Science.gov

Sample records for inas nanowire arrays

  1. Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays.

    PubMed

    Anttu, Nicklas; Lehmann, Sebastian; Storm, Kristian; Dick, Kimberly A; Samuelson, Lars; Wu, Phillip M; Pistol, Mats-Erik

    2014-10-01

    Nanostructures have many material, electronic, and optical properties that are not found in bulk systems and that are relevant for technological applications. For example, nanowires realized from III-V semiconductors can be grown into a wurtzite crystal structure. This crystal structure does not naturally exist in bulk where these materials form the zinc-blende counterpart. Being able to concomitantly grow these nanowires in the zinc-blende and/or wurtzite crystal structure provides an important degree of control for the design and optimization of optoelectronic applications based on these semiconductor nanostructures. However, the refractive indices of this new crystallographic phase have so far not been elucidated. This shortcoming makes it impossible to predict and utilize the full potential of these new nanostructured materials for optoelectronics applications: a careful design and optimization of optical resonances by tuning the nanostructure geometry is needed to achieve optimal performance. Here, we report and analyze striking differences in the optical response of nanophotonic resonances in wurtzite and zinc-blende InAs nanowire arrays. Specifically, through reflectance measurements we find that the resonance can be tuned down to λ ≈ 380 nm in wurtzite nanowires by decreasing the nanowire diameter. In stark contrast, a similar tuning to below λ ≈ 500 nm is not possible in the zinc-blende nanowires. Furthermore, we find that the wurtzite nanowires can absorb twice as strongly as the zinc-blende nanowires. We attribute these strikingly large differences in resonant behavior to large differences between the refractive indices of the two crystallographic phases realized in these nanostructures. We anticipate our findings to be relevant for other III-V materials as well as for all material systems that manifest polytypism. Taken together, our results demonstrate crystal phase engineering as a potentially new design dimension for optoelectronics

  2. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask

    NASA Astrophysics Data System (ADS)

    Shin, Jae Cheol; Zhang, Chen; Li, Xiuling

    2012-08-01

    We report a non-lithographical method for the fabrication of ultra-thin silicon (Si) nanowire (NW) and nano-sheet arrays through metal-assisted-chemical-etching (MacEtch) with gold (Au). The mask used for metal patterning is a vertical InAs NW array grown on a Si substrate via catalyst-free, strain-induced, one-dimensional heteroepitaxy. Depending on the Au evaporation angle, the shape and size of the InAs NWs are transferred to Si by Au-MacEtch as is (NWs) or in its projection (nano-sheets). The Si NWs formed have diameters in the range of ˜25-95 nm, and aspect ratios as high as 250 in only 5 min etch time. The formation process is entirely free of organic chemicals, ensuring pristine Au-Si interfaces, which is one of the most critical requirements for high yield and reproducible MacEtch.

  3. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask.

    PubMed

    Shin, Jae Cheol; Zhang, Chen; Li, Xiuling

    2012-08-01

    We report a non-lithographical method for the fabrication of ultra-thin silicon (Si) nanowire (NW) and nano-sheet arrays through metal-assisted-chemical-etching (MacEtch) with gold (Au). The mask used for metal patterning is a vertical InAs NW array grown on a Si substrate via catalyst-free, strain-induced, one-dimensional heteroepitaxy. Depending on the Au evaporation angle, the shape and size of the InAs NWs are transferred to Si by Au-MacEtch as is (NWs) or in its projection (nano-sheets). The Si NWs formed have diameters in the range of ∼25-95 nm, and aspect ratios as high as 250 in only 5 min etch time. The formation process is entirely free of organic chemicals, ensuring pristine Au-Si interfaces, which is one of the most critical requirements for high yield and reproducible MacEtch. PMID:22781145

  4. Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays

    PubMed Central

    Wook Shin, Hyun; Jun Lee, Sang; Gun Kim, Doo; Bae, Myung-Ho; Heo, Jaeyeong; Jin Choi, Kyoung; Jun Choi, Won; Choe, Jeong-woo; Cheol Shin, Jae

    2015-01-01

    One-dimensional crystal growth enables the epitaxial integration of III-V compound semiconductors onto a silicon (Si) substrate despite significant lattice mismatch. Here, we report a short-wavelength infrared (SWIR, 1.4–3 μm) photodetector that employs InAs nanowires (NWs) grown on Si. The wafer-scale epitaxial InAs NWs form on the Si substrate without a metal catalyst or pattern assistance; thus, the growth is free of metal-atom-induced contaminations, and is also cost-effective. InAs NW arrays with an average height of 50 μm provide excellent anti-reflective and light trapping properties over a wide wavelength range. The photodetector exhibits a peak detectivity of 1.9 × 108  cm·Hz1/2/W for the SWIR band at 77 K and operates at temperatures as high as 220 K. The SWIR photodetector on the Si platform demonstrated in this study is promising for future low-cost optical sensors and Si photonics. PMID:26035286

