing chemical analysis. Both detector and grating are housed in a vacuum chamber that is turbomolecularly pumped to a pressure below 10(superscript -6) Torr. The instrument can be attached to any process chamber using a standard UHV flange. The slit extends into the process chamber separated from the housing by a valve. This valve can be closed, or in one of two open positions where thin foils serve as vacuum windows to protect the detector and grating, and as filters to reduce background counts from UV light. The spectrometer has successfully monitored a variety of processes in situ, including growth of optical TiN films by reactive magnetron sputter deposition, synchrotron radiation induced CVD of metallic films, and hot-filament CVD growth of diamond.

  4. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks.

    PubMed

    Wu, Cheng Hao; Weatherup, Robert S; Salmeron, Miquel B

    2015-11-11

    Electrode/electrolyte interfaces play a vital role in various electrochemical systems, but in situ characterization of such buried interfaces remains a major challenge. Several efforts to develop techniques or to modify existing techniques to study such interfaces are showing great promise to overcome this challenge. Successful examples include electrochemical scanning tunneling microscopy (EC-STM), surface-sensitive vibrational spectroscopies, environmental transmission electron microscopy (E-TEM), and surface X-ray scattering. Other techniques such as X-ray core-level spectroscopies are element-specific and chemical-state-specific, and are being widely applied in materials science research. Herein we showcase four types of newly developed strategies to probe electrode/electrolyte interfaces in situ with X-ray core-level spectroscopies. These include the standing wave approach, the meniscus approach, and two liquid cell approaches based on X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. These examples demonstrate that with proper modifications, many ultra-high-vacuum based techniques can be adapted to study buried electrode/electrolyte interfaces and provide interface-sensitive, element- and chemical-state-specific information, such as solute distribution, hydrogen-bonding network, and molecular reorientation. At present, each method has its own specific limitations, but all of them enable in situ and operando characterization of electrode/electrolyte interfaces that can provide important insights into a variety of electrochemical systems.

  5. Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Dendooven, Jolien; Solano, Eduardo; Minjauw, Matthias M.; Van de Kerckhove, Kevin; Coati, Alessandro; Fonda, Emiliano; Portale, Giuseppe; Garreau, Yves; Detavernier, Christophe

    2016-11-01

    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuS™, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes.

  6. Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition.

    PubMed

    Dendooven, Jolien; Solano, Eduardo; Minjauw, Matthias M; Van de Kerckhove, Kevin; Coati, Alessandro; Fonda, Emiliano; Portale, Giuseppe; Garreau, Yves; Detavernier, Christophe

    2016-11-01

    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuS™, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes.

  7. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  8. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  9. Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Okada, Ikuo; Fukuoka, Takao; Sakurai, Ikuya; Utsumi, Yuichi

    2016-05-01

    The potential to fabricate metallic nanoparticles directly on silicon substrates from liquid solutions is ideal for three-dimensional lithography systems, drug delivery materials, and sensing applications. Here, we report the successful synthesis of Au, Cu, and Fe nanoparticles from the corresponding liquid solutions [gold(I) trisodium disulphite, copper(II) sulfate, and potassium ferricyanide] by synchrotron (SR) X-ray irradiation. The deposition of gold nanoparticles in the gold(I) trisodium disulphite solution was performed by monochromatic X-ray exposure from synchrotron radiation. The use of ethanol as an additive enabled the nucleation and growth of Cu particles, while no Cu particles were produced in the copper sulfate solution without ethanol with polychromatic SR X-ray irradiation. Fe particles were generated by direct polychromatic SR X-ray irradiation. These results demonstrate the behavior of three-dimensional printers, enabling us to build composite material structures with metallic and plastic materials.

  10. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation.

    PubMed

    Lu, L; Fan, D; Bie, B X; Ran, X X; Qi, M L; Parab, N; Sun, J Z; Liao, H J; Hudspeth, M C; Claus, B; Fezzaa, K; Sun, T; Chen, W; Gong, X L; Luo, S N

    2014-07-01

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  11. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    PubMed Central

    Peterson, Vanessa K.; Papadakis, Christine M.

    2015-01-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665

  12. Functional materials analysis using in situ and in operando X-ray and neutron scattering.

    PubMed

    Peterson, Vanessa K; Papadakis, Christine M

    2015-03-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them.

  13. Modular deposition chamber for in situ X-ray experiments during RF and DC magnetron sputtering.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Gräfe, Hans Hellmuth; Ulrich, Sven; Mantilla, Miguel; Weigel, Ralf; Rembold, Steffen; Baumbach, Tilo

    2012-03-01

    A new sputtering system for in situ X-ray experiments during DC and RF magnetron sputtering is described. The outstanding features of the system are the modular design of the vacuum chamber, the adjustable deposition angle, the option for plasma diagnostics, and the UHV sample transfer in order to access complementary surface analysis methods. First in situ diffraction and reflectivity measurements during RF and DC deposition of vanadium carbide demonstrate the performance of the set-up.

  14. Simple load frame for in situ computed tomography and x-ray tomographic microscopy

    SciTech Connect

    Breunig, T.M. ); Stock, S.R.; Brown, R.C. )

    1993-05-01

    In many instances, the response of a sample to external stimuli must be observed repeatedly during the course of an experiment. The sequence in which features are formed is often critical to proper identification of the mechanisms operating, for example, in fatigue and fracture. Merely observing what is visible at the surface of the sample can be misleading or can provide inadequate information about what governs fatigue crack growth or about what controls the fracture process. X-ray imaging allows one to observe the interior of samples and is an attractive technique to use with in situ stressing of test specimens. Here, a simple compact, inexpensive load frame is described for in situ x-ray computed tomography and for very high resolution computed tomography, termed x-ray tomographic microscopy. The load frame is evaluated, and its use is illustrated by observations of crack closure as a function of load in a notched tensile sample of Al-Li-2090.

  15. In situ X-ray-based imaging of nano materials

    SciTech Connect

    Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.

    2016-02-13

    We study functional nanomaterials that are heterogeneous and understanding their behavior during synthesis and operation requires high resolution diagnostic imaging tools that can be used in situ. Over the past decade, huge progress has been made in the development of X-ray based imaging, including full field and scanning microscopy and their analogs in coherent diffractive imaging. Currently, spatial resolution of about 10 nm and time resolution of sub-seconds are achievable. For catalysis, X-ray imaging allows tracking of particle chemistry under reaction conditions. In energy storage, in situ X-ray imaging of electrode particles is providing important insight into degradation processes. Recently, both spatial and temporal resolutions are improving to a few nm and milliseconds and these developments will open up unprecedented opportunities.

  16. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    SciTech Connect

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W.; Rosenmann, Daniel; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  17. Developments in gas detectors for synchrotron x-ray radiation

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-09-01

    New results on the physical limitations to position resolution in gas detectors for x-rays (approx. =3 to 20 keV) due to the range of photoelectrons and Auger electrons are discussed. These results were obtained with a small gap detector in which position readout was accomplished by using a very low noise centroid finding technique. A description is given of position sensitive detectors for medium rates (a few x 10/sup 5/ photons per second), using delay line readout, and for very high rates (approx. =10/sup 8/ photons per second), using fast signal shaping on the output of each anode wire.

  18. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    SciTech Connect

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  19. High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation.

    PubMed

    Momose, Atsushi; Yashiro, Wataru; Maikusa, Hirohide; Takeda, Yoshihiro

    2009-07-20

    X-ray Talbot interferometry, which uses two transmission gratings, has the advantage that broad energy bandwidth x-rays can be used. We demonstrate the use of white synchrotron radiation for high-speed X-ray phase imaging and tomography in combination with an X-ray Talbot interferometer. The moiré fringe visibility over 20% was attained, enabling quantitative phase measurement. X-ray phase images with a frame rate of 500 f/s and an X-ray phase tomogram with a scan time of 0.5 s were obtained successfully. This result suggests a breakthrough for time-resolved three-dimensional observation of objects that weakly absorb X-rays, such as soft material and biological objects.

  20. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  1. Synchrotron X-ray PIV Technique for Measurement of Blood Flow Velocity

    SciTech Connect

    Kim, Guk Bae; Lee, Sang Joon; Je, Jung Ho

    2007-01-19

    Synchrotron X-ray micro-imaging method has been used to observe internal structures of various organisms, industrial devices, and so on. However, it is not suitable to see internal flows inside a structure because tracers typically employed in conventional optical flow visualization methods cannot be detectable with the X-ray micro-imaging method. On the other hand, a PIV (particle image velocimetry) method which has recently been accepted as a reliable quantitative flow visualization technique can extract lots of flow information by applying digital image processing techniques However, it is not applicable to opaque fluids such as blood. In this study, we combined the PIV method and the synchrotron X-ray micro-imaging technique to compose a new X-ray PIV technique. Using the X-ray PIV technique, we investigated the optical characteristics of blood for a coherent synchrotron X-ray beam and quantitatively visualized real blood flows inside an opaque tube without any contrast media. The velocity field information acquired would be helpful for investigating hemorheologic characteristics of the blood flow.

  2. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  3. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  4. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  5. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  6. Evaluation of different synchrotron beamline configurations for X-ray fluorescence analysis of environmental samples.

    PubMed

    Barberie, Sean R; Iceman, Christopher R; Cahill, Catherine F; Cahill, Thomas M

    2014-08-19

    Synchrotron radiation X-ray fluorescence (SR-XRF) is a powerful elemental analysis tool, yet synchrotrons are large, multiuser facilities that are generally not amenable to modification. However, the X-ray beamlines from synchrotrons can be modified by simply including X-ray filters or removing monochromators to improve the SR-XRF analysis. In this study, we evaluated four easily applied beamline configurations for the analysis of three representative environmental samples, namely a thin aerosol sample, an intermediate thickness biological sample, and a thick rare earth mineral specimen. The results showed that the "white beam" configuration, which was simply the full, polychromatic output of the synchrotron, was the optimal configuration for the analysis of thin samples with little mass. The "filtered white beam" configuration removed the lower energy X-rays from the excitation beam so it gave better sensitivity for elements emitting more energetic X-rays. The "filtered white beam-filtered detector" configuration sacrifices the lower energy part of the spectrum (<15 keV) for improved sensitivity in the higher end (∼26 to 48 keV range). The use of a monochromatic beam, which tends to be the standard mode of operation for most SR-XRF analyses reported in the literature, gave the least sensitive analysis.

  7. An in situ X ray diffraction study of the kinetics of the Ni2SiO4 olivine-spinel transformation

    NASA Technical Reports Server (NTRS)

    Rubie, D. C.; Tsuchida, Y.; Yagi, T.; Utsumi, W.; Kikegawa, T.

    1990-01-01

    The kinetics of the olivine-spinel transformation in Ni2SiO4 were investigated in an in situ X-ray diffraction experiments in which synchrotron radiation was used as an X-ray source. The starting material was Ni2SO4 olivine which was hot-pressed in situ at 980 C and 2.5 GPa; during the transformation, X-ray diffraction patterns were collected at intervals of 30 or 120 sec. The kinetic data were analyzed using Cahn's (1956) model. The activation energy for growth at 3.6-3.7 GPa was estimated as 438 + or - 199 kJ/mol. It is shown that, in order to make significant extrapolations of the kinetic data to a geological scale, the dependence of the rates of both nucleation and growth on temperature and pressure must be evaluated separately.

  8. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    SciTech Connect

    Agrawal, Ashish Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  9. Use of Synchrotron X-ray Fluorescence to Measure Trace Metal Distribution in the Brain

    NASA Astrophysics Data System (ADS)

    Linkous, D.; Flinn, J. M.; Lanzirotti, A.; Frederickson, C.; Jones, B. F.; Bertsch, P. M.

    2002-12-01

    X26A, National Synchrotron Light Source, was used to quantitatively evaluate the spatial distribution of trace metals, such as Zn and Cu, in brain tissue. X-ray microprobe techniques offer distinct advantages over other analytical methods by allowing analyses to be done in-situ with little or no chemical pretreatment and low detection limits (about 1 ppm). In the context of neuroscience, SXRF can provide non-destructive measurements of specific metal concentrations and distribution within nerve (brain) tissue. Neuronal tissue from organisms having undergone different normal or experimental conditions may be compared, with analytical capacities not limited by binding states of the metal (i.e., vesicular or enzymatic), as is the case with staining techniques.. Whole regions of tissue may be scanned for detectable trace metals at spatial resolutions of 10um or less using focused monochromatic x-ray beams. Here special attention has been given to zinc because it is the most common trace metal in the brain, and levels have been increasing in the environment. In this investigation, zinc concentrations present within the hilus of a rat hippocampus, and to a lesser extent in the cortex, have been shown to increase following long-term ingestion of zinc-enhanced drinking water that was associated with deficits in spatial memory. Concomitantly, copper concentrations in the internal capsule were comparatively lower. Other first order transition metals, Cr, V, Mn, and Co were not detected. In contrast, elevated levels of Zn, Cu, and Fe have been seen in amyloid plaques associated with Alzheimer's disease.

  10. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  11. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  12. Minimally Invasive Coronary Angiography with Monochromatic X-Rays Developmental Studies Utilizing Synchrotron Radiation.

    NASA Astrophysics Data System (ADS)

    Otis, John Noel

    Iodine-containing compounds are used as contrast agents in obtaining X-ray images of blood vessels for medical diagnosis. If the X-ray contrast produced by iodine can be enhanced sufficiently relative to that produced by the intervening body tissues, it becomes possible to obtain images of arteries by introducing the contrast agent into the venous circulation rather than through an arterial catheter directly into the vessel under examination. This prospect is attractive because invasion of the arterial system is the chief cause of the medical complications that are encountered in the application of current angiographic procedures. An imaging system that shows promise of accomplishing this goal for examination of the coronary arteries has been developed for operation in an X-ray beam at the Stanford Synchrotron Radiation Laboratory. Iodine-selective contrast enhancement is achieved by logarithmic subtraction of two images of the same field. One of these images is formed by monochromatic X-rays of energy just above the characteristic iodine K-absorption edge at 33.17 keV, the other by X-rays of energy just below the edge. The computer-controlled imaging system acquires digitized images line by line while scanning the subject through a stationary X-ray beam of linear profile. At present, only synchrotron radiation can provide monochromatic X-ray beams of intensity sufficient to image the small and rapidly moving coronary arteries. Preliminary studies of static phantoms and in vivo studies of dogs establish the feasibility of using synchrotron radiation as the X-ray source for iodine-selective imaging with sensitivity and speed adequate for providing sharp images of coronary arteries after intravenous introduction of contrast agent. Application of the method to human subjects began with imaging studies of three patients in May, 1986.

  13. Effect of hydration on the structure of solid-supported Niosomal membranes investigated by in situ energy dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Pozzi, Daniela; Caminiti, Ruggero; Marianecci, Carlotta; Moglioni, Simone; Carafa, Maria; Amenitsch, Heinz

    2008-09-01

    The supramolecular structure of Niosomal vesicles (Niosomes) made of a binary mixture of polysorbate 20 (Tween 20) and Cholesterol in aqueous solution was investigated by means of synchrotron small angle X-ray scattering (SAXS). Solid-supported Niosomal membranes at full hydration exhibit the same structural properties, as determined by in situ energy dispersive X-ray diffraction (EDXD), than their counterpart in solution. Both Niosomes and solid-supported Niosomal membranes are made of highly swollen bilayers rich in Tween 20 coexisting with Cholesterol crystallites. EDXD patterns from oriented samples suggest that at least some Cholesterol crystals are aligned along the normal to the solid support.

  14. In situ fine tuning of bendable soft x-ray mirrors using a lateral shearing interferometer

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; MacDougall, James; Morrison, Gregory Y.; Rekawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Padmore, Howard

    2013-05-01

    Broadly applicable, in situ at-wavelength metrology methods for x-ray optics are currently under development at the Advanced Light Source. We demonstrate the use of quantitative wavefront feedback from a lateral shearing interferometer for the suppression of aberrations. With the high sensitivity provided by the interferometer we were able to optimally tune the bending couples of a single elliptical mirror (NA=2.7 mrad) in order to focus a beam of soft x-rays (1.24 keV) to a nearly diffraction-limited beam waist size of 156(±10) nm.

  15. Crystal spectroscopy of X-ray synchrotron source brightness

    NASA Astrophysics Data System (ADS)

    Als-Nielsen, Jens; Kjaer, Kristian

    1992-12-01

    Photon intensities in a monochromatic beam obtained by a horizontal Bragg reflection of synchrotron radiation by a monochromator crystal are compared for the three perfect crystals: silicon and germanium in symmetric (111) reflection and Diamond (C∗) in asymmetric (111) transmission geometry. Consistent results are obtained within relative bandwidths spanning a factor of 50 from Si(333) to Ge(111) and within a wavelength range form 0.4 Å to 1.6 Å. Results using a mosaic Be crystal within the same wavelength range depend in this work on a model of the mosaicity of the Be crystal. However, if the reflectivity of the Be crystal is determined experimentally for a few selected wavelengths, it is not necessary to invoke a mosaic model and a Be crystal may serve the purpose of characterizing the synchrotron beam as well as a perfect crystal. Thin diamond and beryllium crystals in transmission are particularly convenient for spectroscopy of very powerful beams from third generation synchrotron sources, because these low-Z elements absorb only a tiny fraction of the beam power.

