Science.gov

Sample records for in-vessel thermal-hydraulic phenomena

  1. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels will hold a meeting...

  2. Best Estimate Code System to Calculate Thermal & Hydraulic Phenomena in a Nuclear Reactor or Related System.

    1999-05-19

    Version 00 RELAP4/MOD7/101 performs best estimate analyses of nuclear reactors or related systems undergoing a transient. Transient thermal-hydraulic, two-phase phenomena are calculated from formulations of one-dimensional, homogeneous, equilibrium conservation equations for water mass, momentum, and energy. Heat structures are modeled using a transient one-dimensional heat conduction solution that is coupled to the fluid through heat transfer relations. Various explicit models are used to calculate nonhomogeneous, nonequilibrium behavior including a phase separation model, a vertical slipmore » model, and a nonequilibrium model. Other models are used to represent critical flow, reactor kinetics, pressurized water reactor reflood behavior, nuclear fuel rod swelling and blockage, and components such as pumps, valves, and accumulators.« less

  3. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  4. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    SciTech Connect

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT

  5. Development of a phenomena identification and ranking table for thermal-hydraulic phenomena during a double-ended guillotine break LOCA in an SRS production reactor

    SciTech Connect

    Hanson, R.G.; Ortiz, M.G.; Bolander, M.A.; Wilson, G.E.

    1989-07-01

    A rising level of scrutiny is being directed toward the Savannah River Site (SRS) production reactors. Improved calculational capabilities are being developed to provide a best estimate analytical process to determine the safe operating margins of the reactors. The Code Scaling, Applicability, and Uncertainty (CSAU) methodology, developed by the US Nuclear Regulatory Commission to support best estimate simulations, is being applied to the best estimate limits analysis for the SRS production reactors. One of the foundational parts of the method is the identification and ranking of all the processes that occur during the specific limiting scenario. The phenomena ranking is done according to their importance to safety criteria during the transient and is used to focus the uncertainty analysis on a sufficient, yet cost effective scope of work. This report documents the thermal-hydraulic phenomena that occur during a limiting break in an SRS production reactor and their importance to the uncertainty in simulations of the reactor behavior. 9 refs., 14 figs., 10 tabs.

  6. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    SciTech Connect

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  7. Thermal-Hydraulic-Analysis Program

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1993-01-01

    ELM computer program is simple computational tool for modeling steady-state thermal hydraulics of flows of propellants through fuel-element-coolant channels in nuclear thermal rockets. Evaluates various heat-transfer-coefficient and friction-factor correlations available for turbulent pipe flow with addition of heat. Comparisons possible within one program. Machine-independent program written in FORTRAN 77.

  8. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  9. Thermal hydraulics development for CASL

    SciTech Connect

    Lowrie, Robert B

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  10. 77 FR 9707 - Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics... for the ACRS Subcommittee meeting on Thermal-Hydraulics Phenomena scheduled to be held on February...

  11. High heat program, thermal hydraulic computer models

    SciTech Connect

    Ogden, D.M.

    1998-03-05

    The purpose of this report is to describe the thermal hydraulic computer models, the computer model benchmarking and methodology to be used in performing the analysis necessary for the resolution of the high heat safety issue for Tank 241-C, -106.

  12. 10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  13. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    SciTech Connect

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  14. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  15. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    SciTech Connect

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  16. Application of computational fluid dynamics methods to improve thermal hydraulic code analysis

    NASA Astrophysics Data System (ADS)

    Sentell, Dennis Shannon, Jr.

    A computational fluid dynamics code is used to model the primary natural circulation loop of a proposed small modular reactor for comparison to experimental data and best-estimate thermal-hydraulic code results. Recent advances in computational fluid dynamics code modeling capabilities make them attractive alternatives to the current conservative approach of coupled best-estimate thermal hydraulic codes and uncertainty evaluations. The results from a computational fluid dynamics analysis are benchmarked against the experimental test results of a 1:3 length, 1:254 volume, full pressure and full temperature scale small modular reactor during steady-state power operations and during a depressurization transient. A comparative evaluation of the experimental data, the thermal hydraulic code results and the computational fluid dynamics code results provides an opportunity to validate the best-estimate thermal hydraulic code's treatment of a natural circulation loop and provide insights into expanded use of the computational fluid dynamics code in future designs and operations. Additionally, a sensitivity analysis is conducted to determine those physical phenomena most impactful on operations of the proposed reactor's natural circulation loop. The combination of the comparative evaluation and sensitivity analysis provides the resources for increased confidence in model developments for natural circulation loops and provides for reliability improvements of the thermal hydraulic code.

  17. Thermal-hydraulic modeling needs for passive reactors

    SciTech Connect

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  18. TEMPEST. Transient 3-D Thermal-Hydraulic

    SciTech Connect

    Eyler, L.L.

    1992-01-31

    TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence is treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.

  19. Simulation of the PBF-Candu test with coupled thermal-hydraulic and fuel thermo-mechanical responses

    SciTech Connect

    Baschuk, J. J.

    2012-07-01

    During a large loss-of-coolant accident (LLOCA), the fuel sheath temperature is influenced by thermal-hydraulic and thermo-mechanical phenomena. The thermal-hydraulic phenomena include the heat transfer from the sheath to the coolant and surroundings. Thermo-mechanical phenomena, such as creep and thermal expansion, influence the size of the fuel-to-sheath gap, and thus the heat transfer from the fuel to the sheath. Therefore, coupling the thermal-hydraulic and thermo-mechanical analysis of an LLOCA would result in more accurate predictions of sheath temperature. This is illustrated by comparing the sheath temperature predictions from coupled and decoupled simulations of the PBF-Candu Test with experimental measurements. The codes CATHENA and ELOCA were used for the thermal-hydraulic and thermo-mechanical analysis, respectively. The predicted sheath temperatures from both the coupled and decoupled simulations were higher than the measured values. However, after the initial power pulse, when the fuel-to-sheath gap was calculated as being opened, the sheath temperatures predicted by the coupled simulation were closer to the experimental measurements. Thus, under conditions of an open fuel-to-sheath gap, a coupled thermal-hydraulic and thermo-mechanical analysis can improve predictions of sheath temperatures. (authors)

  20. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  1. Thermal-Hydraulic Aspects of SCWR Design

    NASA Astrophysics Data System (ADS)

    Podowski, Michael Z.

    The Supercritical Water-Cooled Reactor (SWCR) is one of the most promising concepts for Generation IV candidate systems [Kataoka et al., 2002; USDOE, 2002; Buongiorno, 2004]. The SCWR has several advantages compared to the existing light water reactor (LWR) systems, including the use of direct cycle combined with single-phase working fluid, high thermal efficiency, and the existing experience with the proven technology used in fossil power plants. A common feature of most Supercritical Water-Cooled Reactor (SWCR) designs that have been proposed to date is a highly nonuniform temperature distribution inside the reactor core. This is mainly due to the combined effects of core peaking factors and limits imposed on coolant flow rate. Furthermore, statistical uncertainties in the evaluation of hot spot factors normally contribute to an increase in the range of temperature distribution that must be considered in reactor design. The purpose of this paper is to present the results of analysis on the SCWR in-core temperature distribution, aimed at identifying possible methods of reducing the maximum coolant temperature and improving the thermal-hydraulic characteristics of the proposed reactor system.

  2. An Approach of Uncertainty Evaluation for Thermal-Hydraulic Analysis

    SciTech Connect

    Katsunori Ogura; Hisashi Ninokata

    2002-07-01

    An approach to evaluate uncertainty systematically for thermal-hydraulic analysis programs is demonstrated. The approach is applied to the Peach Bottom Unit 2 Turbine Trip 2 Benchmark and is validated. (authors)

  3. Thermal Hydraulic Analysis of Spent Fuel Casks

    1997-10-08

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codesmore » for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.« less

  4. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  5. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  6. Process management using component thermal-hydraulic function classes

    SciTech Connect

    Morman, James A.; Wei, Thomas Y.C.; Reifman, Jaques

    1997-12-01

    A process management expert system for a nuclear, chemical or other process is effective following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. The search process is based upon mass, momentum and energy conservation principles so that qualitative thermal-hydraulic fundamental principles are satisfied for new system configurations. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  7. VIPRE-01: A thermal-hydraulic code for reactor cores:

    SciTech Connect

    Stewart, C.W.; Cuta, J.M.

    1988-03-01

    VIPRE (Versatile Internals and Component Program for Reactors;EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (NDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume discusses general and specific considerations in using VIPRE as a thermal-hydraulic analysis tool. Volume 1: Mathematical Modeling, explains the major thermal-hydraulic models and supporting mathematial correlations in detail. Volume 2: Users's Manual, describes the input requirements of the codes in the VIPRE code package. Volume 3: Programmer's Manual, explains the code structure and computer interface. Experimence in running VIPRE is documented in Volume 4: Applications. 25 refs., 31 figs., 7 tabs.

  8. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    SciTech Connect

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  9. Development of thermal-hydraulic analysis capabilities for Oyster creek

    SciTech Connect

    Lee, R.B.

    1987-01-01

    GPU Nuclear (GPUN) has been involved in developing analytical methodologies for Oyster Creek plant thermal-hydraulic response simulation for approx. 15 yr. Plant-system-related transient analysis is being accomplished via RETRAN02 MOD4 and loss-of-coolant accident (LOCA) analysis by SAFER-CORECOOL. This paper reviews the developmental process and lessons learned through this process.

  10. Current and anticipated uses of thermal hydraulic codes in Korea

    SciTech Connect

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  11. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  12. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  13. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  14. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    SciTech Connect

    Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2012-07-01

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)

  15. Views on the future of thermal hydraulic modeling

    SciTech Connect

    Ishii, M.

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  16. Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project

    SciTech Connect

    Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.

    1996-01-01

    A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses.

  17. Best-estimate plus uncertainty thermal-hydraulic stability analysis of BWRs using TRACG code

    SciTech Connect

    Vedovi, J.; Yang, J.; Klebanov, L.; Vreeland, D. G.; Zino, J. F.

    2012-07-01

    Over the last decade, Boiling Water Reactor (BWR) power up-rates have increased plant rated power output significantly. Subsequent projects have expanded flow domains (e.g. MELLLA+) for operation at these higher power levels. This has resulted in an increase in the power to flow ratio in regions susceptible to reactor thermal-hydraulic instabilities. Since BWRs are susceptible to coupled thermal-hydraulic/nuclear oscillations when operating at these conditions, such oscillations must be prevented or reliably detected and suppressed. The Detect and Suppress Solution - Confirmation Density (DSS-CD) is the most sophisticated GEH BWR instability protection system ever employed. DSS-CD implements algorithms that monitor closely-spaced groups of Local Power Range Monitor (LPRM) detectors to detect periodic behavior typical of reactor instability events. This system is able to detect small, localized power variations in the core, distinguish between true instabilities and plant noise, and trip/scram the reactor while maintaining adequate safety margins. The combination of hardware, software, and system setpoints provides protection against violation of the Safety Limit Minimum Critical Power Ratio (SLMCPR) for anticipated oscillations. To support DSS-CD implementation, the TRACG system code is used to simulate events to confirm the capability of the DSS-CD solution for early oscillation detection and suppression. TRACG is a GEH proprietary version of the Transient Reactor Analysis Code (TRAC). TRACG includes a multi-dimensional, two-fluid model for the reactor thermal-hydraulics and a three-dimensional reactor kinetics model. The models are qualified to simulate a large variety of tests and reactor configurations, including thermal-hydraulic stability events. These features allow for detailed, best-estimate simulation of a wide range of BWR phenomena. A set of integrated TRACG event simulations for reasonably limiting anticipated events can be used to calculate the effect

  18. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    SciTech Connect

    Trambauer, K.

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  19. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of themore » plant controls, turbines, condensers, and secondary feedwater systems.« less

  20. Project W-320 thermal hydraulic model benchmarking and baselining

    SciTech Connect

    Sathyanarayana, K.

    1998-09-28

    Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing.

  1. Thermal hydraulic behavior evaluation of tank A-101

    SciTech Connect

    Ogden, D.M.

    1996-03-27

    This report describes a new evaluation conducted to help understand the thermal-hydraulic behavior of tank A-101. Prior analysis of temperature data indicated that the dome space and upper waste layer was slowly increasing in temperature increases are due to increasing ambient temperatures and termination of forced ventilation. However, this analysis also indicates that other dome cooling processes are slowly decreasing, or some slow increase in heating is occurring at the waste surface. Dome temperatures are not decreasing at the rate expected as a forced ventilation termination effects are accounted for.

  2. Performance of a parallel thermal-hydraulics code TEMPEST

    SciTech Connect

    Fann, G.I.; Trent, D.S.

    1996-11-01

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scaling performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.

  3. Thermal hydraulics analysis of LIBRA-SP target chamber

    SciTech Connect

    Mogahed, E.A.

    1996-12-31

    LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625{degree}C to avoid drastic deterioration of the metal`s mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370{degree}C, and the heat exchanger inlet coolant bulk temperature is 502{degree}C. 4 refs., 6 figs., 2 tabs.

  4. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  5. FY 1995 progress report on the ANS thermal-hydraulic test loop operation and results

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; Farquharson, G.; McDuffee, J.L.; McFee, M.T.; Ruggles, A.E.; Wendel, M.W.; Yoder, G.L.

    1997-07-01

    The Thermal-Hydraulic Test Loop (THTL) is an experimental facility constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory (ORNL). The THTL facility was designed and built to provide known thermal-hydraulic (T/H) conditions for a simulated full-length coolant subchannel of the ANS reactor core, thus facilitating experimental determination of FE and CHF thermal limits under expected ANSR T/H conditions. Special consideration was given to allow operation of the system in a stiff mode (constant flow) and in a soft mode (constant pressure drop) for proper implementation of true FE and DNB experiments. The facility is also designed to examine other T/H phenomena, including onset of incipient boiling (IB), single-phase heat transfer coefficients and friction factors, and two-phase heat transfer and pressure drop characteristics. Tests will also be conducted that are representative of decay heat levels at both high pressure and low pressure as well as other quasi-equilibrium conditions encountered during transient scenarios. A total of 22 FE tests and 2 CHF tests were performed during FY 1994 and FY 1995 with water flowing vertically upward. Comparison of these data as well as extensive data from other investigators led to a proposed modification to the Saha and Zuber correlation for onset of significant void (OSV), applied to FE prediction. The modification takes into account a demonstrated dependence of the OSV or FE thermal limits on subcooling levels, especially in the low subcooling regime.

  6. Thermal-Hydraulic Analyses Of The LS-VHTR

    SciTech Connect

    Cliff B. Davis; Grant L. Hawkes

    2006-06-01

    Thermal-hydraulic analyses were performed to evaluate the safety characteristics of the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). A one-dimensional model of the LS-VHTR was developed using the RELAP5-3D computer program. The thermal calculations from the one-dimensional model of a fuel block were benchmarked against a multi-dimensional finite element model. The RELAP5-3D model was used to simulate a transient initiated by loss of forced convection in which the Reactor Vessel Auxiliary Cooling System (RVACS) passively removed decay heat. Parametric calculations were performed to investigate the effects of various parameters, including bypass flow fraction, coolant channel diameter, and the coolant outlet temperature. Additional parametric calculations investigated the effects of an enhanced RVACS design, failure to scram, and radial/axial conduction in the core.

  7. Thermal hydraulic analysis of the annular flow helium heater design

    SciTech Connect

    Chen, N.C.; Sanders, J.P.

    1982-05-01

    Oak Ridge National Laboratory has conducted Core Support Performance Test (CSPT) by use of an existing facility, Component Flow Test Loop (CFTL), as part of the High Temperature Gas-Cooled Reactor (HTGR) application program. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6-month test represents the 30-year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, among other things, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000/sup 0/C (1832/sup 0/F) in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. This report presents performance characteristics of the heater that were determined from an analysis based on this design.

  8. COMMIX-1B. 3-D Single-Phase Thermal Hydraulics

    SciTech Connect

    Wildman, D.J.

    1986-01-31

    COMMIX-1B is designed to perform steady-state or transient, single-phase, three-dimensional analysis of fluid flow with heat transfer in a single-component or multicomponent system. The program was developed for the analysis of heat transfer and fluid flow processes in a nuclear reactor system; however, it can easily be applied to non-nuclear systems requiring heat transfer and/or fluid flow analysis. COMMIX-1B solves the conservation equations of mass, momentum, and energy, and transport equations of turbulence parameters and provides detailed local velocity, temperature, and pressure fields for the problem under consideration. It is capable of solving thermal-hydraulic problems involving either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components.

  9. Thermal hydraulic limits analysis using statistical propagation of parametric uncertainties

    SciTech Connect

    Chiang, K. Y.; Hu, L. W.; Forget, B.

    2012-07-01

    The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design, a reactor power upgraded from 6 MW to 7 MW is proposed in order to maintain the same reactor performance of the HEU core. Previous approach in analyzing the impact of engineering uncertainties on thermal hydraulic limits via the use of engineering hot channel factors (EHCFs) was unable to explicitly quantify the uncertainty and confidence level in reactor parameters. The objective of this study is to develop a methodology for MITR thermal hydraulic limits analysis by statistically combining engineering uncertainties with an aim to eliminate unnecessary conservatism inherent in traditional analyses. This method was employed to analyze the Limiting Safety System Settings (LSSS) for the MITR, which is the avoidance of the onset of nucleate boiling (ONB). Key parameters, such as coolant channel tolerances and heat transfer coefficients, were considered as normal distributions using Oracle Crystal Ball to calculate ONB. The LSSS power is determined with 99.7% confidence level. The LSSS power calculated using this new methodology is 9.1 MW, based on core outlet coolant temperature of 60 deg. C, and primary coolant flow rate of 1800 gpm, compared to 8.3 MW obtained from the analytical method using the EHCFs with same operating conditions. The same methodology was also used to calculate the safety limit (SL) for the MITR, conservatively determined using onset of flow instability (OFI) as the criterion, to verify that adequate safety margin exists between LSSS and SL. The calculated SL is 10.6 MW, which is 1.5 MW higher than LSSS. (authors)

  10. Numerical simulation of thermal-hydraulic generators running in a single regime

    NASA Astrophysics Data System (ADS)

    Chioreanu, Nicolae; Mitran, Tudor; Rus, Alexandru; Beles, Horia

    2014-06-01

    The paper presents the basis for the design of thermal-hydraulic generators running in a single regime. The thermal-hydraulic generators in a single regime running represent an absolute novelty worldwide (a pioneer invention). Based on the methodology concerning this subject, the design calculus for an experimental model was developed.

  11. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation. Revision 1

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  12. 75 FR 80544 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... COMMISSION NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the..., ``Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis... . SUPPLEMENTARY INFORMATION: NUREG-1953, ``Confirmatory Thermal-Hydraulic Analysis to Support Specific...

  13. Simulation of the passive condensation cooling tank of the PASCAL test facility using the component thermal-hydraulic analysis code CUPID

    SciTech Connect

    Cho, H. K.; Lee, S. J.; Kang, K. H.; Yoon, H. Y.

    2012-07-01

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. In the present study, the CUPID code was applied for the simulation of the PASCAL (PAFS Condensing Heat Removal Assessment Loop) test facility constructed with an aim of validating the cooling and operational performance of the PAFS (Passive Auxiliary Feedwater System). The PAFS is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor +), which is intended to completely replace the conventional active auxiliary feedwater system. This paper presents the preliminary simulation results of the PASCAL facility performed with the CUPID code in order to verify its applicability to the thermal-hydraulic phenomena inside the system. A standalone calculation for the passive condensation cooling tank was performed by imposing a heat source boundary condition and the transient thermal-hydraulic behaviors inside the system, such as the water level, temperature and velocity, were qualitatively investigated. The simulation results verified that the natural circulation and boiling phenomena in the water pool can be well reproduced by the CUPID code. (authors)

  14. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  15. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  16. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  17. Numerical simulation of thermal-hydraulic processes in the riser chamber of installation for clinker production

    NASA Astrophysics Data System (ADS)

    Borsuk, Grzegorz; Dobrowolski, Bolesław; Nowosielski, Grzegorz; Wydrych, Jacek; Duda, Jerzy

    2016-03-01

    Clinker burning process has a decisive influence on energy consumption and the cost of cement production. A new problem is to use the process of decarbonization of alternative fuels from waste. These issues are particularly important in the introduction of a two-stage combustion of fuel in a rotary kiln without the typical reactor-decarbonizator. This work presents results of numerical studies on thermal-hydraulic phenomena in the riser chamber, which will be designed to burn fuel in the system where combustion air is supplied separately from the clinker cooler. The mathematical model is based on a combination of two methods of motion description: Euler description for the gas phase and Lagrange description for particles. Heat transfer between particles of raw material and gas was added to the numerical calculations. The main aim of the research was finding the correct fractional distribution of particles. For assumed particle distribution on the first stage of work, authors noted that all particles were carried away by the upper outlet to the preheater tower, what is not corresponding to the results of experimental studies. The obtained results of calculations can be the basis for further optimization of the design and operating conditions in the riser chamber with the implementation of the system.

  18. Thermal Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Water: Performance and Stability

    NASA Astrophysics Data System (ADS)

    Lisowski, Darius D.

    This experimental study investigated the thermal hydraulic behavior and boiling mechanisms present in a scaled reactor cavity cooling system (RCCS). The experimental facility reflects a ¼ scale model of one conceptual design for decay heat removal in advanced GenIV nuclear reactors. Radiant heaters supply up to 25 kW/m2 onto a three parallel riser tube and cooling panel test section assembly, representative of a 5° sector model of the full scale concept. Derived similarity relations have preserved the thermal hydraulic flow patterns and integral system response, ensuring relevant data and similarity among scales. Attention will first be given to the characterization of design features, form and heat losses, nominal behavior, repeatability, and data uncertainty. Then, tests performed in single-phase have evaluated the steady-state behavior. Following, the transition to saturation and subsequent boiling allowed investigations onto four parametric effects at two-phase flow and will be the primary focus area of remaining analysis. Baseline conditions at two-phase flow were defined by 15.19 kW of heated power and 80% coolant inventory, and resulted in semi-periodic system oscillations by the mechanism of hydrostatic head fluctuations. Void generation was the result of adiabatic expansion of the fluid due to a reduction in hydrostatic head pressure, a phenomena similar to flashing. At higher powers of 17.84 and 20.49 kW, this effect was augmented, creating large flow excursions that followed a smooth and sinusoidal shaped path. Stabilization can occur if the steam outflow condition incorporates a nominal restriction, as it will serve to buffer the short time scale excursions of the gas space pressure and dampen oscillations. The influences of an inlet restriction, imposed by an orifice plate, introduced subcooling boiling within the heated core and resulted in chaotic interactions among the parallel risers. The penultimate parametric examined effects of boil-off and

  19. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  20. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    SciTech Connect

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-08-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.

  1. Transient thermal hydraulics, heat transfer, fluid-structure interaction, and structural dynamics. PVP-Vol. 270

    SciTech Connect

    Shin, Y.W.; Wang, C.Y.; Chang, F.C. ); Katze, D.; Moody, F.J.

    1994-01-01

    This symposium addresses transient effects of thermal-hydraulics and heat transfer on structural responses and fluid-structure interactions. Thermal hydraulics, or simply fluid dynamics and heat transfer, in industrial process systems will, in general, generate loads on the structures. Depending on the magnitude and how the structures respond, the feedback effects on the thermal hydraulics may become significant and special consideration would be required. In such situations, thermal hydraulics analysis, independent of the structural dynamics analysis, or vice versa, would be undesirable and often the fluid-structure interaction becomes a necessary consideration. This publication volume presents a collection of papers addressing various aspects of these topics. Separate abstracts were prepared for 21 papers in this conference.

  2. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  3. Momentum Integral Network Method for Thermal-Hydraulic Systems Analysis.

    2000-11-20

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these. MINET (Momentummore » Integral NETwork) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air.« less

  4. Momentum Integral Network Method for Thermal-Hydraulic Systems Analysis.

    SciTech Connect

    2000-11-20

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these. MINET (Momentum Integral NETwork) was developed for the transient analysis of intricate fluid flow and heat transfer networks, such as those found in the balance of plant in power generating facilities. It can be utilized as a stand-alone program or interfaced to another computer program for concurrent analysis. Through such coupling, a computer code limited by either the lack of required component models or large computational needs can be extended to more fully represent the thermal hydraulic system thereby reducing the need for estimating essential transient boundary conditions. The MINET representation of a system is one or more networks of volumes, segments, and boundaries linked together via heat exchangers only, i.e., heat can transfer between networks, but fluids cannot. Volumes are used to represent tanks or other volume components, as well as locations in the system where significant flow divisions or combinations occur. Segments are composed of one or more pipes, pumps, heat exchangers, turbines, and/or valves each represented by one or more nodes. Boundaries are simply points where the network interfaces with the user or another computer code. Several fluids can be simulated, including water, sodium, NaK, and air.

  5. Current and anticipated uses of thermal-hydraulic codes in NFI

    SciTech Connect

    Tsuda, K.; Takayasu, M.

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.

  6. Thermal hydraulics modeling of the US Geological Survey TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Alkaabi, Ahmed K.

    The Geological Survey TRIGA reactor (GSTR) is a 1 MW Mark I TRIGA reactor located in Lakewood, Colorado. Single channel GSTR thermal hydraulics models built using RELAP5/MOD3.3, RELAP5-3D, TRACE, and COMSOL Multiphysics predict the fuel, outer clad, and coolant temperatures as a function of position in the core. The results from the RELAP5/MOD3.3, RELAP5-3D, and COMSOL models are similar. The TRACE model predicts significantly higher temperatures, potentially resulting from inappropriate convection correlations. To more accurately study the complex fluid flow patterns within the core, this research develops detailed RELAP5/MOD3.3 and COMSOL multichannel models of the GSTR core. The multichannel models predict lower fuel, outer clad, and coolant temperatures compared to the single channel models by up to 16.7°C, 4.8°C, and 9.6°C, respectively, as a result of the higher mass flow rates predicted by these models. The single channel models and the RELAP5/MOD3.3 multichannel model predict that the coolant temperatures in all fuel rings rise axially with core height, as the coolant in these models flows predominantly in the axial direction. The coolant temperatures predicted by the COMSOL multichannel model rise with core height in the B-, C-, and D-rings and peak and then decrease in the E-, F-, and G-rings, as the coolant tends to flow from the bottom sides of the core to the center of the core in this model. Experiments at the GSTR measured coolant temperatures in the GSTR core to validate the developed models. The axial temperature profiles measured in the GSTR show that the flow patterns predicted by the COMSOL multichannel model are consistent with the actual conditions in the core. Adjusting the RELAP5/MOD3.3 single and multichannel models by modifying the axial and cross-flow areas allow them to better predict the GSTR coolant temperatures; however, the adjusted models still fail to predict accurate axial temperature profiles in the E-, F-, and G-rings.