  5. Negative photoconductivity of InAs nanowires.

    PubMed

    Han, Yuxiang; Zheng, Xiao; Fu, Mengqi; Pan, Dong; Li, Xing; Guo, Yao; Zhao, Jianhua; Chen, Qing

    2016-01-14

    Negative photoconductivity is observed in InAs nanowires (NWs) without a surface defective layer. The negative photoconductivity is strongly dependent on the wavelength and intensity of the light, and is also sensitive to the environmental atmosphere. Two kinds of mechanisms are discerned to work together. One is related to gas adsorption, which is photodesorption of water molecules and photo-assisted chemisorption of O2 molecules. The other one can be attributed to the photogating effect introduced by the native oxide layer outside the NWs. PMID:26631367

  6. Phase coherent transport in hollow InAs nanowires

    SciTech Connect

    Wenz, T.; Rosien, M.; Haas, F.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th.; Demarina, N.

    2014-09-15

    Hollow InAs nanowires are produced from GaAs/InAs core/shell nanowires by wet chemical etching of the GaAs core. At room temperature, the resistivity of several nanowires is measured before and after removal of the GaAs core. The observed change in resistivity is explained by simulating the electronic states in both structures. At cryogenic temperatures, quantum transport in hollow InAs nanowires is studied. Flux periodic conductance oscillations are observed when the magnetic field is oriented parallel to the nanowire axis.

  7. Alloying InAs and InP nanowires for optoelectronic applications: A first principles study

    NASA Astrophysics Data System (ADS)

    Toniolo, Giuliano R.; Anversa, Jonas; dos Santos, Cláudia L.; Piquini, Paulo

    2014-08-01

    The capability of nanowires to relieve the stress introduced by lattice mismatching through radial relaxation opens the possibility to search for devices for optoelectronic applications. However, there are difficulties to fabricate, and therefore to explore the properties of nanowires with narrow diameters. Here we apply first principles calculations to study the electronic and optical properties of narrow InAs1 - xPx nanowires. Our results show that the absorption threshold can be pushed to near-ultraviolet region, and suggests that arrays of these nanowires with different diameters and compositions could be used as devices acting from the mid-infrared to the near-ultraviolet region.

  8. Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis.

    PubMed

    Montemurro, D; Stornaiuolo, D; Massarotti, D; Ercolani, D; Sorba, L; Beltram, F; Tafuri, F; Roddaro, S

    2015-09-25

    We present a novel technique for the realization of suspended Josephson junctions based on InAs semiconductor nanowires. The devices are assembled using a technique of drop-casting guided by dielectrophoresis, which allows one to finely align the nanostructures on top of the electrodes. The proposed architecture removes the interaction between the nanowire and the substrate which is known to influence disorder and the orientation of the Rashba vector. The relevance of this approach in view of the implementation of hybrid Josephson junctions based on semiconducting nanowires coupled with high-temperature superconductors is discussed. PMID:26335273

  9. Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Montemurro, D.; Stornaiuolo, D.; Massarotti, D.; Ercolani, D.; Sorba, L.; Beltram, F.; Tafuri, F.; Roddaro, S.

    2015-09-01

    We present a novel technique for the realization of suspended Josephson junctions based on InAs semiconductor nanowires. The devices are assembled using a technique of drop-casting guided by dielectrophoresis, which allows one to finely align the nanostructures on top of the electrodes. The proposed architecture removes the interaction between the nanowire and the substrate which is known to influence disorder and the orientation of the Rashba vector. The relevance of this approach in view of the implementation of hybrid Josephson junctions based on semiconducting nanowires coupled with high-temperature superconductors is discussed.

  10. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  11. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  12. In-situ mechanical characterization of wurtzite InAs nanowires

    NASA Astrophysics Data System (ADS)

    Erdélyi, Róbert; Hannibal Madsen, Morten; Sáfrán, György; Hajnal, Zoltán; Endre Lukács, István; Fülöp, Gergő; Csonka, Szabolcs; Nygård, Jesper; Volk, János

    2012-10-01

    High aspect ratio vertical InAs nanowires were mechanically characterized in a scanning electron microscope equipped with two micromanipulators. One, equipped with a calibrated atomic force microscope probe, was used for in-situ static bending of single nanowires along the <11-20> crystallographic direction. The other one was equipped with a tungsten tip for dynamic resonance excitation of the same nanowires. This setup enabled a direct comparison between the two techniques. The crystal structure was analyzed using transmission electron microscopy, and for InAs nanowires with a hexagonal wutzite crystal structure, the bending modulus value was found to BM=43.5 GPa. This value is significantly lower than previously reported for both cubic zinc blende InAs bulk crystals and InAs nanowires. Besides, due to their high resonance quality factor (Q>1200), the wurtzite InAs nanowires are shown to be a promising candidate for sub-femtogram mass detectors.