  16. Short-period cyclic loading system for in situ X-ray observation of anelastic properties at high pressure

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Yamazaki, Daisuke; Tange, Yoshinori; Higo, Yuji

    2016-10-01

    To determine the anelastic properties of materials of the Earth's interior, a short-period cyclic loading system was installed for in situ X-ray radiographic observation under high pressure to the multi-anvil deformation DIA press at the bending magnet beam line BL04B1 at SPring-8. The hydraulic system equipped with a piston controlled by a solenoid was designed so as to enable producing smooth sinusoidal stress in a wide range of oscillation period from 0.2 to 100 s and generating variable amplitudes. Time resolved X-ray radiography imaging of the sample and reference material provides their strain as a function of time during cyclic loading. A synchrotron X-ray radiation source allows us to resolve their strain variation with time even at the short period (<1 s). The minimum resolved strain is as small as 10-4, and the shortest oscillation period to detect small strain is 0.5 s. Preliminary experimental results exhibited that the new system can resolve attenuation factor Q-1 at upper mantle conditions. These results are in quantitative agreement with previously reported data obtained at lower pressures.

  17. Contemporary X-ray electron-density studies using synchrotron radiation

    PubMed Central

    Jørgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Chen, Yu-Sheng; Overgaard, Jacob; Iversen, Bo B.

    2014-01-01

    Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. PMID:25295169

  18. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  19. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Kuhs, Werner F.

    2016-09-01

    In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix. Xenon-hydrate was used instead of methane hydrate to enhance the absorption contrast. The microstructural features of the decomposition process were elucidated indicating that the decomposition starts at the hydrate-gas interface; it does not proceed at the contacts with quartz grains. Melt water accumulates at retreating hydrate surface. The decomposition is not homogeneous and the decomposition rates depend on the distance of the hydrate surface to the gas phase indicating a diffusion-limitation of the gas transport through the water phase. Gas is found to be metastably enriched in the water phase with a concentration decreasing away from the hydrate-water interface. The initial decomposition process facilitates redistribution of fluid phases in the pore space and local reformation of gas hydrates. The observations allow also rationalizing earlier conjectures from experiments with low spatial resolutions and suggest that the hydrate-sediment assemblies remain intact until the hydrate spacers between sediment grains finally collapse; possible effects on mechanical stability and permeability are discussed. The resulting time resolved characteristics of gas hydrate decomposition and the influence of melt water on the reaction rate are of importance for a suggested gas recovery from marine sediments by depressurization.

  20. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    NASA Astrophysics Data System (ADS)

    Mirihanage, W. U.; Di Michiel, M.; Mathiesen, R. H.

    2015-06-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ∼ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution 2D detectors with very high frame rates were utilized to capture time resolved X-ray diffraction data from suitably oriented solid dendrites evolving in the weld pool. Comprehensive analysis of the diffraction data revealed individual and overall dendritic growth characteristics and relevant melt and solid flow dynamics during weld pool solidification, which was completed within 1.5 s. Columnar dendrite tip velocities were estimated from the experimental data and during early stages of solidification were exceeded 4 mm/s. The most remarkable observation revealed through the time-resolved reciprocal space observations are correlated to significant tilting of columnar type dendrites at their root during solidification, presumably caused by convective currents in the weld pool. When the columnar dendrite tilting are transformed to respective metric linear tilting velocities at the dendrite tip; tilting velocities are found to be in the same order of magnitude as the columnar tip growth velocities, suggesting a highly transient nature of growth conditions.

  1. IN SITU STUDIES OF CORROSION USING X-RAY ABSORPTION NEAR SPECTROSCOPY (XANES)

    SciTech Connect

    ISAACS, H.S.; SCHMUKI, P.; VIRTANEN, S.

    2001-03-25

    Applications of x-ray absorption near-edge spectroscopy (XANES) and the design of cells for in situ corrosion studies are reviewed. Passive films studies require very thin metal or alloy layers be used having a thickness of the order of the films formed because of penetration of the x-ray beam into the metal substrate. The depth of penetration in water also limits the thickness of solutions that can be used because of water reduces the x-ray intensity. Solution thickness must also be limited in studies of conversion layer formation studies because the masking of the Cr in solution. Illustrative examples are taken from the anodic behavior of Al-Cr alloys, the growth of passive films on Fe and stainless steels, and the formation of chromate conversion layers on Al.

  2. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    SciTech Connect

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  3. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    PubMed Central

    Gumí-Audenis, B.; Carlà, F.; Vitorino, M. V.; Panzarella, A.; Porcar, L.; Boilot, M.; Guerber, S.; Bernard, P.; Rodrigues, M. S.; Sanz, F.; Giannotti, M. I.; Costa, L.

    2015-01-01

    A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions. PMID:26524300

  4. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  5. Development rate of PMMA exposed to synchrotron x-ray radiation for LIGA applications

    NASA Astrophysics Data System (ADS)

    McNamara, Shamus

    2011-01-01

    This paper investigates the development rate of poly(methyl methacrylate) (PMMA) after it is exposed to synchrotron x-ray radiation. The x-ray exposures were performed at both Synchrotron Radiation Center and Brookhaven National Laboratories. The development rate of PMMA in a variety of developers was measured as a function of absorbed x-ray dose (J cm-3). The development rate of four different types of PMMA was investigated: unexposed 950k PMMA, Cryo GMS PMMA, Goodfellow CQ PMMA, and Crosslinked PMMA. It was found that the development rate is the same for all types of PMMA studied. The temperature dependence of one developer, GG developer, was studied in detail and it is shown that the selectivity of exposed to unexposed PMMA increases as the temperature is reduced. This work was performed in part at the University of Wisconsin.

  6. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  7. Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source.

    PubMed

    Schleede, Simone; Bech, Martin; Achterhold, Klaus; Potdevin, Guillaume; Gifford, Martin; Loewen, Rod; Limborg, Cecile; Ruth, Ronald; Pfeiffer, Franz

    2012-07-01

    The Compact Light Source is a miniature synchrotron producing X-rays at the interaction point of a counter-propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X-rays can be exploited in high-sensitivity differential phase-contrast imaging with a grating-based interferometer. Here, the first multimodal X-ray imaging experiments at the Compact Light Source at a clinically compatible X-ray energy of 21 keV are reported. Dose-compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark-field imaging over conventional attenuation-based projections.

  8. Photosynthesis and structure of electroless Ni-P films by synchrotron x-ray irradiation

    SciTech Connect

    Hsu, P.-C.; Wang, C.-H.; Yang, T.-Y.; Hwu, Y.-K.; Lin, C.-S.; Chen, C.-H.; Chang, L.-W.; Seol, S.-K.; Je, J.-H.; Margaritondo, G.

    2007-05-15

    The authors describe an electroless deposition method for thin films, based on the irradiation by an x-ray beam emitted by a synchrotron source. Specifically, Ni-P films were deposited at room temperature. This synthesis is a unique combination of photochemical and electrochemical processes. The influence of the pH value on the formation and structural properties of the films was examined by various characterization tools including scanning electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Real time monitoring of the deposition process by coherent x-ray microscopy reveals that the formation of hydrogen bubbles leads to a self-catalysis effect without a preexisting catalyst. The mechanisms underlying the deposition process are discussed in details.

  9. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  10. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C.; Vis, R.D.; Sutton, S.R.; Rivers, M.L.; Jones, K.W.; Bowen, D.K.

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  11. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. ); Vis, R.D. ); Sutton, S.R.; Rivers, M.L. ); Jones, K.W. ); Bowen, D.K. )

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  12. In-situ transmission x-ray microscopy study of photon-induced oxidation of silver nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Le; Sun, Yugang; Wang, Yuxin; Cai, Zhonghou; Han, Ping; Cheng, X. M.

    Oxidation of metal nanoparticles usually follows a Kirkendall process to transform solid nanoparticles to hollow metal oxide nanoshells. However the morphological trajectory of nanoparticles and the mass diffusion kinetics involved in the nanoscale Kirkendall process are complex. In this presentation we report the use of in-situ transmission x-ray microscopy (TXM) to directly image individual silver nanowires under oxidation atmosphere, which are created from radiolysis of air under illumination of the focused synchrotron x-ray beam. The in-situ results clearly show the morphological transformation from solid silver nanowires to hollow nanotubes in the course of oxidation reaction of silver. Quantitative analysis of the time-resolved TXM images provides unprecedented details on reaction kinetics and mass diffusion kinetics associated with the oxidation process. Work at Bryn Mawr College is supported by NSF Grant #1207085. Use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  13. Status of the X-Ray Absorption Spectroscopy (XAS) Beamline at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Glover, C.; McKinlay, J.; Clift, M.; Barg, B.; Boldeman, J.; Ridgway, M.; Foran, G.; Garret, R.; Lay, P.; Broadbent, A.

    2007-02-01

    We present herein the current status of the X-ray Absorption Spectroscopy (XAS) Beamline at the 3 GeV Australian Synchrotron. The optical design and performance, details of the insertion device (Wiggler), end station capabilities and construction and commissioning timeline are given.

  14. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  15. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  16. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  17. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  18. Synchrotron-based transmission x-ray microscopy for improved extraction in shale during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Kiss, Andrew M.; Jew, Adam D.; Joe-Wong, Claresta; Maher, Kate M.; Liu, Yijin; Brown, Gordon E.; Bargar, John

    2015-09-01

    Engineering topics which span a range of length and time scales present a unique challenge to researchers. Hydraulic fracturing (fracking) of oil shales is one of these challenges and provides an opportunity to use multiple research tools to thoroughly investigate a topic. Currently, the extraction efficiency from the shale is low but can be improved by carefully studying the processes at the micro- and nano-scale. Fracking fluid induces chemical changes in the shale which can have significant effects on the microstructure morphology, permeability, and chemical composition. These phenomena occur at different length and time scales which require different instrumentation to properly study. Using synchrotron-based techniques such as fluorescence tomography provide high sensitivity elemental mapping and an in situ micro-tomography system records morphological changes with time. In addition, the transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 6-2 is utilized to collect a nano-scale three-dimensional representation of the sample morphology with elemental and chemical sensitivity. We present the study of a simplified model system, in which pyrite and quartz particles are mixed and exposed to oxidizing solution, to establish the basic understanding of the more complex geology-relevant oxidation reaction. The spatial distribution of the production of the oxidation reaction, ferrihydrite, is retrieved via full-field XANES tomography showing the reaction pathway. Further correlation between the high resolution TXM data and the high sensitivity micro-probe data provides insight into potential morphology changes which can decrease permeability and limit hydrocarbon recovery.

  19. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  20. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  1. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  2. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  3. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    SciTech Connect

    Shukla, V; Jisrawi, N M; Sadangi, R K; Pao, P S; Horvath, K; Sadananda, K; Ignatov, A; Skaritka, J; Tsakalakos, T

    2009-02-05

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.

  4. Microstructural Characterization and Corrosion Behavior of Al 7075 Alloys Using X-ray Synchrotron Tomography

    NASA Astrophysics Data System (ADS)

    Singh, Sudhanshu Shekhar

    Al 7075 alloys are used in a variety of structural applications, such as aircraft wings, automotive components, fuselage, spacecraft, missiles, etc. The mechanical and corrosion behavior of these alloys are dependent on their microstructure and the environment. Therefore, a comprehensive study on microstructural characterization and stress-environment interaction is necessary. Traditionally, 2D techniques have been used to characterize microstructure, which are inaccurate and inadequate since the research has shown that the results obtained in the bulk are different from those obtained on the surface. There now exist several techniques in 3D, which can be used to characterize the microstructure. Al 7075 alloys contain second phase particles which can be classified as Fe-bearing inclusions, Si-bearing inclusions and precipitates. The variation in mechanical and corrosion properties of aluminum alloys has been attributed to the size, shape, distribution, corrosion properties and mechanical behavior of these precipitates and constituent particles. Therefore, in order to understand the performance of Al 7075 alloys, it is critical to investigate the size and distribution of inclusions and precipitates in the alloys along with their mechanical properties, such as Young's modulus, hardness and stress-strain behavior. X-ray tomography and FIB tomography were used to visualize and quantify the microstructure of constituent particles (inclusions) and precipitates, respectively. Microscale mechanical characterization techniques, such as nanoindentation and micropillar compression, were used to obtain mechanical properties of inclusions. Over the years, studies have used surface measurements to understand corrosion behavior of materials. More recently, in situ mechanical testing has become more attractive and advantageous, as it enables visualization and quantification of microstructural changes as a function of time (4D). In this study, in situ X-ray synchrotron tomography

  5. X-ray fluorescence spectrometry using Synchrotron Radiation with applications in unmanned aircraft environmental sensing

    NASA Astrophysics Data System (ADS)

    Barberie, Sean Richard Gopal

    In this thesis I present an analytical optimization of the Synchrotron Radiation X-Ray Fluorescence (SR-XRF) technique for applications in unmanned aircraft aerosol studies. In environmental and atmospheric science, there is a pressing need for aerosol measurements at various altitudes in the atmosphere and spanning large regions. This need is currently either ignored, or met to a limited degree by studies that employ manned aircraft. There is, however, a great deal of opportunity to improve and expand on these studies using the emerging technology of unmanned aircraft systems. A newly developed aerosol sampler makes this opportunity a near-reality by its ability to collect aerosol samples in-situ from unmanned aircraft platforms. The challenge lies in analyzing these samples for elemental composition. In airborne aerosol studies, the ability to resolve where a sample was collected both spatially and temporally is limited by the sensitivity of the analysis technique. In aircraft-based aerosol collection, the length of the aerosol sample spot corresponds to distance. Thus the spatial resolution of an airborne study is limited by the amount of mass that must be collected for analysis. The SR-XRF optimizations outlined in this thesis decrease the amount of sample mass required for detectable elemental concentrations, allowing aerosol samples to be analyzed in smaller areas corresponding to smaller time steps. Since, in a flight path, time steps are directly correlated with distance, analysis of smaller time steps results in the ability to measure aerosols at higher spatial resolution. Four SR-XRF analysis configurations were experimentally tested: monochromatic beam, white beam, filtered white beam, and filtered white beam-filtered detector to determine which configuration gave the highest elemental sensitivity and selectivity. Of these tested methods, the straight polychromatic white beam configuration resulted in the best sensitivity for elements across a large

  6. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction.

    PubMed

    Emamzadah, Soheila; Petty, Tom J; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean Luc; Halazonetis, Thanos D

    2009-09-01

    Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus' molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 A resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  7. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  8. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy.

    PubMed

    Schwanke, C; Golnak, R; Xiao, J; Lange, K M

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  9. Development of in situ, at-wavelength metrology for soft x-ray nano-focusing

    SciTech Connect

    Yuan, Sheng Sam; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.

    2010-09-19

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of ~;;120 nm, at 1-nm soft x-ray wavelength.

  10. In Situ Soft X-ray Spectroscopy Characterization of Interfacial Phenomena in Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua; Liu, Yi-Sheng; Kapilashrami, Mukes; Glans, Per-Anders; Bora, Debajeet; Braun, Artur; Velasco Vélez, Juan Jesús; Salmeron, Miquel; ALS/LBNL Team; EMPA, MSD/LBNL Collaboration

    2015-03-01

    Advanced energy technology arises from the understanding in basic science, thus rest in large on in-situ/operando characterization tools for observing the physical and chemical interfacial processes, which has been largely limited in a framework of thermodynamic and kinetic concepts or atomic and nanoscale. In many important energy systems such as energy conversion, energy storage and catalysis, advanced materials and functionality in devices are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the energy conversion and energy storage applications calls for in-situ/operando characterization tools. Soft X-ray spectroscopy offers a number of very unique features. We will present our development of the in-situ/operando soft X-ray spectroscopic tools of catalytic and electrochemical reactions in recent years, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. In this presentation a number of examples are given, including the nanocatalysts and the recent experiment performed for studying the hole generation in a specifically designed photoelectrochemical cell under operando conditions. The ALS is supported by the the U.S. Department of Energy.

  11. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  12. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments.

    PubMed

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-03-01

    In tissue engineering, non-invasive imaging of biomaterial scaffolds and tissues in living systems is essential to longitudinal animal studies for assessments without interrupting the repair process. Conventional X-ray imaging is inadequate for use in soft tissue engineering due to the limited absorption difference between the soft tissue and biomaterial scaffolds. X-ray phase-based imaging techniques that derive contrast from refraction or phase effects rather than absorption can provide the necessary contrast to see low-density biomaterial scaffolds and tissues in large living systems. This paper explores and compares three synchrotron phase-based X-ray imaging techniques-computed tomography (CT)-diffraction enhanced imaging (DEI), -analyzer based imaging (ABI), and -phase contrast imaging (PCI)-for visualization and characterization of low-density biomaterial scaffolds and tissues in situ for non-invasive soft tissue engineering assessments. Intact pig joints implanted with polycaprolactone scaffolds were used as the model to assess and compare the imaging techniques in terms of different qualitative and quantitative criteria. For long-term in vivo live animal imaging, different strategies for reducing the imaging radiation dose and scan time-reduced number of CT projections, region of interest, and low resolution imaging-were examined with the presented phase-based imaging techniques. The results demonstrated promising capabilities of the phase-based techniques for visualization of biomaterial scaffolds and soft tissues in situ. The low-dose imaging strategies were illustrated effective for reducing the radiation dose to levels appropriate for live animal imaging. The comparison among the imaging techniques suggested that CT-DEI has the highest efficiency in retaining image contrast at considerably low radiation doses.