  7. Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite

    NASA Astrophysics Data System (ADS)

    Chijimatsu, Masakazu; Börgesson, Lenart; Fujita, Tomoo; Jussila, Petri; Nguyen, Son; Rutqvist, Jonny; Jing, Lanru

    2009-05-01

    In the international DECOVALEX-THMC project, five research teams study the influence of thermal-hydro-mechanical (THM) coupling on the safety of a hypothetical geological repository for spent fuel. In order to improve the analyses, the teams calibrated their bentonite models with results from laboratory experiments, including swelling pressure tests, water uptake tests, thermally gradient tests, and the CEA mock-up THM experiment. This paper describes the mathematical models used by the teams, and compares the results of their calibrations with the experimental data.

  8. Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite

    SciTech Connect

    Chijimatsu, M.; Borgesson, L.; Fujita, T.; Jussila, P.; Nguyen, S.; Rutqvist, J.; Jing, L.; Hernelind, J.

    2009-02-01

    In Task A of the international DECOVALEX-THMC project, five research teams study the influence of thermal-hydro-mechanical (THM) coupling on the safety of a hypothetical geological repository for spent fuel. In order to improve the analyses, the teams calibrated their bentonite models with results from laboratory experiments, including swelling pressure tests, water uptake tests, thermally gradient tests, and the CEA mock-up THM experiment. This paper describes the mathematical models used by the teams, and compares the results of their calibrations with the experimental data.

  9. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.

  10. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    SciTech Connect

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  11. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  12. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    SciTech Connect

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  13. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    SciTech Connect

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  14. Detailed thermal-hydraulic computation into a containment building

    SciTech Connect

    Caruso. A.; Flour, I.; Simonin, O.

    1995-09-01

    This paper deals with numerical predictions of the influence of water sprays upon stratifications into a containment building using a two-dimensional two-phase flow code. Basic equations and closure assumptions are briefly presented. A test case in a situation involving spray evaporation is first detailed to illustrate the validation step. Then results are presented for a compressible recirculating flow into a containment building with condensation phenomena.

  15. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  16. Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters

    SciTech Connect

    HEARD, F.J.

    1999-04-08

    The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister.

  17. Thermal hydraulic study of the ESPRESSO blanket for a Tandem Mirror Reactor

    SciTech Connect

    Raffray, A.R.; Hoffman, M.A.

    1986-02-01

    This paper deals primarily with the thermal-hydraulic design and some critical thermomechanical aspects of the proposed ESPRESSO blanket for the Tandem Mirror Fusion Reactor. This conceptual design was based on the same physics as used in the MARS study.

  18. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  19. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  20. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  1. Application of the ATHOS3 code for steam generator thermal hydraulics and fouling analysis

    SciTech Connect

    Srikantiah, G.S.; Chappidi, P.R.

    1996-09-01

    The steam generator is a most important component in the coolant loop of Pressurized Water Reactors. Although designed for a 30--40 year operating life, severe material degradation problems have occurred within the first ten years of operation. Performance and reliability evaluations are required on a continuing basis to develop solutions and design modifications to ensure reliable operation of these systems. Thermal hydraulic analysis provides basic information such as velocity and void fraction distributions within the secondary side of the steam generator needed for the evaluation of sludge deposition, bundle fouling, tube vibration, fretting, wear and fatigue. This paper presents detailed thermal hydraulic analysis of several steam generator designs, and analyzes the correlation between thermal hydraulic distributions, sludge deposition and bundle fouling using a recent model for sludge transport and deposition. The correlation between thermal hydraulic distributions and other degradation mechanisms such as circumferential cracking of tubes is also presented. The results show that there is a strong correlation between flow velocity, void fraction and sludge deposition. The calculated sludge deposit potential maps are in very good agreement with the observed results within operating steam generators.

  2. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  3. Thermal hydraulic performance of naturally aspirated control rod housing assemblies

    SciTech Connect

    Geiger, G.T.; Randolph, H.W.; Paik, I.K.; Foti, D.J.

    1992-08-01

    Savannah River Site reactors are comprised of heat generating fuel/target assemblies, control rods which regulate reactor power, and heavy water which acts as the coolant and as a moderator. The fuel/target assemblies are cooled by the downflow of heavy water while the control rods are cooled via upflow. Five control rods are grouped with two safety rods in seven-channel assemblies called septifoils. Under normal operating conditions, the reactor power level, radial shape flux and axial power flux are regulated by the positioning of the control rods. The control rods are solid rods of a lithium-aluminum alloy with an thin aluminum outer sheath. Lithium is a good absorber of neutrons and, thus control rod temperatures rise with reactor power. At conditions of sufficiently high reactor power and degraded coolant flow, the control rods could heat sufficiently to cause a metallurigical failure of the sheath leading to molten material coming in contact with water and the possibility of a steam explosion. An accident has been postulated as part of the analysis involving the safety upgrade of Savannah River Site reactors in which the housing is not seated on the pin. Coolant from the upflow pin would not be directed into the housing but, into the moderator space surrounding the housing. Only naturally aspirated cooling due to buoyancy effects would be available to cool the control rods and the coolant mass flow rate would drop significantly from its nominal value. In this study, the mechanisms and limits of cooling heated rods housed in an unseated septifoil are addressed. Experiments were conducted on a shortened, prototypic housing with electrically heated rods to gain an understanding of the phenomena governing the cooling in such a case and develop data which can be used to evaluate predictive models. These experiments are described, their results discussed, and the predictions of current models is presented.

  4. Thermal hydraulic performance of naturally aspirated control rod housing assemblies

    SciTech Connect

    Geiger, G.T.; Randolph, H.W.; Paik, I.K. ); Foti, D.J. )

    1992-01-01

    Savannah River Site reactors are comprised of heat generating fuel/target assemblies, control rods which regulate reactor power, and heavy water which acts as the coolant and as a moderator. The fuel/target assemblies are cooled by the downflow of heavy water while the control rods are cooled via upflow. Five control rods are grouped with two safety rods in seven-channel assemblies called septifoils. Under normal operating conditions, the reactor power level, radial shape flux and axial power flux are regulated by the positioning of the control rods. The control rods are solid rods of a lithium-aluminum alloy with an thin aluminum outer sheath. Lithium is a good absorber of neutrons and, thus control rod temperatures rise with reactor power. At conditions of sufficiently high reactor power and degraded coolant flow, the control rods could heat sufficiently to cause a metallurigical failure of the sheath leading to molten material coming in contact with water and the possibility of a steam explosion. An accident has been postulated as part of the analysis involving the safety upgrade of Savannah River Site reactors in which the housing is not seated on the pin. Coolant from the upflow pin would not be directed into the housing but, into the moderator space surrounding the housing. Only naturally aspirated cooling due to buoyancy effects would be available to cool the control rods and the coolant mass flow rate would drop significantly from its nominal value. In this study, the mechanisms and limits of cooling heated rods housed in an unseated septifoil are addressed. Experiments were conducted on a shortened, prototypic housing with electrically heated rods to gain an understanding of the phenomena governing the cooling in such a case and develop data which can be used to evaluate predictive models. These experiments are described, their results discussed, and the predictions of current models is presented.

  5. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  6. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    SciTech Connect

    Banerjee, S.; Hassan, Y.A.

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  7. Current and anticipated uses of thermal-hydraulic codes in Germany

    SciTech Connect

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  8. Two-dimensional thermal-hydraulics analyses of the Pellet Bed Reactor for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.

    1993-01-01

    Thermal-hydraulics design and analyses of the Pellet Bed Reactor for nuclear thermal propulsion are performed using the nuclear propulsion thermal-hydraulic analysis model to determine the 2D steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot-frit to avoid hot spots in the core at full power operation. Results show that by properly adjusting the axial porosity profile in the hot frit, hot spots in the core can be essentially eliminated during full power operation. This important accomplishment is achieved at the expense of slightly larger pressure losses in the core because of flow restriction at the hot frit. However, the overall pressure losses is only about 11 percent of the propellant inlet pressure.

  9. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    SciTech Connect

    Bodey, Isaac T

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  10. Cold source moderator vessel development for the High Flux Isotope Reactor: Thermal-hydraulic studies

    SciTech Connect

    Williams, P.T.; Lucas, A.T.; Wendel, M.W.

    1998-07-01

    A project is underway at Oak Ridge National Laboratory (ORNL) to design, test, and install a cold neutron source facility in the High Flux Isotope Reactor (HFIR). This new cold source employs supercritical hydrogen at cryogenic temperatures both as the medium for neutron moderation and as the working fluid for removal of internally-generated nuclear heating. The competing design goals of minimizing moderator vessel mass and providing adequate structural integrity for the vessel motivated the requirement of detailed multidimensional thermal-hydraulic analyses of the moderator vessel as a critical design subtask. This paper provides a summary review of the HFIR cold source moderator vessel design and a description of the thermal-hydraulic studies that were carried out to support the vessel development.

  11. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    SciTech Connect

    Smith, Thomas Michael; Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  12. Visualization tools for uncertainty and sensitivity analyses on thermal-hydraulic transients

    NASA Astrophysics Data System (ADS)

    Popelin, Anne-Laure; Iooss, Bertrand

    2014-06-01

    In nuclear engineering studies, uncertainty and sensitivity analyses of simulation computer codes can be faced to the complexity of the input and/or the output variables. If these variables represent a transient or a spatial phenomenon, the difficulty is to provide tool adapted to their functional nature. In this paper, we describe useful visualization tools in the context of uncertainty analysis of model transient outputs. Our application involves thermal-hydraulic computations for safety studies of nuclear pressurized water reactors.

  13. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    SciTech Connect

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  14. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    SciTech Connect

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  15. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  16. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  17. Evolution of the design methodologies for the next generation of RPV Extensive role of the thermal-hydraulics numerical tools

    SciTech Connect

    Goreaud, Nicolas; Nicaise, Norbert; Stoudt, Roger

    2004-07-01

    The thermal-hydraulic design of the first PWR's was mainly based on an experimental approach, with a large series of test on the main equipment (control rod guide tubes, RPV plenums..), to check its performances. Development of CFD-codes and computers now allows for complex simulations of hydraulic phenomena. Provided adequate qualification, these numerical tools are efficient means to determine hydraulics in given design, and to perform sensitivities for optimization of new designs. Experiments always play their role, first for qualification, and for validation at the last stage of the design. The design of the European Pressurized water Reactor (EPR), is based on both hydraulic calculations and experiments, handled in a complementary approach. This paper describes the effort launched by Framatome-ANP on hydraulic calculations for the Reactor Pressure Vessel (RPV) of the EPR reactor. It concerns 3D-calculations of RPV-inlet including cold legs, RPV-downcomer and lower plenum, RPV-upper plenum up to and including hot legs. It covers normal operating conditions, but also accidental conditions as PTS (Pressurized Thermal Shock) in small break loss of coolant accident (SB-LOCA). Those hydraulic studies have provided numerous useful information for the mechanical design of RPV-internals. (authors)

  18. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xiong, Binyu; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria; Lim, Tuti Mariana; Zhang, Yu

    2013-11-01

    Vanadium redox flow batteries (VRBs) are very competitive for large-capacity energy storage in power grids and in smart buildings due to low maintenance costs, high design flexibility, and long cycle life. Thermal hydraulic modeling of VRB energy storage systems is an important issue and temperature has remarkable impacts on the battery efficiency, the lifetime of material and the stability of the electrolytes. In this paper, a lumped model including auxiliary pump effect is developed to investigate the VRB temperature responses under different operating and surrounding environmental conditions. The impact of electrolyte flow rate and temperature on the battery electrical characteristics and efficiencies are also investigated. A one kilowatt VRB system is selected to conduct numerical simulations. The thermal hydraulic model is benchmarked with experimental data and good agreement is found. Simulation results show that pump power is sensitive to hydraulic design and flow rates. The temperature in the stack and tanks rises up about 10 °C under normal operating conditions for the stack design and electrolyte volume selected. An optimal flow rate of around 90 cm3 s-1 is obtained for the proposed battery configuration to maximize battery efficiency. The models developed in this paper can also be used for the development of a battery control strategy to achieve satisfactory thermal hydraulic performance and maximize energy efficiency.

  19. Evaluation of operational safety at Babcock and Wilcox Plants: Volume 2, Thermal-hydraulic results

    SciTech Connect

    Wheatley, P.D.; Davis, C.B.; Callow, R.A.; Fletcher, C.D.; Dobbe, C.A.; Beelman, R.J.

    1987-11-01

    The Nuclear Regulatory Commission has initiated a research program to develop a methodology to assess the operational performance of Babcock and Wilcox plants and to apply this methodology on a trial basis. The methodology developed for analyzing Babcock and Wilcox plants integrated methods used in both thermal-hydraulics and human factors and compared results with information used in the assessment of risk. The integrated methodology involved an evaluation of a selected plant for each pressurized water reactor vendor during a limited number of transients. A plant was selected to represent each vendor, and three transients were identified for analysis. The plants were Oconee Unit 1 for Babcock and Wilcox, H.B. Robinson Unit 2 for Westinghouse, and Calvert Cliffs Unit 1 for Combustion Engineering. The three transients were a complete loss of all feedwater, a small-break loss-of-coolant accident, and a steam-generator overfill with auxiliary feedwater. Included in the integrated methodology was an assessment of the thermal-hydraulic behavior, including event timing, of the plants during the three transients. Thermal-hydraulic results are presented in this volume (Volume 2) of the report. 26 refs., 30 figs., 7 tabs.

  20. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  1. Feasibility Study on Thermal-Hydraulic Performance of Innovative Water Reactor for Flexible Fuel Cycle (FLWR)

    SciTech Connect

    Akira, Ohnuki; Kazuyuki, Takase; Masatoshi, Kureta; Hiroyuki, Yoshida; Hidesada, Tamai; Wei, Liu; Toru, Nakatsuka; Takeharu, Misawa; Hajime, Akimoto

    2006-07-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is started at Japan Atomic Energy Agency (JAEA) in collaboration with power company, reactor vendors, universities since 2002. The FLWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the FLWR because of the tight lattice configuration. In this paper, we will show the R and D plan and summarize experimental studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility. Most important objective of the large-scale test is to resolve a fundamental subject whether the core cooling under a tight-lattice configuration is feasible. The characteristics of critical power and flow behavior are investigated under different geometrical configuration and boundary conditions. The configuration parameter is the gap between rods (FY2004) and the rod bowing (FY2005). We have confirmed the thermal-hydraulic feasibility from the experimental results. (authors)

  2. An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations

    SciTech Connect

    Strizhov, V.; Kanukova, V.; Vinogradova, T.; Askenov, E.; Nikulshin, V.

    1996-09-01

    This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer from melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.

  3. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling. [PWR; BWR

    SciTech Connect

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail.

  4. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    SciTech Connect

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong; Housley, Gregory K.

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  5. Monte Carlo Neutronics and Thermal Hydraulics Analysis of Reactor Cores with Multilevel Grids

    NASA Astrophysics Data System (ADS)

    Bernnat, W.; Mattes, M.; Guilliard, N.; Lapins, J.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2014-06-01

    Power reactors are composed of assemblies with fuel pin lattices or other repeated structures with several grid levels, which can be modeled in detail by Monte Carlo neutronics codes such as MCNP6 using corresponding lattice options, even for large cores. Except for fresh cores at beginning of life, there is a varying material distribution due to burnup in the different fuel pins. Additionally, for power states the fuel and moderator temperatures and moderator densities vary according to the power distribution and cooling conditions. Therefore, a coupling of the neutronics code with a thermal hydraulics code is necessary. Depending on the level of detail of the analysis, a very large number of cells with different materials and temperatures must be regarded. The assignment of different material properties to all elements of a multilevel grid is very elaborate and may exceed program limits if the standard input procedure is used. Therefore, an internal assignment is used which overrides uniform input parameters. The temperature dependency of continuous energy cross sections, probability tables for the unresolved resonance region and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. The method is applied with MCNP6 and proven for several full core reactor models. For the coupling of MCNP6 with thermal hydraulics appropriate interfaces were developed for the GRS system code ATHLET for liquid coolant and the IKE thermal hydraulics code ATTICA-3D for gaseous coolant. Examples will be shown for different applications for PWRs with square and hexagonal lattices, fast reactors (SFR) with hexagonal lattices and HTRs with pebble bed and prismatic lattices.

  6. An effective thermal-hydraulics methodology for prismatic core HTGR and VHTR

    SciTech Connect

    Travis, B. W.; El-Genk, M. S.

    2012-07-01

    Optimizing the performance and design of a prismatic core HTGR or VHTR requires a full core thermal-hydraulics analysis. Owing to the complexity and massive core structure, such analysis requires extensive and massively parallelized computation capabilities and a relatively long time (weeks to months) to complete. These demanding requirements are not due to the 3-D simulation of heat conduction in the annular core of the reactor, but rather the 3-D computational fluid dynamics (CFD) simulation of the helium gas flow in the 10-m long cooling channels in the 102 hexagonal fuel elements and the axial graphite reflector blocks in the core. This paper applies and examines the effectiveness of using a 1-D simulation of the helium flow in the core coolant channels, coupled to a 3-D simulation of the heat conduction in the graphite and fuel compacts, to perform thermal-hydraulics analysis of a hexagonal fuel element and of a 1/6 full core. This methodology employs typical cosine and constant axial power profiles and an applicable convective heat transfer correlation for the helium flow in the coolant channels. The correlation has recently been validated for a 10 m tall, single channel fuel module and shown to significantly reduce the computation time and memory requirements without compromising the accuracy of the calculations. The fidelity and accuracy of the present results for a hexagonal fuel element are verified by comparing them to those of a full 3-D numerical analysis. In addition to the temperature fields, results compare the computation time and number of numerical grid elements for implementing the two numerical simulation methods. The results of the thermal-hydraulics analysis of a 1/6 full core with the simplified methodology are also presented. All performed analysis accounts for the temperature dependent properties of helium, graphite in the reactor core and reflector blocks and the TRISO particle fuel compacts. (authors)

  7. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    SciTech Connect

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  8. Development and assessment of U.S. Nuclear Regulatory Commission thermal-hydraulic system computer codes

    SciTech Connect

    Shotkin, L.M.

    1996-11-01

    A review is provided of the reasons why the US Nuclear Regulatory Commission needs thermal-hydraulic system computer codes, the assumptions and approximations contained within these codes, and the reasons why test data are required to assess the accuracy of the codes. Specific examples of codes and test programs are given. The use of computer codes assessed against data from scaled test facilities to predict the full-scale plant response is discussed. A method to help focus resources and the need for quantifying code uncertainties are discussed. This paper concentrates on the loss-of-coolant accident (LOCA) because most of the analytical and experimental research has been concentrated in LOCAs.

  9. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    SciTech Connect

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.

  10. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  11. Thermal hydraulic method for whole core design analysis of an HTGR

    SciTech Connect

    Huning, A. J.; Garimella, S.

    2013-07-01

    A new thermal hydraulic method and initial results are presented for core-wide steady state analysis of prismatic High Temperature Gas-Cooled Reactors (HTGR). The method allows for the complete solution of temperature and coolant mass flow distribution by solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit cells for which the average temperature of each unit cell is determined. Convective heat removal is coupled to the unit cell energy balances by a 1-D axial flow model. The flow model uses established correlations for friction factor and Nusselt number. Bypass flow is explicitly calculated by using an initial guess for mass flow distribution and determining the exit pressure of each flow channel. The mass flow distribution is updated until a uniform core exit pressure condition is reached. Results are obtained for the MHTGR-350 with emphasis on the change in thermal hydraulic parameters due to various steady state power profiles and bypass gap widths. Steady state temperature distribution and its variations are discussed. (authors)

  12. Thermal hydraulic feasibility assessment of the hot conditioning system and process

    SciTech Connect

    Heard, F.J.

    1996-10-10

    The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.

  13. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  14. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  15. Bifurcation Analysis of Nuclear-Coupled Thermal Hydraulics of BWR Using BIFDD

    SciTech Connect

    Zhou, Quan; Uddin, Rizwan

    2002-07-01

    Stability and bifurcation analyses of nuclear-coupled thermal hydraulic instability in BWR has been performed using a semi-analytical method. The BWR model used in this study consists of three parts: neutron kinetics, fuel rod heat conduction and single and two-phase heated channel thermal hydraulics. Point reactor model is currently being used for neutron kinetics and will be extended in the future to higher order lambda or omega-mode. In the heat conduction part, a piecewise quadratic approximation to radial temperature distribution in fuel pellet and cladding is assumed. ODEs for the expansion coefficients of the quadratic spatial profiles are developed by applying variational principle. Similar to the heat conduction model, the spatial enthalpy distribution in the single phase region and steam quality in the two-phase region in the BWR core are approximated by quadratic polynomials. Two-phase flow is modeled using the homogeneous equilibrium model. A bifurcation analysis code, BIFDD, is then used to perform the analysis for the stability boundary (SB) and the nature of Poincar Andronov-Hopf bifurcation (PAH-B). Results in control-rod-induced-reactivity inlet-subcooling-number space show that both super or sub-critical bifurcation can occur along the SB he subcritical bifurcation occurs for very small or very large subcooling number values; super-critical PAH-B occurs for intermediate values of subcooling number. (authors)

  16. Thermal-Hydraulic Mockup Tests with Two-Phase Thermosyphon for Cold Neutron Source

    SciTech Connect

    Lee, C.H.; Chan, Y.K.; Lee, D.J.; Chang, C.J.; Hong, W.T.

    2002-07-01

    The improvement and utilization promotion project of the Taiwan Research Reactor (TRR-II) is carrying out at the Institute of Nuclear Energy Research (INER). The Cold Neutron Source (CNS) with a two-phase thermosyphon will be installed in the heavy water reactor of TRR-II. The hydrogen cold loop of TRR-II CNS consists of a cylindrical moderator cell, a single transfer tube, and a condenser. The thermal-hydraulic characteristics of a two-phase thermosyphon are investigated against the variations of mass inventory, tube geometry and heat loads. The thermal-hydraulic experiments have been performed using a full-scale mockup loop and a Freon-11 as a working fluid. The scaling approach is that the mass-fluxes of the liquid and the vapor in the Wallis correlation are identical between hydrogen and Freon-11. So, the same density ratio and a scaling heat load are applied to the loop. The flooding limitations as a function of initial Freon-11 inventory, transfer tube diameter, transfer tube geometry, and heat loads are presented. (authors)

  17. Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm

    SciTech Connect

    Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y.

    2012-05-22

    There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

  18. Thermal-hydraulic development a small, simplified, proliferation-resistant reactor.

    SciTech Connect

    Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

    1999-07-02

    This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture.

  19. Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance

    SciTech Connect

    Lee, S. M.; Kim, K. Y.

    2012-07-01

    Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels, the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)

  20. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    SciTech Connect

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  1. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    NASA Astrophysics Data System (ADS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  2. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  3. The Thermal Hydraulics of Tube Support Fouling in Nuclear Steam Generators

    SciTech Connect

    Rummens, Helena E.C.; Rogers, J.T.; Turner, C.W.

    2004-12-15

    It is hypothesized that the thermal-hydraulic environment plays a role in the fouling of tube supports in nuclear steam generators. Experiments were performed to simulate the thermal-hydraulic environment near various designs of supports. Pressure loss, local velocity, turbulence intensity, and local void fraction were measured to characterize the effect of the support. Fouling mechanisms specific to supports were inferred from these experimental data and from actual steam generator inspection results. An analytical model was developed to predict the rate of particulate deposition on the supports, to better understand the complex processes involved.This paper presents the following set of tools for assessing the fouling propensity of a given support design: (1) proposed fouling mechanisms, (2) criteria for support fouling propensity, (3) correlation of fouling with parameters such as mass flux and quality, (4) descriptions of experimental tools such as flow visualization and measurement of pressure-loss profiles, and (5) analytical tools.An important conclusion from this and our previous work is that the fouling propensity is greater with broached support plates, both trefoil and quatrefoil, than with lattice bar supports and formed bar supports, in which significant cross flows occur.

  4. Thermal-hydraulic criteria for the APT tungsten neutron source design

    SciTech Connect

    Pasamehmetoglu, K.

    1998-03-01

    This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations.

  5. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  6. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    NASA Astrophysics Data System (ADS)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  7. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  8. Nuclear thermal-hydraulics education: the Yankee Atomic/University of Lowell experience

    SciTech Connect

    Husain, A.; Brown, G.J.; Yeung, W.S.

    1986-01-01

    This paper summarizes the long and meaningful relationship between the University of Lowell (UL) and Yankee Atomic Electric Company (YAEC) in the area of nuclear thermal hydraulics. The UL has actively interacted with YAEC for many years. Many UL graduates from the nuclear program as well as health physics and other disciplines are employed by YAEC. Furthermore, many students have worked for YAEC on a part-time basis through summer employment or the coop program. Several graduate students have completed their thesis work under the joint direction of UL and YAEC personnel, and some faculty members have had consulting and research contracts with the company. At the same time, YAEC employees have taken advantage of the graduate program offered by UL and have earned advanced degrees. Some YAEC personnel have taught courses at UL and have served on the industrial advisory committees.

  9. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  10. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  11. Thermal hydraulic codes for LWR safety analysis - present status and future perspective

    SciTech Connect

    Staedtke, H.

    1997-07-01

    The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved.

  12. 2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL

    SciTech Connect

    Freels, James D; Bodey, Isaac T; Lowe, Kirk T; Arimilli, Rao V

    2010-09-01

    The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

  13. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    SciTech Connect

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  14. MNSR transient analyses and thermal-hydraulic safety margins for HEU and LEU cores using PARET

    SciTech Connect

    Olson, Arne P.; Jonah, S.A.