  13. Superconducting proximity effect in InAs nanowires

    NASA Astrophysics Data System (ADS)

    Chang, Willy

    First discovered by Holm and Meissner in 1932, the superconducting proximity effect has remained a subject of experimental and theoretical interest. In recent years, it has been proposed that proximity effect in a semiconductor with large g-factor and spin-orbit coupling could lead to exotic phases of superconductivity. This thesis focuses on proximity effect in one of the prime semiconductor candidates---InAs nanowires. The first set of experiments investigates the superconducting phase-dependent tunneling spectrum of a proximitized InAs quantum dot. We observe tunneling resonances of Andreev bound states in the Kondo regime, and induce quantum phase transitions of the quantum dot ground state with gate voltage and phase bias---the latter being the first experimental observation of its kind. An additional zero-bias peak of unknown origin is observed to coexist with the Andreev bounds states. The second set of experiments extends upon the first with sharper tunneling resonances and an increase in the device critical field. By applying an external magnetic field, we observe spin-resolved Andreev bound states in proximitized InAs quantum dots. From the linear splitting of the tunneling resonances, we extract g-factors of 5 and 10 in two different devices. The third set of experiments utilizes a novel type of epitaxial core-shell InAs-Al nanowire. We compare the induced gaps of these nanowires with control devices proximitized with evaporated Al films. Our results show that the epitaxial core-shell nanowires possess a much harder induced gap---up to two orders of magnitude in sub-gap conductance suppression as compared to a factor of five in evaporated control devices. This observation suggests that roughness in S-N interfaces plays a crucial role in the quality of the proximity effect. The fourth set of experiments investigates the gate-tunability of epitaxial half-shell nanowires. In a half-shell nanowire Josephson junction, we measure the normal state resistance

  14. Bandgap Energy of Wurtzite InAs Nanowires.

    PubMed

    Rota, Michele B; Ameruddin, Amira S; Fonseka, H Aruni; Gao, Qiang; Mura, Francesco; Polimeni, Antonio; Miriametro, Antonio; Tan, H Hoe; Jagadish, Chennupati; Capizzi, Mario

    2016-08-10

    InAs nanowires (NWs) have been grown on semi-insulating InAs (111)B substrates by metal-organic chemical vapor deposition catalyzed by 50, 100, and 150 nm-sized Au particles. The pure wurtzite (WZ) phase of these NWs has been attested by high-resolution transmission electron microscopy and selected area diffraction pattern measurements. Low temperature photoluminescence measurements have provided unambiguous and robust evidence of a well resolved, isolated peak at 0.477 eV, namely 59 meV higher than the band gap of ZB InAs. The WZ nature of this energy band has been demonstrated by high values of the polarization degree, measured in ensembles of NWs both as-grown and mechanically transferred onto Si and GaAs substrates, in agreement with the polarization selection rules for WZ crystals. The value of 0.477 eV found here for the bandgap energy of WZ InAs agrees well with theoretical calculations. PMID:27467011

  15. Metal free growth and characterization of InAs1-xPx nanowires

    SciTech Connect

    Mandl, Bernhard; Stangl, Julian; Brehm, Moritz; Fromherz, Thomas; Bauer, Guenther; Maartensson, Thomas; Samuelson, Lars; Seifert, Werner

    2007-04-10

    InAs nanowires have been grown without the use of Au or other metal particles as catalyst by metal-organic vapor phase epitaxy. The nanowires growth is initiated by a thin layer of SiOx. The wires exhibit a non-tapered shape with a hexagonal cross section. In addition to InAs also InAs1-xPx wires are grown and the incorporation of P is studied by photoluminescence.

  16. Synthesis and structural characterization of vertical ferromagnetic MnAs/semiconducting InAs heterojunction nanowires

    NASA Astrophysics Data System (ADS)

    Kodaira, Ryutaro; Hara, Shinjiro; Kabamoto, Kyohei; Fujimagari, Hiromu

    2016-07-01

    The purpose of this study is to synthesize vertical ferromagnetic/semiconducting heterojunction nanowires by combing the catalyst-free selective-area growth of InAs nanowires and the endotaxial nanoclustering of MnAs and to structurally and magnetically characterize them. MnAs penetrates the InAs nanowires to form nanoclusters. The surface migration length of manganese adatoms on the nanowires, which is estimated to be 600 nm at 580 °C, is a key to the successful fabrication of vertical MnAs/InAs heterojunction nanowires with atomically abrupt heterointerfaces.