  13. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    NASA Astrophysics Data System (ADS)

    Centomo, P.; Meneghini, C.; Zecca, M.

    2013-05-01

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 °C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O2, H2, H2O2, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H2O2) in methanol solution from dihydrogen and dioxygen.

  14. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    NASA Astrophysics Data System (ADS)

    Jervis, Rhodri; Brown, Leon D.; Neville, Tobias P.; Millichamp, Jason; Finegan, Donal P.; Heenan, Thomas M. M.; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems.

  15. Synchrotron-based Scattered Radiation from Phantom Materials used in X-ray CT

    SciTech Connect

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Gigante, G

    2010-01-01

    Synchrotron-based scattered radiation form low-contrast phantom materials prepared from polyethylene, polystyrene, nylon, and Plexiglas is used as test objects in X-ray CT was examined with 8, 10 and 12 keV X-rays. These phantom materials of medical interest will contains varying proportions of low atomic number elements. The assessment will allowed us to estimate the fluorescence to total scattered radiation. Detected the fluorescence spectra and the associated scattered radiation from calcium hydroxyapatite phantom with 8, 10 and 12 keV synchrotron X-rays. Samples with Bonefil (60% and 70% of calcium hydroxyapatite) and Bone cream (35-45% of calcium hydroxyapatite), were used. Utilized the X-ray micro-spectroscopy beamline facility, X27A, available at NSLS, BNL, USA. The primary beam with a spot size of the order of {approx}10 {micro}m, has been used for focusing. With this spatial resolution and high flux throuput, the synchrotron-based scattered radiation from the phantom materials were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector.

  16. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-04-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.

  17. Microscopic x-ray imaging system for biomedical applications using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki

    2007-02-01

    An X-ray direct-conversion type detector with a spatial resolution of 10-11 μm was developed for real-time biomedical imaging. The detector incorporates the X-ray SATICON pickup tube with a photoconductive target layer of amorphous selenium. For high-resolution imaging, the X-ray image is directly converted into an electric signal in the photoconductive layer without image blur. Microangiography experiments were carried out for depicting angiogenic vessels in a rabbit model of cancer using the direct-conversion detector and a third generation synchrotron radiation source at SPring-8. In synchrotron radiation radiography, a long source-to-object distance and a small source spot can produce high-resolution images. After transplantation of cancer cells into the rabbit auricle, small tumor blood vessels with diameters of 20-30 μm in an immature vascular network produced by angiogenesis were visualized by contrast material injection into the auricular artery at a monochromatic X-ray energy of 33.2 keV just above the iodine K-edge energy. The synchrotron radiation system is a useful tool to evaluate the micro-angioarchitecture of malignant tumors in animal models of cancer for in vivo preclinical studies.

  18. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline

    PubMed Central

    Petitgirard, Sylvain; Salamat, Ashkan; Beck, Pierre; Weck, Gunnar; Bouvier, Pierre

    2014-01-01

    An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO2 and a pulsed Nd:YAG laser system. This reiteration of laser-heating advancements at ID27 is designed to pave the way for a new generation of state-of-the-art experiments that demand the need for synchrotron diffraction techniques. Experimental examples are provided for each major development. The capabilities of the double pyrometer have been tested with the Nd:YAG continuous-wave lasers but also in a time-resolved configuration using the nanosecond-pulsed Nd:YAG laser on a Fe sample up to 180 GPa and 2900 K. The combination of time-resolved X-ray diffraction with in situ CO2 laser heating is shown with the crystallization of a high-pressure phase of the naturally found pyrite mineral MnS2 (11 GPa, 1100–1650 K). PMID:24365921

  19. Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging.

    PubMed

    Sun, Tianxi; Zhang, Meiling; Liu, Zhiguo; Zhang, Zhiguang; Li, Gang; Ma, Yongzhong; Du, Xiaoguang; Jia, Quanjie; Chen, Yu; Yuan, Qingxi; Huang, Wanxia; Zhu, Peiping; Ding, Xunliang

    2009-01-01

    An imaging system based on a polycapillary half-focusing X-ray lens (PHFXRL) and synchrotron radiation source has been designed. The focal spot size and the gain in power density of the PHFXRL were 22 microm (FWHM) and 4648, respectively, at 14.0 keV. The spatial resolution of this new imaging system was better than 5 microm when an X-ray charge coupled device with a pixel size of 10.9 x 10.9 microm was used. A fossil of an ancient biological specimen was imaged using this system.

  20. Diamond anvil cell radial x-ray diffraction program at the National Synchrotron Light Source.

    PubMed

    Hu, J Z; Mao, H K; Shu, J F; Guo, Q Z; Liu, H Z

    2006-06-28

    During the past decade, the radial x-ray diffraction method using a diamond anvil cell (DAC) has been developed at the X17C beamline of the National Synchrotron Light Source. The detailed experimental procedure used with energy dispersive x-ray diffraction is described. The advantages and limitations of using the energy dispersive method for DAC radial diffraction studies are also discussed. The results for FeO at 135 GPa and other radial diffraction experiments performed at X17C are discussed in this report.

  1. ENERGY DEPENDENCE OF SYNCHROTRON X-RAY RIMS IN TYCHO’S SUPERNOVA REMNANT

    SciTech Connect

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Reynolds, Stephen P.

    2015-10-20

    Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths ∼1%–5% of remnant radius and magnetic field strengths ∼50–400 μG assuming Bohm diffusion. X-ray rim widths are ∼1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields ≳20 μG, affirming the necessity of magnetic field amplification beyond simple compression.

  2. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  3. Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance

    NASA Astrophysics Data System (ADS)

    Seo, D.; Tomizato, F.; Toda, H.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Kobayashi, M.

    2012-12-01

    Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 μm pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

  4. The first microbeam synchrotron X-ray fluorescence beamline at the Siam Photon Laboratory.

    PubMed

    Tancharakorn, Somchai; Tanthanuch, Waraporn; Kamonsutthipaijit, Nuntaporn; Wongprachanukul, Narupon; Sophon, Methee; Chaichuay, Sarunyu; Uthaisar, Chunmanus; Yimnirun, Rattikorn

    2012-07-01

    The first microbeam synchrotron X-ray fluorescence (µ-SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X-ray capillary half-lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters-sized beam to a micrometer-sized beam. This beamline was originally designed for deep X-ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ-SXRF and synchrotron X-ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X-ray beam (for SXPD), a fixed aperture and three gate valves. Two end-stations incorporating optics and detectors for µ-SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ-SXRF station utilizes a polycapillary half-lens for X-ray focusing. This optic focuses X-ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end-station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single-element Si (PIN) solid-state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in-house to generate a series of single-column data which are compatible with available XRF data-processing software. Finally, to test the performance of the µ-SXRF beamline, an elemental surface profile has been obtained for

  5. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    PubMed

    Toda, Hiroyuki

    2014-11-01

    X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this

  6. X-ray grating interferometer for imaging at a second-generation synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Herzen, Julia; Beckmann, Felix; Donath, Tilman; Ogurreck, Malte; David, Christian; Pfeiffer, Franz; Mohr, Jürgen; Reznikova, Elena; Riekehr, Stefan; Haibel, Astrid; Schulz, Georg; Müller, Bert; Schreyer, Andreas

    2010-09-01

    X-ray phase-contrast radiography and tomography enables to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed which extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron even to non-coherent sources. Here, we present a setup of an x-ray grating interferometer designed and installed at low-coherence wiggler source at the GKSS beamline W2 (HARWI II) operated at the second-generation synchrotron storage ring DORIS at the Deutsches Elektronen-Synchrotron (DESY, Hamburg, Germany). The beamline is dedicated to imaging in materials science. Equipped with the grating interferometer, it is the first synchrotron radiation beamline with a three-grating setup combining the advantages of phase-contrast imaging with monochromatic radiation with very high flux and a sufficiently large field of view for centimeter sized objects. Examples of radiography on laser-welded aluminum and magnesium joints are presented to demonstrate the high potential of the new gratingbased setup in the field of materials science. In addition, the results of an off-axis phase-contrast tomography of a human urethra with 15 mm in diameter are presented showing internal structures, which cannot be resolved by the conventional tomography in absorption mode.

  7. In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew; Claus, Benjamin; Lim, Boon Him; Sun, Tao; Xiao, Xianghui; Fezzaa, Kamel; Chen, Weinong W.

    2017-01-01

    The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up. Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  8. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.

    PubMed

    Eveno, Myriam; Moignard, Brice; Castaing, Jacques

    2011-10-01

    A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 μm thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques.

  9. Role of the Template in Model Biomineralization: Synchrotron X-ray Scattering Experiments

    NASA Astrophysics Data System (ADS)

    Uysal, Ahmet

    Synthesis of functional nanoparticles in cheap and environment friendly ways is one of the big challenges we face today. Interestingly, many biological systems are already expert at this task. Living organisms can grow nanocrystals of inorganic minerals with certain orientations and shapes and use them together with organic material to build structures with properties superior to the sum of their components. This process is called biomineralization. It has been previously shown that floating monolayers of amphiphilic molecules (Langmuir monolayers) can be used to simulate this process. This project covers the study of three different minerals, calcium oxalate, hydroxyapatite and gold, in an attempt to understand the role of the organic template in the model biomineralization experiments. We used in situ synchrotron x-ray scattering techniques to monitor the organic-inorganic interface during nucleation and growth of inorganic crystals. We also used scanning and transmission electron microscopy to study the structure of mature crystals ex situ . Although kidney stones (mostly calcium oxalate) are pathological in humans and animals, their microscopic structures exhibit considerable orientation and order, probably caused by organic molecules. Our x-ray scattering experiments revealed, first time, that in the early stages of the crystallization calcium oxalate crystals adapt a structure different from their known bulk structures. In the later stages, the crystals relax back to the bulk structure while changing the organization of the organic molecules next to them. We developed a model that explains these interactions in terms of the organic-inorganic interface potential energy. Hydroxyapatite is the main inorganic constituent of the vertebrate bone. In spite of the vast literature about bone mineralization, there is little known about the organic-inorganic interactions at the molecular level. In this thesis, we report the first in situ x-ray scattering experiments

  10. Energy dispersive X-ray diffraction in the diamond anvil, high-pressure apparatus - Comparison of synchrotron and conventional X-ray sources

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Black, D. R.

    1985-01-01

    The use of both conventional fixed-anode X-ray sources and synchrotron radiation to carry out energy-dispersive X-ray diffraction experiments at high pressure in a diamond anvil cell, is discussed. The photon flux at the sample and at the detector for the two cases are compared and the results are presented in graphs. It is shown that synchrotron radiation experiments can be performed with nearly two orders of magnitude increase in data rate if superior detectors and detector electronics are available.

  11. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    SciTech Connect

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-15

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-{mu}m-wide beam to a width of 80 {mu}m with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  12. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure.

    PubMed

    Oger, Phil M; Daniel, Isabelle; Picard, Aude

    2010-02-01

    Until recently, monitoring of cells and cellular activities at high hydrostatic pressure (HHP) was mainly limited to ex situ observations. Samples were analyzed prior to and following the depressurization step to evaluate the effect of the pressure treatment. Such ex situ measurements have several drawbacks: (i) it does not allow for kinetic measurements and (ii) the depressurization step often leads to artifactual measurements. Here, we describe recent advances in diamond anvil cell (DAC) technology to adapt it to the monitoring of microbial processes in situ. The modified DAC is asymmetrical, with a single anvil and a diamond window to improve imaging quality and signal collection. Using this novel DAC combined to Raman and X-ray spectroscopy, we monitored the metabolism of glucose by baker's yeast and the reduction of selenite by Agrobacterium tumefaciens in situ under HHP. In situ spectroscopy is also a promising tool to study piezophilic microorganisms.

  13. A SYNCHROTRON SELF-COMPTON-DISK REPROCESSING MODEL FOR OPTICAL/X-RAY CORRELATION IN BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Veledina, Alexandra; Poutanen, Juri; Vurm, Indrek E-mail: juri.poutanen@oulu.fi

    2011-08-10

    The physical picture of the emission mechanisms operating in the X-ray binaries was put under question by the simultaneous optical/X-ray observations with high time resolution. The light curves of the two energy bands appeared to be connected and the cross-correlation functions observed in three black hole binaries exhibited a complicated shape. They show a dip of the optical emission a few seconds before the X-ray peak and the optical flare just after the X-ray peak. This behavior could not be explained in terms of standard optical emission candidates (e.g., emission from the cold accretion disk or a jet). We propose a novel model, which explains the broadband optical to the X-ray spectra and the variability properties. We suggest that the optical emission consists of two components: synchrotron radiation from the non-thermal electrons in the hot accretion flow and the emission produced by reprocessing of the X-rays in the outer part of the accretion disk. The first component is anti-correlated with the X-rays, while the second one is correlated, but delayed and smeared relative to the X-rays. The interplay of the components explains the complex shape of the cross-correlation function, the features in the optical power spectral density as well as the time lags.

  14. Synchrotron X-ray Analyses Demonstrate Phosphate-Bound Gadolinium in Skin in Nephrogenic Systemic Fibrosis

    PubMed Central

    George, Simon J.; Webb, Samuel M.; Abraham, Jerrold L.; Cramer, Stephen P.

    2010-01-01

    Background Nephrogenic systemic fibrosis (NSF) is an incurable, debilitating disease found exclusively in patients with decreased kidney function and comprises a fibrosing disorder of the skin and systemic tissues. The disease is associated with exposure to Gadolinium based contrast agents (GBCA) used in magnetic resonance imaging (MRI). Tissue samples from many NSF patients contain micron-sized insoluble Gd-containing deposits. However, the precise composition and chemical nature of these particles is unclear. Objectives To clarify the precise chemical structure of the Gd-containing deposits in NSF tissues. Methods Autopsy skin tissues from a NSF patient are examined in situ using synchrotron x-ray fluorescence (SXRF) microscopy and extended absorption fine structure (EXAFS) spectroscopy and in correlation with light microscopy and the results of SEM/EDS analyses. Results The insoluble Gd deposits are shown to contain Gd no longer coordinated by GBCA chelator molecules but rather in a sodium calcium phosphate material. SXRF microscopy shows a clear correlation between Gd, Ca and P. EXAFS spectroscopy shows a very different spectrum from the GBCAs, with Gd-P distances at 3.11 Å and 3.72 Å as well as Gd-Gd distances at an average of 4.05 Å, consistent with a GdPO4 structure. Conclusions This is the first direct evidence for the chemical release of Gd from GBCA in human tissue. This supports the physical-chemical, clinical, and epidemiological data indicating a link between stability and dose of GBCA to the development of NSF. PMID:20560953

  15. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction.

    PubMed

    Yang, Zhi; Gu, Qinfen; Hemar, Yacine

    2013-08-14

    The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation.

  16. In situ X-ray scattering evaluation of heat-induced ultrastructural changes in dental tissues and synthetic hydroxyapatite

    PubMed Central

    Sui, Tan; Sandholzer, Michael A.; Lunt, Alexander J. G.; Baimpas, Nikolaos; Smith, Andrew; Landini, Gabriel; Korsunsky, Alexander M.

    2014-01-01

    Human dental tissues consist of inorganic constituents (mainly crystallites of hydroxyapatite, HAp) and organic matrix. In addition, synthetic HAp powders are frequently used in medical and chemical applications. Insights into the ultrastructural alterations of skeletal hard tissues exposed to thermal treatment are crucial for the estimation of temperature of exposure in forensic and archaeological studies. However, at present, only limited data exist on the heat-induced structural alterations of human dental tissues. In this paper, advanced non-destructive small- and wide angle X-ray scattering (SAXS/WAXS) synchrotron techniques were used to investigate the in situ ultrastructural alterations in thermally treated human dental tissues and synthetic HAp powders. The crystallographic properties were probed by WAXS, whereas HAp grain size distribution changes were evaluated by SAXS. The results demonstrate the important role of the organic matrix that binds together the HAp crystallites in responding to heat exposure. This is highlighted by the difference in the thermal behaviour between human dental tissues and synthetic HAp powders. The X-ray analysis results are supported by thermogravimetric analysis. The results concerning the HAp crystalline architecture in natural and synthetic HAp powders provide a reliable basis for deducing the heating history for dental tissues in the forensic and archaeological context, and the foundation for further development and optimization of biomimetic material design. PMID:24718447

  17. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; Alderman, O. L. G.; Sendelbach, S.; Hebden, A.; Williamson, M. A.

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  18. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials.