    2008-07-15

    Thermal-hydraulic performance characteristics of Miniature Neutron Source Reactors under long-term steady-state and transient conditions are investigated. Safety margins and limiting conditions attained during these events are determined. Modeling extensions are presented that enable the PARET/ANL code to realistically track primary loop heatup, heat exchange to the pool, and heat loss from the pool to air over the pool. Comparisons are made of temperature predictions for HEU and LEU fueled cores under transient conditions. Results are obtained using three different natural convection heat transfer correlations: the original (PARET/ANL version 5), Churchill-Chu, and an experiment- based correlation from the China Institute of Atomic Energy (CIAE). The MNSR, either fueled by HEU or by LEU, satisfies the design limits for long-term transient operation. (author)

  15. Code System for 2-Group, 3D Neutronic Kinetics Calculations Coupled to Core Thermal Hydraulics.

    2000-05-12

    Version 00 QUARK is a combined computer program comprising a revised version of the QUANDRY three-dimensional, two-group neutron kinetics code and an upgraded version of the COBRA transient core analysis code (COBRA-EN). Starting from either a critical steady-state (k-effective or critical dilute Boron problem) or a subcritical steady-state (fixed source problem) in a PWR plant, the code allows one to simulate the neutronic and thermal-hydraulic core transient response to reactivity accidents initiated both inside themore » vessel (such as a control rod ejection) and outside the vessel (such as the sudden change of the Boron concentration in the coolant). QUARK output can be used as input to PSR-470/NORMA-FP to perform a subchannel analysis from converged coarse-mesh nodal solutions.« less

  16. Thermal-hydraulic post-test analysis of OECD LOFT LP-FP-2 experiment

    SciTech Connect

    Pena, J.J. ); Enciso, S. ); Reventos, F. )

    1992-04-01

    An assessment of RELAP5/MOD2 and SCDAP/MOD1 against the OECD LOFT experiment LP-FP-2 is presented. LP-FP-2 studies the hypothetical release of fission products and their transport following a large-break LOCA scenario. The report comprises a general description of the LP-FP-2 experiment, a summary of thermal-hydraulic data, a simulation of the LP-FP-2 experiment, results of the RELAP5/MOD2 base calculation, the RELAP5/MOD2 sensitivity analysis, the SCDAP/MOD1 nodalization for an LP-FP-2 experiment, the results of the SCDAP/MOD1 calculation, and the summary and conclusions.

  17. Use of separate-effects experiments in verification of system thermal-hydraulics

    SciTech Connect

    Saha, P.

    1982-01-01

    In recent years, a number of advanced, best-estimate systems codes such as TRAC and RELAP5 have been developed in order to accurately predict the consequences of various postulated accidents and transients in Light Water Reactor (LWR) systems. Although these codes had to go through some verification or assessment during the developmental stage, it has been recognized that an independent assessment of these codes is necessary before they should be applied to any decision making process. The USNRC is, therefore, sponsoring such efforts at several national laboratories including BNL. The overall assessment matrix includes separate-effects, integral and plant tests. However, this paper will focus on how the separate-effects tests can be utilized in verifying the thermal-hydraulic models that control the various stages of postulated accidents and/or transients in a LWR system.

  18. Conceptual design and thermal-hydraulic characteristics of natural circulation Boiling Water Reactors

    SciTech Connect

    Kataoka, Y.; Suzuki, H.; Murase, M. ); Horiuchi, T.; Miki, M. )

    1988-08-01

    A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW (electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is -- 50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (..delta..MCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.

  19. Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant

    SciTech Connect

    C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

    2006-08-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were

  20. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    SciTech Connect

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures. The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.

  1. Current and anticipated uses of the thermal hydraulics codes at the NRC

    SciTech Connect

    Caruso, R.

    1997-07-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support these needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.

  2. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  3. 4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

    NASA Astrophysics Data System (ADS)

    Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.

    2013-01-01

    The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.

  4. 75 FR 69140 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... COMMISSION NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the Standardized Plant Analysis Risk Models--Surry and Peach Bottom; Draft Report for Comment AGENCY: Nuclear... Regulatory Commission has issued for public comment a document entitled: NUREG-1953, ``Confirmatory...

  5. A study of thermal stratification in the cold legs during the subcooled blowdown phase of a loss of coolant accident in the OSU APEX thermal hydraulic testing facility.

    SciTech Connect

    Wachs, D. M.

    1998-11-04

    Thermal stratification, which has been linked to the occurrence of pressurized thermal shock (PTS), is observed to occur during the early stages of simulated loss of coolant accidents (LOCAS) in the Oregon State University Advanced Plant Experiment (OSU APEX) Thermal Hydraulic Test Facility. The OSU APEX Test Facility is a scaled model of the Westinghouse AP600 nuclear power plant. Analysis of the OSU APEX facility data has allowed the determination of an onset criteria for thermal stratification and has provided support for the postulated mechanisms leading to thermal stratification. CFX 4.1, a computational fluid dynamics code, was used to generate a model of the cold legs and the downcomer that described the phenomena occurring within them. Some mixing phenomena were predicted that lead to non-uniformity between the two cold legs attached to the steam generator on the side of the facility containing the Passive Residual Heat Removal (PRHR) injection system. The stratification was found to be two phase and unlikely to be a factor in PTS.

  6. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; Moreau, V.

    2011-08-01

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 " Large Scale Integral Test", devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the " European Transmutation Demonstrator (ETD)" pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called " Integral Circulation Experiment (ICE)", has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the experiment goals as well as the HLM

  7. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    SciTech Connect

    Cramer, E.R.

    1994-11-10

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits.

  8. Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool

    SciTech Connect

    Madni, I.K.; Eltawila, F.

    1994-01-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC called ``MELCOR Verification, Benchmarking, and Applications,`` whose aim is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both BWRs and PWRs. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review, and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). This paper presents a summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR.

  9. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    SciTech Connect

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits.

  10. Incorporating Artificial Neural Networks in the dynamic thermal-hydraulic model of a controlled cryogenic circuit

    NASA Astrophysics Data System (ADS)

    Carli, S.; Bonifetto, R.; Savoldi, L.; Zanino, R.

    2015-09-01

    A model based on Artificial Neural Networks (ANNs) is developed for the heated line portion of a cryogenic circuit, where supercritical helium (SHe) flows and that also includes a cold circulator, valves, pipes/cryolines and heat exchangers between the main loop and a saturated liquid helium (LHe) bath. The heated line mimics the heat load coming from the superconducting magnets to their cryogenic cooling circuits during the operation of a tokamak fusion reactor. An ANN is trained, using the output from simulations of the circuit performed with the 4C thermal-hydraulic (TH) code, to reproduce the dynamic behavior of the heated line, including for the first time also scenarios where different types of controls act on the circuit. The ANN is then implemented in the 4C circuit model as a new component, which substitutes the original 4C heated line model. For different operational scenarios and control strategies, a good agreement is shown between the simplified ANN model results and the original 4C results, as well as with experimental data from the HELIOS facility confirming the suitability of this new approach which, extended to an entire magnet systems, can lead to real-time control of the cooling loops and fast assessment of control strategies for heat load smoothing to the cryoplant.

  11. Summary of papers on current and anticipated uses of thermal-hydraulic codes

    SciTech Connect

    Caruso, R.

    1997-07-01

    The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especially faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).

  12. Current and anticipated uses of thermal-hydraulic codes in Spain

    SciTech Connect

    Pelayo, F.; Reventos, F.

    1997-07-01

    Spanish activities in the field of Applied Thermal-Hydraulics are steadily increasing as the codes are becoming practicable enough to efficiently sustain engineering decision in the Nuclear Power industry. Before reaching this point, a lot of effort has been devoted to achieve this goal. This paper briefly describes this process, points at the current applications and draws conclusions on the limitations. Finally it establishes the applications where the use of T-H codes would be worth in the future, this in turn implies further development of the codes to widen the scope of application and improve the general performance. Due to the different uses of the codes, the applications mainly come from the authority, industry, universities and research institutions. The main conclusion derived from this paper establishes that further code development is justified if the following requisites are considered: (1) Safety relevance of scenarios not presently covered is established. (2) A substantial gain in margins or the capability to use realistic assumptions is obtained. (3) A general consensus on the licensability and methodology for application is reached. The role of Regulatory Body is stressed, as the most relevant outcome of the project may be related to the evolution of the licensing frame.

  13. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    NASA Astrophysics Data System (ADS)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-09-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  14. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  15. Thermal-Hydraulic Analyses of the Submersion-Subcritical Safe Space (S and 4) Reactor

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2007-01-30

    Detailed thermal-hydraulic analyses of the S and 4 reactor are performed to reduce the maximum fuel temperature of the Submersion-Subcritical Safe Space (S and 4) reactor to below 1300 K. The fuel pellet diameter is reduced from 1.315 cm to 1.25 cm, decreasing the thermal resistance of the pellets and each of the 1.54 cm diameter coolant channels in the reactor core are replaced with several 0.3 cm ID channels to increase the effective heat transfer area and to encourage mixing of the flowing helium-28% xenon coolant. The calculated maximum fuel temperature decreased from more than 1900 K to 1302 K and the relative pressure drop across the reactor core increased from 1.98% to 2.57% of the inlet pressure. Moving the concentric inlet and outlet pipes 1 cm towards the center of the reactor core encouraged more flow through the center region, further reducing the maximum fuel temperature by 14 degrees to 1288 K, with a negligible effect on the core pressure losses.

  16. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    SciTech Connect

    Schriener, T. M.; El-Genk, M. S.

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  17. Thermal hydraulic evaluation of consolidating tank C-106 waste into tank AY-102

    SciTech Connect

    Sathyanarayana, K.

    1996-02-01

    This report describes the thermal hydraulic analysis performed to provide a technical basis in support of consolidation of tank C-106 waste into tank AY-102. Several parametric calculations were performed using the HUB and GOTH computer codes. First, the current heat load of tank AY-102 was determined. Potential quantities of waste transfer from tank C-106 were established to maintain the peak temperatures of consolidated sludge in tank AY-102 to remain within Operating Specification limits. For this purpose, it was shown that active cooling of the tank floor was essential and a secondary ventilation flow of 2,000 cfm should be maintained. Transient calculations were also conducted to evaluate the effects of ambient meteorological cyclic conditions on sludge peak temperature, and loss of ventilation systems. Detailed calculations were also performed to estimate the insulating concrete air channels cooling effectiveness and the resulting peak temperatures for the consolidated sludge in tank AY-102. Calculations are were also performed for a primary and secondary ventilation systems outage, both individually and combined to establish limits on outage duration. Because of its active cooling mode of operation, the secondary ventilation system limits the outage duration.

  18. Theoretical investigation of the thermal hydraulic behaviour of a slab-type liquid metal target

    SciTech Connect

    Dury, T.V.; Smith, B.L.

    1996-06-01

    The thermal hydraulics codes CFDS-FLOW3D and ASTEC have been used to simulate a slabtype design of ESS spallation target. This design is single-skinned, and of tapering form (in the beam direction), with rounded sides in a cross-section through a plane normal to the beam. The coolant fluid used is mercury, under forced circulation, with an inlet temperature of 180{degrees}C. The goal of these computer studies was to understand the behaviour of the coolant flow, and hence to arrive at a design which optimises the heat extraction for a given beam power - in the sense of: (1) minimising the peak local fluid temperature within the target, (2) maintaining an acceptable temperature level and distribution over and through the target outer wall, (3) keeping the overall fluid pressure loss through the complete target to a minimum, (4) staying within the physical limits of overall size required, particularly in the region of primary spallation. Two- and three-dimensional models have been used, with different arrangements and design of internal baffles, and different coolant flow distributions at the target inlet. Nominal total inlet mass flow was 245 kg/s, and a heat deposition profile used which was based on the proton beam energy distribution. This gave a nominal total heat load of 3.23 MW - of which 8.2kW were deposited in the window steel.

  19. Methodology of Internal Assessment of Uncertainty and Extension to Neutron Kinetics/Thermal-Hydraulics Coupled Codes

    SciTech Connect

    Petruzzi, A.; D'Auria, F.; Giannotti, W.; Ivanov, K.

    2005-02-15

    The best-estimate calculation results from complex system codes are affected by approximations that are unpredictable without the use of computational tools that account for the various sources of uncertainty.The code with (the capability of) internal assessment of uncertainty (CIAU) has been previously proposed by the University of Pisa to realize the integration between a qualified system code and an uncertainty methodology and to supply proper uncertainty bands each time a nuclear power plant (NPP) transient scenario is calculated. The derivation of the methodology and the results achieved by the use of CIAU are discussed to demonstrate the main features and capabilities of the method.In a joint effort between the University of Pisa and The Pennsylvania State University, the CIAU method has been recently extended to evaluate the uncertainty of coupled three-dimensional neutronics/thermal-hydraulics calculations. The result is CIAU-TN. The feasibility of the approach has been demonstrated, and sample results related to the turbine trip transient in the Peach Bottom NPP are shown. Notwithstanding that the full implementation and use of the procedure requires a database of errors not available at the moment, the results give an idea of the errors expected from the present computational tools.

  20. The Thermal Hydraulic Test of the MEGAPIE Cooling System and System Code Validation

    SciTech Connect

    Leung, W.H.; Dementjev, S.; Groeschel, F.; Dierckx, M.

    2006-07-01

    The MEGAPIE project undertaking in Paul Scherrer Institute (PSI) aims at design, building, operating and decommissioning a 1 MW liquid-metal spallation target. The design and manufacturing phases are almost finished. The target and the required ancillary systems were installed on a test facility called MEGAPIE Integral Test Stand (MITS). The cooling system is among the ancillary systems being tested. A series of thermal hydraulic tests were conducted for testing the main functions of the cooling system. These tests were focused on obtaining data about the system's stability, cooling capacity, and the transient responses. The consistency of the data was checked by comparing the heat balance between the input and output power of each heat exchanger (HEX) in the system. The main flow in the target can only be determined by the thermal balance because the built in flow meter did not work properly. The steady state pump speed, flow rates, and overall heat transfer coefficients (OHTC) of the whole cooling system were measured and analyzed for characterization of the system. Those results were used to refine numerical model of the system. A special version of RELAP5/Mod3.2.2 implemented with the fluid properties of LBE was used for the simulation study. Two cases of 'beam trip' transients were simulated and compared with test results. The agreements were good in both cases and the main features of the transients were captured by the RELAP5. This was the first step of validating RELAP5 model. (authors)

  1. Scalable three-dimensional thermal-hydraulic best-estimate code BAGIRA

    SciTech Connect

    Vasenin, V. A.; Krivchikov, M. A.; Kroshilin, V. E.; Kroshilin, A. E.; Roganov, V. A.

    2012-07-01

    The three-dimensional thermal-hydraulic best-estimate code BAGIRA for modeling of multi-phase flows was developed without any artificial physical assumptions or simplifications. The mathematical model is based on numerical approximations of exact three-dimensional equations, including effective multi-dimensional models for turbulent heat and mass transfer. With use of BAGIRA All-Russian Scientific Research Inst. of Nuclear Power Plants (VNIIAES) has developed a full-scope and analytical simulators using BAGIRA for a number of power plants with VVER-1000 and RBMK type design, which are being used in Kalinin, Kursk, Smolensk, Chernobyl, and Bilibino NPPs. The comparison of calculated and experimental results shows that BAGIRA can successfully reproduce the most important processes observed in experiments. BAGIRA is implemented in FORTRAN. It is a relatively complicated code that tends to decompose task by aspects. Such a style is welcoming for extensions, which can be added without code redesign. We would like to present an aspect-oriented mix-in approach for BAGIRA code extension. It allows to make it scalable in number of directions leaving original code base untouched. It is possible to add new effects/units, and even to produce a supercomputer version of the code. The last is a key point today due to availability of low-cost compact supercomputers, which makes building compact NPP simulators possible. (authors)

  2. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  3. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    SciTech Connect

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a small version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.

  4. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    SciTech Connect

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Thermal-Hydraulics and Electrochemistry of a Boiling Solution in a Porous Sludge Pile A Test Methodology

    SciTech Connect

    R.F. Voelker

    2001-05-03

    When boiling occurs in a pile of porous corrosion products (sludge), chemical species can concentrate. These species can react with the corrosion products and transform the sludge into a rock hard mass and/or create a corrosive environment. In-situ measurements are required to improve the understanding of this process, and the thermal-hydraulic and electrochemical environment in the pile. A test method is described that utilizes a water heated instrumented tube array in an autoclave to perform the in-situ measurements. As a proof of method feasibility, tests were performed in an alkaline phosphate solution. The test data is discussed. Temperature changes and electrochemical potential shifts were used to indicate when chemicals concentrate and if/when the pile hardens. Post-test examinations confirmed hardening occurred. Experiments were performed to reverse the hardening process. A one-dimensional model, utilizing capillary forces, was developed to understand the thermal-hydraulic measurements.

  6. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  7. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  8. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  9. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 3. Programmer's manual. Final report. [PWR; BWR

    SciTech Connect

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1983-05-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces.

  10. The Euratom-Rosatom ERCOSAM-SAMARA projects on containment thermal-hydraulics of current and future LWRs for severe accident management

    SciTech Connect

    Paladino, D.; Guentay, S.; Andreani, M.; Tkatschenko, I.; Brinster, J.; Dabbene, F.; Kelm, S.; Allelein, H. J.; Visser, D. C.; Benz, S.; Jordan, T.; Liang, Z.; Porcheron, E.; Malet, J.; Bentaib, A.; Kiselev, A.; Yudina, T.; Filippov, A.; Khizbullin, A.; Kamnev, M.; Zaytsev, A.; Loukianov, A.

    2012-07-01

    During a postulated severe accident with core degradation, hydrogen would form in the reactor pressure vessel mainly due to high temperatures zirconium-steam reaction and flow together with steam into the containment where it will mix with the containment atmosphere (steam-air). The hydrogen transport into the containment is a safety concern because it can lead to explosive mixtures through the associated phenomena of condensation, mixing and stratification. The ERCOSAM and SAMARA projects, co-financed by the European Union and the Russia, include various experiments addressing accident scenarios scaled down from existing plant calculations to different thermal-hydraulics facilities (TOSQAN, MISTRA, PANDA, SPOT). The tests sequences aim to investigate hydrogen concentration build-up and stratification during a postulated accident and the effect of the activation of Severe Accident Management systems (SAMs), e.g. sprays, coolers and Passive Auto-catalytic Recombiners (PARs). Analytical activities, performed by the project participants, are an essential component of the projects, as they aim to improve and validate various computational methods. They accompany the projects in the various phases; plant calculations, scaling to generic containment and to the different facilities, planning pre-test and post-test simulations are performed. Code benchmark activities on the basis of conceptual near full scale HYMIX facility will finally provide a further opportunity to evaluate the applicability of the various methods to the study of scaling issues. (authors)

  11. A coupled neutronic/thermal-hydraulic scheme between COBAYA3 and SUBCHANFLOW within the NURESIM simulation platform

    SciTech Connect

    Calleja, M.; Stieglitz, R.; Sanchez, V.; Jimenez, J.; Imke, U.

    2012-07-01

    Multi-scale, multi-physics problems reveal significant challenges while dealing with coupled neutronic/thermal-hydraulic solutions. Current generation of codes applied to Light Water Reactors (LWR) are based on 3D neutronic nodal methods coupled with one or two phase flow thermal-hydraulic system or sub-channel codes. In addition, spatial meshing and temporal schemes are crucial for the proper description of the non-symmetrical core behavior in case of transient and accidents e.g. reactivity insertion accidents. This paper describes the coupling approach between the 3D neutron diffusion code COBAYA3 and the sub-channel code SUBCHANFLOW within SALOME. The coupling is done inside the SALOME open source platform that is characterized by a powerful pre- and post-processing capabilities and a novel functionality for mapping of the neutronic and thermal hydraulic domains. The peculiar functionalities of SALOME and the steps required for the code integration and coupling are presented. The validation of the coupled codes is done based on two benchmarks the PWR MOX/UO{sub 2} RIA and the TMI-1 MSLB benchmark. A discussion of the prediction capability of COBAYA3/SUBCHANFLOW compared to other coupled solutions will be provided too. (authors)

  12. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    SciTech Connect

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S.

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  13. Comprehensive Thermal Hydraulics Research of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; David Petti; Hyung Kang

    2010-10-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  14. Heat deposition in thick targets due to interaction of high energy protons and thermal hydraulics analysis

    NASA Astrophysics Data System (ADS)

    Kumawat, H.; Dutta, D.; Mantha, V.; Mohanty, A. K.; Satyamurthy, P.; Choudhury, R. K.; Kailas, S.

    2008-02-01

    Heat deposition inside thick targets due to interaction of high energy protons (Ep ∼ GeV) has been estimated using an improved version of the Monte Carlo simulation code CASCADE.04.h. The results are compared with the available experimental data for thick targets of Be, Al, Fe, Cu, Pb and Bi at proton energies of 0.8 GeV, 1.0 GeV and 1.2 GeV. A more continuous heat deposition approach which has been adopted in CASCADE.04.h yields results which are in better agreement with the experimental data as compared to the ones from the earlier version of CASCADE.04. The results are also compared with the predictions of the FLUKA Monte Carlo code. Both CASCADE.04.h and FLUKA predictions are nearly similar for heavy targets and both agree with the experimental measurements. However, they do have differences in predictions for lighter targets where measurements also differ from the predictions. It is observed that the maximum heat loss in thick targets occurs at the beginning of the target due to increasing nuclear reaction contributions. This aspect is crucial in designing the window of a spallation neutron target employed in an accelerator driven sub-critical system (ADS) as this is the first material to be traversed by the proton beam and is subjected to the maximum temperature gradient. Optimization of the target-window parameters requires a careful estimation of heat deposition in the window region and this has been demonstrated through thermal hydraulic studies related to the design of a realistic lead bismuth eutectic (LBE) spallation neutron target for an ADS system.

  15. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    SciTech Connect

    Travis, Adam R

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  16. Thermal-hydraulic instabilities in natural circulation flow loops under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Jain, Rachna

    In recent years, a growing interest has been generated in investigating the thermal hydraulics and flow stability phenomenon in supercritical natural circulation loops. These flow conditions are relevant to some of the innovative passive safety designs proposed for the Gen-IV Supercritical Water Reactor (SCWR) concepts. A computational model has been developed at UW Madison which provides a good basic simulation tool for the steady state and transient analysis of one dimensional natural circulation flow, and can be applied to conduct stability analysis. Several modifications and improvements were incorporated in an earlier numerical scheme before applying it to investigate the transient behavior of two experimental loops, namely, the supercritical water loop at UW-Madison and the supercritical carbon-dioxide (SCCO2) loop at Argonne National Laboratories. Although the model predicted development of instabilities for both SCW and SCCO2 loop which agrees with some previous work, the experiments conducted at SCCO2 loop exhibited stable behavior under similar conditions. To distinguish between numerical effects and physical processes, a linear stability approach has also been developed to investigate the stability characteristics associated with the natural circulation loop systems for various inlet conditions, input powers and geometries. The linear stability results for the SCW and SCCO2 loops exhibited differences with the corresponding transient simulations. This linear model also predicted the presence of instability in the SCCO 2 loop for certain high input powers contradictory to the experimental findings. Dimensionless parameters were proposed which would generalize the stability characteristics of the natural circulation flow loops under supercritical conditions.

  17. TRIO-EF: a general thermal hydraulics computer code applied to the AVLIS process

    NASA Astrophysics Data System (ADS)

    Magnaud, Jean P.; Claveau, Michel; Coulon, Nadia; Yala, Philippe; Guilbaud, Daniel; Mejane, Albert

    1993-05-01

    TRIO-EF is a general purpose Fluid Mechanics 3D Finite Element Code. The system capabilities cover areas such as steady state or transient, laminar or turbulent, isothermal or temperature dependent fluid flows; it is applicable to the study of coupled thermo-fluid problems involving heat conduction and possibly radiative heat transfer. TRIO-EF is developed by the Heat Transfer and Structural Mechanics Department of the French Atomic Energy Commission CEA/DMT. It is widely used for applications in reactor design, safety analysis and final nuclear waster disposal. More recently, it has been used to study the thermal behavior of the AVLIS process separation module. In this process, a linear electron beam impinges the free surface of a uranium ingot, generating a two dimensional curtain emission of vapor. The metal is contained in a water-cooled crucible. The energy transferred to the metal causes its partial melting, forming a pool where strong convective motion increases heat transfer towards the crucible. In the upper part of the Separation Module, the internal structures are devoted to two main functions: vapor containment and reflux, irradiation and physical separation. They are subjected to very high temperature levels and heat transfer occurs mainly by radiation. Moreover, special attention has to be paid to electron backscattering. These two major points have been simulated numerically with TRIO-EF and in this paper, we present and comment the results of such a computation, for each of them. After a brief overview of the computer code, two examples of the TRIO-EF capabilities are given: a crucible thermal hydraulics model, and a thermal analysis of the internal structures.

  18. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  19. COBRA-SFS CYCLE 3: Code System for Thermal Hydraulic Analysis of Spent Fuel Casks

    2003-11-01

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codesmore » for single phase fluid analysis and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.« less

  20. Thermal-hydraulic modeling of the Pennsylvania State University Breazeale Nuclear Reactor (PSBR)

    NASA Astrophysics Data System (ADS)

    Chang, Jong E.

    2005-11-01

    Earlier experiments determined that the Pennsylvania State University Breazeale Nuclear Reactor (PSBR) core is cooled, not by an axial flow, but rather by a strong cross flow due to the thermal expansion of the coolant. To further complicate the flow field, a nitrogen-16 (N-16) pump was installed above the PSBR core to mix the exiting core buoyant thermal plume in order to delay the rapid release of radioactive N-16 to the PSBR pool surface. Thus, the interaction between the N-16 jet flow and the buoyancy driven flow complicates the analysis of the flow distribution in the PSBR pool. The main objectives of this study is to model the thermal-hydraulic behavior of the PSBR core and pool. During this study four major things were performed including the Computational Fluid Dynamics (CFD) model for the PSBR pool, the stand-alone fuel rod model for a PSBR fuel rod, the velocity measurements in and around the PSBR core, and the temperature measurements in the PSBR pool. Once the flow field was predicted by the CFD model, the measurement devices were manufactured and calibrated based on the CFD results. The major contribution of this study is to understand and to explain the flow behavior in the PSBR subchannels and pool using the FLOW3D model. The stand-alone dynamic fuel rod model was developed to determine the temperature distribution inside a PSBR fuel rod. The stand-alone fuel rod model was coupled to the FLOW3D model and used to predict the temperature behavior during steady-state and pulsing. The heat transfer models in the stand-alone fuel rod code are used in order to overcome the disadvantage of the CFD code, which does not calculate the mechanical stress, the gap conductance, and the two phase heat transfer. (Abstract shortened by UMI.)