  17. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    PubMed

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers. PMID:27248817

  18. InAs nanowire formation on InP(001)

    SciTech Connect

    Parry, H. J.; Ashwin, M. J.; Jones, T. S.

    2006-12-01

    The heteroepitaxial growth of InAs on InP(001) by solid source molecular beam epitaxy has been studied for a range of different growth temperatures and annealing procedures. Atomic force microscopy images show that nanowires are formed for deposition in the temperature range of 400-480 deg. C, and also following high temperature annealing (480 deg. C) after deposition at 400 deg. C. The wires show preferential orientation along <110> and often exhibit pronounced serpentine behavior due to the presence of kinks, an effect that is reduced at increasing growth temperature. The results suggest that the serpentine behavior is related to the degree of initial surface order. Kinks in the wires appear to act as nucleation centers for In adatoms migrating along the wires during annealing, leading to the coexistence of large three-dimensional islands.

  19. Fabrication and optical properties of multishell InAs quantum dots on GaAs nanowires

    SciTech Connect

    Yan, Xin; Zhang, Xia Li, Junshuai; Cui, Jiangong; Ren, Xiaomin

    2015-02-07

    Hybrid nanostructures combining nanowires with quantum dots promote the development of nanoelectronic and nanophotonic devices with integrated functionalities. In this work, we present a complex nanostructure with multishell quantum dots grown on nanowires. 1–4 shells of Stranski-Krastanov InAs quantum dots are grown on the sidewalls of GaAs nanowires by metal organic chemical vapor deposition. Different dot shells are separated by 8 nm GaAs spacer shells. With increasing the number of shells, the quantum dots become sparser and tend to align in one array, which is caused by the shrinkage of facets on which dots prefer to grow as well as the strain fields produced by the lower set of dots which influences the migration of In adatoms. The size of quantum dots increases with the increase of shell number due to enhanced strain fields coupling. The spectra of multishell dots exhibit multiwavelength emission, and each peak corresponds to a dot shell. This hybrid structure may serve as a promising element in nanowire intermediate band solar cells, infrared nanolasers, and photodetectors.

  20. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    NASA Astrophysics Data System (ADS)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

  1. Ag-catalyzed InAs nanowires grown on transferable graphite flakes.

    PubMed

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy. PMID:27479073

  2. Structural characterization of nanowires and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Becker, Catherine Rose

    synthesis of copper nanowires. The results of this research provide a link between the synthesis and performance of nanowire arrays and will aid in their rapid optimization for thermoelectric applications.

  3. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires. PMID:26671780

  4. Harmonic Generation in InAs Nanowire Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Schroer, M. D.; Jung, M.; Petersson, K. D.; Petta, J. R.

    2012-02-01

    InAs nanowires provide a useful platform for investigating the physics of confined electrons subjected to strong spin-orbit coupling. Using tunable, bottom-gated double quantum dots, we demonstrate electrical driving of single spin resonance.ootnotetextS. Nadj-Perge et al., Nature 468, 1084 (2010)^,ootnotetextM.D. Schroer et al., Phys. Rev. Lett. 107, 176811 (2011) We observe a standard spin response when the applied microwave frequency equals the Larmour frequency f0. However, we also observe an anomalous signal at frequencies fn= f0/ n for integer n up to n ˜5. This is equivalent to generation of harmonics of the spin resonance field. While a f0/2 signal has observed,ootnotetextE.A. Laird et al., Phys. Rev. Lett. 99, 246601 (2007) we believe this is the first observation of higher harmonics in spin resonance. Possible mechanisms will be discussed.ootnotetextE.I. Rashba, arXiv:1110.6569 (2011) Acknowledgements: Research supported by the Sloan and Packard Foundations, the NSF, and Army Research Office.

  5. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  6. Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires.

    PubMed

    Zheng, Kun; Zhang, Zhi; Hu, Yibin; Chen, Pingping; Lu, Wei; Drennan, John; Han, Xiaodong; Zou, Jin

    2016-03-01

    Understanding the electrical properties of defect-free nanowires with different structures and their responses under deformation are essential for design and applications of nanodevices and strain engineering. In this study, defect-free zinc-blende- and wurtzite-structured InAs nanowires were grown using molecular beam epitaxy, and individual nanowires with different structures and orientations were carefully selected and their electrical properties and electromechanical responses were investigated using an electrical probing system inside a transmission electron microscope. Through our careful experimental design and detailed analyses, we uncovered several extraordinary physical phenomena, such as the electromechanical characteristics are dominated by the nanowire orientation, rather than its crystal structure. Our results provide critical insights into different responses induced by deformation of InAs with different structures, which is important for nanowire-based devices. PMID:26837494