    PubMed

    Weber, J K R; Tamalonis, A; Benmore, C J; Alderman, O L G; Sendelbach, S; Hebden, A; Williamson, M A

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  19. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications.

    PubMed

    Khalid, S; Caliebe, W; Siddons, P; So, I; Clay, B; Lenhard, T; Hanson, J; Wang, Q; Frenkel, A I; Marinkovic, N; Hould, N; Ginder-Vogel, M; Landrot, G L; Sparks, D L; Ganjoo, A

    2010-01-01

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  20. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE PAGES

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  1. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    SciTech Connect

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; Alderman, O. L. G.; Sendelbach, S.; Hebden, A.; Williamson, M. A.

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  2. In situ X-ray diffraction study on the growth kinetics of NiO nanoparticles.

    PubMed

    Meneses, C T; Almeida, J M A; Sasaki, J M

    2010-05-01

    The growth kinetics of NiO nanoparticles have been studied by in situ X-ray diffraction using two detection systems (conventional and imaging plate). NiO nanoparticles were formed by thermal decomposition after heating of an amorphous compound formed by the coprecipitation method. It was found that the detection method using an imaging plate is more efficient than the conventional detection mode for observing changes in the crystallite growth of nanocrystalline materials. Studies have been carried out to investigate the effects of the heating rates on the particles growth. The results suggest that the growth process of the particles is accelerated when the samples are treated at low heating rates. The evolution of particles size and the diffusion coefficient obtained from X-ray powder diffraction patterns are discussed in terms of the thermal conditions for the two types of detection.

  3. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  4. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization.

    PubMed

    Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-07

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  5. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  6. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  7. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  8. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed.

  9. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  10. Use of multielement detector systems with synchrotron x-ray sources

    SciTech Connect

    Thompson, A.C.

    1981-07-01

    The extremely high intensity and pulsed structure of synchrotron radiation x-ray sources put very demanding requirements on associated x-ray detectors. In current detector systems, trade-offs must be made between the efficiency, energy resolution, counting rate capability and the spatial resolution. Two detector systems are described which illustrate the optimization of these parameters for different applications of synchrotron radiation. One system is a segmented 16 channel multiwire proportional chamber which is used for fluorescent EXAFS measurements. The other is a 30 element Si(Li) linear detector array which is used for digital angiography experiments. The characteristics of these systems are discussed and recent results obtained with them are presented.

  11. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  12. Synchrotron X-ray diffraction characterization of healthy and fluorotic human dental enamel

    NASA Astrophysics Data System (ADS)

    Colaço, M. V.; Barroso, R. C.; Porto, I. M.; Gerlach, R. F.; Costa, F. N.; Braz, D.; Droppa, R.; de Sousa, F. B.

    2012-10-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory—LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data.

  13. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  14. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    SciTech Connect

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Astolfo, Alberto; Menk, Ralf-Hendrik; Juurlink, Bernhard H. J.

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  15. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    SciTech Connect

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2008-06-06

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  16. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  17. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  18. Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography

    NASA Astrophysics Data System (ADS)

    Dany, Raimund

    1992-06-01

    The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.

  19. XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron.

    PubMed

    Lima, F A; Saleta, M E; Pagliuca, R J S; Eleotério, M A; Reis, R D; Fonseca Júnior, J; Meyer, B; Bittar, E M; Souza-Neto, N M; Granado, E

    2016-11-01

    The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.

  20. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    SciTech Connect

    Gruner, Sol

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  1. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    PubMed Central

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts. PMID:25537582

  2. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    PubMed

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  3. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber.

    PubMed

    Lak, Malvina; Néraudeau, Didier; Nel, André; Cloetens, Peter; Perrichot, Vincent; Tafforeau, Paul

    2008-06-01

    A significant portion of Mesozoic amber is fully opaque. Biological inclusions in such amber are invisible even after polishing, leading to potential bias in paleoecological and phylogenetic studies. Until now, studies using conventional X-ray microtomography focused on translucent or semi-opaque amber. In these cases, organisms of interest were visualized prior to X-ray analyses. It was recently demonstrated that propagation phase contrast X-ray synchrotron imaging techniques are powerful tools to access invisible inclusions in fully opaque amber. Here we describe an optimized synchrotron microradiographic protocol that allowed us to investigate efficiently and rapidly large amounts of opaque amber pieces from Charentes (southwestern France). Amber pieces were imaged with microradiography after immersion in water, which optimizes the visibility of inclusions. Determination is not accurate enough to allow precise phylogenetic studies, but provides preliminary data on biodiversity and ecotypes distribution; phase contrast microtomography remains necessary for precise determination. Because the organisms are generally much smaller than the amber pieces, we optimized local microtomography by using a continuous acquisition mode (sample moving during projection integration). As tomographic investigation of all inclusions is not practical, we suggest the use of a synchrotron for a microradiographic survey of opaque amber, coupled with microtomographic investigations of the most valuable organisms.

  4. Fiber-optic based in situ atomic spectroscopy for manufacturing of x-ray optics

    NASA Astrophysics Data System (ADS)

    Atanasoff, George; Metting, Christopher J.; von Bredow, Hasso

    2016-09-01

    The manufacturing of multilayer Laue (MLL) components for X-ray optics by physical vapor deposition (PVD) requires high precision and accuracy that presents a significant process control challenge. Currently, no process control system provides the accuracy, long-term stability and broad capability for adoption in the manufacturing of X-ray optics. In situ atomic absorption spectroscopy is a promising process control solution, capable of monitoring the deposition rate and chemical composition of extremely thin metal silicide films during deposition and overcoming many limitations of the traditional methods. A novel in situ PVD process control system for the manufacturing of high-precision thin films, based on combined atomic absorption/emission spectrometry in the vicinity of the deposited substrate, is described. By monitoring the atomic concentration in the plasma region independently from the film growth on the deposited substrate, the method allows deposition control of extremely thin films, compound thin films and complex multilayer structures. It provides deposition rate and film composition measurements that can be further utilized for dynamic feedback process control. The system comprises a reconfigurable hardware module located outside the deposition chamber with hollow cathode light sources and a fiber-optic-based frame installed inside the deposition chamber. Recent experimental results from in situ monitoring of Al and Si thin films deposited by DC and RF magnetron sputtering at a variety of plasma conditions and monitoring configurations are presented. The results validate the operation of the system in the deposition of compound thin films and provide a path forward for use in manufacturing of X-Ray optics.

  5. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  6. In situ microfluidic dialysis for biological small-angle X-ray scattering

    PubMed Central

    Skou, Magda; Skou, Søren; Jensen, Thomas G.; Vestergaard, Bente; Gillilan, Richard E.

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample aggregation was induced by the concentration process at the levels achieved in these experiments. Simulations of fluid dynamics and transport properties within the device strongly suggest that aggregates, and possibly even higher-order oligomers, are preferentially retained by the device, resulting in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. PMID:25242913

  7. IN-SITU PROBING OF LATTICE RESPONSE IN SHOCK COMPRESSED MATERIALS USING X-RAY DIFFRACTION

    SciTech Connect

    Hawreliak, James; Butterfield, Martin; El-Dasher, Bassem; Kalantar, Daniel; McNaney, James; Remington, Bruce; Lorenzana, Hector; Davies, Huw; Park, Nigel; Thorton, Lee; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Nagler, Bob; Whitcher, Thomas; Wark, Justin; Milathianaki, Despina

    2007-12-12

    Lattice level measurements of material response under extreme conditions are required to build a phenomenological understanding of the shock response of solids. We have successfully used laser produced plasma x-ray sources coincident with laser driven shock waves to make in-situ measurements of the lattice response during shock compression for both single crystal and polycrystalline materials. Using a detailed analysis of shocked single crystal iron which has undergone the {alpha}-{epsilon} phase transition we can constrain the transition mechanism to be consistent with a compression and shuffle of alternate lattice planes.

  8. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    SciTech Connect

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  9. In-situ probing of lattice response in shock compressed materials using x-ray diffraction

    SciTech Connect

    Hawreliak, J; Butterfield, M; Davies, H; El-Dasher, B; Higginbotham, A; Kalantar, D; Kimminau, G; McNaney, J; Milathianaki, D; Murphy, W; Nagler, B; Lorenzana, H; Park, N; Remington, B; Thorton, L; Whitcher, T; Wark, J; Lorenzana, H

    2007-07-17

    Lattice level measurements of material response under extreme conditions are required to build a phenomenological understanding of the shock response of solids. We have successfully used laser produced plasma x-ray sources coincident with laser driven shock waves to make in-situ measurements of the lattice response during shock compression for both single crystal and polycrystalline materials. Using a detailed analysis of shocked single crystal iron which has undergone the {alpha} - {var_epsilon} phase transition we can constrain the transition mechanism to be consistent with a compression and shuffle of alternate lattice planes.

  10. MEASURING THE PLASTIC RESPONSE IN POLYCRSYTALLINE MATERIALS USING IN-SITU X-RAY DIFFRACTION

    SciTech Connect

    Hawreliak, J; Butterfield, M; El-Dasher, B; McNaney, J; Lorenzana, H

    2008-10-01

    The insight provided by ultra-fast lattice level measurements during high strain rate high pressure experiments is key to understanding kinetic material properties like plasticity. In-situ x-ray diffraction provides a diagnostic technique which can be used to study the governing physical phenomena of plasticity at the relevant time and spatial scale. Here we discuss the recent development of a geometry capable of investigating plasticity in polycrystalline foils. We also present some preliminary data of investigations into shock compressed rolled copper foils.

  11. In-situ x-ray absorption study of copper films in ground watersolutions

    SciTech Connect

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  12. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  13. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction.

    PubMed

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2014-07-31

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  14. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  15. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  16. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  17. In-situ investigations of the martensitic transformation in TiNi by synchrotron radiation

    SciTech Connect

    Kulkov, S.N.; Mironov, Yu.P.

    1999-01-01

    By means of synchrotron X-ray diffraction method the stress-induced martensite transformation in TiNi (with two different phase compositions) at room temperature was investigated in situ. It has been shown that in the alloys with temperature-induced martensite in the initial state a nonperiodic fluctuation of intensity of the X-ray reflexes appeared due to anomalous transformation B2 + B19{prime}{sub T} {r_arrow} B2 {r_arrow} B19{prime}{sub Si}.

  18. A Detailed Spatial and Spectral Study of Synchrotron X-rays from Supernova Remnants with Chandra

    NASA Astrophysics Data System (ADS)

    Bamba, Aya

    2004-01-01

    We present the first results of a systematic spatial and spectral X-ray study of small scale structures on the shock of five supernova remnants (Cas A, Kepler, Tycho, SN 1006, and RCW 86) and a super bubble (30 Dor C), with excellent spatial resolution of the Chandra X-ray observatory. All targets have synchrotron X-ray emission which concentrate on a very narrow region of the outer edge of the shock. The scale length of the region emitting synchrotron X-rays is incredibly small, less than 1% of the radius of the system both in the upstream and the downstream, in which smaller lengths are seen in the upstream than in the downstream. Together with the information of wide band spectra from radio to X-ray, both age-limited and loss-limited assumptions are checked for the acceleration history of all the SNRs. We found a possible magnetic field strength and configuration, and the maximum energy of accelerated electrons have been estimated for each target. The perpendicular magnetic field to the shock normal is accepted in all SNR cases, with highly turbulent magnetic field downstream. Comparing the samples, we found that the scale length of shocks grows as its age increases, in the same rate of Sedov similar solution for upstream (∝ t4/5) and in a faster rate for downstream (∝ t1/2). The energy density of magnetic field and cosmic rays evolve keeping an equipartition with the thermal and kinetic energies of the shock (∝ t-6/5) under the assumption that the system is in the age-limited case, implying that there are strong energy interaction between kinetic, thermal, magnetic field, and cosmic ray energy densities. The magnetic field is always near to perpendicular. These are the first results to estimate observationally the magnetic field and its direction, energy density of magnetic field and cosmic rays, and their evolutions.

  19. [Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy].

    PubMed

    Yang, Hai; Ge, Liang-Quan; Gu, Yi; Zhang, Qing-Xian; Xiong, Sheng-Qing

    2013-11-01

    Thirteen rock samples were collected for studying the variation of element content in the mineral during the alteration process from Xinjiang, China. The IED-6000 in situ micro energy dispersive X-ray fluorescence developed by CDUT was applied to get chemical and physical data from minerals. The non-destructive spectrometer is based on a low-power Mo-anode X-ray tube and a Si-PIN peltier cooled X-ray detector. The unique design of the tube's probe allows very close coupling of polycapillary and makes the use of micro-area measurement feasible and efficient. The spectrometer can be integrated into any microscope for analysis. The long axis diameter of beam spot is about 110 microm. According to micro-EDXRF measurement, the tetrahedrite was corrected to pyrite, improving the efficiency and accuracy of the mineral identification. The feldspar of mineralized rock sample is rich in Cu and Zn which can be used as prospecting indicator elements. Element content of Cr, Mn and Co shows negative correlation with the degree of mineralization.

  20. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    NASA Astrophysics Data System (ADS)

    Hall, C.

    2013-06-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  1. In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Cruz, D.; Hitchcock, A. P.; Tyliszczak, T.; Rousseau, M.-E.; Pézolet, M.

    2007-03-01

    A novel miniature rotation device used in conjunction with a scanning transmission x-ray microscope is described. It provides convenient in situ sample rotation to enable measurements of linear dichroism at high spatial resolution. The design, fabrication, and mechanical characterization are presented. This device has been used to generate quantitative maps of the spatial distribution of the orientation of proteins in several different spider and silkworm silks. Specifically, quantitative maps of the dichroic signal at the C 1s→π*amide transition in longitudinal sections of the silk fibers give information about the spatial orientation, degree of alignment, and spatial distribution of protein peptide bonds. A new approach for analyzing the dichroic signal to extract orientation distributions, in addition to magnitudes of aligned components, is presented and illustrated with results from Nephila clavipes dragline spider silk measured using the in situ rotation device.

  2. Mass Spectrometry Guided In Situ Proteolysis to Obtain Crystals for X-ray Structure Determination

    SciTech Connect

    Gheyi, Tarun; Rodgers, Logan; Romero, Richard; Sauder, J. Michael; Burley, Stephen K.

    2012-04-30

    A strategy for increasing the efficiency of protein crystallization/structure determination with mass spectrometry has been developed. This approach combines insights from limited proteolysis/mass spectrometry and crystallization via in situ proteolysis. The procedure seeks to identify protease-resistant polypeptide chain segments from purified proteins on the time-scale of crystal formation, and subsequently crystallizing the target protein in the presence of the optimal protease at the right relative concentration. We report our experience with 10 proteins of unknown structure, two of which yielded high-resolution X-ray structures. The advantage of this approach comes from its ability to select only those structure determination candidates that are likely to benefit from application of in situ proteolysis, using conditions most likely to result in formation of a stable proteolytic digestion product suitable for crystallization.

  3. In-situ reactive of x-ray optics by glow discharge

    SciTech Connect

    Johnson, E.D.; Garrett, R.F.

    1987-01-01

    We have developed a method of in-situ reactive glow discharge cleaning of x-ray optical surfaces which is capable of complete removal of carbon contamination. Our work is the first to successfully clean an entire optical system in-situ and characterize its performance at short wavelengths (as low as 10 /angstrom/). The apparatus required is quite simple and can easily be fitted to most existing UHV (ultra high vacuum) mirror boxes of monochromators. The advantages of this technique over previously available methods include dramatic improvements in instrument performance and reductions in down time since the whole process typically takes a few days. This paper will briefly describe our results and detail the experimental considerations for application of the technique on different monochromator geometries. Possible improvements and extensions of the technique are also discussed.

  4. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  5. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  6. Study on Dual-Energy X-ray Computed Tomography using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Tsunoo, T.; Torikoshi, M.; Endo, M.; Natsuhori, M.; Kakizaki, T.; Yamada, N.; Itoh, N.; Uesugi, K.; Yagi, N.

    2004-05-01

    The electron density is one of the most important elements for the treatment planning in the radiotherapy, because this information is used for the range estimation of the heavy-ion beam. In order to measure more precise electron density, we have developed the dual-energy x-ray CT system using synchrotron radiation. The x-ray detector consists of 256 × 96 scintillator-array. It can take more than a hundred projection images per second. The response of the detector to x-rays was proved to be linear up to at least 1013 photon/pixel. The experiments were carried out using two monochromatic x-rays of 40 keV and 70 keV at the beam-line BL20B2 of SPring-8. As the results from samples of water, ethanol and solutions of dipotassium hydrogenphosphate with five concentrations, the electron densities measured in the dual-energy x-ray CT method were in agreement with the theoretical values by about ± 1%. This is almost the same level as that achieved by the one-dimensional CT system we developed previously. In addition, a sample of kidney of a pig fixed by formalin neutral buffer solution was used to distinguish the tissues in the CT images based on the electron density and the effective atomic number that was additionally obtained in the dual-energy x-ray CT. It suggested that renal pelvis was enriched with adipose tissue, and it was difficult to distinguish renal cortex and renal medulla.