  1. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3. 07. 9 - steady-state film boiling in upflow

    SciTech Connect

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  2. Thermal-hydraulic analysis of the liquid mercury target for the national spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Haines, J.R.; Rogers, M.

    1997-04-01

    The National Spallation Neutron Source (NSNS) is a high-energy, accelerator-based spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory (ORNL) to achieve very high fluxes of neutrons for scientific experiments. The NSNS is proposed to have a 1 MW beam of high-energy ({approximately}1 GeV) protons upgradable to 5 MW and operating at 60 Hz with a pulse duration of 0.5 {mu}s. Peak steady-state power density in the target is about 640 MW/m{sup 3} for 1 MW, whereas the pulse instantaneous peak power density is as high as 22,000 GW/m{sup 3}. The local peak temperature rise for a single pulse over it`s time-averaged value is only 6{degrees}C, but the rate of this temperature rise during the pulse is extremely fast ({approximately}12 million {degrees}C/s). In addition to the resulting thermal shock and materials compatibility concerns, key feasibility issues for the target are related to its thermal-hydraulic performance. These include proper flow distribution, flow reversals and stagnation zones, possible {open_quotes}hot spots{close_quotes}, cooling of the beam {open_quotes}window{close_quotes}, and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles. An analytic approach was used on the PC spreadsheet EXCEL to evaluate target design options and to determine the global T/H parameters in the current concept. The general computational fluid dynamics (CFD) code CFX was used to simulate the detailed time-averaged two-dimensional thermal and flow distributions in the liquid mercury. In this paper, an overview of the project and the results of this preliminary work are presented. Heat transfer characteristics of liquid mercury under wetting and non-wetting conditions are discussed, and future directions of the program in T/H analysis and R&D are outlined.

  3. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  4. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    SciTech Connect

    Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho; Heltemes, Thad; Sun, Zaijing; Wardle, Kent E.; Bailey, James; Quigley, Kevin; Stepinski, Dominique; Vandegrift, George

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  5. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  6. Code System to Perform Neutronic and Thermal-Hydraulic Subchannel Analysis from Converged Coarse-Mesh Nodal Solutions.

    2000-06-14

    Version 00 NORMA-FP is an auxiliary program which can perform a neutronic and thermal-hydraulic subchannel analysis, starting from global core calculations carried out by both PSR-471/NORMA or PSR-492/QUARK codes. Detailed flux and power distributions inside homogenized nodes are computed by a two-stage bivariate interpolation method, upon separation of the axial variable for which an analytical solution is adopted. The actual heterogeneous structure of a node is accounted for by fuel rod power factors computed asmore » functions of burnup, burnup-weighted coolant density, and instantaneous coolant density.« less

  7. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual. [PWR; BWR

    SciTech Connect

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code.

  8. Thermal hydraulic calculations to support increase in operating power in McClellen Nuclear Radiation Center(MNRC) TRIGA reactor.

    SciTech Connect

    Jensen, R. T.

    1998-05-05

    The RELAP5/Mod3.1 computer program has been used to successfully perform thermal-hydraulic analyses to support the Safety Analysis for increasing the MNRC reactor from 1.0 MW to 2.0 MW. The calculation results show the reactor to have operating margin for both the fuel temperature and critical heat flux limits. The calculated maximum fuel temperature of 705 C is well below the 750 C operating limit. The critical heat flux ratio was calculated to be 2.51.

  9. RELAP5-3D Code Validation for RBMK Phenomena

    SciTech Connect

    Fisher, James Ebberly

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  10. RELAP5-3D code validation for RBMK phenomena

    SciTech Connect

    Fisher, J.E.

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  11. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Zhao, Jiyun; Skyllas-Kazacos, Maria; Xiong, Binyu

    2014-08-01

    The present study focuses on dynamic thermal-hydraulic modeling for the all-vanadium flow battery and investigations on the impact of stack flow patterns on battery performance. The inhomogeneity of flow rate distribution and reversible entropic heat are included in the thermal-hydraulic model. The electrolyte temperature in tanks is modeled with the finite element modeling (FEM) technique considering the possible non-uniform distribution of electrolyte temperature. Results show that the established model predicts electrolyte temperature accurately under various ambient temperatures and current densities. Significant temperature gradients exist in the battery system at extremely low flow rates, while the electrolyte temperature tends to be the same in different components under relatively high flow rates. Three stack flow patterns including flow without distribution channels and two cases of flow with distribution channels are compared to investigate their effects on battery performance. It is found that the flow rates are not uniformly distributed in cells especially when the stack is not well designed, while adding distribution channels alleviates the inhomogeneous phenomenon. By comparing the three flow patterns, it is found that the serpentine-parallel pattern is preferable and effectively controls the uniformity of flow rates, pressure drop and electrolyte temperature all at expected levels.

  12. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    SciTech Connect

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent of this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)

  13. Assessment of the 3-D Thermal-Hydraulic Nuclear Core Computer Code FLICA-IV on Rod Bundle Experiments

    SciTech Connect

    Bergeron, Andre; Caruge, Daniel; Clement, Philippe

    2001-04-15

    The physical validation compared with the hydraulic and two-phase flow experiments of the thermal-hydraulic FLICA-IV nuclear core computer code, in the case of a pressurized water reactor is presented. This three-dimensional two-phase flow code is devoted to steady state and transient thermal-hydraulic analysis of nuclear reactor cores. The four balance equations used by the code and the closure relationships are first presented. Then, the facilities employed for the code validation are described. They are the ones that use either laser velocimetry techniques in the case of hydraulic validation to measure accurately the flow field around rods or isokinetic sampling to carry out the qualities and the axial mass velocities at the outlet of a rod bundle in the case of two-phase flow validation. Comparisons between experimental and computed values are then presented for the axial flow blockage simulation, inlet assemblies flow mixing, axial flow spacer grid disturbance, and an outlet rod bundle map of qualities and axial mass velocities.

  14. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    SciTech Connect

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  15. Scaling approach and thermal-hydraulic analysis in the reactor cavity cooling system of a high temperature gas -cooled reactor and thermal-jet mixing in a sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Omotowa, Olumuyiwa A.

    This dissertation develops and demonstrates the application of the top-down and bottom-up scaling methodologies to thermal-hydraulic flows in the reactor cavity cooling system (RCCS) of the high temperature gas reactor (HTGR) and upper plenum of the sodium fast reactor (SFR), respectively. The need to integrate scaled separate effects and integral tests was identified. Experimental studies and computational tools (CFD) have been integrated to guide the engineering design, analysis and assessment of this scaling methods under single and two-phase flow conditions. To test this methods, two applicable case studies are considered, and original contributions are noted. Case 1: "Experimental Study of RCCS for the HTGR". Contributions include validation of scaling analysis using the top-down approach as guide to a ¼-scale integral test facility. System code, RELAP5, was developed based on the derived scaling parameters. Tests performed included system sensitivity to decay heat load and heat sink inventory variations. System behavior under steady-state and transient scenarios were predicted. Results show that the system has the capacity to protect the cavity walls from over-heating during normal operations and provide a means for decay heat removal under accident scenarios. A full width half maximum statistical method was devised to characterize the thermal-hydraulics of the non-linear two-phase oscillatory behavior. This facilitated understanding of the thermal hydraulic coupling of the loop segments of the RCCS, the heat transfer, and the two-phase flashing flow phenomena; thus the impact of scaling overall. Case 2: "Computational Studies of Thermal Jet Mixing in SFR". In the pool-type SFR, susceptible regions to thermal striping are the upper instrumentation structure and the intermediate heat exchanger (IHX). We investigated the thermal mixing above the core to UIS and the potential impact due to poor mixing. The thermal mixing of dual-jet flows at different

  16. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and

  17. VIPRE (Versatile Internals and Component Program for Reactors; EPRI)-01: A thermal-hydraulic code for reactor cores: Volume 4, Applications: Final report

    SciTech Connect

    Cuta, J.M.; Stewart, C.W.; Koontz, A.S.; Montgomery, S.D.

    1987-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 4: Applications) contains extensive comparisons of VIPRE calculations to experimental data. There are also sensitivity studies and evaluations of code numerical and computational performance. In addition, calculations performed by member utilities using VIPRE for comparisons with transient CHF data, and FSAR plant analyses are presented. Comparisons are also presented of plant thermal-hydraulic calculations with VIPRE and other COBRA codes. These calculations demonstrate the suitability of VIPRE for PWR core thermal-hydraulic analysis.

  18. RELAP5-3D thermal hydraulic analysis of the target cooling system in the SPES experimental facility

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Castiglia, F.; Buffa, P.; Palermo, G.; Prete, G.

    2014-11-01

    The SPES (Selective Production of Exotic Species) experimental facility, under construction at the Italian National Institute of Nuclear Physics (INFN) Laboratories of Legnaro, Italy, is a second generation Isotope Separation On Line (ISOL) plant for advanced nuclear physic studies. The UCx target-ion source system works at temperature of about 2273 K, producing a high level of radiation (105 Sv/h), for this reason a careful risk analysis for the target chamber is among the major safety issues. In this paper, the obtained results of thermofluid-dynamics simulations of accidental transients in the SPES target cooling system are reported. The analysis, performed by using the RELAP5-3D 2.4.2 qualified thermal-hydraulic system code, proves good safety performance of this system during different accidental conditions.

  19. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

  20. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  1. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    SciTech Connect

    Bsebsu, F.M.; Abotweirat, F. E-mail: abutweirat@yahoo.com; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  2. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    SciTech Connect

    Khan, E.U.

    1980-04-01

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist.

  3. Development of models for the sodium version of the two-phase three-dimensional thermal hydraulics code THERMIT. [LMFBR

    SciTech Connect

    Wilson, G.J.; Kazimi, M.S.

    1980-05-01

    Several different models and correlations were developed and incorporated in the sodium version of THERMIT, a thermal-hydraulics code written at MIT for the purpose of analyzing transients under LMFBR conditions. This includes: a mechanism for the inclusion of radial heat conduction in the sodium coolant as well as radial heat loss to the structure surrounding the test section. The fuel rod conduction scheme was modified to allow for more flexibility in modelling the gas plenum regions and fuel restructuring. The formulas for mass and momentum exchange between the liquid and vapor phases were improved. The single phase and two phase friction factors were replaced by correlations more appropriate to LMFBR assembly geometry.

  4. The development of a preliminary correlation of data on oxide growth on 6061 aluminum under ANS thermal-hydraulic conditions

    SciTech Connect

    Pawel, R.E.; Yoder, G.L.; West, C.D.; Montgomery, B.H.

    1990-06-01

    The corrosion of aluminum alloy 6061 is being studied in a special test loop facility under the range of thermal-hydraulic conditions appropriate for fuel plate operation in the Advanced Neutron Source (ANS) reactor core. Experimental measurements describing the growth of the boehmite (Al{sub 2}O{sub 3}H{sub 2}O) films on the exposed aluminum surfaces are now available for a range of coolant conditions and heat fluxes, and these results have been analyzed to demonstrate the influence of several important experimental variables. A subset of our data base particularly appropriate to the ANS conditions presently anticipated was used to develop a preliminary correlation based on an empirical oxidation model.

  5. Coupled mechanical electromagnetic thermal hydraulic effects in Nb3Sn cable-in-conduit conductors for ITER

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Ciazynski, D.; Mitchell, N.; Savoldi Richard, L.

    2005-12-01

    The crucial multi-physics problem of how to extrapolate from the performance of an isolated Nb3Sn strand measured in the laboratory to the performance of a superconducting coil using multi-strand twisted cables is addressed here. We consider the particular case of the path going from the LMI strand to the international thermonuclear experimental reactor (ITER) toroidal field model coil (TFMC), through its associated Full Size Joint Sample, the TFMC-FSJS. Mechanical, electromagnetic and thermal-hydraulic conditions are simulated using the ANSYS, ENSIC and Mithrandir/M&M codes, respectively. At least in this case, the DC performance of the short sample turns out to be relatively close to (considering error bars) but not fully representative of that of the coil, showing higher (less compressive) effective thermal strain but also higher sensitivity to the electromechanical load.

  6. Comparisons of steady-state and transient thermal hydraulic results from SAS-DIF3DK and RELAP5 mod 3.2 for an RBMK reactor.

    SciTech Connect

    Dunn, F. E.

    1999-03-10

    The SAS-DIF3DK code couples a detailed 3-D neutron kinetics treatment with a detailed thermal hydraulics treatment. One goal of the work on SAS-DIF3DK is to produce a detailed code that will run a wide range of transients in real time. Achieving this goal will require efficient numerical methods and efficient coding, and it will probably require the use of multiple processors for larger problems. In order to obtain clean code-to-code thermal hydraulics comparisons with a recognized and established code, a detailed thermal hydraulic model was set up for an RBMK assembly and its associated piping, The same identical input model was implemented in both SAS-DIF3DK and RELAP5 mod 3.2. Both steady-state and transient thermal hydraulics calculations were made with this model. Except for cladding temperatures in one transient, the SAS-DIF3DK results were similar to or almost identical to the RELAP5 results, and SAS-DIF3DK ran an order of magnitude or more faster than RELAP5. The cladding temperature differences can be explained in terms of different post-DNB models and heat transfer coefficients.

  7. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  8. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    SciTech Connect

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B.

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  9. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of

  10. Advanced MCCI Modelling Based on Stringent Coupling of Thermal Hydraulics and Real Solution Thermochemistry in COSACO

    SciTech Connect

    Nie, M.; Fischer, M.; Lohnert, G.

    2002-07-01

    The development of the MCCI code COSACO specifically addresses the ex-vessel MCCI phase of the core melt retention concept of the EPR. The general philosophy behind COSACO is a rigorous representation of thermochemical phenomena related to the MCCI. In particular, the code incorporates a real solution database to predict the simultaneous formation of solid and liquid phases as well as chemical reactions for a significant number melt constituents. This offers a great flexibility in terms of application to MCCIs involving reactor materials and to tests conducted with simulant melts. The approach to model heat transfer in oxidic melt pools is based on the phase segregation hypothesis. Besides a brief description of the principal models incorporated in COSACO, this paper highlights specific thermochemical effects that arose as part of post-test calculations of the tests MACE M3b and MACE M4 with this new code version. Particular attention is drawn to the effect of melt ejections on the pool temperature as well as to the evolution of solid volumetric fraction and of melt front progression during the MCCI. Finally, the application to a representative EPR specific sequence indicates that the principal objectives of the MCCI in the reactor pit can be safely fulfilled. (authors)

  11. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  12. Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design

    SciTech Connect

    Sulfredge, CD

    2006-01-27

    To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

  13. Steady-State Thermal-Hydraulics Analyses for the Conversion of BR2 to Low Enriched Uranium Fuel

    SciTech Connect

    Licht, J.; Bergeron, A.; Dionne, B.; Van den Branden, G; Kalcheva, S; Sikik, E; Koonen, E

    2015-01-01

    The code PLTEMP/ANL version 4.2 was used to perform the steady-state thermal-hydraulic analyses of the BR2 research reactor for conversion from Highly-Enriched to Low Enriched Uranium fuel (HEU and LEU, respectively). Calculations were performed to evaluate different fuel assemblies with respect to the onset of nucleate boiling (ONB), flow instability (FI), critical heat flux (CHF) and fuel temperature at beginning of cycle conditions. The fuel assemblies were characteristic of fresh fuel (0% burnup), highest heat flux (16% burnup), highest power (32% burnup) and highest burnup (46% burnup). Results show that the high heat flux fuel element is limiting for ONB, FI, and CHF, for both HEU and LEU fuel, but that the high power fuel element produces similar margin in a few cases. The maximum fuel temperature similarly occurs in both the high heat flux and high power fuel assemblies for both HEU and LEU fuel. A sensitivity study was also performed to evaluate the variation in fuel temperature due to uncertainties in the thermal conductivity degradation associated with burnup.

  14. Review of thermal-hydraulic calculations for Calvert Cliffs and H. B. Robinson PTS study. [Pressurized thermal shock

    SciTech Connect

    Jo, J.H.; Yuelys-Miksis, C.; Rohatgi, U.S.

    1984-01-01

    Thermal-hydraulic transient calculations performed by LANL using the TRAC-PF1 code and by INEL using the RELAP5 code for the USNRC pressurized thermal shock (PTS) study of the Calvert Cliffs and H.B. Robinson Nuclear Power Plants have been reviewed at BNL including the input decks and steady state calculations. Furthermore, six transients for each plant have been selected for the in-depth review. Simple hand calculations based on the mass and energy balances of the entire reactor system, have been performed to predict the temperature and pressure of the reactor system, and the results have been compared with those obtained by the code calculation. In general, the temperatures and pressures of the primary system calculated by the codes have been very reasonable. The secondary pressures calculated by TRAC appear to indicate that the codes have some difficulty with the condensation model and further work is needed to assess the code calculation of the U-tube steam generator pressure when the cold auxiliary feedwater is introduced to the steam generator. However, it is not expected that this uncertainty would affect the transient calculations significantly.

  15. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  16. Physics and thermal hydraulics design of a small water cooled reactor fuelled with plutonium in rock-like oxide (ROX) form

    SciTech Connect

    Gaultier, M.; Danguy, G.; Perry, A.; Williams, A.; Brushwood, J.; Thompson, A.; Beeley, P. A.

    2006-07-01

    This paper describes the Physics and Thermal Hydraulics areas of a design study for a small water-cooled reactor. The aim was to design a Pressurised Water Reactor (PWR) of maximum power 80 MWt, using a dispersed layout, capable of maximising primary natural circulation flow. The reactor fuel consists of plutonium contained in granular form within a Rock-like Oxide (ROX) pellet structure. (authors)

  17. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    NASA Astrophysics Data System (ADS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  18. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  19. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor. PMID:27552124

  20. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat @

    2014-02-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  1. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  2. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  3. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor.

  4. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    SciTech Connect

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating the MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)

  5. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    SciTech Connect

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-02-12

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  6. Application of Advanced Thermal Hydraulic TRACG Model to Preserve Operating Margins in BWRs at Extended Power Up-rate Conditions

    SciTech Connect

    Andersen, Jens G. M.; Casillas, Jose L.; Shiralkar, Bharat S.

    2006-07-01

    GE has developed TRACG, a customized BWR version of the TRAC model, for application to BWR analyses. This model was initially applied to special BWR challenges and for benchmarking the official simplified thermal-hydraulic design models. However, in past years extensive additional model development, qualification and application studies have been completed. This development has followed the CSAU methodology, where extensive model evaluation and qualification have been performed to demonstrate the applicability of the model and to quantify the uncertainty in the model parameters as well as in plant parameters and initial conditions. This has then been combined with a statistically based application methodology following the CSAU approach to generate tolerance limits for the critical safety and design parameters. This effort has resulted in application processes that have been reviewed and approved by the US NRC to enable routine application of the TRACG model to the design and licensing analyses and utilize the improved operating margin to optimize the fuel cycle design. These applications have been supported by development of programs that construct specific plant and problem base-decks that utilize BWR plant characteristics and system databases to standardize and streamline the application to several plants. The application of the TRACG model in Transient and LOCA analyses has assisted in allowing similar power peaking at higher power density conditions for BWRs. Also, the application of the TRACG model in Stability analyses has assisted in preserving the setpoints of stability monitoring systems to avoid margin loss for high power density applications. TRACG is being used for analysis of ATWS events. It has been used to support the development of emergency procedure guidelines, and it is currently being used to demonstrate that the suppression pool temperature limits can be met for up-rated conditions. Finally, the application of the TRACG model in Faulted Load

  7. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  8. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  9. Analysis of Thermal-Hydraulic Gravity/ Buoyancy Effects in the Testing of the ITER Poloidal Field Full Size Joint Sample (PF-FSJS)

    SciTech Connect

    Zanino, R.; Savoldi Richard, L.; Bruzzone, P.; Ciazynski, D.; Nicollet, S.

    2004-06-23

    The PF-FSJS is a full-size joint sample, based on the NbTi dual-channel cable-in-conduit conductor (CICC) design currently foreseen for the International Thermonuclear Experimental Reactor (ITER) Poloidal Field coil system. It was tested during the summer of 2002 in the Sultan facility of CRPP at a background peak magnetic field of typically 6 T. It includes about 3 m of two jointed conductor sections, using different strands but with identical layout. The sample was cooled by supercritical helium at nominal 4.5-5.0 K and 0.9-1.0 MPa, in forced convection from the top to the bottom of the vertical configuration. A pulsed coil was used to test AC losses in the two legs resulting, above a certain input power threshold, in bundle helium backflow from the heated region. Here we study the thermal-hydraulics of the phenomenon with the M and M code, with particular emphasis on the effects of buoyancy on the helium dynamics, as well as on the thermal-hydraulic coupling between the wrapped bundles of strands in the annular cable region and the central cooling channel. Both issues are ITER relevant, as they affect the more general question of the heat removal capability of the helium in this type of conductors.

  10. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: II - Rod Bowing Effect on Boiling Transition under Transient Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Akimoto, Hajime

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we describe the critical power characteristics in a 37-rod tight-lattice bundle with rod bowing under transient states. It is observed that transient Boiling Transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle, which is same as that under steady state. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with a modified TRAC-BFI code, where Japan Atomic Energy Agency (JAEA) newest critical power correlation is implemented for the BT judgement. The code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time conservatively. Traditional quasi-steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight-lattice bundle with rod bowing.

  11. Overview of thermal-buoyancy-induced phenomena in reactor-plant components. [LMFBR

    SciTech Connect

    Kasza, K.E.; Kuzay, T.M.; Oras, J.J.

    1984-01-01

    Studies related to delineating the influence of thermal-buoyancy forces on the thermal-hydraulics of Liquid Metal Fast Breeder Reactor plant components under low-flow thermal transient and steady state conditions have generated unique information which will aid design of these components. Various buoyancy force induced phenomena such as thermal stratification, flow recirculation, stagnation, and channeling are described and the importance to component performance are discussed. The water based studies have been conducted in the Mixing Components Test Facility, a large multi program facility capable of performing generic studies of fluid flow and heat transfer in reactor components under programmed transient and steady state conditions.

  12. A Parametric Study of the Thermal-Hydraulic Response of Supercritical Light Water Reactors During Loss-of-Feedwater and Turbine-Trip Events

    SciTech Connect

    Cliff B. Davis; Jacopo Buongiorno; Philip E. MacDonald

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory in investigating the feasibility of supercritical light water reactors for low-cost electric power production through a Nuclear Energy Research Initiative Project sponsored by the United State Department of Energy. The project is evaluating a variety of technical issues related to the fuel and reactor design, material corrosion, and safety characteristics. This paper presents the results of parametric calculations using the RELAP5 computer code to characterize the thermal-hydraulic response of supercritical reactors to transients initiated by loss-of-feedwater and turbine-trip events. The purpose of the calculations was to aid in the design of the safety systems by determining the time available for the safety systems to respond and their required capacities.

  13. Experimental investigations of thermal-hydraulic processes arising during operation of the passive safety systems used in new projects of nuclear power plants equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Morozov, A. V.; Remizov, O. V.; Kalyakin, D. S.

    2014-05-01

    The results obtained from experimental investigations into thermal-hydraulic processes that take place during operation of the passive safety systems used in new-generation reactor plants constructed on the basis of VVER technology are presented. The experiments were carried out on the model rigs available at the Leipunskii Institute for Physics and Power Engineering. The processes through which interaction occurs between the opposite flows of saturated steam and cold water moving in the vertical steam line of the additional system for passively flooding the core from the second-stage hydro accumulators are studied. The specific features pertinent to undeveloped boiling of liquid on a single horizontal tube heated by steam and steam-gas mixture that is typical for of the condensing operating mode of a VVER reactor steam generator are investigated.

  14. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Massacret, N.; Moysan, J.; Ploix, M. A.; Jeannot, J. P.; Corneloup, G.

    2013-01-01

    In the framework of the French R&D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 °C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlabin order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  15. TWO-PHASE FLOW STUDIES IN NUCLEAR POWER PLANT PRIMARY CIRCUITS USING THE THREE-DIMENSIONAL THERMAL-HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KOHURT, P. , KALINICHENKO, S.D.; KROSHILIN, A.E.; KROSHILIN, V.E.; SMIRNOV, A.V.

    2006-06-04

    In this paper we present recent results of the application of the thermal-hydraulic code BAGIRA to the analysis of complex two-phase flows in nuclear power plants primary loops. In particular, we performed benchmark numerical simulation of an integral LOCA experiment performed on a test facility modeling the primary circuit of VVER-1000. In addition, we have also analyzed the flow patterns in the VVER-1000 steam generator vessel for stationary and transient operation regimes. For both of these experiments we have compared the numerical results with measured data. Finally, we demonstrate the capabilities of BAGIRA by modeling a hypothetical severe accident for a VVER-1000 type nuclear reactor. The numerical analysis, which modeled all stages of the hypothetical severe accident up to the complete ablation of the reactor cavity bottom, shows the importance of multi-dimensional flow effects.

  16. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  17. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  18. Preliminary investigation of the potential for transient vapor release events during in situ vitrification based on thermal- hydraulic modeling

    SciTech Connect

    Roberts, J.S.; Woosley, S.L.; Lessor, D.L.; Strachan, C.

    1992-07-01

    This study investigates a possible cause of molten glass displacements that occurred during two recent in situ vitrification (ISV) tests. The study was conducted for the US Department of Energy by Pacific Northwest Laboratory. It is hypothesized that these glass displacements are caused by large gas bubbles rising up through the ISV melt and bursting at its surface. These bubbles cause the molten surface to upwell and possibly overflow. When the bubbles burst, molten glass is thrown from the melt surface and the volume of gas contained in the bubble is released into the hood. Both of these phenomena are undesirable because the molten soil ejected from the melt is dangerous to operating personnel and can damage equipment. The sudden gas release can cause a temporary pressurization of the hood, allowing potentially contaminated gas to escape to the atmosphere. This study attempts to explain the conditions necessary for formation of large gas bubbles in the melt so that future glass displacements can be avoided.