  7. Catalyst-free growth of InAs nanowires on Si (111) by CBE.

    PubMed

    Gomes, U P; Ercolani, D; Sibirev, N V; Gemmi, M; Dubrovskii, V G; Beltram, F; Sorba, L

    2015-10-16

    We investigate a growth mechanism which allows for the fabrication of catalyst-free InAs nanowires on Si (111) substrates by chemical beam epitaxy. Our growth protocol consists of successive low-temperature (LT) nucleation and high-temperature growth steps. This method produces non-tapered InAs nanowires with controllable length and diameter. We show that InAs nanowires evolve from the islands formed during the LT nucleation step and grow truly catalyst-free, without any indium droplets at the tip. The impact of different growth parameters on the nanowire morphology is presented. In particular, good control over nanowire aspect ratio is demonstrated. A better understanding of the growth process is obtained through the development of a theoretical model combining the diffusion-induced growth scenario with some specific features of the catalyst-free growth mechanism, along with the analysis of the V/III flow ratio influencing material incorporation. As a result, we perform a full mapping of the nanowire morphology versus growth parameters which provides useful general guidelines on the self-induced formation of III-V nanowires on silicon. PMID:26404459

  8. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Berdnikov, Y.; Gomes, U. P.; Ercolani, D.; Zannier, V.; Sorba, L.

    2016-09-01

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  9. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires. PMID:27501469

  10. Schottky barrier heights at the interfaces between pure-phase InAs nanowires and metal contacts

    NASA Astrophysics Data System (ADS)

    Feng, Boyong; Huang, Shaoyun; Wang, Jiyin; Pan, Dong; Zhao, Jianghua; Xu, H. Q.

    2016-02-01

    Understanding of the Schottky barriers formed at metal contact-InAs nanowire interfaces is of great importance for the development of high-performance InAs nanowire nanoelectronic and quantum devices. Here, we report a systematical study of InAs nanowire field-effect transistors (FETs) and the Schottky barrier heights formed at the contact-nanowire interfaces. The InAs nanowires employed are grown by molecular beam epitaxy and are high material quality single crystals, and the devices are made by directly contacting the nanowires with a series of metals of different work functions. The fabricated InAs nanowire FET devices are characterized by electrical measurements at different temperatures and the Schottky barrier heights are extracted from the measured temperature and gate-voltage dependences of the channel current. We show that although the work functions of the contact metals are widely spread, the Schottky barrier heights are determined to be distributed over 35-55 meV, showing a weak but not negligible dependence on the metals. The deduced Fermi level in the InAs nanowire channels is found to be in the band gap and very close to the conduction band. The physical origin of the results is discussed in terms of Fermi level pinning by the surface states of the InAs nanowires and a shift in pinned Fermi level induced by the metal-related interface states.

  11. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  12. Selective-Area Growth of InAs Nanowires on Ge and Vertical Transistor Application.

    PubMed

    Tomioka, Katsuhiro; Izhizaka, Fumiya; Fukui, Takashi

    2015-11-11

    III-V compound semiconductor and Ge are promising channel materials for future low-power and high-performance integrated circuits. A heterogeneous integration of these materials on the same platform, however, raises serious problem owing to a huge mismatch of carrier mobility. We proposed direct integration of perfectly vertically aligned InAs nanowires on Ge as a method for new alternative integrated circuits and demonstrated a high-performance InAs nanowire-vertical surrounding-gate transistor. Virtually 100% yield of vertically aligned InAs nanowires was achieved by controlling the initial surface of Ge and high-quality InAs nanowires were obtained regardless of lattice mismatch (6.7%). The transistor performance showed significantly higher conductivity with good gate control compared to Si-based conventional field-effect transistors: the drain current was 0.65 mA/μm, and the transconductance was 2.2 mS/μm at drain-source voltage of 0.50 V. These demonstrations are a first step for building alternative integrated circuits using vertical III-V/multigate planar Ge FETs. PMID:26468962

  13. Strain-induced band alignment in wurtzite/zinc-blende InAs heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Panda, Jaya Kumar; Roy, Anushree; Chakraborty, Arup; Dasgupta, Indra; Hasanu, Elena; Ercolani, Daniele; Sorba, Lucia; Gemmi, Mauro

    2015-11-01

    We study band alignment in wurtzite/zinc-blende polytype InAs heterostructured nanowires using temperature-dependent resonance Raman measurements. Nanowires having two different wurtzite fractions are investigated. Using visible excitation wavelengths in resonance Raman measurements, we probe the electronic band alignment of these semiconductor nanowires near a high-symmetry point of the Brillouin zone (E1 gap). The strain in the crystal structure, as revealed from the shift of the phonon mode, explains the observed band alignment at the wurtzite/zinc-blende interface. Our experimental results are further supported by electronic-structure calculations for such periodic heterostructured interface.