  7. Study on Dual-Energy X-ray Computed Tomography using Synchrotron Radiation

    SciTech Connect

    Tsunoo, T.; Torikoshi, M.; Endo, M.; Natsuhori, M.; Kakizaki, T.; Yamada, N.; Itoh, N.; Uesugi, K.; Yagi, N.

    2004-05-12

    The electron density is one of the most important elements for the treatment planning in the radiotherapy, because this information is used for the range estimation of the heavy-ion beam. In order to measure more precise electron density, we have developed the dual-energy x-ray CT system using synchrotron radiation. The x-ray detector consists of 256 x 96 scintillator-array. It can take more than a hundred projection images per second. The response of the detector to x-rays was proved to be linear up to at least 1013 photon/pixel. The experiments were carried out using two monochromatic x-rays of 40 keV and 70 keV at the beam-line BL20B2 of SPring-8. As the results from samples of water, ethanol and solutions of dipotassium hydrogenphosphate with five concentrations, the electron densities measured in the dual-energy x-ray CT method were in agreement with the theoretical values by about {+-} 1%. This is almost the same level as that achieved by the one-dimensional CT system we developed previously. In addition, a sample of kidney of a pig fixed by formalin neutral buffer solution was used to distinguish the tissues in the CT images based on the electron density and the effective atomic number that was additionally obtained in the dual-energy x-ray CT. It suggested that renal pelvis was enriched with adipose tissue, and it was difficult to distinguish renal cortex and renal medulla.

  8. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    SciTech Connect

    McGonegle, David Wark, Justin S.; Higginbotham, Andrew; Milathianaki, Despina; Remington, Bruce A.

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.

  9. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering

    SciTech Connect

    Kammler, Hendrik K.; Beaucage, Gregory; Kohls, Douglas J.; Agashe, Nikhil; Ilavsky, Jan

    2005-03-01

    Ultra-small-angle x-ray scattering can provide information about primary particles and aggregates from a single scattering experiment. This technique is applied in situ to flame aerosol reactors for monitoring simultaneously the primary particle and aggregate growth dynamics of oxide nanoparticles in a flame. This was enabled through the use of a third generation synchrotron source (Advanced Photon Source, Argonne IL, USA) using specialized scattering instrumentation at the UNICAT facility which is capable of simultaneously measuring nanoscales to microscales (1 nm to 1 {mu}m). More specifically, the evolution of primary-particle diameter, mass-fractal dimension, geometric standard deviation, silica volume fraction, number concentration, radius of gyration of the aggregate, and number of primary particles per aggregate are measured along the flame axis for two different premixed flames. All these particle characteristics were derived from a single and nonintrusive measurement technique. Flame temperature profiles were measured in the presence of particles by in situ Fourier transform infrared spectroscopy and thermophoretic sampling was used to visualize particle growth with height above the burner as well as in the radial direction.

  10. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    SciTech Connect

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W.

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  11. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    SciTech Connect

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; Zhang, Fuxiang; Severin, Daniel; Bender, Markus; Trautmann, Christina; Park, Changyong; Prakapenka, Vitali B.; Skuratov, Vladimir A.; Ewing, Rodney C.

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along their trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2–xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.

  12. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2–xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  13. Conical geometry for sagittal focusing as applied to X rays from synchrotrons

    SciTech Connect

    Ice, G.E.; Sparks, C.J.

    1993-06-01

    The authors describe a method for simultaneously focusing and monochromatization of X rays from a fan of radiation having up to 15 mrad divergence in one dimension. This geometry is well suited to synchrotron radiation sources at magnifications of one-fifth to two and is efficient for X-ray energies between 3 and 40 keV (0.48 and 6.4 fJ). The method uses crystals bent to part of a cone for sagittal focusing and allows for the collection of a larger divergence with less mixing of the horizontal into the vertical divergence than is possible with X-ray mirrors. They describe the geometry required to achieve the highest efficiency when a conical crystal follows a flat crystal in a nondispersive two-crystal monochromator. At a magnification of one-third, the geometry is identical to a cylindrical focusing design described previously. A simple theoretical calculation is shown to agree well with ray-tracing results. Minimum aberrations are observed at magnifications near one. Applications of the conical focusing geometry to existing and future synchrotron radiation facilities are discussed.

  14. In vivo microscopic x-ray imaging in rat and mouse using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Sakurai, Takashi; Kondoh, Takeshi

    2008-02-01

    A preclinical laboratory animal imaging modality similar to microangiography, with spatial resolution as high as 6 μm, has been developed at SPring-8 using an X-ray direct-conversion type detector incorporating an X-ray SATICON pickup tube. The imaging modality is intended to provide a basic understanding of disease mechanisms. In synchrotron radiation radiography, a long source-to-object distance and a small source spot can produce high-resolution images with spatial resolution in the micrometer range. Synchrotron radiation microangiography presents the main advantage of depicting the anatomy of small blood vessels with tens of micrometers' diameter. We performed cerebral microangiography in rats and mice and particularly undertook radiographical evaluation of changes in small arteries located deep in the brain; such vessels had not been observed and studied previously. Moreover, an X-ray direct-conversion type solid-state imager with spatial resolution in the micrometer range is being designed for large field-of-view imaging. This study is also intended to clarify requirements related to specifications of prospective solid-state image sensors.

  15. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  16. Heat transfer issues in high-heat-load synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.

  17. Synchrotron X-ray scattering studies of nanostructure-formation at interfaces

    NASA Astrophysics Data System (ADS)

    Sanyal, Milan K.

    2013-02-01

    We shall discuss results of a series of synchrotron x-ray scattering studies to understand the ordering of nanostructured materials formed at interfaces. In particular we shall discuss formation of germanium quantum-dots at the MBE grown silicon-germanium super-lattice structure and reversible crystallization of monolayer of Polyhedral Oligomeric SilSesquioxane (POSS) on water surface. The consistent analysis of the x-ray reflectivity and diffraction data collected in the Indian Beamline at Photon Factory Synchrotron, KEK, Japan have allowed determination of electron density and strain profile as a function of depth. The electron density profile obtained from the reflectivity and elemental profile obtained from SIMS measurements were effectively used to calculate diffraction data that provided strain and compositional profiles. The behaviour of amphiphilic Silsesquioxane POSS molecules under in-plane pressure in a Langmuir trough was studied at the ChemMatCARS, Sector 15, Advanced Photon Source, USA. We observe clear evidence of reversible crystallization of the POSS monolayers at the air-water interface - at higher pressure sharp diffraction spots are observed and as the pressure is withdrawn typical monolayer scattering comes back. Results of AFM studies of the lifted films in these two extreme phases were found to be consistent with the x-ray data.

  18. Synchrotron X-ray Powder Diffraction and Absorption Spectroscopy in Pulsed Magnetic Fields with Milliseconds Duration

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Detlefs, C.; Mathon, O.; Frings, P.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Dominguez, M.-C.; Herczeg, J.; Bras, W.; Moshchalkov, V. V.; Rikken, G.

    2007-03-01

    X-ray Powder Diffraction and X-ray Absorption Spectroscopy experiments (WAS) and X-ray magnetic circular dichroism (XMCD) experiments were carried out at the ESRF DUBBLE beam line (BM26) and at the energy dispersive beam line (ID24), respectively. A mobile pulse generator, developed at the LNCMP, delivered 110kJ to the load coil, which was sufficient to generate peak fields of 30T with a rise time of about 5 ms. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 4.2K and 300K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and using an on-line image plate detector. We observed the suppression of the Jahn-Teller structural distortion in TbVO4 due to the high magnetic pulsed field. XAS spectra could be measured and finite XMCD signals, directly proportional to the magnetic moment on the Gd absorber atom, were measured in thin Gd foils. Thanks to its element and orbital selectivity, XMCD proofs to be very useful in probing the magnetic properties and due to the strong brilliance of the synchrotron beam, the signals can be measured even in the ms range.

  19. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  20. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  1. A new approach to synchrotron energy-dispersive X-ray diffraction computed tomography.

    PubMed

    Lazzari, Olivier; Egan, Christopher K; Jacques, Simon D M; Sochi, Taha; Di Michiel, Marco; Cernik, Robert J; Barnes, Paul

    2012-07-01

    A new data collection strategy for performing synchrotron energy-dispersive X-ray diffraction computed tomography has been devised. This method is analogous to angle-dispersive X-ray diffraction whose diffraction signal originates from a line formed by intersection of the incident X-ray beam and the sample. Energy resolution is preserved by using a collimator which defines a small sampling voxel. This voxel is translated in a series of parallel straight lines covering the whole sample and the operation is repeated at different rotation angles, thus generating one diffraction pattern per translation and rotation step. The method has been tested by imaging a specially designed phantom object, devised to be a demanding validator for X-ray diffraction imaging. The relative strengths and weaknesses of the method have been analysed with respect to the classic angle-dispersive technique. The reconstruction accuracy of the method is good, although an absorption correction is required for lower energy diffraction because of the large path lengths involved. The spatial resolution is only limited to the width of the scanning beam owing to the novel collection strategy. The current temporal resolution is poor, with a scan taking several hours. The method is best suited to studying large objects (e.g. for engineering and materials science applications) because it does not suffer from diffraction peak broadening effects irrespective of the sample size, in contrast to the angle-dispersive case.

  2. Sample environment for in situ synchrotron corrosion studies of materials in extreme environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.; ...

    2016-10-25

    A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoringmore » the oxidation of metallic zirconium during exposure to steam at 350°C. Finally, the in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.« less

  3. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range.

    PubMed

    Rueff, J P; Ablett, J M; Céolin, D; Prieur, D; Moreno, Th; Balédent, V; Lassalle-Kaiser, B; Rault, J E; Simon, M; Shukla, A

    2015-01-01

    The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.

  4. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    SciTech Connect

    Fan, D.; Huang, J. W.; Zeng, X. L.; Li, Y.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Wang, Z.; Luo, S. N.

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantify lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.

  5. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  6. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    SciTech Connect

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Prokhorov, Igor A.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Dennis A.; Jafari, Atefeh; Alexeev, Pavel; Cecilia, Angelica; Baumbach, Tilo; Bessas, Dimitrios; Danilewsky, Andreas N.; Sergueev, Ilya; Wille, Hans -Christian; Hermann, Raphael P.

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation density is observed, though growth rate is not the only parameter impacting the quality.

  7. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  8. High-Resolution X-Ray Scattering Topography Using Synchrotron Radiation Microbeam

    NASA Astrophysics Data System (ADS)

    Chikaura, Yoshinori; Suzuki, Yoshifumi; Kii, Hideki

    1994-02-01

    Although spatial resolution is the most essential factor determining the function of X-ray topography, it has not been improved in 30 years in spite of increasing requirements for highly-resolvable topography in materials science. X-ray scattering topography using a microbeam is a method capable of overcoming this resolution problem. Because the maximum resolution of an apparatus using a sealed-off tube is limited to 20 µ m, we designed and constructed scattering topography equipment using a synchrotron radiation microbeam. In the experiment, the slit system forms the microbeam 7 µ m in diameter. We observed a cellulose distribution in bamboo as a testing material. When the scanning step was 2 µ m, we attained spatial resolution less than 5 µ m.

  9. Silicon loss metrology using synchrotron x-ray reflectance and Bragg diffraction

    SciTech Connect

    Bhargava, Mansi; Wolfe, John C.; Donner, Wolfgang; Srivastava, Aseem

    2007-09-26

    We use synchrotron x-ray reflectometry and Bragg diffraction to study silicon loss in the low temperature plasma oxidation of silicon-on-insulator (SOI) wafers. We show that Laue oscillations associated with the Si (004) Bragg peak give the number of Si (004) planes in the device layer to within an experimental error of 0.07 nm and that X-ray reflectometry gives the total thickness of the device layer and the surface oxide to within 0.05 nm. We find that silicon loss in samples processed in two different plasma systems correspond to an increase in total thickness that is consistent with the formation of SiO{sub 2}.

  10. X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses.

    PubMed

    Polikarpov, Maxim; Snigireva, Irina; Snigirev, Anatoly

    2014-05-01

    A new method of harmonics rejection based on X-ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy-dependent, the use of an off-axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high-energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in-line geometry using an X-ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10(-3). In total, our method enabled suppression of all higher-order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third-generation synchrotron radiation sources and is very promising for the future ultimate storage rings.

  11. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGES

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; ...

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation densitymore » is observed, though growth rate is not the only parameter impacting the quality.« less

  12. Development of in-line furnace for in-situ nanoscale resolution x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Eng, Christopher; Chen-Wiegart, Yu-Chen K.; Wang, Jun

    2013-09-01

    Full field transmission x-ray microscopy (TXM) is a newly developed x-ray imaging technique to provide quantitative and non-destructive 3D characterization of the complex microstructure of materials at nanometer resolution. A key missing component is an in situ apparatus enabling the imaging of the complex structural evolution of the materials and to correlate the structural change with a material's functionality under real operating conditions. This work describes the design of an environmental cell which satisfies the requirements for in situ TXM studies. The limited space within the TXM presents a spatial constraint which prohibits the use of conventional heaters, as well as requiring consideration in designing for safe and controlled operation of the system and alignment of the cell with the beam. A gravity drip-fed water cooling jacket was installed in place around the heating module to maintain critical components of the microscope at safe operating temperatures. A motion control system consisting of pulse width modulated DC motor driven XYZ translation stages was developed to facilitate fine alignment of the cell. Temperature of the sample can be controlled remotely and accurately through a controller to temperatures as high as 1200 K. Heating zone measurement was carried out and shows a 500 x 500 x 500 μm3 homogeneous zone volume for sample area, which is a critical parameter to ensure accurate observation of structural evolution at nanometer scale with a sample in size of tens of microns. Application on Ni particles for in situ oxidation experiment and dehydrogenation of aluminum hydride is also discussed.

  13. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    NASA Astrophysics Data System (ADS)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  14. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 {angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately} 10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table-top`` LSS of monochromatic gamma radiation may become feasible.

  15. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  16. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  17. CCD-based detector for protein crystallography with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.; Stanton, M.

    1990-11-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 109 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512×512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of a 4×4 pixel resolution element, comparable in size to a diffraction peak, was 104. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1° frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1° frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a = 275 Å) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources.

  18. Synchrotron X-ray diagnostics of cutoff shape of nonthermal electron spectrum at young supernova remnants

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Ohira, Yutaka; Sawada, Makoto; Bamba, Aya

    2014-02-01

    Synchrotron X-rays can be a useful tool to investigate electron acceleration at young supernova remnants (SNRs). At present, since the magnetic field configuration around the shocks of SNRs is uncertain, it is not clear whether electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the acceleration region. We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. We derive analytical formulae of the cutoff shape in each case where the maximum electron energy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands. We find that if the power-law index of the electron spectrum is independently determined by other observations, then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study is helpful in understanding the acceleration mechanism. In particular, it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.

  19. Experimental comparison between speckle and grating-based imaging technique using synchrotron radiation X-rays.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-08-08

    X-ray phase contrast and dark-field imaging techniques provide important and complementary information that is inaccessible to the conventional absorption contrast imaging. Both grating-based imaging (GBI) and speckle-based imaging (SBI) are able to retrieve multi-modal images using synchrotron as well as lab-based sources. However, no systematic comparison has been made between the two techniques so far. We present an experimental comparison between GBI and SBI techniques with synchrotron radiation X-ray source. Apart from the simple experimental setup, we find SBI does not suffer from the issue of phase unwrapping, which can often be problematic for GBI. In addition, SBI is also superior to GBI since two orthogonal differential phase gradients can be simultaneously extracted by one dimensional scan. The GBI has less stringent requirements for detector pixel size and transverse coherence length when a second or third grating can be used. This study provides the reference for choosing the most suitable technique for diverse imaging applications at synchrotron facility.

  20. Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution

    PubMed Central

    Skou, Soren; Gillilan, Richard E

    2015-01-01

    Summary With recent advances in data analysis algorithms, X-ray detectors, and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community than ever before. Although limited to ~10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced usage of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors, and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the non-specialist. Here, we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch, and other common problems. The protein, human serum albumin (HSA), serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity, and solubility be extensively optimized prior to the experiment. PMID:24967622

  1. Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging

    NASA Astrophysics Data System (ADS)

    Vidal, F. P.; Létang, J. M.; Peix, G.; Cloetens, P.

    2005-06-01

    Qualitative and quantitative use of volumes reconstructed by computed tomography (CT) can be compromised due to artefacts which corrupt the data. This article illustrates a method based on virtual X-ray imaging to investigate sources of artefacts which occur in microtomography using synchrotron radiation. In this phenomenological study, different computer simulation methods based on physical X-ray properties, eventually coupled with experimental data, are used in order to compare artefacts obtained theoretically to those present in a volume acquired experimentally, or to predict them for a particular experimental setup. The article begins with the presentation of a synchrotron microtomographic slice of a reinforced fibre composite acquired at the European Synchrotron Radiation Facility (ESRF) containing streak artefacts. This experimental context is used as the motive throughout the paper to illustrate the investigation of some artefact sources. First, the contribution of direct radiation is compared to the contribution of secondary radiations. Then, the effect of some methodological aspects are detailed, including under-sampling, sample and camera misalignment, sample extending outside of the field of view and photonic noise. The effect of harmonic components present in the experimental spectrum are also simulated. Afterwards, detector properties, such as its impulse response or defective pixels, are taken into account. Finally, the importance of phase contrast effects is evaluated. In the last section, this investigation is discussed by putting emphasis on the experimental context which is used throughout this paper.