  19. Nonlinear sensitivity and uncertainty analysis in support of the blowdown heat transfer program. [Test 177 at Thermal-Hydraulic Test Facility

    SciTech Connect

    Ronen, Y.; Bjerke, M.A.; Cacuci, D.G.; Barhen, J.

    1980-11-01

    A nonlinear uncertainty analysis methodology based on the use of first and second order sensitivity coefficients is presented. As a practical demonstration, an uncertainty analysis of several responses of interest is performed for Test 177, which is part of a series of tests conducted at the Thermal-Hydraulic Test Facility (THTF) of the ORNL Engineering Technology Division Pressurized Water Reactor-Blowdown Heat Transfer (PWR-BDHT) program. These space- and time-dependent responses are: mass flow rate, temperature, pressure, density, enthalpy, and water qualtiy - in several volumetric regions of the experimental facility. The analysis shows that, over parts of the transient, the responses behave as linear functions of the input parameters; in these cases, their standard deviations are of the same order of magnitude as those of the input parameters. Otherwise, the responses exhibit nonlinearities and their standard deviations are considerably larger. The analysis also shows that the degree of nonlinearity of the responses is highly dependent on their volumetric locations.

  20. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  1. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    SciTech Connect

    Massacret, N.; Jeannot, J. P.

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  2. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  3. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  4. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  5. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  6. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  7. COBRA-SFS (Spent-Fuel Storage) thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.

    1986-12-01

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates.

  8. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  9. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  10. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  11. Scaling of Quench Front and Entrainment-Related Phenomena

    SciTech Connect

    Aumiller, D. L.; Hourser, R. J.; Holowach, M. J.; Hochreiter, L. E.; Cheung, F-B.

    2002-04-01

    The scaling of thermal hydraulic systems is of great importance in the development of experiments in laboratory-scale test facilities that are used to replicate the response of full-size prototypical designs. One particular phenomenon that is of interest in experimental modeling is the quench front that develops during the reflood phase in a PWR (Pressurized Water Reactor) following a large-break LOCA (Loss of Coolant Accident). The purpose of this study is to develop a scaling methodology such that the prototypical quench front related phenomena can be preserved in a laboratory-scale test facility which may have material, geometrical, fluid, and flow differences as compared to the prototypical case. A mass and energy balance on a Lagrangian quench front control volume along with temporal scaling methods are utilized in developing the quench front scaling groups for a phenomena-specific second-tier scaling analysis. A sample calculation is presented comparing the quench front scaling groups calculated for a prototypical Westinghouse 17 x 17 PWR fuel design and that of the geometry and material configuration used in the FLECHT SEASET series of experiments.

  12. The modeling of core melting and in-vessel corium relocation in the APRIL code

    SciTech Connect

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T.

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  13. Thermal Hydraulic Computer Code System.

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  14. Optimization and Parallelization of the Thermal-Hydraulic Sub-channel Code CTF for High-Fidelity Multi-physics Applications

    SciTech Connect

    Salko, Robert K; Schmidt, Rodney; Avramova, Maria N

    2014-01-01

    assemblies, ~56,000 pins, ~59,000 sub-channels, ~2.8 million thermal-hydraulic (TH) control volumes). Results demonstrate that CTF can now perform full core analysis (not previously possible due to excessively long runtimes and memory requirements) on the order of 20 minutes. This new capability is not only useful to standalone CTF users, but is also being leveraged in support of coupled code multi-physics calculations being done in the CASL program.

  15. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    SciTech Connect

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  16. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  17. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  18. Numerical Simulation of Thermal Striping Phenomena in a T-Junction Piping System Using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, Masa-Aki; Ohshima, Hiroyuki; Monji, Hideaki

    At the Japan Atomic Energy Agency (JAEA), the simulation code “MUGTHES (MUlti Geometry simulation code for THErmal-hydraulic and Structure heat conduction analysis in boundary fitted coordinate)” has been developed to evaluate thermal striping phenomena that are caused by the turbulence mixing of fluids at different temperatures. In this paper, numerical schemes for thermal-hydraulic simulation employed in MUGTHES are described, including the LES model. A simple method to limit numerical oscillation is adopted in energy equation solutions. A new iterative method to solve the Poisson equation in the BFC system is developed for effective transient calculations. This method is based on the BiCGSTAB method and the SOR technique. As the code validation of MUGTHES, a numerical simulation in a T-junction piping system with the LES approach was conducted. Numerical results related to velocity and fluid temperature distributions were compared with existing water experimental data and the applicability of numerical schemes with the LES model in MUGTHES to the thermal striping phenomenon was confirmed.

  19. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  20. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  1. Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements

    SciTech Connect

    Rothrock, R.B.

    1998-09-01

    This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.

  2. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  3. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  4. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  5. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  6. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  7. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  8. Paramutation phenomena in plants.

    PubMed

    Pilu, Roberto

    2015-08-01

    Paramutation is a particular epigenetic phenomenon discovered in Zea mays by Alexander Brink in the 1950s, and then also found in other plants and animals. Brink coined the term paramutation (from the Greek syllable "para" meaning beside, near, beyond, aside) in 1958, with the aim to differentiate paramutation from mutation. The peculiarity of paramutation with respect to other gene silencing phenomena consists in the ability of the silenced allele (named paramutagenic) to silence the other allele (paramutable) present in trans. The newly silenced (paramutated) allele remains stable in the next generations even after segregation from the paramutagenic allele and acquires paramutagenic ability itself. The inheritance behaviour of these epialleles permits a fast diffusion of a particular gene expression level/phenotype in a population even in the absence of other evolutionary influences, thus breaking the Hardy-Weinberg law. As with other gene silencing phenomena such as quelling in the fungus Neurospora crassa, transvection in Drosophila, co-suppression and virus-induced gene silencing (VIGS) described in transgenic plants and RNA interference (RNAi) in the nematode Caenorhabditis elegans, paramutation occurs without changes in the DNA sequence. So far the molecular basis of paramutation remains not fully understood, although many studies point to the involvement of RNA causing changes in DNA methylation and chromatin structure of the silenced genes. In this review I summarize all paramutation phenomena described in plants, focusing on the similarities and differences between them.

  9. Processing and analysis techniques involving in-vessel material generation

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2012-09-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  10. Processing and analysis techniques involving in-vessel material generation

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  11. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  12. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    SciTech Connect

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.

  13. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  14. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  15. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  16. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    SciTech Connect

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-31

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  17. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-01

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  18. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  19. Visualization of bioelectric phenomena.

    PubMed

    Palmer, T C; Simpson, E V; Kavanagh, K M; Smith, W M

    1992-01-01

    Biomedical investigators are currently able to acquire and analyze physiological and anatomical data from three-dimensional structures in the body. Often, multiple kinds of data can be recorded simultaneously. The usefulness of this information, either for exploratory viewing or for presentation to others, is limited by the lack of techniques to display it in intuitive, accessible formats. Unfortunately, the complexity of scientific visualization techniques and the inflexibility of commercial packages deter investigators from using sophisticated visualization methods that could provide them added insight into the mechanisms of the phenomena under study. Also, the sheer volume of such data is a problem. High-performance computing resources are often required for storage and processing, in addition to visualization. This chapter describes a novel, language-based interface that allows scientists with basic programming skills to classify and render multivariate volumetric data with a modest investment in software training. The interface facilitates data exploration by enabling experimentation with various algorithms to compute opacity and color from volumetric data. The value of the system is demonstrated using data from cardiac mapping studies, in which multiple electrodes are placed in an on the heart to measure the cardiac electrical activity intrinsic to the heart and its response to external stimulation.

  20. Solar Magnetic Phenomena

    NASA Astrophysics Data System (ADS)

    Hanslmeier, Arnold; Veronig, Astrid; Messerotti, Mauro

    This book contains the proceedings of the Summerschool and Workshop "Solar Magnetic Phenomena" held from 25 August to 5 September 2003 at the Solar Observatory Kanzelhoehe, which belongs to the Institute for Geophysics, Astrophysics and Meteorology of the University of Graz, Austria. The book contains the contributions from six invited lecturers, They give an overview on the following topics: observations of the photosphere and chromosphere, solar flares observations and theory, coronal mass ejections and the relevance of magnetic helicity, high-energy radiation from the Sun, the physics of solar prominences and highlights from the SOHO mission. The lectures contain about 25 to 30 pages each and provide a valuable introduction to the topics mentioned above. The comprehensive lists of references at the end of each contribution enable the interested reader to go into more detail. The second part of the book contains contributed papers. These papers were presented and discussed in the workshop sessions during the afternoons. The sessions stimulated intensive discussions between the participants and the lecturers.

  1. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  2. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  3. Tail phenomena. [of Halley's comet

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Niedner, M. B., Jr.

    1985-01-01

    An overview of tail phenomena is presented based on worldwide submissions to the Large-Scale Phenomena Discipline Specialist Team of the International Halley Watch. Examples of tail phenomena and science are presented along with estimates of total expected yield from the Network. The archive of this material will clearly be very valuable for studying the solar-wind/comet interaction during the 1985-1986 apparition of Halley's Comet.

  4. Hypervelocity impact phenomena

    SciTech Connect

    Chhabildas, L.C.

    1995-07-01

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences-orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided in this paper.

  5. Positron impact ionisation phenomena

    NASA Astrophysics Data System (ADS)

    Moxom, J.

    A magnetically guided beam of nearly-monoenergetic slow positrons has been used to study positron impact ionisation phenomena in gases. A novel hemispherical scattering cell incorporating an efficient ion extraction and detection system has been developed and has been utilised throughout this work. The energy spectra for the electrons ejected around 0° relative to the incident beam, following positron impact ionisation of Ar, have been measured by a time-of-flight method and a retarding electric field analyzer. The angular acceptance of the electron detection system has been estimated and used to compare the measured spectra with the double differential cross-sections calculated by Mandal et al (1986), Sil et al (1991) and Schultz and Reinhold (1990). The importance of the electron-capture-to-the-continuum process is discussed in this context and found to be minor at small forward angles, in contrast to the case of heavy positively charged projectiles. The apparatus was modified to produce a pulsed beam of slow positrons and utilised to measure in detail the total ionisation cross-section (Qt+) for a variety of atomic and molecular targets. For Ar, He and H2, Qt+ which includes contributions from Ps formation, has been subtracted from corresponding total cross-sections, in order to deduce the behaviour of the elastic scattering cross-section (Qel) in the vicinity of the Ps formation threshold (Eps). Here a small change in the gradient of Qel, has been found. The energy dependencies of the Qt+ for He, Ne and Ar, close to Eps have been interpreted in terms of threshold theory. In the case of Ar the outgoing Ps appears to be predominantly s-wave in character. For He and Ne the analysis suggests that the Ps contains significant contributions from a number of partial waves. In the case of O 2, structure in Qt+ has been found, which is attributed to coupling between two inelastic channels, namely Ps formation and excitation to the Schuman-Runge continuum.

  6. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  7. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  8. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  9. Thermal hydraulic features of the TMI accident

    NASA Astrophysics Data System (ADS)

    Tolman, B.

    1985-10-01

    The Three Mile island (TMI)-2 accident resulted in extensive core damage and recent data confirms that the reactor vessel was challenged from molten core materials. A hypothesized TMI accident scenario is presented that consistently explains the TMI data and is also consistent with research findings from independent severe fuel damage experiments. The TMI data will prove useful in confirming our understanding of severe core damage accidents under realistic reactor systems conditions. This understanding will aid in addressing safety and regulatory issues related to severe core damage accidents in light water reactors.

  10. Uncertainty methodology for the strongly coupled physical phenomena associated with annular flow

    SciTech Connect

    Lane, J. W.; Aumiller Jr, D. L.

    2012-07-01

    Best-Estimate plus Uncertainty (BEPU) methods are slowly supplanting the use of deterministic analysis methods for thermal-hydraulic analyses. As the uncertainty methodologies evolve it is expected that, where both experimental techniques allow and data are available, there will be a shift to quantifying the uncertainty in increasingly more fundamental parameters. For example, for annular flow in a three-field analysis environment (vapor, liquid film, droplet), the driving parameters would be: a) film interfacial shear stress, b) droplet drag, c) droplet entrainment rate and d) droplet deposition rate. An improved annular flow modeling package was recently developed and implemented in an in-house version of the COBRA-TF best-estimate subchannel analysis tool (Lane, 2009). Significant improvement was observed in the code-to-data predictions of several steam-water annular flow tests following the implementation of this modeling package; however, to apply this model set in formal BEPU analysis requires uncertainty distributions to be determined. The unique aspect of annular flow, and the topic of the present work, is the strong coupling between the interfacial drag, entrainment and deposition phenomena. Ideally the uncertainty in each phenomenon would be isolated; however, the situation is further complicated by an inability to experimentally isolate and measure the individual rate processes (particularly entrainment rate), which results in available experimental data that are inherently integral in nature. This paper presents a methodology for isolating the individual physical phenomena of interest, to the extent that the currently available experimental data allow, and developing the corresponding uncertainty distributions for annular flow. (authors)

  11. DESIGN OF THE ITER IN-VESSEL COILS

    SciTech Connect

    Neumeyer, C; Bryant, L; Chrzanowski, J; Feder, R; Gomez, M; Heitzenroeder, P; Kalish, M; Lipski, A; Mardenfeld, M; Simmons, R; Titus, P; Zatz, I; Daly, E; Martin, A; Nakahira, M; Pillsbury, R; Feng, J; Bohm, T; Sawan, M; Stone, H; Griffiths, I; Schaffer, M

    2010-11-27

    The ITER project is considering the inclusion of two sets of in-vessel coils, one to mitigate the effect of Edge Localized Modes (ELMs) and another to provide vertical stabilization (VS). The in-vessel location (behind the blanket shield modules, mounted to the vacuum vessel inner wall) presents special challenges in terms of nuclear radiation (~3000 MGy) and temperature (100oC vessel during operations, 200oC during bakeout). Mineral insulated conductors are well suited to this environment but are not commercially available in the large cross section required. An R&D program is underway to demonstrate the production of mineral insulated (MgO or Spinel) hollow copper conductor with stainless steel jacketing needed for these coils. A preliminary design based on this conductor technology has been developed and is presented herein.

  12. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  13. Undergraduates' understanding of cardiovascular phenomena.

    PubMed

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed.

  14. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  15. Quantum Phenomena Observed Using Electrons

    SciTech Connect

    Tonomura, Akira

    2011-05-06

    Electron phase microscopy based on the Aharonov-Bohm (AB) effect principle has been used to illuminate fundamental phenomena concerning magnetism and superconductivity by visualizing quantitative magnetic lines of force. This paper deals with confirmation experiments on the AB effect, the magnetization process of tiny magnetic heads for perpendicular recording, and vortex behaviors in high-Tc superconductors.

  16. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  17. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    SciTech Connect

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A

    2011-05-31

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  18. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  19. Molecular model for chirality phenomena

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-10-01

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  20. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  1. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  2. Emergent Phenomena via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Emergent phenomena are unusual because they are not obvious consequences of the design of the systems in which they appear, a feature no less relevant when they are being simulated. Several systems that exhibit surprisingly rich emergent behavior, each studied by molecular dynamics (MD) simulation, are described: (i) Modeling self-assembly processes associated with virus growth reveals the ability to achieve error-free assembly, where paradoxically, near-maximum yields are due to reversible bond formation. (ii) In fluids studied at the atomistic level, complex hydrodynamic phenomena in rotating and convecting fluids - the Taylor- Couette and Rayleigh-Bénard instabilities - can be reproduced, despite the limited length and time scales accessible by MD. (iii) Segregation studies of granular mixtures in a rotating drum reproduce the expected, but counterintuitive, axial and radial segregation, while for the case of a vertically vibrated layer a novel form of horizontal segregation is revealed.

  3. Investigation of Minimum Film boiling Phenomena on Fuel Rods Under Blowdown Cooling Conditions

    SciTech Connect

    Stephen M. Bajorek; Michael Gawron; Timothy Etzel; Lucas Peterson

    2003-06-30

    Blowdon cooling heat transfer is an important process that occurs early in a hypothetical large break loss-of-coolant accident (LOCA) in a pressurized water reactor. During blowdown, the flow through the hot assembly is a post-critical heat flux dispersed droplet flow. The heat transfer mechanisms that occur in blowdown cooling are complex and depend on droplet and heated surface interaction. In a safety analysis, it is of considerable importance to determine the thermal-hydraulic conditions leading to the minimum film boiling temperature, Tmin. A flow boiling rig for measurement of blowdown cooling heat transfer and quench phenomena on a nuclear fuel rod simulator was designed and constructed for operation at up to 12.4 MPa. The test section consisted of a concentric annulus, with a 9.5 mm OD nuclear fuel rod simulator at the center. The rod was contained within a 0.85 mm thick, 19 mm OD 316 stainless steel tube, forming the flow channel. Two types of rods were tested; one type was sheathed with Inconel 600 while the other was clad with Zircaloy-2. Water was injected into the test section at the top of the heated length through an injection header. This header was an annular sign that fit around the fuel rod simulator and within the stainless steel tube. Small spacers aligned the injection header and prevented contract with either the heater rod or the tube. A series of small diameter holes at the bottom of the header caused the formation of droplets that became entrained with the steam flow. The test section design was such that quench would take place on the rod, and not along the channel outer annulus.

  4. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  5. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  6. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  7. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  8. Studies on in-vessel debris coolability in ALPHA program

    SciTech Connect

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi

    1997-02-01

    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heated vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.

  9. Transport phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Bear, Jacob; Corapcioglu, M. Yavuz

    The Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media, held July 14-23, 1985 in Newark, Del. and directed by Jacob Bear (Israel Institute of Technology, Haifa) and M. Yavuz Corapcioglu (City College of New York), under the auspices of NATO, was a sequel to the NATO Advanced Study Institute (ASI) held in 1982 (proceedings published as Fundamentals of Transport Phenomena in Porous Media, J. Bear, and M.Y. Corapcioglu (Ed.), Martinus Nijhoff, Dordrecht, the Netherlands, 1984). The meeting was attended by 106 participants and lecturers from 21 countries.As in the first NATO/ASI, the objective of this meeting—which was a combination of a conference of experts and a teaching institute— was to present and discuss selected topics of transport in porous media. In selecting topics and lecturers, an attempt was made to bridge the gap that sometimes exists between research and practice. An effort was also made to demonstrate the unified approach to the transport of mass of a fluid phase, components of a fluid phase, momentum, and heat in a porous medium domain. The void space may be occupied by a single fluid phase or by a number of such phases; each fluid may constitute a multicomponent system; the solid matrix may be deformable; and the whole process of transport in the system may take place under nonisothermal conditions, with or without phase changes. Such phenomena are encountered in a variety of disciplines, e.g., petroleum engineering, civil engineering (in connection with groundwater flow and contamination), soil mechanics, and chemical engineering. One of the goals of the 1985 NATO/ASI, as in the 1982 institute, was to bring together experts from all these disciplines and enhance communication among them.

  10. Correlated randomness and switching phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  11. Critical phenomena of invariant circles

    SciTech Connect

    Hu, B.; Shi, J. ); Kim, S. )

    1991-04-15

    Some novel critical phenomena are discovered in a class of nonanalytic twist maps. It is found that the degree of inflection {ital z} plays a role reminiscent of that of dimensionality in phase transitions with {ital z}=2 and 3 corresponding to the lower and upper critical dimensions, respectively. Moreover, recurrence of invariant circles has also been observed. An inverse residue criterion,'' complementary to the residue criterion'' for the determination of the disappearance point, is introduced to determine the reappearance point of invariant circles.

  12. Visual phenomena, disturbances, and hallucinations.

    PubMed

    Adamczyk, D T

    1996-01-01

    The visual system and its processing of sensory information can be affected in a variety of ways that may be either normal or associated with numerous disorders and diseases. Visual images produced by the intrinsic components of the eyes are often normal and are known as entoptic phenomena. In contrast, the visual system may be disrupted by various disorders and pathologic processes, which can result in metamorphopsia, transient loss of vision, and positive scotomas. Such disruptions can be secondary to retinal and optic nerve disease, migraines associated with visual auras, and cerebrovascular and neurologic diseases; they can also be side effects of certain drugs. In addition, the visual system may process incoming sensory information in such a way that what is seen is perceived incorrectly, i.e. illusion; or the visual system may produce images of things not really there, i.e. hallucination. Various types of visual phenomena, disturbances, and hallucinations are discussed. The numerous visual presentations need to be differentiated so that appropriate treatment, management, and patient education can be rendered.

  13. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  14. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  15. Unidentified phenomena - Unusual plasma behavior?

    NASA Astrophysics Data System (ADS)

    Avakian, S. V.; Kovalenok, V. V.

    1992-06-01

    The paper describes observations of a phenomenon belonging to the UFO category and the possible causes of these events. Special attention is given to an event which occurred during the night of September 19-20, 1974, when a huge 'star' was observed over Pertrozavodsk (Russia), consisting of a bright-white luminous center, emitting beams of light, and a less bright light-blue shell. The star gradually formed a cometlike object with a tail consisting of beams of light and started to descend. It is suggested that this event was related to cosmic disturbances caused by an occurrence of unusually strong solar flares. Other examples are presented that relate unusual phenomena observed in space to the occurrence of strong magnetic turbulence events.

  16. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin

  17. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  18. In-vessel activation monitors in JET: Progress in modeling

    SciTech Connect

    Bonheure, Georges; Lengar, I.; Syme, B.; Popovichev, S.; Arnold, Dirk; Laubenstein, Matthias

    2008-10-15

    Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

  19. In-vessel composting at the Hidden Valley Landfill

    SciTech Connect

    Cox, C.

    1998-01-01

    Yard waste composting is a simple and natural process. But left alone, natural decomposition takes years. With commercial composting, on the other hand, the process must be accelerated by workers and equipment. Moreover, it has to be accomplished in a relatively small space, it has to be accessible to trucks and other vehicles, it is subject to quality control standards, and it has to be free or relatively free of objectionable odor. Most importantly, for economic feasibility, it must find an end market. One facility that apparently has met those criteria is Land Recovery, Inc.`s (LRI, Tacoma, Wash.) Hidden Valley Landfill site in Puyallup, Wash., south of Tacoma. LRI is a fully integrated solid waste management company that operates a landfill, intermodal transfer site, and a recycling center. The Purdy facility has surpassed its designed average capacity of 80 tpd and designed peak capacity of 120 tpd, with peaks running as high as 200 tpd. LRI needed to expand, but there was very little room to do so at the Purdy site. LRI`s solution was to start an in-vessel composting operation adjacent to the Hidden Valley Landfill, using 50-cu.yd. modified roll-off containers as the composting enclosure and 20-cu.yd. containers to filter the odorous exhaust from the decomposing materials. The compost facility is a temporary measure until a new, fully enclosed facility is built in about another year.

  20. In-Vessel Retention - Recent Efforts and Future Needs

    SciTech Connect

    J. L. Rempe

    2004-10-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. However, it is not clear that the external reactor vessel cooling (ERVC) proposed for existing and some advanced reactors would provide sufficient heat removal for higher-power reactors (up to 1400 MWe) without additional enhancements. This paper summarizes recent efforts to enhance IVR and identifies additional needs to demonstrate that there is sufficient margin for successful IVR in high power reactors.

  1. Autistic phenomena in neurotic patients.

    PubMed

    Klien, S

    1980-01-01

    I have described a group of patients who are seemingly successful in their professional and social lives, and who seek analysis ostensibly for professional reasons or for minor difficulties in their relationship. However, sooner or later they reveal phenomena which are strikingly similar to those observed in so-called autistic children. These autistic phenomena are characterized by an almost impenetrable encapsulation of part of the personality, mute and implacable resistance to change, and a lack of real emotional contact either with themselves or the analyst. Progress of the analysis reveals an underlying intense fear of pain, and of death, disintegration or breakdown. These anxieties occur as a reaction to real or feared separation, especially when commitment to analysis deepens. In the case I have described in detail the patient used various projective processes to deflect painful emotions either into other people, including the analyst, or into their own bodies. As a consequence the various objects or organs of the body swell up and became suffused with rage as a result of having to contain the unwanted feelings. This process leads in turn to intense persecutory fears and a heightened sensitivity to the analyst's tone of voice and facial expression. It would seem that the initial hypersensitivity of part of the personality is such as to lead it to anticipate danger to such an extent that it expels feelings even before they reach awareness. The sooner the analyst realizes the existence of this hidden part of the patient the less the danger of the analysis becoming an endless and meaningless intellectual dialogue and the greater the possibilities of the patient achieving a relatively stable equilibrium. Although the analyst has to live through a great deal of anxiety with the patient I feel that ultimately the results make it worth while.

  2. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  3. Laser in vessel-viewing system for nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Bartolini, Luciano; Bordone, Andrea; Coletti, Alberto; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Lupini, S.; Neri, Carlo; Poggi, Claudio; Riva, Marco; Semeraro, Luigi; Talarico, Carlo

    2000-11-01

    An amplitude modulated laser radar has been developed by ENEA (Italian Agency for New Technologies, Energy and Environment) for periodic in-vessel inspection in large fusion machines. Its overall optical design has been developed taking into account the extremely high radiation levels and operating temperatures foreseen in large European fusion machines such as JET (Joint European Torus) and ITER (International Thermo- nuclear Experimental Reactor). The viewing system is based on a transceiving optical radar using a RF modulated single mode 840 nm wavelength laser beam. The sounding beam is transmitted through a coherent optical fiber and a focusing optic to the inner part of the nuclear reactor vessel by a stainless steel probe on the tip of which a suitable scanning silica prism steers the laser beam along a linear raster spanning a -90 degree(s) to +60 degree(s) in elevation and 360 degree(s) in azimuth for a complete mapping of the vessel itself. All the electronics, including the laser source, avalanche photodiode and all the active components are located outside the bioshield, while passive components (receiving optics, transmitting collimator, fiber optics), located in the torus hall, are made of fused silica so that the overall laser radar is radiation resistant. The signal is acquired, the raster lines being synchronized with the aid of optical encoders linked to the scanning prism, thus yielding a TV like image. Preliminary results have been obtained scanning large sceneries including several real targets having different backscattering properties, colors and surface reflectivity ranging over several decades to simulate the expected dynamic range of the video signals incoming from the vessel.