  14. A transmission line method for evaluation of vertical InAs nanowire contacts

    SciTech Connect

    Berg, M. Svensson, J. Lind, E. Wernersson, L.-E.

    2015-12-07

    In this paper, we present a method for metal contact characterization to vertical semiconductor nanowires using the transmission line method (TLM) on a cylindrical geometry. InAs nanowire resistors are fabricated on Si substrates using a hydrogen silsesquioxane (HSQ) spacer between the bottom and top contact. The thickness of the HSQ is defined by the dose of an electron beam lithography step, and by varying the separation thickness for a group of resistors, a TLM series is fabricated. Using this method, the resistivity and specific contact resistance are determined for InAs nanowires with different doping and annealing conditions. The contacts are shown to improve with annealing at temperatures up to 300 °C for 1 min, with specific contact resistance values reaching down to below 1 Ω µm{sup 2}.

  15. Aluminum Nanowire Arrays via Directed Assembly

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan T.; Merlo, Juan M.; Rose, Aaron H.; Calm, Yitzi M.; D'Imperio, Luke A.; Courtney, Dave T.; Shepard, Steve; Kempa, Krzysztof; Burns, Michael J.; Naughton, Michael J.

    Vertically-oriented metal nanowire arrays are rare. Here, freestanding, vertically-oriented, and lithographically-ordered Al nanowire arrays have been fabricated via directed assembly. The fabrication technique is a variation on the preparation of anodized aluminum oxide (AAO) templates, using nanoimprint lithography (NIL) to direct the formation of pores on an Al film and produce Al nanowires. Near-field scanning optical microscope (NSOM) and conventional optical microscope data of a single nanowire lying on glass and illuminated by a laser spot show evidence of surface plasmons propagating along the nanowire. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  16. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs. PMID:27002386

  17. Patterned Fabrication of Zinc Oxide Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Khan, Sahar; Lamson, Thomas; Xu, Huizhong

    Zinc oxide nanowires possess desirable mechanical, thermodynamic, electrical, and optical properties. Although the hydrothermal growth process can be applied in tolerable growth conditions, the dimension and density of nanowires has a complex dependence on substrate pre-treatment, precursor concentrations, and growth conditions. Precise control of the geometry and density of nanowires as well as the location of nanowires would allow for the fabrication of useful nanowaveguide devices. In this work, we used electron beam lithography to pattern hole arrays in a polymer layer on gold-coated glass substrates and synthesized zinc oxide nanowires inside these holes. Arrays of nanowires with diameters ranging from 50 nm to 140 nm and various spacings were obtained. The transmission of light through these zinc oxide nanowire arrays in a silver film was also studied. This research was supported by the Seed Grant Program of St. John's University and the National Science Foundation under Grant No. CBET-0953645.

  18. Ultrathin InAs nanowire growth by spontaneous Au nanoparticle spreading on indium-rich surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Kyooho; Mohseni, Parsian K.; Li, Xiuling

    2014-11-01

    Ultrathin InAs nanowires (NWs) can enable true one-dimensional electronics. We report a growth phenomenon where a bimodal size distribution (~α nm and ~5 nm in diameter) of InAs NWs can be achieved from gold (Au) nanoparticles of a single size, α (α = 50-250 nm). We determine that ultrathin InAs NW growth is seeded by ultra-small Au nanoparticles shed from the large Au seeds upon indium (In) introduction into the growth system and formed prior to the supersaturation of In in Au. The Au spreading phenomenon is explained by the balancing of Gibbs free energy lowering from In-Au mixing and the surface tension increase. Ultrathin InAs NWs formed in this way exhibit a perfect wurtzite structure with no stacking faults. We have observed InAs NWs with diameters down to ~2 nm using our growth method. Passivating the ultrathin InAs NWs with an AlAs shell, subsequently oxidized in air, results in physical deformation of the InAs core, demonstrating the mechanical pliability of these ultrathin NWs.Ultrathin InAs nanowires (NWs) can enable true one-dimensional electronics. We report a growth phenomenon where a bimodal size distribution (~α nm and ~5 nm in diameter) of InAs NWs can be achieved from gold (Au) nanoparticles of a single size, α (α = 50-250 nm). We determine that ultrathin InAs NW growth is seeded by ultra-small Au nanoparticles shed from the large Au seeds upon indium (In) introduction into the growth system and formed prior to the supersaturation of In in Au. The Au spreading phenomenon is explained by the balancing of Gibbs free energy lowering from In-Au mixing and the surface tension increase. Ultrathin InAs NWs formed in this way exhibit a perfect wurtzite structure with no stacking faults. We have observed InAs NWs with diameters down to ~2 nm using our growth method. Passivating the ultrathin InAs NWs with an AlAs shell, subsequently oxidized in air, results in physical deformation of the InAs core, demonstrating the mechanical pliability of these