  2. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    SciTech Connect

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.; Abbey, Brian; Vine, David J.; Nashed, Youssef S. G.; Mudie, Stephen T.; Afshar, Nader; Kirkham, Robin; Chen, Bo; Balaur, Eugeniu; de Jonge, Martin D.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  3. Development of in-situ full-field spectroscopic imaging analysis and application on Li-ion battery using transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen K.; Wang, Jiajun; Wang, Jun

    2013-09-01

    This paper presents the advance in spectroscopic imaging technique and analysis method from the newly developed transmission x-ray microscopy (TXM) at the beamline X8C of National Synchrotron Light Source. Through leastsquares linear combination fitting we developed on the in situ spectroscopic images, a time-dependent and spatially resolved chemical composition mapping can be obtained and quantitatively analyzed undergone chemical/electrochemical reactions. A correlation of morphological evolution, chemical state distribution changes and reaction conditions can be revealed. We successfully applied this method to study the electrochemical evolution of CuO, an anode material of Li-ion battery, during the lithiation-delitiation cycling.

  4. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    PubMed

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95% hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.

  5. Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Gleber, Gudrun; Scholze, Frank; Wernecke, Jan

    2011-09-01

    Nanoobjects have at least one dimension in the range from 1 to 100 nm. Thus, if radiation is used for dimensional metrology, it should preferably have a wavelength in or below this range. For example, x-ray reflectometry (XRR) using x-ray tubes with Cu Kα radiation is widely used for layer thickness measurements with relative uncertainties of about 1%. By using different monochromator beamlines in the laboratory of PTB at the synchrotron radiation facility BESSY II, any x-ray wavelength from several nanometers down to about 0.1 nm can be selected for dimensional measurements in the nanometer range. Here, XRR is performed at wavelengths in the vicinity of an absorption edge of the chemical elements involved in order to enhance the contrast for layer systems like SiO2/Si which are difficult to resolve with Cu Kα radiation. By using longer wavelengths of around 2 nm, even an oxide layer and a thin carbonaceous contamination layer on a strongly curved spherical surface were separated, as required for measurements at 95 mm diameter silicon spheres within the international Avogadro project for the new definition of the kilogram. For nanoparticles in suspension, small angle x-ray scattering (SAXS) is the method of choice for dimensional metrology. This ensemble technique requires intense, monochromatic x-rays of low divergence. From the scattering pattern, the particle diameter and the size distribution are obtained. Moreover, the dimensional properties of nanostructured surfaces and nanoparticles on surfaces have been studied by grazing incidence SAXS (GISAXS), combining small angle scattering with the reflection geometry known from XRR. The diameters of gold nanoparticles obtained by SAXS and GISAXS are in very good agreement.

  6. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a

  7. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    PubMed

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  8. Defect characterization and stress analysis by white beam synchrotron X-ray topography in single crystal semiconducting materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Vishwanath

    as a function of depth in a single crystal material. This novel technique, an extension of SMART technique is developed to determine stress tensor components at various depths within the crystal. In reflection geometry penetration depth is controlled by manipulating the geometrical parameters such as incident angle. Data is obtained from various penetration depth, which represents exponentially decaying weighted average of actual stress value or in other words this stress profile is Laplace transform of real stress profile. Mathematical procedure is described to determine real stress profile from Laplace profile. To demonstrate this method, a packaged semiconducting Silicon die is used and its complete stress tensor profile is generated. This method has demonstrated the capability of determining all six components of stress as a function of depth in the crystal. Experimental procedure, theoretical basis and mathematical methods along with its application, capability and limitations are discussed. Wafer dicing process results in edge and surface damage. Various characterization tools were used to detect these defects. Surface reflection topographs were taken to probe surface and subsurface defects, primarily scratches and micro cracks. Optical microscopy and SEM were used as a complementary tool for surface characterization. TEM is used for detecting sub-surface nano-cracks and dislocations. X-ray transmission topography is used to detect half loop dislocations resulting from dicing process. In order to study dynamic behavior of defects (dislocations) during thermal processing and operation an environmental chamber (furnace) is designed and built to record in-situ X-ray diffraction topographs during thermal cycling and at high temperature.

  9. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  10. An x-ray fluorescence study of lake sediments from ancient Turkey using synchrotron radiation.

    SciTech Connect

    Alatas, A.; Alp, E. E.; Friedman, E. S.; Jennings, G.; Johnson, C. E.; Lai, B.; Mini, S. M.; Sato, Y.; Wilkinson, T. J.; Yener, K. A.

    1999-03-10

    Sediments from relic Lake Golbasi were analyzed by X-ray fluorescence with synchrotrons radiation to determine changes in element concentrations over time with selected elements serving as proxies for environmental change. Increases in Ca and Sr suggest soil formation during a dry period, from ca. 4500 BC to ca. 200 AD at which point K, Rb, Zr, Ti, and Y increase, indicating the return of a wet environment. Soil erosion, represented by Cr and Ni, increases ca. 7000 BC, probably as a consequence of environmental change, prior to suggested exploitation of natural resources by the newly urbanized society of the third millennium BC.

  11. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction.

    SciTech Connect

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; The Univ. of Manchester; Queen's Univ.

    2008-02-01

    High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone.

  12. ShadowOui: a new visual environment for X-ray optics and synchrotron beamline simulations

    PubMed Central

    Sánchez del Río, Manuel

    2016-01-01

    A new computer environment to perform simulations on synchrotron experiments has been designed. It performs ray-tracing simulations using the popular ray-tracing code SHADOW. With this new application one can define, in a very easy and elegant way, one or several optical systems (beamlines) and perform calculations of the propagation of the X-ray beam through it. Many complementary tools and supplementary calculations improve and extend the functionality of SHADOW to deal with complex optical system optimization, including compound optical elements, iterative calculations, some sample simulations, and implementing corrections for wave optics via a hybrid model. PMID:27787241

  13. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    SciTech Connect

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-03-30

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters,i.e.instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real timeviasimultaneous imaging and diffraction.

  14. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    PubMed Central

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction. PMID:27140150

  15. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to ..mu..m spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the ..mu..m range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig.

  16. A magnetizing system for dichroism measurements in soft x-ray emission excited by synchrotron radiation

    SciTech Connect

    Dallera, C.; Ghiringhelli, G.; Braicovich, L.

    1996-02-01

    We present the design and performance of a magnetic circuit suitable for magnetizing solid samples in the measurements of soft x-ray emission dichroism excited by synchrotron radiation. The system allows a variety of samples to be magnetized and satisfies the rather stringent geometrical constraints due to the need for minimizing the effect of photon self-absorption by the sample. The magnetic circuit is ultrahigh vacuum compatible, can reach about 2800 G, and allows fine adjustment of sample position. {copyright} {ital 1996 American Institute of Physics.}

  17. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  18. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    SciTech Connect

    Tiwari, M. K. Singh, A. K. Das, Gangadhar Chowdhury, Anupam Lodha, G. S.

    2014-04-24

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  19. Poly (methyl methacrylate) Formation and Patterning Initiated by Synchrotron X-ray Illumination

    SciTech Connect

    Xiao, J.; Je, J. H.; Wang, C. H.; Yang, T. Y.; Hwu, Y.

    2007-01-19

    A facile radiation method was developed to obtain micro-sized poly (methyl methacrylate) (PMMA) particles and create patterned coating on different substrates by a synchrotron x-ray induced dispersion polymerization. The polymerization of MMA monomer and well defined patterning was successfully realized. The produced PMMA particles and patterning were characterized by Fourier transformation infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), and Scanning Electron Microscope (SEM). The observed patterning contrast essentially derived from a variation of size, density and morphology of particles and the type of substrate materials used.

  20. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    NASA Astrophysics Data System (ADS)

    Tiwari, M. K.; Singh, A. K.; Das, Gangadhar; Chowdhury, Anupam; Lodha, G. S.

    2014-04-01

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  1. A Optical Synchrotron Nebula around the X-Ray Pulsar 0540-693

    NASA Astrophysics Data System (ADS)

    Chanan, G.; Helfand, D.; Reynolds, S.

    The authors report the discovery of extended optical continuum emission around the recently discovered 50 ms X-ray pulsar in the supernova remnant 0540-693. Exposures in blue and red broadband filters made with the CTIO 4 m telescope and prime focus CCD show a center-brightened but clearly extended nebula about 4arcsec in diameter (FWHM), while an image in an [O III] filter shows an 8arcsec diameter shell (as reported earlier) which encloses the continuum source. 0540-693 is a system very similar to the Crab nebula and represents the second detection of optical synchrotron radiation in a supernova remnant.

  2. Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y.

    PubMed

    Sun, Hong-Tao; Matsushita, Yoshitaka; Sakka, Yoshio; Shirahata, Naoto; Tanaka, Masahiko; Katsuya, Yoshio; Gao, Hong; Kobayashi, Keisuke

    2012-02-15

    For the first time, direct experimental evidence of the formation of monovalent Bi (i.e., Bi(+)) in zeolite Y is provided based on the analysis of high-resolution synchrotron powder X-ray diffraction data. Photoluminescence results as well as quantum chemistry calculations suggest that the substructures of Bi(+) in the sodalite cages contribute to the ultrabroad near-infrared emission. These results not only enrich the well-established spectrum of optically active zeolites and deepen the understanding of bismuth related photophysical behaviors, but also may raise new possibilities for the design and synthesis of novel hybrid nanoporous photonic materials activated by other heavier p-block elements.

  3. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  4. Synchrotron X-ray imaging of nanomagnetism in meteoritic metal (Invited)

    NASA Astrophysics Data System (ADS)

    Bryson, J. F.; Herrero Albillos, J.; Kronast, F.; Tyliszczak, T.; Redfern, S. A.; van der Laan, G.; Harrison, R. J.

    2013-12-01

    It is becoming increasingly apparent that a wealth of paleomagnetic information is stored at the nanoscale within natural samples. To date, this nanopaleomagetism has been investigated using high resolution magnetic microscopies, such as electron holography. Although unparalleled in its spatial resolution, electron holography produces images that are indirectly related to the magnetisation state of the sample, introducing ambiguity when interpreting magnetisation information. Holography also requires extensive off-line processing, making it unsuitable for studying dynamic processes, and the sample preparation negates the study of natural remanences. Here we demonstrate the capabilities of a new generation of nanomagnetic imaging methods using synchrotron X-ray radiation. X-rays tuned to an elemental absorption edge can display differing excitation probabilities depending on the orientation of an electron's magnetic moment relative to that of the X-ray beam. This is achieved by introducing an angular momentum to the photon through circular polarisation, resulting in an absorption signal that is proportional to the projection of the magnetic moment on to the X-ray beam direction. We introduce and compare two experimental set-ups capable of spatially resolving these signals to form a high-resolution magnetisation map: photoemission electron microscopy and scanning transmission electron microscopy. Both techniques provide measurements of magnetisation with 30-50nm resolution and elemental specificity. Photoemission electron microscopy can be used also to create maps of all three of the spatial components of magnetisation and investigate dynamic magnetic switching processes. The full capabilities of X-ray imaging are demonstrated through the application of both of these techniques to meteoritic metal. We show that the 'cloudy zone' within iron meteorites contains nanoscale islands of tetrataenite (FeNi) that are populated equally by all three possible magnetic easy axes

  5. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  6. An In-situ X-ray Scattering Study During Uniaxial Stretching of Ionic Liquid/Ultra-high Molecular Weight Polyethylene Blends

    SciTech Connect

    X Li; Y Mao; H Ma; F Zuo; B Hsiao; B Chu

    2011-12-31

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at high temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.

  7. An In-Situ X-ray Scattering Study during Uniaxial Stretching of Ionic liquid/Ultra-High Molecular Weight Polyethylene Blend

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Mao, Yimin; Ma, Hongyang; Hsiao, Benjamin S.

    2011-03-01

    The 1-docosanyl-3-methylimidazolium bromide ionic liquid (IL) was incorporated into ultra-high molecular weight polyethylene (UHMWPE) to form IL/UHWMPE blend by solution mixing. The structure evolution of this blend system during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, the elongation-to-break ratio of the IL/UHMWPE blend increased by 2 - 3 times compared with pure UHMWPE sample, where the blend did not lose the tensile strength. Deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both blend and neat UHMWPE. During deformation at high temperature (120& circ; C), no phase transformation was observed in both samples. However, the blend showed better toughness, higher crystal orientation, and tilted lamellar structure at high strains.

  8. In situ time-resolved X-ray diffraction of tobermorite formation in autoclaved aerated concrete: Influence of silica source reactivity and Al addition

    SciTech Connect

    Matsui, Kunio; Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Sato, Masugu

    2011-05-15

    The hydrothermal formation of tobermorite during the processing of autoclaved aerated concrete was investigated by in situ X-ray diffraction (XRD) analysis. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. To investigate the effects of the silica source, reactive quartz from chert and less-reactive quartz from quartz sand were used as starting materials. The effect of Al addition on tobermorite formation was also studied. In all cases, C-S-H, hydroxylellestadite and katoite were clearly observed as intermediates. Acceleration of tobermorite formation by Al addition was clearly observed. However, Al addition did not affect the dissolution rate of quartz. Two pathways, via C-S-H and katoite, were also observed in the Al-containing system. These results suggest that the structure of initially formed C-S-H is important for the subsequent tobermorite formation reactions.

  9. In-situ X-ray diffraction combined with scanning AC nanocalorimetry applied to a Fe0.84Ni0.16 thin-film sample

    PubMed Central

    Gregoire, John M.; Xiao, Kechao; McCluskey, Patrick J.; Dale, Darren; Cuddalorepatta, Gayatri; Vlassak, Joost J.

    2013-01-01

    We combine the characterization techniques of scanning AC nanocalorimetry and x-ray diffraction to study phase transformations in complex materials system. Micromachined nanocalorimeters have excellent performance for high-temperature and high-scanning-rate calorimetry measurements. Time-resolved X-ray diffraction measurements during in-situ operation of these devices using synchrotron radiation provide unprecedented characterization of thermal and structural material properties. We apply this technique to a Fe0.84Ni0.16 thin-film sample that exhibits a martensitic transformation with over 350 K hysteresis, using an average heating rate of 85 K/s and cooling rate of 275 K/s. The apparatus includes an array of nanocalorimeters in an architecture designed for combinatorial studies. PMID:23825802

  10. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I

  11. Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing.

    PubMed

    Gu, Xiaodan; Reinspach, Julia; Worfolk, Brian J; Diao, Ying; Zhou, Yan; Yan, Hongping; Gu, Kevin; Mannsfeld, Stefan; Toney, Michael F; Bao, Zhenan

    2016-01-27

    We describe a compact roll-to-roll (R2R) coater that is capable of tracking the crystallization process of semiconducting polymers during solution printing using X-ray scattering at synchrotron beamlines. An improved understanding of the morphology evolution during the solution-processing of organic semiconductor materials during R2R coating processes is necessary to bridge the gap between "lab" and "fab". The instrument consists of a vacuum chuck to hold the flexible plastic substrate uniformly flat for grazing incidence X-ray scattering. The time resolution of the drying process that is achievable can be tuned by controlling two independent motor speeds, namely, the speed of the moving flexible substrate and the speed of the printer head moving in the opposite direction. With this novel design, we are able to achieve a wide range of drying time resolutions, from tens of milliseconds to seconds. This allows examination of the crystallization process over either fast or slow drying processes depending on coating conditions. Using regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) inks based on two different solvents as a model system, we demonstrate the capability of our in situ R2R printing tool by observing two distinct crystallization processes for inks drying from the solvents with different boiling points (evaporation rates). We also observed delayed on-set point for the crystallization of P3HT polymer in the 1:1 P3HT/PCBM BHJ blend, and the inhibited crystallization of the P3HT during the late stage of the drying process.

  12. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments.

    PubMed

    Becker, M; Dreißigacker, C; Klein, S; Kargl, F

    2015-06-01

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min(-1) up to 10 K min(-1) can be achieved in a temperature range of 720 K-1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.

  13. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments

    SciTech Connect

    Becker, M. Dreißigacker, C.; Klein, S.; Kargl, F.

    2015-06-15

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min{sup −1} up to 10 K min{sup −1} can be achieved in a temperature range of 720 K–1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.

  14. Direct determination of cadmium speciation in municipal solid waste fly ashes by synchrotron radiation induced mu-X-ray fluorescence and mu-X-ray absorption spectroscopy.