  4. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  5. Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Barker, Timothy; Farber, Ryan; Ahrendts, Gary

    2014-06-01

    Transient Lunar Phenomena (TLP’s) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP research is characterized by the inability to substantiate, reproduce, and verify findings. Our current research includes the analysis of lunar images taken with two Santa Barbara Instrument Group (SBIG) ST8-E CCD cameras mounted on two 0.36m Celestron telescopes. On one telescope, we are using a sodium filter, and on the other an H-alpha filter, imaging approximately one-third of the lunar surface. We are focusing on two regions: Hyginus and Ina. Ina is of particular interest because it shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006). A total of over 50,000 images have been obtained over approximately 35 nights and visually analyzed to search for changes. As of March, 2014, no evidence of TLPs has been found. We are currently developing a Matlab program to do image analysis to detect TLPs that might not be apparent by visual inspection alone.

  6. WESF natural phenomena hazards survey

    SciTech Connect

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  7. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  8. Intrinsic interfacial phenomena in manganite heterostructures

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Walker, F. J.; Ahn, C. H.; Ismail-Beigi, S.

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  9. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  10. Fluctuation theory of critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Martynov, G. A.

    2016-07-01

    It is assumed that critical phenomena are generated by density wave fluctuations carrying a certain kinetic energy. It is noted that all coupling equations for critical indices are obtained within the context of this hypothesis. Critical indices are evaluated for 15 liquids more accurately than when using the current theory of critical phenomena.

  11. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  12. In-Vessel and Ex-Vessel Neutron Dosimetry Programs in Korea

    NASA Astrophysics Data System (ADS)

    Yoo, Choon Sung; Kim, Byoung Chul; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    In Korea, 20 PWRs are operating and 4 more PWRs are under construction. The in-vessel neutron dosimetry programs have been designed and implemented since each plant began operation. In addition to the in-vessel dosimetry program, ex-vessel neutron dosimetry systems have been installed for 16 PWRs. The objective of this paper is to describe the in-vessel and ex-vessel neutron dosimetry program of the PWRs in Korea and to compare in-vessel and ex-vessel dosimetry evaluation results. For this purpose plant and cycle specific forward neutron transport calculations and dosimetry measurement evaluations were carried out according to Regulatory Guide 1.190. Comparisons between the calculations and measurements were also performed for the reaction rates of each dosimetry sensor and the results show good agreement.

  13. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink; Keith G. Condie; Glenn E. McCreery

    2007-09-01

    Mean velocity field and turbulence data are presented for flow phenomena in a lower plenum of a typical prismatic gas-cooled reactor (GCR), such as in a Very High Temperature Reactor (VHTR) concept. In preparation for design, safety analyses and licensing, research has begun on readying the computational tools that will be needed to predict the thermal-hydraulics behavior of the reactor design. Fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of computational fluid dynamics (CFD) codes and their turbulence models for a typical VHTR plenum geometry in the limiting case of negligible buoyancy and constant fluid properties. This experiment has been proposed as a “Standard Problem” for assessing advanced reactor (CFD) analysis tools. Present results concentrate on the region of the plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum can locally be considered as multiple jets into a confined cross flow - with obstructions. A model of the lower plenum has been fabricated and scaled to the geometric dimensions of the Next Generation Nuclear Plant (NGNP) Point Design. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to induce flow features somewhat comparable to those expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The experiments were conducted in the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Laboratory (INL). The benefit of the MIR technique is that it permits optical measurements to determine complex flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The

  14. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  15. Canister storage building natural phenomena design loads

    SciTech Connect

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site.

  16. Classifying prion and prion-like phenomena.

    PubMed

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  17. Perspective: Emergent magnetic phenomena at interfaces

    SciTech Connect

    Suzuki, Yuri

    2015-06-01

    The discovery of emergent magnetic phenomena is of fundamental and technological interest. This perspective highlights recent promising examples of emergent ferromagnetism at complex oxide interfaces in the context of spin based electronics.

  18. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    SciTech Connect

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  19. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  20. Investigating the students' understanding of surface phenomena

    NASA Astrophysics Data System (ADS)

    Hamed, Kastro Mohamad

    1999-11-01

    This study investigated students' understanding of surface phenomena. The main purpose for conducting this research endeavor was to understand how students think about a complex topic about which they have little direct or formal instruction. The motivation for focusing on surface phenomena stemmed from an interest in integrating research and education. Despite the importance of surfaces and interfaces in research laboratories, in technological applications, and in everyday experiences, no previous systematic effort was done on pedagogy related to surface phenomena. The design of this research project was qualitative, exploratory, based on a Piagetian semi-structured clinical piloted interview, focused on obtaining a longitudinal view of the intended sample. The sampling was purposeful and the sample consisted of forty-four undergraduate students at Kansas State University. The student participants were enrolled in physics classes that spanned a wide academic spectrum. The data were analyzed qualitatively. The main themes that emerged from the analysis were: (a) students used analogies when confronted with novel situations, (b) students mixed descriptions and explanations, (c) students used the same explanation for several phenomena, (d) students manifested difficulties transferring the meaning of vocabulary across discipline boundaries, (e) in addition to the introductory chemistry classes, students used everyday experiences and job-related experiences as sources of knowledge, and (f) students' inquisitiveness and eagerness to investigate and discuss novel phenomena seemed to peak about the time students were enrolled in second year physics classes.

  1. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  2. The impact of microwave stray radiation to in-vessel diagnostic components

    SciTech Connect

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D.; Oosterbeek, J.; Brand, H. von der; Parquay, S.; Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  3. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  4. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  5. Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments

    SciTech Connect

    Bucholz, J.A.

    1993-03-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

  6. Shielding analysis of the LMR in-vessel fuel storage experiments

    SciTech Connect

    Bucholz, J.A.

    1994-06-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this paper were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present paper describes the 2- and 3-D calculations and results corresponding to a limited subset of those IVFS experiments in which the US LMR program had a particular interest.

  7. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  8. Halo phenomena modified by multiple scattering.

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Kuo-Nan, Liou

    1990-05-01

    Halo phenomena produced by horizontally oriented plate and column ice crystals are computed. Owing to the effect of multiple scattering, a number of optical features, in addition to the well-known halos and arcs caused by single scattering, can be produced in the sky. These include the parhelia, the anthelion, the uniform and white parhelic circle, and the uniform and white circumzenithal circle in the case of horizontally oriented plates. The anthelion is a result of double scattering that involves horizontally oriented columns that produce the Parry arc. The optical phenomena identified in the present study are compared with those of previous research and discussed.

  9. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  10. Simple Phenomena, Slow Motion, Surprising Physics

    ERIC Educational Resources Information Center

    Koupil, Jan; Vicha, Vladimir

    2011-01-01

    This article describes a few simple experiments that are worthwhile for slow motion recording and analysis either because of interesting phenomena that can be seen only when slowed down significantly or because of the ability to do precise time measurements. The experiments described in this article are quite commonly done in Czech schools. All…

  11. Phylogeny of Aging and Related Phenoptotic Phenomena.

    PubMed

    Libertini, G

    2015-12-01

    The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds.

  12. Temporal Phenomena in the Korean Conjunctive Constructions

    ERIC Educational Resources Information Center

    Kim, Dongmin

    2015-01-01

    The goal of this study is to characterize the temporal phenomena in the Korean conjunctive constructions. These constructions consist of three components: a verbal stem, a clause medial temporal suffix, and a clause terminal suffix. This study focuses on both the temporality of the terminal connective suffixes and the grammatical meanings of the…

  13. Phylogeny of Aging and Related Phenoptotic Phenomena.

    PubMed

    Libertini, G

    2015-12-01

    The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds. PMID:26638678

  14. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  15. Geophysical phenomena classification by artificial neural networks

    SciTech Connect

    Gough, M.P.; Bruckner, J.R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  16. Intervention in Biological Phenomena via Feedback Linearization

    PubMed Central

    Fnaiech, Mohamed Amine; Nounou, Hazem; Nounou, Mohamed; Datta, Aniruddha

    2012-01-01

    The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique. PMID:23209459

  17. Intervention in Biological Phenomena via Feedback Linearization.

    PubMed

    Fnaiech, Mohamed Amine; Nounou, Hazem; Nounou, Mohamed; Datta, Aniruddha

    2012-01-01

    The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique. PMID:23209459

  18. Solar Phenomena Associated with "EIT Waves"

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  19. On The Problem Of In-vessel Mirrors For Diagnostic Systems Of ITER

    SciTech Connect

    Voitsenya, V. S.; Litnovsky, A.

    2008-03-12

    The present status of the investigations with ITER-candidate mirror materials and directed on solution of the in-vessel mirror problem, are presented in the paper. The current tasks in the R and D of diagnostic mirrors and outstanding questions are discussed.

  20. A hybrid incremental projection method for thermal-hydraulics applications

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  1. Thermal hydraulic design features for the BNCT application. Final report

    SciTech Connect

    Blue, T.E.; Vafai, K.

    1993-06-01

    This project report is based on our investigations for thermal design of a heat pipe for removing generated heat resulting from Proton bombardments of a Lithium target for a BNCT application. In our investigation, an integral analysis was employed to investigate the vapor an liquid flow in a flat plate heat pipe heated asymmetrically for removal of the 75 kW generated from the BNCT application. The flat plate heat pipe configuration will be used for removing the heat which is generated as a result of proton bombardment of the lithium target. The working fluid in the heat pipe occurs in two phase namely liquid and vapor. The wick contains all the liquid phase and the vapor phase is mainly in the core region. Heat is applied by an external source at the evaporator section which vaporizes the working fluid in this section. This results in a pressure difference which drives the vapor to the condenser section where condenses and releases latent heat of vaporization to a heat sink in the condense section. Due to the vaporization of liquid in the evaporator, the liquid-vapor interface enters into the wick surface and hence capillary pressure is developed there. This capillary pressure causes the condensed liquid in the condenser to be pumped back to the evaporator again. The results of our investigation have enabled us to correlate such diverse information as; the thickness of the wick, the diameter of the heat pipe, the wetting angle, the capillary radius, the surface tension, the latent heat of evaporation, the permeability and porosity of the chosen wick, the length of the heat pipe, and the viscosity and density of the two phases; with the heat removal capabilities of the heat pipe. Expressions for the pressure and velocity distributions are obtained and discussed in relation to our application to BNCT. The present design clearly shows that it is possible to attain temperatures well below the melting temperature of the lithium in the BNCT application.

  2. Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator

    NASA Astrophysics Data System (ADS)

    Sarchami, Araz

    A three-dimensional numerical modeling of the thermo hydraulics of Canadian Deuterium Uranium (CANDU) nuclear reactor is conducted. The moderator tank is a Pressurized heavy water reactor which uses heavy water as moderator in a cylindrical tank. The main use of the tank is to bring the fast neutrons to the thermal neutron energy levels. The moderator tank compromises of several bundled tubes containing nuclear rods immersed inside the heavy water. It is important to keep the water temperature in the moderator at sub-cooled conditions, to prevent potential failure due to overheating of the tubes. Because of difficulties in measuring flow characteristics and temperature conditions inside a real reactor moderator, tests are conducted using a scaled moderator in moderator test facility (MTF) by Chalk River Laboratories of Atomic Energy of Canada Limited (CRL, AECL). MTF tests are conducted using heating elements to heat tube surfaces. This is different than the real reactor where nuclear radiation is the source of heating which results in a volumetric heating of the heavy water. The data recorded inside the MTF tank have shown levels of fluctuations in the moderator temperatures and requires in depth investigation of causes and effects. The purpose of the current investigation is to determine the causes for, and the nature of the moderator temperature fluctuations using three-dimensional simulation of MTF with both (surface heating and volumetric heating) modes. In addition, three dimensional simulation of full scale actual moderator tank with volumetric heating is conducted to investigate the effects of scaling on the temperature distribution. The numerical simulations are performed on a 24-processor cluster using parallel version of the FLUENT 12. During the transient simulation, 55 points of interest inside the tank are monitored for their temperature and velocity fluctuations with time.

  3. Thermal hydraulic modeling of the mock fuel facility

    NASA Astrophysics Data System (ADS)

    Gardner, Jacob

    The major focus of this thesis was to make improved three dimensional models of the Mock Fuel Facility. Three distinct experiment types run with the Mock Fuel Facility (MFF) were the main focus of this thesis. Two of the experiments were modeled and an in-depth analysis of the model results was performed to gain a better understanding of the Mock Fuel Facility. For the third experiment the process of creating a model was begun. There were multiple purposes for the work completed in this thesis. The work was done partially to gain a greater understanding of the UMass Lowell Research Reactor (UMLRR). There is minimal instrumentation within the UMLRR to measure localized temperatures within the UMLRR. It is hoped that the work done in this thesis will provide a basis for future modeling work which will give insight into the temperature profiles within the UMLRR. This work is also being done to gain insight into the capabilities of the COMSOL multiphysics modelling software and evaluate its potential for future modelling work. Finally this work is also being done for its potential as an educational tool. The MFF and COMSOL have potential to be used for experimental lab work by students to learn about computer modeling and validation.

  4. Applications of a general thermal/hydraulic simulation tool

    NASA Technical Reports Server (NTRS)

    Cullimore, B. A.

    1989-01-01

    The analytic techniques, sample applications, and development status of a general-purpose computer program called SINDA '85/FLUINT (for systems improved numerical differencing analyzer, 1985 version with fluid integrator), designed for simulating thermal structures and internal fluid systems, are described, with special attention given to the applications of the fluid system capabilities. The underlying assumptions, methodologies, and modeling capabilities of the system are discussed. Sample applications include component-level and system-level simulations. A system-level analysis of a cryogenic storage system is presented.

  5. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    SciTech Connect

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  6. Thermal hydraulic analysis of the FFTF core using SUPERENERGY-2

    SciTech Connect

    Cramer, E.R.; Basehore, K.L.

    1980-01-01

    SUPERENERGY-2 is the latest steady-state code in the ENERGY series, combining all of the desirable features of the previous ENERGY-I and SUPERENERGY versions in an optimized form. The result is an easily redimensionable, multiassembly code with many user-convenience features, such as automatic noding and a default constitutive package, that help minimize the effort and time associated with setting up large forced-convection problems. Improvements in physical modeling include generalized facial boundary conditions, duct wall gamma heating, and a model for double-ducted assemblies. The latter is used for modeling both multiduct test and absorber assemblies. SUPERENERGY-2 was used to calculate the temperature distribution in the first six rows of the FFTF core.

  7. A hybrid incremental projection method for thermal-hydraulics applications

    DOE PAGES

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-05-04

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  8. AP600 design certification thermal hydraulics testing and analysis

    SciTech Connect

    Hochreiter, L.E.; Piplica, E.J.

    1995-09-01

    Westinghouse Electric Corporation, in conjunction with the Department of Energy and the Electric Power Research Institute, have been developing an advanced light water reactor design; the AP600. The AP600 is a 1940 Mwt, 600Mwe unit which is similar to a Westinghouse two-loop Pressurized Water Reactor. The accumulated knowledge on reactor design to reduce the capital costs, construction time, and the operational and maintenance cost of the unit once it begins to generate electrical power. The AP600 design goal is to maintain an overall cost advantage over fossil generated electrical power.

  9. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike. PMID:17842831

  10. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike.

  11. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  12. Vector analysis of postcardiotomy behavioral phenomena.

    PubMed

    Caston, J C; Miller, W C; Felber, W J

    1975-04-01

    The classification of postcardiotomy behavioral phenomena in Figure 1 is proposed for use as a clinical instrument to analyze etiological determinants. The utilization of a vector analysis analogy inherently denies absolutism. Classifications A-P are presented as prototypes of certain ratio imbalances of the metabolic, hemodynamic, environmental, and psychic vectors. Such a system allows for change from one type to another according to the individuality of the patient and the highly specific changes in his clinical presentation. A vector analysis also allows for infinite intermediary ratio imbalances between classification types as a function of time. Thus, postcardiotomy behavioral phenomena could be viewed as the vector summation of hemodynamic, metabolic, environmental, and psychic processes at a given point in time. Elaboration of unknown determinants in this complex syndrome appears to be task for the future.

  13. A review of impulsive phase phenomena

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    A brief review is given of impulsive phase phenomena in support of the models used to compute the energies of the different components of the flares under study. The observational characteristics of the impulsive phase are discussed as well as the evidence for multi-thermal or non-thermal phenomena. The significance of time delays between hard X-rays and microwaves is discussed in terms of electron beams and Alfven waves, two-step acceleration, and secondary bursts at large distances from the primary source. Observations indicating the occurrence of chromospheric evaporation, coronal explosions, and thermal conduction fronts are reviewed briefly, followed by the gamma ray and neutron results. Finally, a preferred flare scenario and energy source are presented involving the interactions in a complex of magnetic loops with the consequent reconnection and electron acceleration.

  14. Vector analysis of postcardiotomy behavioral phenomena.

    PubMed

    Caston, J C; Miller, W C; Felber, W J

    1975-04-01

    The classification of postcardiotomy behavioral phenomena in Figure 1 is proposed for use as a clinical instrument to analyze etiological determinants. The utilization of a vector analysis analogy inherently denies absolutism. Classifications A-P are presented as prototypes of certain ratio imbalances of the metabolic, hemodynamic, environmental, and psychic vectors. Such a system allows for change from one type to another according to the individuality of the patient and the highly specific changes in his clinical presentation. A vector analysis also allows for infinite intermediary ratio imbalances between classification types as a function of time. Thus, postcardiotomy behavioral phenomena could be viewed as the vector summation of hemodynamic, metabolic, environmental, and psychic processes at a given point in time. Elaboration of unknown determinants in this complex syndrome appears to be task for the future. PMID:1090426

  15. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  16. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  17. A new mechanism for lunar transient phenomena

    SciTech Connect

    Zito, R.R. )

    1989-12-01

    Lunar transient phenomena, which are changes in lunar surface brightness observed over the course of four centuries, are presently characterized by a novel mechanism in which electrodynamic effects associated with rock fracturing could account for the sporadic optical pulses noted near specific lunar features. It is suggested that only mild seismic activity, or perhaps thermal cracking, may be required for the activation of the proposed mechanism. 22 refs.

  18. Natural phenomena hazards site characterization criteria

    SciTech Connect

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  19. Seismoelectric Phenomena in Fluid-Saturated Sediments

    SciTech Connect

    Block, G I; Harris, J G

    2005-04-22

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.

  20. Stability and restoration phenomena in competitive systems

    NASA Astrophysics Data System (ADS)

    Uechi, Lisa; Akutsu, Tatsuya

    2013-10-01

    A conservation law along with stability, recovering phenomena, and characteristic patterns of a nonlinear dynamical system have been studied and applied to physical, biological, and ecological systems. In our previous study, we proposed a system of symmetric 2n-dimensional conserved nonlinear differential equations. In this paper, competitive systems described by a 2-dimensional nonlinear dynamical (ND) model with external perturbations are applied to population cycles and recovering phenomena of systems from microbes to mammals. The famous 10-year cycle of population density of Canadian lynx and snowshoe hare is numerically analyzed. We find that a nonlinear dynamical system with a conservation law is stable and generates a characteristic rhythm (cycle) of population density, which we call the standard rhythm of a nonlinear dynamical system. The stability and restoration phenomena are strongly related to a conservation law and the balance of a system. The standard rhythm of population density is a manifestation of the survival of the fittest to the balance of a nonlinear dynamical system.

  1. Physical mechanism of membrane osmotic phenomena

    SciTech Connect

    Guell, D.C.; Brenner, H.

    1996-09-01

    The microscale, physicomechanical cause of osmosis and osmotic pressure in systems involving permeable and semipermeable membranes is not well understood, and no fully satisfactory mechanism has been offered to explain these phenomena. A general theory, albeit limited to dilute systems of inert, noninteracting solute particles, is presented which demonstrates that short-range forces exerted by the membrane on the dispersed solute particles constitute the origin of osmotic phenomena. At equilibrium, the greater total force exerted by the membrane on those solute particles present in the reservoir containing the more concentrated of the two solutions bathing the membrane is balanced by a macroscopically observable pressure difference between the two reservoirs. The latter constitutes the so-called osmotic pressure difference. Under nonequilibrium conditions, the membrane-solute force is transmitted to the solvent, thus driving the convective flow of solvent observed macroscopically as osmosis. While elements of these ideas have been proposed previously in various forms, the general demonstration offered here of the physicomechanical source of osmotic phenomena is novel. Beyond the purely academic interest that exists in establishing a mechanical understanding of osmotic pressure, the analysis lays the foundation underlying a quantitative theory of osmosis in dilute, nonequilibrium systems outlined in a companion paper.

  2. Bion and Tustin: the autistic phenomena.

    PubMed

    Korbivcher, Celia Fix

    2013-08-01

    This article examines the implications of the proposal of autistic transformations within the general context of Bion's theory of Transformations. The aim is to confirm the coherence of this proposal of autistic transformations within the overall structure of Bion's theory of Transformations. She examines the relation between emotional links and their negatives, particularly -K. She questions in which of the dimensions of the mind the autistic phenomena are located, the relation between autistic phenomena and beta elements, and where to place them in the Grid. The author tries to form metapsychological support for the incorporation of the autistic area in Bion's theory of Transformations. She argues that, despite the incongruence and imprecision of this incorporation, such autistic phenomena cannot be excluded from the complexus of the human mind and should therefore be accounted for in Bion's transformations. She discusses the idea that the theory of transformations includes the field of the neurosis and psychosis and deals with emotions, whereas the autistic area is dominated by sensations. The author asks how to add the autistic area to Bion's theory. Clinical material of a child for whom the non-psychotic part of the personality predominates and who presents autistic nuclei provides material for the discussion.

  3. Search for collective phenomena in hadron interactions

    SciTech Connect

    Kokoulina, E. S. Nikitin, V. A. Petukhov, Y. P.; Karpov, A. V. Kutov, A. Ya.

    2010-12-15

    New results of the search for collective phenomena have been obtained and analyzed in the present report. The experimental studies are carried out on U-70 accelerator of IHEP in Protvino. It is suggested that these phenomena can be discovered at the energy range of 50-70 GeV in the extreme multiplicity region since the high-density matter can form in this very region. The collective behavior of secondary particles is considered to manifest itself in the Bose-Einstein condensation of pions, Vavilov-Cherenkov gluon radiation, excess of soft-photon yield, and other unique phenomena. The perceptible peak in the angular distribution has been revealed. It was interpreted as the gluon radiation and so the parton matter refraction index was determined. The new software was designed for the track reconstruction based on Kalman Filter technique. This algorithm allows one to estimate more precisely the track parameters (especially momentum). The search for Bose-Einstein condensation can be continued by using the selected events with the multiplicity of more than eight charged particles. The gluon dominance model predictions have shown good agreement with the multiplicity distribution at high multiplicity and confirmed the guark-gluon medium formation under these conditions.

  4. An interpretation of passive containment cooling phenomena

    SciTech Connect

    Chung, Bum-Jin; Kang, Chang-Sun,

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  5. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  6. Identification and evaluation of PWR in-vessel severe accident management strategies

    SciTech Connect

    Dukelow, J S; Harrison, D G; Morgenstern, M

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents.

  7. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M

    NASA Astrophysics Data System (ADS)

    Cen, Yishun; Li, Qiang; Ding, Yonghua; Cai, Lijun; Jiang, Jiaming; Li, Guangsheng; Liu, Yi

    2013-09-01

    A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequency range from DC to about 1 kHz. Stainless steel (SS) jacketed mineral insulated cables are proposed for the conductor of the coils. In-vessel coils must withstand large electromagnetic (EM) and thermal loads. The support, insulation and vacuum sealing in a very limited space are crucial issues for engineering design. Hence finite element calculations are performed to verify the design, optimize the support by minimizing stress caused by EM forces on the coil conductors and work out the temperature rise occurring on the coil in different working conditions, the corresponding thermal stress caused by the thermal expansion of materials is evaluated to be allowable. The techniques to develop the in-vessel RMP coils, such as support, insulation and cooling, are discussed.

  8. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  9. Studies of Novel Quantum Phenomena in Ruthenates

    SciTech Connect

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  10. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  11. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  12. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  13. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  14. Phenomena and Parameters Important to Burnup Credit

    SciTech Connect

    Parks, C.V.

    2001-01-10

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given.

  15. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  16. Generalized Bloch theorem and chiral transport phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2015-10-01

    Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.

  17. The acoustic phenomena of the stalling flutter

    NASA Astrophysics Data System (ADS)

    Hu, Z. A.; Feng, Y. C.; Zhao, X. H.; Wang, Y. W.

    An experimental study and measurement analysis is conducted of 275-285 Hz acoustic phenomena associated with the stalling flutter of an axial-flow rotor which has been designed to yield zero total aerodynamic damping at the stall-flutter onset. The two different blade-tip clearances used are 1.6 and 0.5 mm. The multiple-circular arc airfoils employed by the rotor blades are found to possess poorer aeroelastic stability than those of double-circular arc design. The smaller tip clearance is found to result in poorer aeroelastic stability than the larger one.

  18. Numerical simulation and prediction of implosion phenomena

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dietrich, R. A.

    1992-10-01

    Using gas-liquid two phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi Implicit Method for Pressure Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers. For a characteristic physical model, the numerical results are obtained and analyzed, without referring to experimental data. Extensive calculations to predict the highest pressure on the chamber wall are performed under varying conditions such as the implosion pressure, the dimensions of the test models, and the height of the upper air layer. The efficiency of different highest pressure reduction methods is analyzed. The results of these simulations and predictions are shown in a series of plots.