  19. Modulating Electrical Properties of InAs Nanowires via Molecular Monolayers.

    PubMed

    Cheung, Ho-Yuen; Yip, SenPo; Han, Ning; Dong, Goufa; Fang, Ming; Yang, Zai-xing; Wang, Fengyun; Lin, Hao; Wong, Chun-Yuen; Ho, Johnny C

    2015-07-28

    In recent years, InAs nanowires have been demonstrated with the excellent electron mobility as well as highly efficient near-infrared and visible photoresponse at room temperature. However, due to the presence of a large amount of surface states that originate from the unstable native oxide, the fabricated nanowire transistors are always operated in the depletion mode with degraded electron mobility, which is not energy-efficient. In this work, instead of the conventional inorganic sulfur or alkanethiol surface passivation, we employ aromatic thiolate (ArS(-))-based molecular monolayers with controllable molecular design and electron density for the surface modification of InAs nanowires (i.e., device channels) by simple wet chemistry. More importantly, besides reliably improving the device performances by enhancing the electron mobility and the current on-off ratio through surface state passivation, the device threshold voltage (VTh) can also be modulated by varying the para-substituent of the monolayers such that the molecule bearing electron-withdrawing groups would significantly shift the VTh towards the positive region for the enhancement mode device operation, in which the effect has been quantified by density functional theory calculations. These findings reveal explicitly the efficient modulation of the InAs nanowires' electronic transport properties via ArS(-)-based molecular monolayers, which further elucidates the technological potency of this ArS(-) surface treatment for future nanoelectronic device fabrication and circuit integration. PMID:26083845

  20. Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon.

    PubMed

    Gomes, U P; Ercolani, D; Zannier, V; David, J; Gemmi, M; Beltram, F; Sorba, L

    2016-06-24

    We report on the nucleation and growth mechanism of self-catalyzed InAs nanowires (NWs) grown on Si (111) substrates by chemical beam epitaxy. Careful choices of the growth parameters lead to In-rich conditions such that the InAs NWs nucleate from an In droplet and grow by the vapor-liquid-solid mechanism while sustaining an In droplet at the tip. As the growth progresses, new NWs continue to nucleate on the Si (111) surface causing a spread in the NW size distribution. The observed behavior in NW nucleation and growth is described within a suitable existing theoretical model allowing us to extract relevant growth parameters. We argue that these results provide useful guidelines to rationally control the growth of self-catalyzed InAs NWs for various applications. PMID:27171601

  1. Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon

    NASA Astrophysics Data System (ADS)

    Gomes, U. P.; Ercolani, D.; Zannier, V.; David, J.; Gemmi, M.; Beltram, F.; Sorba, L.

    2016-06-01

    We report on the nucleation and growth mechanism of self-catalyzed InAs nanowires (NWs) grown on Si (111) substrates by chemical beam epitaxy. Careful choices of the growth parameters lead to In-rich conditions such that the InAs NWs nucleate from an In droplet and grow by the vapor–liquid–solid mechanism while sustaining an In droplet at the tip. As the growth progresses, new NWs continue to nucleate on the Si (111) surface causing a spread in the NW size distribution. The observed behavior in NW nucleation and growth is described within a suitable existing theoretical model allowing us to extract relevant growth parameters. We argue that these results provide useful guidelines to rationally control the growth of self-catalyzed InAs NWs for various applications.

  2. Strain-driven synthesis of <112> direction InAs nanowires in V-grooved trenches on Si using InP/GaAs buffer layers

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhou, Xuliang; Kong, Xiangting; Li, Mengke; Mi, Junping; Wang, Mengqi; Pan, Jiaoqing

    2016-09-01

    The catalyst-free metal organic vapor phase epitaxial growth of InAs nanowires on silicon (001) substrates is investigated by using selectively grown InP/GaAs buffer layers in V-grooved trenches. A strain-driven mechanism of self-aligned <112> direction InAs nanowires growing is proposed and demonstrated by the transmission electron microscopy measurement. The morphology of InAs nanowires is tapered in diameter and exhibits a hexagonal cross-section. The defect-free InAs nanowire shows a pure zinc blende crystal structure and an epitaxial relationship with InP buffer layer.