    PubMed

    Pinzani, Maria Caterina Camerani; Somogyi, Andrea; Simionovici, Alexandre S; Ansell, Stuart; Steenari, Britt-Marie; Lindqvist, Oliver

    2002-07-15

    Cadmium is a toxic metal that causes environmental concern in connection with utilization and land filling of ash from combustion of municipal solid waste (MSW). Collecting information about the chemical associations of Cd in ash is fundamental since this affects its solubility and leachability from the ash material. In the work presented here, the content, distribution, and chemical forms of toxic metals especially of Cd on/in individual Municipal Solid Waste (MSW) fly ash particles have been investigated in situ by synchrotron radiation induced mu-X-ray fluorescence and absorption spectrometry. The use of an excitation energy of 27 keV made it possible to detect trace metals, such as Cd, present at ppm levels routinely. Changing the excitation energy in the vicinity of the absorption edge of Cd (26.71 keV), the absorption spectra of this element were measured for the first time in this high energy range in micron-sized spots of individual fly ash particles. The measurements indicated Cd to be preferably concentrated in some small areas ("hot-spots") with high concentration (up to 200 ppm) rather than in a homogeneous distribution or as a thin coating on the whole particle surface, making the surface-reaction the most probable mechanism of Cd enrichment during MSW combustion processes. Comparisons of XAS spectra of fly ashes and reference compounds showed that in the particles studied Cd is present in the oxidation state +2. Analyses of linear combinations of standard spectra allowed estimating the Cd presence within fly ash particles as an admixture of primarily CdSO4, CdO, and CdCl2 as well as an unidentified compound not included as a standard.

  15. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  16. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis.

    PubMed

    Guerra, M; Longelin, S; Pessanha, S; Manso, M; Carvalho, M L

    2014-06-01

    In this work, we have built a portable X-ray fluorescence (XRF) spectrometer in a planar configuration coupled to a Raman head and a digital optical microscope, for in situ analysis. Several geometries for the XRF apparatus and digital microscope are possible in order to overcome spatial constraints and provide better measurement conditions. With this combined spectrometer, we are now able to perform XRF and Raman measurements in the same point without the need for sample collection, which can be crucial when dealing with cultural heritage objects, as well as forensic analysis. We show the capabilities of the spectrometer by measuring several standard reference materials, as well as other samples usually encountered in cultural heritage, geological, as well as biomedical studies.

  17. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  18. Advanced in situ metrology for x-ray beam shaping with super precision.

    PubMed

    Wang, Hongchang; Sutter, John; Sawhney, Kawal

    2015-01-26

    We report a novel method for in situ metrology of an X-ray bimorph mirror by using the speckle scanning technique. Both the focusing beam and the "tophat" defocussed beam have been generated by optimizing the bimorph mirror in a single iteration. Importantly, we have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach accuracy in the range of two nanoradians. When compared with conventional ex-situ metrology techniques, the method enables a substantial increase of around two orders of magnitude in the angular sensitivity and opens the way to a previously inaccessible region of slope error measurement. Such a super precision metrology technique will be beneficial for both the manufacture of polished mirrors and the optimization of beam shaping.

  19. Titanium boride equation of state determined by in-situ X-ray diffraction.

    PubMed

    Ono, Shigeaki; Kikegawa, Takumi

    2016-12-01

    The equation of state (EOS) of titanium boride, TiB2, was investigated by in situ X-ray diffraction in a diamond anvil cell and multianvil high-pressure apparatus. The pressure-volume-temperature (P-V-T) data were collected at up to 111 GPa and room temperature for the diamond-anvil cell experiments and at up to 15 GPa and 1300 K for the multianvil experiments. No phase transition was observed through the entire range of experimental conditions. The pressure-volume data at room temperature were fitted using a Vinet EOS to obtain the isothermal bulk modulus, BT0 = 256.7 GPa, and its pressure derivative, B' T0 = 3.83. When fitting a thermal EOS using the P-V-T data for the multianvil experiments, we find that [Formula: see text] = 0.095 (GPa/K) and α 0 = 2.49 × 10(-5) K(-1).

  20. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Longelin, S.; Pessanha, S.; Manso, M.; Carvalho, M. L.

    2014-06-01

    In this work, we have built a portable X-ray fluorescence (XRF) spectrometer in a planar configuration coupled to a Raman head and a digital optical microscope, for in situ analysis. Several geometries for the XRF apparatus and digital microscope are possible in order to overcome spatial constraints and provide better measurement conditions. With this combined spectrometer, we are now able to perform XRF and Raman measurements in the same point without the need for sample collection, which can be crucial when dealing with cultural heritage objects, as well as forensic analysis. We show the capabilities of the spectrometer by measuring several standard reference materials, as well as other samples usually encountered in cultural heritage, geological, as well as biomedical studies.

  1. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, Peter; Hannibal Madsen, Morten; Hu, Wen; Kozu, Miwa; Nakata, Yuka; Nygârd, Jesper; Takahasi, Masamitu; Feidenhans'l, Robert

    2012-02-01

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  2. New Insights into Chain Order Dynamics and Structural Development in Sulfur-Vulcanized Natural Rubber Latex using Multiple Quantum NMR and Synchrotron X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Che, Justin; Toki, Shigeyuki; Valentin, Juan; Brasero, Justo; Rong, Lixia; Hsiao, Benjamin S.

    2012-02-01

    Network structure, chain dynamics, and structural development in sulfur-vulcanized natural rubber latex were studied by Multiple-Quantum (MQ) NMR and synchrotron x-ray scattering. Three important processes that can influence rubber network structure and its overall mechanical properties were the main focus and analyzed by both of these techniques: pre-vulcanization, drying, and post-vulcanization. MQ NMR experiments can provide quantitative information regarding networks at very small length scales, including network defects, number of cross-links, and spatial distribution of cross-links. Structural development in natural rubber was studied under uniaxial deformation by in-situ synchrotron x-ray diffraction, which can provide information on network structures at much larger length scales. Molecular orientation and strain-induced crystallization was analyzed by both stress-strain relations and wide-angle x-ray diffraction (WAXD). The morphology of the latex rubber particle during deformation was analyzed by small-angle x-ray scattering (SAXS). The combination of these techniques can provide a considerable amount of information regarding rubber network structure.

  3. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  4. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  5. Coherence properties of focused X-ray beams at high-brilliance synchrotron sources

    PubMed Central

    Singer, Andrej; Vartanyants, Ivan A.

    2014-01-01

    An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here Gaussian Schell-model beams and thin optical elements are considered. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam-defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example, the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed. PMID:24365911

  6. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    SciTech Connect

    Li, Meimei; Almer, Jonathan D.; Yang, Yong; Tan, Lizhen

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  7. Steady X-Ray Synchrotron Emission in the Northeastern Limb of SN 1006

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Mori, Koji; Reynolds, Stephen; Long, Knox; Winkler, P.; Tsunemi, Hiroshi

    2010-01-01

    We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small ([approx]10'') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of [approx]4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to [approx]1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity.

  8. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  9. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; Robert, E.; Patanen, M.; Barreda, F.-A.; Sublemontier, O.; Coppalle, A.; Yon, J.; Miserque, F.; Mostefaoui, T.; Regier, T. Z.; Mitchell, J.-B. A.; Miron, C.

    2016-11-01

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot’s work function obtained at different combustion conditions.

  10. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles

    PubMed Central

    Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; Robert, E.; Patanen, M.; Barreda, F.-A.; Sublemontier, O.; Coppalle, A.; Yon, J.; Miserque, F.; Mostefaoui, T.; Regier, T. Z.; Mitchell, J.-B. A.; Miron, C.

    2016-01-01

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot’s work function obtained at different combustion conditions. PMID:27883014

  11. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    PubMed

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  12. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  13. Basic principles of Synchrotron Radiation-Induced X-Ray Fluorescence (SRXRF)

    SciTech Connect

    Gigante, G.E. . Dipt. di Fisica); Hanson, A.L. )

    1990-05-01

    The characteristic x rays can be used as powerful analytical tools for qualitative and quantitative determination of the major, minor and trace composition of materials. X Ray Fluorescence (XRF) techniques used for almost four decade to solve many problems in basic, applied science, and in industry. The XRF techniques that were developed initially used crystal spectrometers, and are referred to in literature as Wavelength Dispersive (WD) techniques. These WD techniques are still used in many fields and have the merit of a excellent energy resolution that allows for the analysis of many elements while avoiding the overlapping of some fluorescence peaks. They are also particularly useful in a matrix that produces copious quantities of a particular radiation. The principal disadvantages of a WD system are the low efficiency of crystal and the reduced energy region in which crystal spectrometer can be used. In the 1960's, Solid State Detectors (SSD) were developed with energy resolution such that the Energy Dispersive XRF techniques could be developed. These SSD's overcame some of the limitations of the WD techniques. The most attractive characteristics of the EDXRF techniques are in their intrinsic multielemental and non destructive capabilities. The development of the high intensity, high brilliance Synchrotron Radiation (SR) sources have open the possibility to make microanalyses using the XRF techniques, increasing the interest of the scientific community for these techniques. In this paper the basic concepts of the XRF technique are reviewed taking in account the availability of the new sources of x rays. 32 refs., 7 figs.

  14. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles.

    PubMed

    Ouf, F-X; Parent, P; Laffon, C; Marhaba, I; Ferry, D; Marcillaud, B; Antonsson, E; Benkoula, S; Liu, X-J; Nicolas, C; Robert, E; Patanen, M; Barreda, F-A; Sublemontier, O; Coppalle, A; Yon, J; Miserque, F; Mostefaoui, T; Regier, T Z; Mitchell, J-B A; Miron, C

    2016-11-24

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot's work function obtained at different combustion conditions.

  15. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  16. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  17. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    PubMed

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6).

  18. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    NASA Astrophysics Data System (ADS)

    Stebel, L.; Malvestuto, M.; Capogrosso, V.; Sigalotti, P.; Ressel, B.; Bondino, F.; Magnano, E.; Cautero, G.; Parmigiani, F.

    2011-12-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ˜500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  19. Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe

    SciTech Connect

    Wang, Y.; Qun, Y; Ablett, J

    2008-01-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  20. Solution Synchrotron X-ray Diffraction Reveals Structural Details of Lipid Domains in Ternary Mixtures

    SciTech Connect

    Yuan, J.; Kiss, A; Pramudya, Y; Nguyen, L; Hirst, L

    2009-01-01

    The influence of cholesterol on lipid bilayer structure is significant and the effect of cholesterol on lipid sorting and phase separation in lipid-raft-forming model membrane systems has been well investigated by microscopy methods on giant vesicles. An important consideration however is the influence of fluorescence illumination on the phase state of these lipids and this effect must be carefully minimized. In this paper, we show that synchrotron x-ray scattering on solution lipid mixtures is an effective alternative technique for the identification and characterization of the l o (liquid ordered) and l d (liquid disordered) phases. The high intensity of synchrotron x rays allows the observation of up to 5 orders of diffraction from the l o phase, whereas only two are clearly visible when the l d phase alone is present. This data can be collected in approximately 1 min/sample, allowing rapid generation of phase data. In this paper, we measure the lamellar spacing in both the liquid-ordered and liquid-disordered phases simultaneously, as a function of cholesterol concentration in two different ternary mixtures. We also observe evidence of a third gel-phaselike population at 10-12 mol % cholesterol and determine the thickness of the bilayer for this phase. Importantly we are able to look at phase coexistence in the membrane independent of photoeffects.

  1. [Mapping metal elements of Shuangbai dinosaur fossil by synchrotron X-ray fluorescence microprobe].

    PubMed

    Wang, Yi-Lin; Yang, Qun; Ablett, J M

    2008-05-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is ture for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  2. SYNCHROTRON BLOB MODEL OF INFRARED AND X-RAY FLARES FROM SAGITTARIUS A*

    SciTech Connect

    Kusunose, Masaaki; Takahara, Fumio E-mail: takahara@vega.ess.sci.osaka-u.ac.jp

    2011-01-01

    Sagittarius A* in the Galactic center harbors a supermassive black hole and exhibits various active phenomena. Besides quiescent emission in radio and submillimeter radiation, flares in the near-infrared (NIR) and X-ray bands are observed to occur frequently. We study a time-dependent model of the flares, assuming that the emission is from a blob ejected from the central object. Electrons obeying a power law with the exponential cutoff are assumed to be injected in the blob for a limited time interval. The flare data of 2007 April 4 were used to determine the values of model parameters. The spectral energy distribution of flare emission is explained by nonthermal synchrotron radiation in the NIR and X-ray bands. The model light curves suggest that electron acceleration is still underway during the rising phase of the flares. GeV {gamma}-rays are also emitted by synchrotron self-Compton scattering, although their luminosity is not strictly constrained by the current model. If the GeV emission is faint, the plasma blob is dominated by the magnetic energy density over the electron kinetic energy density. Observations in the GeV band will clarify the origin of the blob.

  3. Synchrotron X-ray CT characterization of friction-welded joints in tial turbocharger components

    NASA Astrophysics Data System (ADS)

    Sun, J. G.; Kropf, A. J.; Vissers, D. R.; Sun, W. M.; Katsoudas, J.; Yang, N.; Fei, D.

    2012-05-01

    Titanium aluminide (TiAl) is an advanced intermetallic material and is being investigated for application in turbocharger components for diesel engines. A TiAl turbocharger rotor consists of a cast TiAl turbine wheel and a Ti-alloy shaft that are joined by friction welding. Although friction welding is an established industrial process, it is still challenging to join dissimilar materials especially for brittle intermetallics. These joints are therefore required to be inspected using a nondestructive evaluation (NDE) method. In this study, synchrotron X-ray computed tomography (CT) developed at the Advanced Photon Source at Argonne National Laboratory was used for NDE characterization of friction-welded joint in three TiAl turbocharger rotors. The filtered synchrotron X-ray source has high peak energies to penetrate thick metallic materials, and the detector (imager) has high spatial resolutions to resolve small flaws. The CT inspections revealed detailed 3D crack distributions within poorly welded joints. The crack detection sensitivity and resolution was calibrated and found to be correlated well with destructive examination.

  4. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    PubMed Central

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-01-01

    In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process. PMID:26634894

  5. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    DOE PAGES

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; ...

    2015-12-04

    In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundarymore » conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.« less

  6. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    SciTech Connect

    Centomo, P.; Zecca, M.; Meneghini, C.

    2013-05-15

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 Degree-Sign C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H{sub 2}O{sub 2}) in methanol solution from dihydrogen and dioxygen.

  7. Sound velocities of mantle and subducted slab lithologies: Constraints from combined in situ X-ray and ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Higo, Y.; Kono, Y.; Inoue, T.; Funakoshi, K.

    2007-12-01

    We have developed techniques to precisely measure the sound velocities of high-pressure phases at pressures to 22 GPa and temperatures to 1800K using a combination of synchrotron in situ X-ray and ultrasonic measurements with a Kawai-type multianvil apparatus. Using these techniques, we measured the sound velocities of ringwoodite and majorite in a pyrolite composition , as well as those of MORB in the garnetite facies (majorite + minor stishovite). We found quite strong non-linear decreases of Vp and Vs with temperature, particularly for Vs in majorite, under these P, T conditions of the mantle transition region (MTR). Our results suggest that pyrolite yields seismic velocities consistent with typical seismological models for the MTR, except for the bottom part of this region, whereas piclogite or basalt compositions may lead to velocities substantially lower than those seismologically derived. In contrast, harzburgite would better fit to the seismological models in the lower half of the mantle transition region, provided that the geotherm in this region is of adiabatic, which may be due to accumulation of main bodies of stagnant slabs (depleted peridotite or harzburgite) near the 660 km discontinuity.

  8. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.

    PubMed

    Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar

    2010-07-14

    The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.

  9. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    SciTech Connect

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-12-04

    In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.

  10. In situ X-ray observations of gas porosity interactions with dendritic microstructures during solidification of Al-based alloys

    NASA Astrophysics Data System (ADS)

    Murphy, A. G.; Browne, D. J.; Houltz, Y.; Mathiesen, R. H.

    2016-03-01

    In situ X-radiography solidification experiments were performed on Al-based alloys, using both synchrotron and laboratory-based X-ray sources, in conjunction with a gradient furnace and a newly developed isothermal furnace, respectively. The effect of gas porosity nucleation and growth within the semi-solid mush during both columnar and equiaxed solidification was thereby observed. In all experimental cases examined, gas porosity was observed to nucleate and grow within the field-of-view (FOV) causing various levels of distortion to the semi-solid mush, and thereafter disappearing from the sample leaving no permanent voids within the solidified microstructure. During columnar growth, a single bubble caused severe remelting and destruction of primary trunks leading to secondary fragmentation and evidence of blocking of the columnar front. Equiaxed solidification was performed under microgravity-like conditions with restricted grain motion in the FOV. The degree to which the nucleated gas bubbles affected the surrounding grain structure increased with increasing solid fraction. However, bubble sphericity remained unaffected by apparent solid fraction or grain coherency.

  11. Dissolution dynamics of the calcite-water interface observed in situ by glancing-incidence X-ray scattering

    SciTech Connect

    Sturchio, N.C.; Chiarello, R.P.