  19. Paramagnetic Meissner effect and related dynamical phenomena

    NASA Astrophysics Data System (ADS)

    Li, Mai Suan

    2003-03-01

    The hallmark of superconductivity is the diamagnetic response to external magnetic field. In striking contrast to this behavior, a paramagnetic response or paramagnetic Meissner effect was observed in ceramic high- Tc and in conventional superconductors. The present review is given on this interesting effect and related phenomena. We begin with a detailed discussion of experimental results on the paramagnetic Meissner effect in both granular and conventional superconductors. There are two main mechanisms leading to the paramagnetic response: the so-called d-wave and the flux compression. In the first scenario, the Josephson critical current between two d-wave superconductors becomes negative or equivalently one has a π junction. The paramagnetic signal occurs due to the nonzero spontaneous supercurrent circulating in a loop consisting of odd number of π junctions. In addition to the d-wave mechanism we present the flux compression mechanism for the paramagnetic Meissner effect. The compression may be due to either an inhomogeneous superconducting transition or flux trap inside the giant vortex state. The flux trapping which acts like a total nonzero spontaneous magnetic moment causes the paramagnetic signal. The anisotropic pairing scenario is believed to be valid for granular materials while the flux trap one can be applied to both conventional and high- Tc superconductors. The study of different phenomena by a three-dimensional lattice model of randomly distributed π Josephson junctions with finite self-inductance occupies the main part of our review. By simulations one can show that the chiral glass phase in which chiralities are frozen in time and in space may occur in granular superconductors possessing d-wave pairing symmetry. Experimental attempts on the search for the chiral glass phase are analysed. Experiments on dynamical phenomena such as AC susceptibility, compensation effect, anomalous microwave absorption, aging effect, AC resistivity and

  20. Electronic phenomena near semiconductor grain boundaries

    NASA Astrophysics Data System (ADS)

    Pike, G. E.

    Various electronic phenomena which are generally associated with grain boundaries in semiconductors are reviewed. At equilibrium majority carriers are trapped at the boundaries, and a corresponding space charge layer of ionized dopant forms on both sides of the boundary. This creates a potential barrier to free carriers. An applied dc voltage causes the barrier to lower and change shape in an asymmetric way. At high voltages hot majority carriers can produce impact ionized minority carriers which further reduce the barrier height. Small ac voltages cause anomalous apparent capacitances which are either positive or negative.

  1. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  2. Uncommon corrosion phenomena of archaeological bronze alloys

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; de Caro, T.; Riccucci, C.; Khosroff, S.

    2006-06-01

    In the framework of the EFESTUS project (funded by the European Commission, contract No. ICA3-CT-2002-10030) the corrosion products of a large number of archaeological bronze artefacts are investigated by means of the combined use of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and optical microscopy (OM) and tentative correlation of their nature with the chemical composition of the artefacts and the burial context is proposed. The results provide good insight into the corrosion layers and evidence in some bronze Roman coins and artefacts; the occurrence of uncommon corrosion phenomena that give rise to the formation of a yellowish-green complex chlorine-phosphate of lead (pyromorphite, (PbCl)Pb4(PO4)3) and of a gold-like thick layer of an iron and copper sulphide (chalcopyrite, CuFeS2). The micro-chemical and micro-structural results show that the coins were buried in a soil enriched in phosphorus for the accidental presence of a large amount of decomposing fragments of bones or in an anaerobic and humus rich soil where the chalcopyrite layer has been produced via the interaction between the iron of the soil, the copper of the coin and the sulphur produced by the decomposition of organic matter in an almost oxygen free environment. Finally, some unusual periodic corrosion phenomena occurring in high tin bronze mirrors found at Zama (Tunisia) are described.

  3. Effects of electrostatic correlations on electrokinetic phenomena.

    PubMed

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  4. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  5. Animal network phenomena: insights from triadic games

    NASA Astrophysics Data System (ADS)

    Mesterton-Gibbons, Mike; Sherratt, Tom N.

    Games of animal conflict in networks rely heavily on computer simulation because analysis is difficult, the degree of difficulty increasing sharply with the size of the network. For this reason, virtually the entire analytical literature on evolutionary game theory has assumed either dyadic interaction or a high degree of symmetry, or both. Yet we cannot rely exclusively on computer simulation in the study of any complex system. So the study of triadic interactions has an important role to play, because triads are both the simplest groups in which asymmetric network phenomena can be studied and the groups beyond dyads in which analysis of population games is most likely to be tractable, especially when allowing for intrinsic variation. Here we demonstrate how such analyses can illuminate a variety of behavioral phenomena within networks, including coalition formation, eavesdropping (the strategic observation of contests between neighbors) and victory displays (which are performed by the winners of contests but not by the losers). In particular, we show that eavesdropping acts to lower aggression thresholds compared to games without it, and that victory displays to bystanders will be most intense when there is little difference in payoff between dominating an opponent and not subordinating.

  6. Nonlinear phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.

    2008-05-01

    We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, 2008). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, Phys. Rev. A in press, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).

  7. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  8. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of

  9. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  10. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  11. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  12. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  13. Natural time analysis of critical phenomena

    PubMed Central

    Varotsos, Panayiotis; Sarlis, Nicholas V.; Skordas, Efthimios S.; Uyeda, Seiya; Kamogawa, Masashi

    2011-01-01

    A quantity exists by which one can identify the approach of a dynamical system to the state of criticality, which is hard to identify otherwise. This quantity is the variance of natural time χ, where and pk is the normalized energy released during the kth event of which the natural time is defined as χk = k/N and N stands for the total number of events. Then we show that κ1 becomes equal to 0.070 at the critical state for a variety of dynamical systems. This holds for criticality models such as 2D Ising and the Bak–Tang–Wiesenfeld sandpile, which is the standard example of self-organized criticality. This condition of κ1 = 0.070 holds for experimental results of critical phenomena such as growth of rice piles, seismic electric signals, and the subsequent seismicity before the associated main shock. PMID:21700886

  14. Density-functional theory of thermoelectric phenomena.

    PubMed

    Eich, F G; Di Ventra, M; Vignale, G

    2014-05-16

    We introduce a nonequilibrium density-functional theory of local temperature and associated local energy density that is suited for the study of thermoelectric phenomena. The theory rests on a local temperature field coupled to the energy-density operator. We identify the excess-energy density, in addition to the particle density, as the basic variable, which is reproduced by an effective noninteracting Kohn-Sham system. A novel Kohn-Sham equation emerges featuring a time-dependent and spatially varying mass which represents local temperature variations. The adiabatic contribution to the Kohn-Sham potentials is related to the entropy viewed as a functional of the particle and energy density. Dissipation can be taken into account by employing linear response theory and the thermoelectric transport coefficients of the electron gas.

  15. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  16. Atom optics simulator of lattice transport phenomena

    NASA Astrophysics Data System (ADS)

    An, Fangzhao; Meier, Eric; Gadway, Bryce

    2016-05-01

    We report on a novel scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site-energies, through the observation of continuous time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.

  17. Boundary quantum critical phenomena with entanglement renormalization

    SciTech Connect

    Evenbly, G.; Pfeifer, R. N. C.; Tagliacozzo, L.; McCulloch, I. P.; Vidal, G.; Pico, V.; Iblisdir, S.

    2010-10-15

    We propose the use of entanglement renormalization techniques to study boundary critical phenomena on a lattice system. The multiscale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the MERA, an accurate approximation to the ground state of a semi-infinite critical chain with an open boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. As in Wilson's renormalization-group formulation of the Kondo problem, our construction produces, as a side result, an effective chain displaying explicit separation of energy scales. We present benchmark results for the quantum Ising and quantum XX models with free and fixed boundary conditions.

  18. Transient Phenomena: Opportunities for New Discoveries

    NASA Technical Reports Server (NTRS)

    Lazio, T. Joseph W.

    2010-01-01

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (gamma-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from gamma-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  19. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  20. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  1. The demystification of autoscopic phenomena: experimental propositions.

    PubMed

    Mohr, Christine; Blanke, Olaf

    2005-06-01

    Autoscopic phenomena (AP) are rare, illusory visual experiences during which the subject has the impression of seeing a second own body in extrapersonal space. AP consist of out-of-body experience, autoscopic hallucination, and heautoscopy. Recent neurologic reports support the role of multisensory integration deficits of body-related information and vestibular dysfunctions in AP at the temporo-parietal junction. A caveat to test the underlying neurologic and cognitive mechanisms of AP has been their rare and spontaneous occurrence. Recent evidence linked AP to mental own-body imagery engaging brain mechanisms at the temporo-parietal junction. These recent observations open a new avenue for testing AP-related cognitive mechanisms in selected clinical and normal populations. We review evidence on several clinical syndromes (psychosis, depression, anxiety, depersonalization, body dysmorphic disorder), suggesting that some of these syndromes may relate to AP-proneness, thereby leading to testable propositions for future research on body and self processing in addition to AP.

  2. Teaching wave phenomena via biophysical applications

    NASA Astrophysics Data System (ADS)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  3. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  4. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  5. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  6. Hadronic and nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-06-01

    Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.

  7. Novel nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  8. Transient phenomena in compressor stations during surge

    SciTech Connect

    Botros, K.K. )

    1994-01-01

    Transient phenomena are generally inherent in the operation of compressor stations: These are either fast or slow transients. A model describing the governing equation for the gas dynamics, control system, compressor and turbine shaft inertias has been developed. The effect of these inertias is manifested by an example of a compressor station operating near the surge control line. Another example deals with a station that has a cooler placed in the recycle path. This alters the rate at which the compressor shaft decelerates upon shutdown and may cause backward spinning depending on the relative magnitude of the shaft inertia with respect to the cooler volume. Backward spinning of compressor shaft has detrimental effects on dry seals and is undesirable. It was found that by keeping the recycle value closed upon shutdown, the rate of shaft deceleration will be reduced.

  9. Critical Phenomena in Liquid-Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Jacobs, D. T.

    2000-04-01

    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  10. Nonlinear Phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.

    2008-03-01

    We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, to appear, 2008) -- see L. D. Carr and Joachim Brand, e-print arXiv:0705.1139 (2007); Joachim Brand, L. D. Carr, B. P. Anderson, e-print arXiv:0705.1341 (2007). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).

  11. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    SciTech Connect

    Crotts, Arlin P. S.

    2009-05-20

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: {approx}50% of reports originate from near Aristarchus, {approx}16% from Plato, {approx}6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that {approx}80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  12. Meteorological phenomena in Western classical orchestral music

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  13. Validation of the in-vessel energy balance module in SSC for natural circulation transients. [LMFBR

    SciTech Connect

    Horak, W.C.; Guppy, J.G.; Kennett, R.J.

    1982-01-01

    Recently, the in-vessel energy module of the Super System Code (SSC) which calculates the fuel pin, coolant, and stucture temperatures, was changed from an explicit finite difference procedure to an implicit weighted residuals procedure. SSC is a computer code for the analysis of plant wide transients in reactor systems. SSC is designed to be fast running, i.e., faster than real time, while providing detailed information if desired. Therefore, it was necessary to show that the new procedure was computationally efficient, i.e., provide high accuracy and short computational times.

  14. Performance assessment of the antenna setup for the ITER plasma position reflectometry in-vessel systems

    NASA Astrophysics Data System (ADS)

    Varela, P.; Belo, J. H.; Quental, P. B.

    2016-11-01

    The design of the in-vessel antennas for the ITER plasma position reflectometry diagnostic is very challenging due to the need to cope both with the space restrictions inside the vacuum vessel and with the high mechanical and thermal loads during ITER operation. Here, we present the work carried out to assess and optimise the design of the antenna. We show that the blanket modules surrounding the antenna strongly modify its characteristics and need to be considered from the early phases of the design. We also show that it is possible to optimise the antenna performance, within the design restrictions.

  15. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  16. Optimization and Update of EAST In-Vessel Components in 2011

    NASA Astrophysics Data System (ADS)

    Ji, Xiang; Song, Yuntao; Shen, Guang; Cao, Lei; Zhou, Zibo; Xu, Tiejun; Liu, Xufeng; Xu, Weiwei; Peng, Xuebing; Wang, Shengming; Zhang, Ping; Zhu, Ning; Dai, Yu; Liu, Zhihong; Wu, Jiefeng; Gao, Daming; Gong, Xianzu; Fu, Peng; Wan, Baonian; Li, Jiangang

    2013-03-01

    For safe operation with active water cooling plasma facing components (PFCs) to handle a large input power over a long pulse discharge, some design optimization, R&D and maintenance were accomplished to improve the in-vessel components. For the purpose of large plasma current (1 MA) operation, the previous separated top and bottom passive stabilizers in the low field were electrical connected to stabilize plasma in the case of vertical displace events (VDEs). The design and experiments are described in this paper

  17. Design and Evaluation of an Enhanced In-Vessel Core Catcher

    SciTech Connect

    Joy L. Rempe

    2004-06-01

    An enhanced in-vessel core catcher is being designed and evaluated as part of a joint United States (U.S.) - Korean International Nuclear Engineering Research Initiative (INERI) investigating methods to insure In-Vessel Retention (IVR) of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. This paper summarizes the status of core catcher design and evaluation efforts, including analyses, materials interaction tests, and prototypic testing efforts.

  18. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  19. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  20. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  1. Dynamical magnetoelectric phenomena of multiferroic skyrmions.

    PubMed

    Mochizuki, Masahito; Seki, Shinichiro

    2015-12-23

    Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin-orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime. PMID:26624202

  2. Viscous theory of surface noise interaction phenomena

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1980-01-01

    A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.

  3. Efferent feedback can explain many hearing phenomena

    NASA Astrophysics Data System (ADS)

    Holmes, W. Harvey; Flax, Matthew R.

    2015-12-01

    The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).

  4. Phantom black holes and critical phenomena

    SciTech Connect

    Azreg-Aïnou, Mustapha; Marques, Glauber T.

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  5. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  6. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  7. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  8. Quantification of statistical phenomena in turbulent dispersions

    NASA Astrophysics Data System (ADS)

    Yates, Matthew; Hann, David; Hewakandamby, Buddhika

    2015-11-01

    Understanding of turbulent dispersions is of great importance for environmental and industrial applications. This includes developing a greater understanding of particle movement in atmospheric flows, and providing data that can be used to validate CFD models aimed at producing more accurate simulations of dispersed turbulent flows, aiding design of many industrial components. Statistical phenomena in turbulent dispersions were investigated using Particle Image Velocimetry. Experiments were carried out in a two dimensional channel over a Reynolds number range of 10000-30000, using water and 500 micron hydrogel particles. Particles were injected at the channel entrance, and dispersion properties were characterised at different distances downstream from the injection point. Probability density functions were compiled for the velocity components of the hydrogels for differing flow conditions. Higher order PDFs were constructed to investigate the behaviour of particle pairs. Dispersed phase data was also used to investigate the mechanics of collisions between hydrogel particles, allowing for calculation of the co-efficient of restitution. PIV algorithms were used to create velocity maps for the continuous phase for varying dispersed phase fractions. Thanks to support of Chevron grant as part of TMF consortium.

  9. Bifurcation analysis method of nonlinear traffic phenomena

    NASA Astrophysics Data System (ADS)

    Ai, Wenhuan; Shi, Zhongke; Liu, Dawei

    2015-03-01

    A new bifurcation analysis method for analyzing and predicting the complex nonlinear traffic phenomena based on the macroscopic traffic flow model is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the stability analysis. Although the substitution seems to be simple, it can extend the range of the variable to infinity and build a relationship between the traffic congestion and the unstable system in the phase plane. So the problem of traffic flow could be converted into that of system stability. The analysis identifies the types and stabilities of the equilibrium solutions of the new model and gives the overall distribution structure of the nearby equilibrium solutions in the phase plane. Then we deduce the existence conditions of the models Hopf bifurcation and saddle-node bifurcation and find some bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles and Bogdanov-Takens bifurcation. Furthermore, the Hopf bifurcation and saddle-node bifurcation are selected as the starting point of density temporal evolution and it will be helpful for improving our understanding of stop-and-go wave and local cluster effects observed in the free-way traffic.

  10. Two-Stage Modelling Of Random Phenomena

    NASA Astrophysics Data System (ADS)

    Barańska, Anna

    2015-12-01

    The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.

  11. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  12. Further shock tunnel studies of scramjet phenomena

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.

    1986-01-01

    Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.

  13. Power-law behavior in social and economical phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keizo; Miyazima, Sasuke

    2004-12-01

    We have already found power-law behavior in various phenomena such as high-tax payer, population distribution, name distribution, passenger number at stations, student number in a university from high schools, and so on. We can explain why these phenomena show such interesting behaviors by doing simulations based on adequate models. We have come to the conclusion that there are fractal structures underlying those phenomena.

  14. Experimental Measurement of Flow Phenomena in a VHTR Lower Plenum Model

    SciTech Connect

    Hugh M. McIlroy Jr.; Keith G. Condie; Glenn E. McCreery; Donald M. McEligot; Robert J. Pink

    2006-06-01

    The Very-High-Temperature Reactor (VHTR) is one of six reactor technologies chosen for further development by the Generation IV International Forum. In addition this system is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. In preparation for the thermal-hydraulics and safety analyses that will be required to confirm the performance of the NGNP, work has begun on readying the computational tools that will be needed to predict the thermal-hydraulics conditions and safety margins of the reactor design. Meaningful feasibility studies for VHTR designs will require accurate, reliable predictions of material temperatures which depend upon the thermal convection in the coolant channels of the core and other components. Unfortunately, one-dimensional system codes for gas-cooled reactors typically underpredict these temperatures, particularly for reduced power operations and hypothesized accident scenarios. Likewise, most turbulence models in general-purpose CFD codes also underpredict these temperatures. Matched-Index-of-Refraction (MIR) fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of CFD solutions of the momentum equations, scalar mixing and turbulence models for typical VHTR plenum geometries in the limiting case of negligible buoyancy and constant fluid properties.

  15. Investigation of collective phenomena in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, Wellalage Don Suranga

    I study dusty plasma produced by electrostatically confining melamine formaldehyde microparticles in a radio-frequency glow discharge plasma. Dusty plasma is a mixture of particles of solid matter (dust), electrons, ions, and neutral gas atoms. The dust particles have a very high charge and a mass compared to the electrons and ions in the ambient plasma. As a consequence, a dusty plasma exhibits collective phenomena such as dust acoustic waves, crystallization, and melting. The discrete nature of dust particles gives rise to compressibility. In this thesis I report findings of four tasks that were performed to investigate dust acoustic waves, compressibility, and melting. First, the nonlinear phenomenon of synchronization was characterized experimentally for the dust acoustic wave propagating in a dust cloud with many layers. I find four synchronized states, with frequencies that are multiples of 1, 2, 3, and 1/2 of the driving frequency. Comparing to phenomena that are typical of the van der Pol paradigm, I find that synchronization of the dust acoustic wave exhibits the signature of the suppression mechanism but not that of the phaselocking mechanism. Additionally, I find that the synchronization of the dust acoustic wave exhibits three characteristics that differ from the van der Pol paradigm: a threshold amplitude that can be seen in the Arnold tongue diagram, a branching of the 1:1 harmonic tongue at its lower extremity, and a nonharmonic state. Second, to assess which physical processes are important for a dust acoustic instability, I derived dispersion relations that encompass more physical processes than commonly done. I investigated how various physical processes affect a dust acoustic wave by solving these dispersion relations using parameters from a typical dust acoustic wave experiment. I find that the growth rate diminishes for large ion currents. I also find that the compressibility, a measure of the coupling between the dust particles, have a strong

  16. In-vessel Zircaloy oxidation/hydrogen generation behavior during severe accidents

    SciTech Connect

    Cronenberg, A.W. )

    1990-09-01

    In-vessel Zircaloy oxidation and hydrogen generation data from various US Nuclear Regulatory Commission severe-fuel damage test programs are presented and compared, where the effects of Zircaloy melting, bundle reconfiguration, and bundle quenching by reflooding are assessed for common findings. The experiments evaluated include fuel bundles incorporating fresh and previously irradiated fuel rods, as well as control rods. Findings indicate that the extent of bundle oxidation is largely controlled by steam supply conditions and that high rates of hydrogen generation continued after melt formation and relocation. Likewise, no retardation of hydrogen generation was noted for experiments which incorporated control rods. Metallographic findings indicate extensive oxidation of once-molten Zircaloy bearing test debris. Such test results indicate no apparent limitations to Zircaloy oxidation for fuel bundles subjected to severe-accident coolant-boiloff conditions. 46 refs., 22 figs., 12 tabs.

  17. Design Analysis and Manufacturing Studies for ITER In-Vessel Coils

    SciTech Connect

    Kalish, M.; Heitzenroeder, P.; Neumeyer, C.; Titus, P.; Zhai, Y.; Zatz, I.; Messineo, M.; Gomez, M.; Hause, C.; Daly, E.; Martin, A.; Wu, Y.; Jin, J.; Long, F.; Song, Y.; Wang, Z.; Yun, Zan; Hsiao, J.; Pillsbury, J. R.; Bohm, T.; Sawan, M.; Jiang, NFN

    2014-07-01

    ITER is incorporating two types of In Vessel Coils (IVCs): ELM Coils to mitigate Edge Localized Modes and VS Coils to provide Vertical Stabilization of the plasma. Strong coupling with the plasma is required so that the ELM and VS Coils can meet their performance requirements. Accordingly, the IVCs are in close proximity to the plasma, mounted just behind the Blanket Shield Modules. This location results in a radiation and temperature environment that is severe necessitating new solutions for material selection as well as challenging analysis and design solutions. Fitting the coil systems in between the blanket shield modules and the vacuum vessel leads to difficult integration with diagnostic cabling and cooling water manifolds.

  18. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; Austin, M. E.; Beno, J. H.; Hubbard, A. E.; Khodak, A.; Ouroua, A.; Taylor, G.

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  19. Quantitative measurement of in-vessel dust velocity and its correlation with toroidal rotation of plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Kim, Kyung-Rae; Ko, Won-Ha; Nam, YongUn

    2015-08-01

    In-vessel dust velocity and its distribution have been evaluated by using dedicated software developed at KSTAR. The dust velocities are well described by log-normal distribution function in a range from ∼10 m/s up to ∼460 m/s. The peak velocity of the distribution increases through three campaigns from 2010 to 2012, mainly due to the increase of the input energy level. From the force balance, it is expected that the dust velocity is strongly correlated with the toroidal plasma flow due to the ion drag force acting on dusts. To confirm this, toroidal rotation velocity is measured by using charge exchange spectroscopy (CES) as a function of normalized stored energy (W/Ip), which is similar with Rice scaling. As a consequence, it is found that the dust velocity is linearly proportional to W/Ip, thus to the toroidal rotation velocity of the plasmas.

  20. Silicon dioxide particles deposited in vessels and cartilage of the femoral head.

    PubMed

    Xu, Min; Qing, Meiying; Peng, Dan

    2014-09-01

    Silicosis had been considered for decades as an illness with manifestations of lung fibrosis due to inhalation of overconcentrated SiO₂ dust. To the best of our knowledge, studies have yet to report SiO₂ deposits in any other tissues and organs. In the present case, while performing bilateral artificial total hip arthroplasty for one patient, we found that the articular cartilage of the bilateral femoral head was black. Therefore, specimens thereof were sent for pathological examination. Pathological examination (immunohistochemistry) and polarized light microscopy revealed the presence of considerable brown, acicular, rhombic, and crumb-like crystals. The crystals were mainly composed of SiO₂. SiO₂ could deposit in vessels and femoral head cartilage via blood circulation.

  1. Insights from Investigations of In-Vessel Retention for High Powered Reactors

    SciTech Connect

    Joy L. Rempe

    2005-10-01

    In a three-year U.S. - Korean International Nuclear Energy Research Initiative (INERI), state-of-the-art analytical tools and key U.S. and Korean experimental facilities were used to explore two options, enhanced ERVC performance and the use of internal core catchers, that have the potential to increase the margin for in-vessel retention (IVR) in high power reactors (up to 1500 MWe). This increased margin has the potential to improve plant economics (owing to reduced regulatory requirements) and increase public acceptance (owing to reduced plant risk). Although this program focused upon the Korean Advanced Power Reactor -- 1400 MWe (APR 1400) design, recommentations were developed so that they can easily be applied to a wide range of existing and advanced reactor designs. This paper summarizes new data gained for evaluating the margin associated with various options investigated in this program. Insights from analyses completed with this data are also highlighted.

  2. Long- and short-term trends in vessel conditioning of TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    LaMarche, P.H.; Dylla, H.F.; Bell, M.G.; Boody, F.P.; Bush, C.E.; Groebuer, R.J.; Hawryluk, R.J.; Hill, K.W.; Mueller, D.; Owens, D.K.

    1986-10-01

    We have investigated trends in the conditioning of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel during the May 1984 to April 1985 run period. The initial conditioning of the vessel, consisting of glow discharge cleaning (GDC) and pulse discharge cleaning (PDC) in concert with a 150/sup 0/C vessel bakeout, is necessary to assure plasma operation after atmospheric venting. A long-term conditioning process, ascribed to limiter conditioning, effectively improves operational conditions during the course of the run. Over several thousand high power plasma discharges, the improvement was documented by using standard parameter (fiducial) plasma discharges. Several techniques demonstrated short-term improvements in vessel conditioning during this time period, including: Cr gettering and programming the plasma position relative to the limiter contact area.

  3. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  4. Light-induced phenomena in one-component gas: The transport phenomena

    NASA Astrophysics Data System (ADS)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  5. Interlayer interaction phenomena in novel materials

    NASA Astrophysics Data System (ADS)

    Pershoguba, Sergii

    Recently, there has been a considerable interest in various novel two-dimensional (2D) materials, such as graphene, topological insulators, etc. These materials host a plethora of exotic phenomena owing to their unconventional electronic structure. Physics of these 2D materials is understood fairly well, so a natural generalization is to assemble these materials into three-dimensional (3D) stacks. In this thesis, we study a number of multilayer systems, where the interlayer interaction plays a salient role. We commence with studying graphene multilayers coupled via interlayer tunneling amplitude. We calculate the energy spectrum of the system in magnetic field B parallel to the layers. The parallel magnetic field leads to a relative gauge shift of the momentum spaces of the individual 2D layers. When the interlayer tunneling is introduced, we find the Landau levels. We observe two qualitatively distinct domains in the Landau spectrum and analyze them using semiclassical arguments. Then, we include electric field E perpendicular to the layers, and analyze the spectrum in the crossed-field geometry. If the fields are in resonance E = upsilon B, where upsilon is the velocity of carriers in graphene, the wave-functions delocalize in the direction along the field E. We compare this prediction to a tunneling spectroscopy study of a graphite mesa in the parallel magnetic field. Indeed, the tunneling spectrum displays a peak, which grows linearly with the applied magnetic field B, and is, thus, consistent with our theoretical analysis. Then, we move on to a discussion of Z2 topological insulators within the Shockley model. We generalize the one dimensional (1D) Shockley model by replacing atomic sites of the original model by the 2D Rashba spin-orbit layers. We analyze surface states of a topological insulator using a construction of vortex lines in the 3D momentum space. We also study a topological insulator in a thin film geometry, where the opposite surface states are

  6. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  7. Saving the Phenomena in Medieval Astronomy

    NASA Astrophysics Data System (ADS)

    Seeskin, K.