    1995-06-02

    Glancing-incidence X-ray scattering measurements made at the National Synchrotron Light Source were used to investigate dissolution dynamics in situ at the calcite-water interface. The relation between calcite saturation state and roughness of the calcite (1014) cleavage surface as a function of time was examined during pH titrations of an initially calcite-saturated solution. Systematic variations in roughness were observed as a function of saturation state as pH was titrated to values below that of calcite saturation. Different steady-state values of roughness were evident at fixed values of {Delta}G{sub r}, and these were correlated with the extent of undersaturation. A significant increase in roughness begins to occur with increasing undersaturation at a {Delta}G{sub r} value of approximately {minus}2.0 kcal/mol. The dissolution rate corresponding to this increase is about 1.5 x 10{sup 7} mmol/cm {center_dot} sec. This increase in roughness is attributed to a transition in the principal rate-determining dissolution mechanism, and is consistent with both powder-reaction studies of dissolution kinetics and single-crystal dissolution studies by atomic force microscopy. These data indicate some important potential applications of GIXS in the study of mineral-water interface geochemistry.

  12. X-ray beam/biomaterial thermal interactions in third-generation synchrotron sources.

    PubMed

    Kuzay, T M; Kazmierczak, M; Hsieh, B J

    2001-01-01

    Third-generation synchrotron sources generate strong X-ray beams. The beam's interaction with biomaterials gives rise to concerns related to thermal damage and radiation damage. Of the two issues, the thermal interaction is conducive to rigorous analysis from first principles, although this has not been performed to date in a comprehensive manner. In this study, the interaction of the X-ray beam emanating from a third-generation synchrotron with a typical frozen biocrystal is theoretically studied, focusing specifically on the resulting unsteady (time-dependent) and steady heat-transfer phenomena. A unique regime map is developed to explain and to identify, on the basis of Fourier and Biot numbers as governing parameters, the applicable mathematical models that predict the subsequent thermal behavior. Depending on the values of these parameters, some simplified but realistic 'generic' solutions are generated that are suitable for that particular domain of applicability. Classical heat-transfer theory was used to describe the third-generation X-ray beam and biomaterial thermal interaction. Besides the generalized approach presented, numerous illustrative cases were solved and the resulting temperature levels are explicitly presented. Overall, the resulting thermal behavior of the system, i.e. peak and local temperature distribution, during both early transient development and for sustained long-time steady-state conditions, depends on a number of factors including the amount of energy absorbed, convective heat-transfer film coefficient and gas temperature, the sample size and shape, and the thermophysical properties of the sample and cooling gas. Results of the analysis revealed the strong influence that convection has on the transient and final steady-state temperature of the sample and the impact of internal heat conduction. The characteristic timescales of the important and dominant thermal processes with respect to the two types of thermal models are clearly

  13. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility.

    PubMed

    Gupta, Y M; Turneaure, Stefan J; Perkins, K; Zimmerman, K; Arganbright, N; Shen, G; Chow, P

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization∕x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  14. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  15. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  16. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  17. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.

    PubMed

    Beck, L; Rousselière, H; Castaing, J; Duran, A; Lebon, M; Moignard, B; Plassard, F

    2014-11-01

    Study of prehistoric art is playing a major role in the knowledge of human evolution. Many scientific methods are involved in this investigation including chemical analysis of pigments present on artefacts or applied to cave walls. In the past decades, the characterization of coloured materials was carried on by taking small samples. This procedure had two main disadvantages: slight but existing damage of the paintings and limitation of the number of samples. Thanks to the advanced development of portable systems, in-situ analysis of pigment in cave can be now undertaken without fear for this fragile Cultural Heritage. For the first time, a portable system combining XRD and XRF was used in an underground and archaeological environment for prehistoric rock art studies. In-situ non-destructive analysis of black prehistoric drawings and determination of their composition and crystalline structure were successfully carried out. Original results on pigments used 13,000 years ago in the cave of Rouffignac (France) were obtained showing the use of two main manganese oxides: pyrolusite and romanechite. The capabilities of the portable XRD-XRF system have been demonstrated for the characterization of pigments as well as for the analysis of rock in a cave environment. This first in-situ experiment combining X-ray diffraction and X-ray fluorescence open up new horizons and can fundamentally change our approach of rock art studies.

  18. Polarized synchrotron emission in quiescent black hole X-ray transients

    NASA Astrophysics Data System (ADS)

    Russell, David M.; Shahbaz, Tariq; Lewis, Fraser; Gallo, Elena

    2016-12-01

    We present near-infrared polarimetric observations of the black hole X-ray binaries Swift J1357.2-0933 and A0620-00. In both sources, recent studies have demonstrated the presence of variable infrared synchrotron emission in quiescence, most likely from weak compact jets. For Swift J1357.2-0933, we find that the synchrotron emission is polarized at a level of 8.0 ± 2.5 per cent (a 3.2σ detection of intrinsic polarization). The mean magnitude and rms variability of the flux (fractional rms of 19-24 per cent in KS band) agree with previous observations. These properties imply a continuously launched (stable on long time-scales), highly variable (on short time-scales) jet in the Swift J1357.2-0933 system in quiescence, which has a moderately tangled magnetic field close to the base of the jet. We find that for A0620-00, there are likely to be three components to the optical-infrared polarization; interstellar dust along the line of sight, scattering within the system, and an additional source that changes the polarization position angle in the reddest (H and KS) wavebands. We interpret this as a stronger contribution of synchrotron emission, and by subtracting the line-of-sight polarization, we measure an excess of ˜1.25 ± 0.28 per cent polarization and a position angle of the magnetic field vector that is consistent with being parallel with the axis of the resolved radio jet. These results imply that weak jets in low-luminosity accreting systems have magnetic fields which possess similarly tangled fields compared to the more luminous, hard state jets in X-ray binaries.

  19. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  20. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    SciTech Connect

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction. (LEW)

  1. Uniaxial Compression of Cellular Materials at a 10-1 s-1 Strain Rate Simultaneously with Synchrotron X-ray Computed Tomographic Imaging

    SciTech Connect

    Patterson, Brian M.

    2016-03-01

    The topic is presented as a series of slides. Motivation for the work included the following: X-ray tomography is a fantastic technique for characterizing a material’s starting structure as well as for non-destructive, in situ experiments to investigate material response; 3D X-ray tomography is needed to fully characterize the morphology of cellular materials; and synchrotron micro-CT can capture 3D images without pausing experiment. Among the conclusions reached are these: High-rate radiographic and tomographic imaging (0.25 s 3D frame rate) using synchrotron CT can capture full 3D images of hyper-elastic materials at a 10-2 strain rate; dynamic true in situ uniaxial loading can be accurately captured; the three stages of compression can be imaged: bending, buckling, and breaking; implementation of linear modeling is completed; meshes have been imported into LANL modeling codes--testing and validation is underway and direct comparison and validation between in situ data and modeled mechanical response is possible.

  2. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  3. The Application of Monochromatic Energies to Investigate Multiphase Porous Media Systems using Synchrotron X-ray Tomography

    SciTech Connect

    Ham, Kyungmin; Willson, Clinton S.

    2006-01-31

    X-ray computed tomography (CT) is becoming a useful tool for nondestructive imaging of many geoenvironmental and geotechnical systems. Conventional X-ray CT systems typically utilize a polychromatic X-ray beam. While providing a high throughput of photons, the use of polychromatic energy can make quantifying material concentrations, densities or composition very difficult or impossible without appropriate standards. Synchrotron X-rays have an extremely small angular divergence, thus permitting spatial resolution that is only limited by the optical components of the system. In addition, the ability to tune to a monochromatic X-ray energy allows better phase contrast by reducing beam hardening and allowing for elemental discrimination. In this work we will show how monochromatic energy can be used to provide high-quality images allowing for phase separation several different porous media systems thus improving our ability to quantify a range of processes and phenomena.

  4. Implementation of ultrafast X-ray diffraction at the 1W2B wiggler beamline of Beijing Synchrotron Radiation Facility.

    PubMed

    Sun, Da Rui; Xu, Guang Lei; Zhang, Bing Bing; Du, Xue Yan; Wang, Hao; Li, Qiu Ju; Zhou, Yang Fan; Li, Zhen Jie; Zhang, Yan; He, Jun; Yue, Jun Hui; Lei, Ge; Tao, Ye

    2016-05-01

    The implementation of a laser pump/X-ray probe scheme for performing picosecond-resolution X-ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top-up mode, a pixel array X-ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ∼2.5 × 10(6) photons pulse(-1) at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X-ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X-ray spot. Transient photo-induced strain in BiFeO3 film was observed at a ∼150 ps time resolution for demonstration.

  5. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

  6. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone.

    PubMed

    Feng, Huan; Zhang, Weiguo; Qian, Yu; Liu, Wenliang; Yu, Lizhong; Yoo, Shinjae; Wang, Jun; Wang, Jia Jun; Eng, Christopher; Liu, Chang Jun; Tappero, Ryan

    2016-07-01

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.

  7. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Zhang, Weiguo; Qian, Yu; ...

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  8. Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups.

    PubMed

    Rauwolf, M; Turyanskaya, A; Roschger, A; Prost, J; Simon, R; Scharf, O; Radtke, M; Schoonjans, T; Guilherme Buzanich, A; Klaushofer, K; Wobrauschek, P; Hofstaetter, J G; Roschger, P; Streli, C

    2017-01-01

    In the quest for finding the ideal synchrotron-radiation-induced imaging method for the investigation of trace element distributions in human bone samples, experiments were performed using both a scanning confocal synchrotron radiation micro X-ray fluorescence (SR-µXRF) (FLUO beamline at ANKA) setup and a full-field color X-ray camera (BAMline at BESSY-II) setup. As zinc is a trace element of special interest in bone, the setups were optimized for its detection. The setups were compared with respect to count rate, required measurement time and spatial resolution. It was demonstrated that the ideal method depends on the element of interest. Although for Ca (a major constituent of the bone with a low energy of 3.69 keV for its Kα XRF line) the color X-ray camera provided a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-µXRF setup was able to sufficiently image the distribution.

  9. Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups

    PubMed Central

    Rauwolf, M.; Turyanskaya, A.; Roschger, A.; Prost, J.; Simon, R.; Scharf, O.; Radtke, M.; Schoonjans, T.; Guilherme Buzanich, A.; Klaushofer, K.; Wobrauschek, P.; Hofstaetter, J. G.; Roschger, P.; Streli, C.

    2017-01-01

    In the quest for finding the ideal synchrotron-radiation-induced imaging method for the investigation of trace element distributions in human bone samples, experiments were performed using both a scanning confocal synchrotron radiation micro X-ray fluorescence (SR-µXRF) (FLUO beamline at ANKA) setup and a full-field color X-ray camera (BAMline at BESSY-II) setup. As zinc is a trace element of special interest in bone, the setups were optimized for its detection. The setups were compared with respect to count rate, required measurement time and spatial resolution. It was demonstrated that the ideal method depends on the element of interest. Although for Ca (a major constituent of the bone with a low energy of 3.69 keV for its Kα XRF line) the color X-ray camera provided a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-µXRF setup was able to sufficiently image the distribution. PMID:28009572

  10. Extracting material parameters from x-ray attenuation: a CT feasibility study using kilovoltage synchrotron x-rays incident upon low atomic number absorbers.

    PubMed

    Kirby, B J; Davis, J R; Grant, J A; Morgan, M J

    2003-10-21

    The work reported here is a feasibility study of the extraction of material parameters from measurements of the linear x-ray attenuation coefficient of low atomic number absorbers. Computed tomography (CT) scans of small samples containing several liquids and solids were carried out with synchrotron radiation at the Australian National Beamline Facility (BL 20B) in Japan. Average values of the x-ray linear attenuation coefficient were extracted for each material for x-ray energies ranging from 11 keV to 20.5 keV. The electron density was estimated by applying results derived from a parametrization of the x-ray linear attenuation coefficient first developed by Jackson and Hawkes and extended for this work. Average estimates for the electron density of triethanolamine and acetic acid were made to within +5.3% of the actual value. Other materials examined included furfuraldehyde, perspex and teflon, for which average estimates of the electron density were less than 10% in excess of the calculated value.

  11. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  12. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    SciTech Connect

    Rossle, Manfred; Panine, Pierre; Urban, Volker S; Riekel, Christine

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  13. Atomic and electronic aspects of the coloration mechanism of gasochromic Pt/Mo-modified V2O5 smart films: an in situ X-ray spectroscopic study.

    PubMed

    Lu, Ying-Rui; Hsu, Hsin-Hua; Chen, Jeng-Lung; Chang, Han-Wei; Chen, Chi-Liang; Chou, Wu-Ching; Dong, Chung-Li

    2016-02-21

    In this work, gasochromic pristine and Mo-modified V2O5 thin films were prepared by the sol-gel spin coating method. Both films exhibit excellent gasochromic coloration. Synchrotron grazing incidence X-ray diffraction reveals that the Mo-modified V2O5 thin film is more amorphous than the pristine V2O5 thin film. X-ray absorption spectroscopy (XAS) was utilized to elucidate the modifications of the local electronic and atomic structures that are caused by Mo. In situ soft-XAS and in situ hard-XAS were performed to monitor the effect of the adsorption of dihydrogen on the charge state of vanadium and local atomic rearrangement in the gasochromic thin films. The gasochromic V2O5 film has a significantly pyramid-like oxygen-coordinated environment. However, the Mo-modified film exhibits mixed pyramid- and octahedral-like structures. Analytic results indicate that upon gasochromic coloration, adsorption of hydrogen adds electrons to the V 3d t2g orbital, lowering the charge state of vanadium. The films undergo structural modification before the valence is changed. The Mo-modified V2O5 film exhibits faster coloration because the apical V-O bond differs from that in the pristine V2O5 film. This in situ XAS allows real-time monitoring of changes in the element-specific local atomic structure during the gasochromic reaction and enables the elucidation of the gasochromic mechanism.

  14. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction.

    PubMed

    Maddox, B R; Akin, M C; Teruya, A; Hunt, D; Hahn, D; Cradick, J; Morgan, D V

    2016-08-01

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10(7) molybdenum Kα photons.

  15. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  16. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    SciTech Connect

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  17. X ray attenuation measurements for high-temperature materials characterization and in situ monitoring of damage accumulation

    NASA Astrophysics Data System (ADS)

    Baaklini, George Youssef

    1991-10-01

    The development and application is examined of x ray attenuation measurement systems that are capable of (1) characterizing density variations in high temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. Results are presented in the development of (1) a point scan digital radiography system and (2) an in-situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens and the latter is used to image the failure behavior of silicon carbide fiber reinforced reaction bonded silicon nitride matrix composites. Further, state of the art x ray computed tomography is studied to determine its capabilities and limitations in characterizing density variations of subscale engine components, e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon carbide fiber reinforced beta titanium matrix rod, rotor, and ring. Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point scan digital radiography is a viable technique for characterization density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composities. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using micro collimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during and after loading show the effect of preexisting

  18. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    SciTech Connect

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-11-01

    system definitely requires an in situ XRD technique to study the detail structural changes of the system during charge and discharge. The in situ XRD technique was used by Reimers, Li,and Dahn to study the LiCoO{sub 2}, LiNiO{sub 2}, and LiMn{sub 2}O{sub 4} systems. Their results of these studies have demonstrated that in situ XRD can provide more detailed information about the cathode material structural changes during charge-discharge. Conventional x-ray sources were used in these studies and the beryllium windows were used in the in situ cells. Provisions were made to prevent corrosion of the beryllium windows during charge-discharge. For this reason, the in situ cells were often designed quite differently than a real battery. More seriously, the problem of beryllium corrosion restricted the voltage range of the cell below 4.5 V. This limited the use of this technique to study the effects of overcharge which is very important to the thermal stability of the cathodes. Using the plastic lithium battery technology, Amatucci, Tarascon, and Klein constructed an in situ XRD cell, which allows structural investigations at voltages greater than 5 V without any beryllium window corrosion. However, all of these in situ XRD studies using conventional x-ray sources probe the cell in reflection geometry. Therefore, the observed structural changes are predominantly from the top few microns of the electrode coating, which might not be representative for the whole coating during charge-discharge especially when the rate is high.

  19. Study of liquid gallium as a function of pressure and temperature using synchrotron x-ray microtomography and x-ray diffraction

    SciTech Connect

    Li, Renfeng; Li, Liangliang; Chen, Jiaxuan; Yu, Tony; Wang, Yanbin; Rivers, Mark L.; Wang, Luhong E-mail: haozhe@hit.edu.cn; Cai, Zhonghou; Chen, Jiuhua; Liu, Haozhe E-mail: haozhe@hit.edu.cn

    2014-07-28

    The volume change of liquid and solid gallium has been studied as a function of pressure and temperature up to 3.02 GPa at 300 K and up to 3.63 GPa at 330 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction techniques. Two sets of directly measured P-V data at 300 K and 330 K were obtained from 3D tomography reconstruction data, and the corresponding isothermal bulk moduli were determined as 23.6 (0.5) GPa and 24.6 (0.4) GPa, respectively. The existence of a liquid-liquid phase transition region is proposed based on the abnormal compressibility of Ga melt at about 2.44 GPa and 330 K conditions.

  20. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Joseph, D.; Basu, S.; Jha, S. N.; Bhattacharyya, D.

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH3CO2)2, Cu(CO3)2, and CuSO4 where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of ˜4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.