    2011-06-01

    Aristotle's theory of motion is based on two principles: (1) all motion to either from the midpoint of the Earth, toward it, or around it, and (2) circular motion must proceed around an immovable point. On this view, the heavenly bodies are individual points of light carried around by a series of concentric spheres rotating at a constant pace around the midpoint of the Earth. But even in Aristotle's day, it was known that this theory had a great deal of difficulty accounting for planetary motion. Ptolemy's alternative was to introduce epicycles and eccentric orbits, thus denying Aristotle's view of natural motion. There was no doubt that Ptolemy's predictions were far better than Aristotle's. But for the medievals, Aristotle's theory made better intuitive sense. Moreover, Ptolemy's theory raised the question of how one sphere could pass through another. What to do? The solution of Moses Maimonides (1138-1204) was to say that it is not the job of the astronomer to tell us how things actually are but merely to propose a series of hypotheses that allow us to explain the relevant data. This view had obvious theological implications. If astronomy could explain planetary motion in an acceptable way, there was reason to believe that the order or structure of the heavens is what it is by necessity. This suggests that God did not exercise any degree of choice in making it that way. But if astronomy cannot explain planetary motion, the most reasonable explanation is that we are dealing with contingent phenomena rather than necessary ones. If there is contingency, there is reason to think God did exercise a degree of choice in making the heavens the way they are. A God who exercises choice is much closer to the God of Scripture. Although Galileo changed all of this, and paved the way for a vastly different view of astronomy, the answer to one set of questions raises a whole different set. In short, the heavenly motion still poses ultimate questions about God, existence, and

  8. Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities

    ERIC Educational Resources Information Center

    Zachos, Paul

    2004-01-01

    Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…

  9. Conceptual Framework to Enable Early Warning of Relevant Phenomena (Emerging Phenomena and Big Data)

    SciTech Connect

    Schlicher, Bob G; Abercrombie, Robert K; Hively, Lee M

    2013-01-01

    Graphs are commonly used to represent natural and man-made dynamic systems such as food webs, economic and social networks, gene regulation, and the internet. We describe a conceptual framework to enable early warning of relevant phenomena that is based on an artificial time-based, evolving network graph that can give rise to one or more recognizable structures. We propose to quantify the dynamics using the method of delays through Takens Theorem to produce another graph we call the Phase Graph. The Phase Graph enables us to quantify changes of the system that form a topology in phase space. Our proposed method is unique because it is based on dynamic system analysis that incorporates Takens Theorem, Graph Theory, and Franzosi-Pettini (F-P) theorem about topology and phase transitions. The F-P Theorem states that the necessary condition for phase transition is a change in the topology. By detecting a change in the topology that we represent as a set of M-order Phase Graphs, we conclude a corresponding change in the phase of the system. The onset of this phase change enables early warning of emerging relevant phenomena.

  10. Certain relativistic phenomena in crystal optics

    NASA Astrophysics Data System (ADS)

    Chee-Seng, Lim

    1980-01-01

    Relativistic unsteady phenomena are established for a crystalline medium with unaligned sets of permittivity and permeability principal axes, but incorporating a compounded uniaxiality about some nonprincipal direction. All effects originate from a suddenly activated, arbitrarily oriented, maintained line current conducted with a finite velocity v. Integral representations studied in another paper (Chee-Seng) are applied. The original coordinate system is subjected to a series of rotational and translational, scaled and unscaled transformations. No specific coordinate frame is strictly adhered to. Instead, it is often expedient and advantageous to exploit several reference frames simultaneously in the course of the analysis and interpretations. The electric field is directly related to a net scalar field Δ involving another scalar Ψ and its complement Ψ¯ which can be deduced from Ψ; Ψ and Ψ¯ are associated with two expanding, inclined ellipsoidal wavefronts ξ and ξ¯; these are cocentered at the current origin and touch each other twice along the uniaxis. Elsewhere, ξ leads ξ¯. For a source current faster than ξ:vt ∈ extξ, Ψ≢0 within a finite but growing ''ice-cream cone'' domain, its nontrivial composition being χ-1/2 inside ξ and 2χ-1/2 inside part of a tangent cone from the advancing current edge vt to, and terminating at, ξ; the function χ vanishes along such a tangent cone. Alternatively, for a source current slower than ξ:vt∈ intξ, if vt is avoided, χ≳0 everywhere, while Ψ=χ-1/2 inside ξ but vanishes identically outside ξ. However, the crucial scalar field Δ depends on three separate current-velocity regimes. Over a slow regime: vt∈ intξ¯, Δ is nontrivial inside ξ wherein it is discontinuous across ξ¯. Over an intermediate regime: vt ∈ intξ extξ¯, Δ takes four distinct forms on 12 adjacent domains bounded by ξ, ξ¯ and a double-conical tangent surface linking vt to ξ¯. But for a fast regime: vt∈ ext

  11. Hallucinations, sleep fragmentation, and altered dream phenomena in Parkinson's disease.

    PubMed

    Pappert, E J; Goetz, C G; Niederman, F G; Raman, R; Leurgans, S

    1999-01-01

    In a series of consecutively randomized outpatients who had Parkinson's disease (PD), we examined the association of three behaviors: sleep fragmentation, altered dream phenomena, and hallucinations/illusions. Using a log-linear model methodology, we tested the independence of each behavior. Sixty-two percent of the subjects had sleep fragmentation, 48% had altered dream phenomena, and 26% had hallucinations/illusions. Eighty-two percent of the patients with hallucinations/illusions experienced some form of sleep disorder. The three phenomena were not independent. The interaction between sleep fragmentation and altered dream phenomena was strongly statistically significant. Likewise, a significant interaction existed between altered dream phenomena and hallucinations/illusions. No interaction occurred between sleep fragmentation and hallucinations/illusions. Sleep fragmentation, altered dream phenomena, and hallucinations/illusions in PD should be considered distinct but often overlapping behaviors. The close association between altered dream phenomena and hallucinations suggests that therapeutic interventions aimed at diminishing dream-related activities may have a specific positive impact on hallucinatory behavior.

  12. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  13. Analytical investigation of critical phenomena in MHD power generators

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed. The performance of a NASA specified 500 MW(th) flow train is analyzed. Critical phenomena analyzed include: Hall voltage overshoots; optimal load schedules; parametric dependence of the electrode voltage drops; boundary layer behavior; near electrode phenomena with finite electrode segmentation; current distribution in the end regions; scale up rules; optimum Mach number distribution; and the effects of alternative cross sectional shapes.

  14. Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S. (Editor); West, Robert A. (Editor); Rahe, Jurgen (Editor); Pereyda, Margarita

    1989-01-01

    The current state of knowledge of dynamic processes in the Jovian system is assessed and summaries are provided of both theoretical and observational foundations upon which future research might be based. There are three sections: satellite phenomena and rings; magnetospheric phenomena, Io's torus, and aurorae; and atmospheric phenomena. Each chapter discusses time dependent theoretical framework for understanding and interpreting what is observed; others describe the evidence and nature of observed changes or their absence. A few chapters provide historical perspective and attempt to present a comprehensive synthesis of the current state of knowledge.

  15. Generic BWR-4 degraded core in-vessel study. Status report

    SciTech Connect

    Not Available

    1984-11-01

    Original intent of this project was to produce a phenomenological study of the in-vessel degradation which occurs during the TQUX and TQUV sequences for a generic BWR-4 from the initiation of the FSAR Chapter 15 operational transient through core debris bed formation to the failure of the primary pressure boundary. Bounding calculations were to be performed for the two high pressure and low pressure non-LOCA scenarios to assess the uncertainties in the current state of knowledge regarding the source terms for containment integrity studies. Source terms as such were defined in terms of hydrogen generation, unreacted metal, and coolant inventroy, and in terms of the form, sequencing and mode of dispersal through the primary vessel boundary. Fission product release was not to be considered as part of this study. Premature termination of the project, however, led to the dicontinuation of work on an as is basis. Work on the in-core phase from the point of scram to core debris bed formation was largely completed. A preliminary scoping calculation on the debris bed phase had been initiated. This report documents the status of the study at termination.

  16. In-vessel coolability and retention of a core melt. Volume 2

    SciTech Connect

    Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T.

    1996-10-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

  17. DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII-D

    SciTech Connect

    ANDERSON, PM; BAXI, CB; KELLMAN, AG; REIS, EE; ROBINSON, JI

    2002-10-01

    OAK A271 DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII-D. Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. Recently, these coils have also demonstrated significant benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements can be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and have been tested successfully. installation of a set of twelve internal coils and magnetic sensors in the DIII-D tokamak is to be completed in December 2002. The design requirement for the new coil system was to maximize the magnetic field at the plasma edge, operate with a frequency range of dc to 1000 Hz, and fit behind the existing graphite wall tiles. The coil design adopted and installed is a water-cooled hollow copper conductor insulated with polyamide and housed inside a stainless steel tube that forms a vacuum boundary. The coil is rigidly mounted to the inside of the vacuum vessel. The primary challenge in the design of these coils was in joining of both the copper conductor and the stainless tube without overheating the polyamide insulator.

  18. Compact ECEI system with in-vessel reflective optics for WEST

    NASA Astrophysics Data System (ADS)

    Nam, Y. B.; Park, H. K.; Lee, W.; Yun, G. S.; Kim, M.; Sabot, R.; Elbeze, D.; Lotte, P.; Shen, J.

    2016-11-01

    An electron cyclotron emission imaging (ECEI) diagnostic system for WEST (W Environment for Steady state Tokamak) is under development to study the MHD instabilities affected by tungsten impurities. The system will provide 2-D Te fluctuation images (width × height = ˜18 cm × ˜ 34 cm at low field side and ˜13 cm × ˜ 39 cm at high field side) from a poloidal cross section with high spatial (≤1.7 cm) and temporal (≤2 μs) resolutions. While the key concept and electronic structure are similar to that of prior ECEI systems on other tokamak devices such as KSTAR, DIII-D, or ASDEX-U, part of the imaging optics have to be placed inside the vacuum vessel in order to resolve issues on limited installation space and longer beam path to the detector position. The in-vessel optics consisting of two large curvature-radius mirrors are expected to withstand the extreme heating on long-pulse operation scenario (˜1000 s). The out-vessel optical housing is constructed as compact as possible to remove easily from the installation site in case of necessity. Commissioning of the system is scheduled on the second experimental WEST campaign end of 2017.

  19. Evaluation of in-vessel corium retention through external reactor vessel cooling for integral reactor

    SciTech Connect

    Park, R. J.; Lee, J. R.; Kim, S. B.; Jin, Y.; Kim, H. Y.

    2012-07-01

    In-vessel corium retention through external reactor vessel cooling (IVR-ERVC) for a small integral reactor has been evaluated to determine the thermal margin for the prevention of a reactor vessel failure. A thermal load analysis from the corium pool to the outer reactor vessel wall in the lower plenum of the reactor vessel has been performed to determine the heat flux distribution. The critical heat flux (CHF) on the outer reactor vessel wall has been determined to fix the maximum heat removal rate through the external coolant between the outer reactor vessel and the insulation of the reactor vessel. Finally, the thermal margin has been evaluated by comparison of the thermal load with the maximum heat removal rate of the CHF on the outer reactor vessel wall. The maximum heat flux from the corium pool to the outer reactor vessel is estimated at approximately 0.25 MW/m{sup 2} in the metallic layer because of the focusing effect. The CHF of the outer reactor vessel is approximately 1.1 MW/m{sup 2} because of a two phase natural circulation mass flow. Since the thermal margin for the IVR-ERVC is sufficient, the reactor vessel integrity is maintained during a severe accident of a small integral reactor. (authors)

  20. In-Vessel Retention of Molten Corium: Lessons Learned and Outstanding Issues

    SciTech Connect

    J.L. Rempe; K.Y. Suh; F. B. Cheung; S. B. Kim

    2008-03-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Advanced 600 MWe Pressurized Water Reactor (PWR) designed by Westinghouse (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). However, it is not clear that the ERVC proposed for the AP600 could provide sufficient heat removal for higher-power reactors (up to 1500 MWe) without additional enhancements. This paper reviews efforts made and results reported regarding the enhancement of IVR in LWRs. Where appropriate, the paper identifies what additional data or analyses are needed to demonstrate that there is sufficient margin for successful IVR in high power thermal reactors.

  1. In-vessel ITER tubing failure rates for selected materials and coolants

    SciTech Connect

    Marshall, T.D.; Cadwallader, L.C.

    1994-03-01

    Several materials have been suggested for fabrication of ITER in-vessel coolant tubing: beryllium, copper, Inconel, niobium, stainless steel, titanium, and vanadium. This report generates failure rates for the materials to identify the best performer from an operational safety and availability perspective. Coolant types considered in this report are helium gas, liquid lithium, liquid sodium, and water. Failure rates for the materials are generated by including the influence of ITER`s operating environment and anticipated tubing failure mechanisms with industrial operating experience failure rates. The analyses define tubing failure mechanisms for ITER as: intergranular attack, flow erosion, helium induced swelling, hydrogen damage, neutron irradiation embrittlement, cyclic fatigue, and thermal cycling. K-factors, multipliers, are developed to model each failure mechanism and are applied to industrial operating experience failure rates to generate tubing failure rates for ITER. The generated failure rates identify the best performer by its expected reliability. With an average leakage failure rate of 3.1e-10(m-hr){sup {minus}1}and an average rupture failure rate of 3.1e-11(m-hr){sup {minus}1}, titanium proved to be the best performer of the tubing materials. The failure rates generated in this report are intended to serve as comparison references for design safety and optimization studies. Actual material testing and analyses are required to validate the failure rates.

  2. In-vessel fluid flow measurements using thermocouples cross-correlation.

    SciTech Connect

    NguyenLe, Q.

    1998-05-08

    Fluid flow rate in high temperature and pressure vessels can be difficult to measure due to the associated harsh environment, inaccessible locations and pressure boundary integrity concerns. However, by using quick response miniature thermocouples to measure the naturally occurring temperature variations within the flow, the fluid velocity can be inferred from the transit time analysis. This flow measurement technique has other advantages such as the flow profile is not significantly disturbed, no additional flow restrictions introduced and the system fiction factor is not increased. Furthermore, since the measured flow rate is generally unaffected by the global system dynamics, such as heat increases or losses, as well as changes in the flow regimes, the location of the thermocouple pairs is extremely flexible. Due to the mentioned advantages, the thermocouple cross-correlation flow measurement method has been developed for use at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA). Currently, thermocouple cross-correlation technique is used to measure the Reactor Pressure Vessel downcomer fluid velocity and the suppression pool in-vessel natural circulation velocity.

  3. TCV heating and in-vessel upgrades for addressing DEMO physics issues

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; TCV Team

    2015-04-01

    TCV is presently undergoing major heating upgrades, installing a neutral beam for direct ion heating and increasing the electron cyclotron (EC) power injected in X-mode at the third harmonic (X3). The neutral beam is under construction at BINP-Plasma LLC (Russia), with energies of 18-35 keV and power up to 1 MW for 2 s. The injection of 1 MW 30 keV D-beam will allow access to regimes with Ti/Te > 1 and βN ˜ 2.8 in L- and H-mode, with densities compatible with X3 EC heating. A lower energy and power (20 keV, 0.5 MW) D NBI is suitable for lower densities with X2 EC heating and current drive. The vacuum vessel has been modified to allow for the beam tangential injection, necessary for beam access and to minimize shine through and orbit losses. The X3 upgrade consists of adding two dual-frequency gyrotrons (X2/X3, 126 GHz/84 GHz) with a total power of 2 MW. In addition, to explore solutions to the exhaust problem in tokamaks and test innovative solutions like the snowflake divertor in the presence of a closed divertor chamber, we are considering inserting new in-vessel modular structures, generating a divertor aperture with variable closure.

  4. In-vessel coolability and retention of a core melt. Volume 1

    SciTech Connect

    Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T.

    1996-10-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

  5. 76 FR 53979 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... published in the Federal Register on October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas and... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal Hydraulics Phenomena will hold...

  6. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... October 14, 2009, (74 FR 58268- 58269). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena The ACRS Subcommittee on Thermal Hydraulics Phenomena will hold a meeting on September...

  7. 75 FR 57536 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and... Hydraulic Phenomena The ACRS Subcommittee on Thermal Hydraulic Phenomena will hold a meeting on October 18... 5 p.m. The Subcommittee will review the thermal-hydraulic research activities in the Office...

  8. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  9. Deliquescent phenomena of ambient aerosols on the North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Ma, N.; Liu, H. J.; Bian, Y. X.; Tao, J. C.; Hu, Min

    2016-08-01

    In this study, we report that the deliquescent phenomena of ambient aerosols on the North China Plain are frequently observed using a humidified nephelometer system. The deliquescence relative humidity (RH) primarily ranges from 73% to 81%, with an average of 76.8%. The observed deliquescent phenomena of ambient aerosols exhibit distinct diurnal patterns and are highly correlated with ammonium sulfate. The diurnal variations of ammonium and nitrate may play significant roles on occurrences of observed deliquescent phenomena. The frequently observed deliquescent phenomena of ambient aerosols in this paper imply that current parameterization schemes that describe the RH dependence of particle light scattering may result in a significant bias when estimating aerosol effects on climate.

  10. Probing Cytological and Reproductive Phenomena by Means of Bryophytes.

    ERIC Educational Resources Information Center

    Newton, M. E.

    1985-01-01

    Describes procedures (recommended for both secondary and college levels) to study mitosis, Giemsa C-banding, reproductive phenomena (including alternation of generations), and phototropism in mosses and liverworts. (JN)

  11. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Spivak, B. Z.; Andreev, A. V.

    2016-02-01

    We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons, whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasiclassical description of electron transport phenomena related to the chiral anomaly.

  12. Classification of Transient Phenomena in Distribution System using wavelet Transform

    NASA Astrophysics Data System (ADS)

    Sedighi, Alireza

    2014-05-01

    An efficient procedure for classification of transient phenomena in distribution systems is proposed in this paper. The proposed method has been applied to classify some transient phenomena such as inrush current, load switching, capacitor switching and single phase to ground fault. The new scheme is based on wavelet transform algorithm. All of the events for feature extraction and test are simulated using Electro Magnetic Transient Program (EMTP). Results show high accuracy of proposed method.

  13. Department of Energy Natural Phenomena Hazards Mitigation Program

    SciTech Connect

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  14. Quenching phenomena for fourth-order nonlinear parabolic equations

    NASA Astrophysics Data System (ADS)

    Yi, Niu; Xiaotong, Qiu; Runzhang, Xu

    2012-09-01

    In this paper, we investigate the quenching phenomena of the initial boundary value problem for the fourth-order nonlinear parabolic equation in bounded domain. By some assumptions on the exponents and initial data for a class of equations with the general source term, we not only obtain the quenching phenomena in finite time but also estimate the quenching time. Our main tools are maximum principle, comparison principle and eigenfunction method.

  15. Search for new phenomena in the CDF top quark sample

    SciTech Connect

    Lannon, Kevin; /Ohio State U.

    2006-10-01

    We present recent results from CDF in the search for new phenomena appearing in the top quark samples. These results use data from p{bar p} collisions at {radical}s = 1.96 TeV corresponding to an integrated luminosity ranging from 195 pb{sup -1} to 760 pb{sup -1}. No deviations are observed from the Standard Model expectations, so upper limits on the size of possible new phenomena are set.

  16. Detecting psychological phenomena: taking bottom-up research seriously.

    PubMed

    Haig, Brian D

    2013-01-01

    For more than 50 years, psychology has been dominated by a top-down research strategy in which a simplistic account of the hypothetico-deductive method is paired with null hypothesis testing in order to test hypotheses and theories. As a consequence of this focus on testing, psychologists have failed to pay sufficient attention to a complementary, bottom-up research strategy in which data-to-theory research is properly pursued.This bottom-up strategy has 2 primary aspects: the detection of phenomena, mostly in the form of empirical generalizations, and the subsequent understanding of those phenomena through the abductive generation of explanatory theories. This article provides a methodologically informative account of phenomena detection with reference to psychology. It begins by presenting the important distinctions between data, phenomena, and theory. It then identifies a number of different methodological strategies that are used to identify empirical phenomena. Thereafter, it discusses aspects of the nature of science that are prompted by a consideration of the distinction between data, phenomena, and explanatory theory. Taken together, these considerations press for significant changes in the way we think about and practice psychological research. The adoption of these changes would help psychology correct a number of its major current research deficiencies.

  17. [Non-epileptic motor paroxysmal phenomena in wakefulness in childhood].

    PubMed

    Ruggieri, Víctor L; Arberas, Claudia L

    2013-09-01

    Paroxysmal events in childhood are a challenge for pediatric neurologists, given its highly heterogeneous clinical manifestations, often difficult to distinguish between phenomena of epileptic seizure or not. The non-epileptic paroxysmal episodes are neurological phenomena, with motor, sensory symptoms, and/or sensory impairments, with or without involvement of consciousness, epileptic phenomena unrelated, so no electroencephalographic correlative expression between or during episodes. From the clinical point of view can be classified into four groups: motor phenomena, syncope, migraine (and associated conditions) and acute psychiatric symptoms. In this paper we analyze paroxysmal motor phenomena in awake children, dividing them according to their clinical manifestations: extrapyramidal episodes (paroxysmal kinesiogenic, non kinesiogenic and not related to exercise dyskinesias, Dopa responsive dystonia) and similar symptoms of dystonia (Sandifer syndrome); manifestations of startle (hyperekplexia); episodic eye and head movements (benign paroxysmal tonic upward gaze nistagmus deviation); episodic ataxia (familial episodic ataxias, paroxysmal benign vertigo); stereotyped and phenomena of self-gratification; and myoclonic events (benign myoclonus of early infancy). The detection of these syndromes will, in many cases, allow an adequate genetic counseling, initiate a specific treatment and avoid unnecessary additional studies. Molecular studies have demonstrated a real relationship between epileptic and non-epileptic basis of many of these entities and surely the identification of the molecular basis and understanding of the pathophysiological mechanisms in many of them allow us, in the near future will benefit our patients.

  18. Light flash phenomena induced by HzE particles

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.

    1980-01-01

    Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described.

  19. Design and testing of an experimental in-vessel composting system

    SciTech Connect

    Potter, C.L.; Glaser, J.A.; Dosani, M.A.

    1995-10-01

    Composting has received much attention as a potential technology for treating solid waste. Most of that attention has been focused on treatment of municipal solid waste, sewage sludge, yard trimmings, and agricultural wastes. More recently, composting has been investigated as a remediation technology for hazardous wastes. Laboratory and field-scale work has been conducted to determine the fate of pesticides, hydrocarbons, and explosives in the composting environment. Currently, commercial compost operations are operated as black-box systems where optimization is largely achieved through trial and error. Large-scale treatment of hazardous waste will require optimal controls to meet the specified end points. We have designed and tested closed bench-scale compost reactors to evaluate composting processes using contaminated soils. This research program is designed to develop a thorough engineering analysis and optimization of composting as a process to treat soil contaminated with hazardous waste. Bench-scale composters serve as diagnostic tools to predict treatment effectiveness of larger systems. Fully enclosed, insulated reactors permit reliable data collection on microbial population dynamics and fate of toxic chemicals during soil composting. The goal of this study is to evaluate the potential use of compost systems in remediation of soils contaminated with hazardous chemicals. We have developed bench-scale composters to model large-scale systems. We are currently studying the ability of compost microorganisms to biodegrade polynuclear aromatic hydrocarbons (PAHs) in in-vessel reactors located at the U.S. EPA Test & Evaluation (T&E) Facility in Cincinnati, OH. Soils contaminated with PAHs have been obtained from the Reilly Tar Pit Superfund site in St. Louis Park, MN for use in these studies.

  20. Potential for AP600 in-vessel retention through ex-vessel flooding

    SciTech Connect

    Rempe, J.L.; Knudson, D.L.; Allison, C.M.; Thinnes, G.L.; Atwood, C.L.

    1997-12-01

    External reactor vessel cooling (ERVC) is a new severe accident management strategy that involves flooding the reactor cavity to submerge the reactor vessel in an attempt to cool core debris that has relocated to the vessel lower head. Advanced and existing light water reactors (LWRs) are considering ERVC as an accident management strategy for in-vessel retention (IVR) of relocated debris. In the probabilistic risk assessment (PRA) for the AP600 design, Westinghouse credits ERVC for preventing vessel failure during postulated severe accidents with successful reactor coolant system (RCS) depressurization and reactor cavity flooding. To support the Westinghouse position on IVR, DOE contracted the University of California--Santa Barbara (UCSB) to produce the peer-reviewed report. To assist in the NRC`s evaluation of IVR of core melt by ex-vessel flooding of the AP6OO, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform: An in-depth critical review of the UCSB study and the model that UCSB used to assess ERVC effectiveness; An in-depth review of the UCSB study peer review comments and of UCSB`s resolution method to identify areas where technical concerns weren`t addressed; and An independent analysis effort to investigate the impact of residual concerns on the margins to failure and conclusions presented in the UCSB study. This report summarizes results from these tasks. As discussed in Sections 1.1 and 1.2, INEEL`s review of the UCSB study and peer reviewer comments suggested that additional analysis was needed to assess: (1) the integral impact of peer reviewer-suggested changes to input assumptions and uncertainties and (2) the challenge present by other credible debris configurations. Section 1.3 summarized the corresponding analysis approach developed by INEEL. The remainder of this report provides more detailed descriptions of analysis methodology, input assumptions, and results.