  3. Crystal Phase Transformation in Self-Assembled InAs Nanowire Junctions on Patterned Si Substrates.

    PubMed

    Rieger, Torsten; Rosenbach, Daniel; Vakulov, Daniil; Heedt, Sebastian; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2016-03-01

    We demonstrate the growth and structural characteristics of InAs nanowire junctions evidencing a transformation of the crystalline structure. The junctions are obtained without the use of catalyst particles. Morphological investigations of the junctions reveal three structures having an L-, T-, and X-shape. The formation mechanisms of these structures have been identified. The NW junctions reveal large sections of zinc blende crystal structure free of extended defects, despite the high stacking fault density obtained in individual InAs nanowires. This segment of zinc blende crystal structure in the junction is associated with a crystal phase transformation involving sets of Shockley partial dislocations; the transformation takes place solely in the crystal phase. A model is developed to demonstrate that only the zinc blende phase with the same orientation as the substrate can result in monocrystalline junctions. The suitability of the junctions to be used in nanoelectronic devices is confirmed by room-temperature electrical experiments. PMID:26881450

  4. Anomalous photoconductive behavior of a single InAs nanowire photodetector

    SciTech Connect

    Li, Junshuai; Yan, Xin; Sun, Fukuan; Zhang, Xia Ren, Xiaomin

    2015-12-28

    We report on a bare InAs nanowire photodetector which exhibits an anomalous photoconductive behavior. Under low-power illumination, the current is smaller than the dark current, and monotonously decreases as the excitation power increases. When the excitation power is high enough, the current starts to increase normally. The phenomenon is attributed to different electron mobilities in the “core” and “shell” of a relatively thick nanowire originating from the surface effect, which result in a quickly dropped “core current” and slowly increased “shell current” under illumination.

  5. Theoretical interpretation of the electron mobility behavior in InAs nanowires

    SciTech Connect

    Marin, E. G. Ruiz, F. G. Godoy, A.; Tienda-Luna, I. M.; Martínez-Blanque, C.; Gámiz, F.

    2014-11-07

    This work studies the electron mobility in InAs nanowires (NWs), by solving the Boltzmann Transport Equation under the Momentum Relaxation Time approximation. The numerical solver takes into account the contribution of the main scattering mechanisms present in III-V compound semiconductors. It is validated against experimental field effect-mobility results, showing a very good agreement. The mobility dependence on the nanowire diameter and carrier density is analyzed. It is found that surface roughness and polar optical phonons are the scattering mechanisms that mainly limit the mobility behavior. Finally, we explain the origin of the oscillations observed in the mobility of small NWs at high electric fields.

  6. Diameter dependence of the thermal conductivity of InAs nanowires.

    PubMed

    Swinkels, M Y; van Delft, M R; Oliveira, D S; Cavalli, A; Zardo, I; van der Heijden, R W; Bakkers, E P A M

    2015-09-25

    The diameter dependence of the thermal conductivity of InAs nanowires in the range of 40-1500 nm has been measured. We demonstrate a reduction in thermal conductivity of 80% for 40 nm nanowires, opening the way for further design strategies for nanoscaled thermoelectric materials. Furthermore, we investigate the effect of thermal contact in the most common measurement method for nanoscale thermal conductivity. Our study allows for the determination of the thermal contact using existing measurement setups. The thermal contact resistance is found to be comparable to the wire thermal resistance for wires with a diameter of 90 nm and higher. PMID:26329133

  7. Single-electron transport in InAs nanowire quantum dots formed by crystal phase engineering

    NASA Astrophysics Data System (ADS)

    Nilsson, Malin; Namazi, Luna; Lehmann, Sebastian; Leijnse, Martin; Dick, Kimberly A.; Thelander, Claes

    2016-05-01

    We report electrical characterization of quantum dots formed by introducing pairs of thin wurtzite (WZ) segments in zinc blende (ZB) InAs nanowires. Regular Coulomb oscillations are observed over a wide gate voltage span, indicating that WZ segments create significant barriers for electron transport. We find a direct correlation of transport properties with quantum dot length and corresponding growth time of the enclosed ZB segment. The correlation is made possible by using a method to extract lengths of nanowire crystal phase segments directly from scanning electron microscopy images, and with support from transmission electron microscope images of typical nanowires. From experiments on controlled filling of nearly empty dots with electrons, up to the point where Coulomb oscillations can no longer be resolved, we estimate a lower bound for the ZB-WZ conduction-band offset of 95 meV.

  8. X-ray diffraction strain analysis of a single axial InAs 1-x Px nanowire segment.

    PubMed

    Keplinger, Mario; Mandl, Bernhard; Kriegner, Dominik; Holý, Václav; Samuelsson, Lars; Bauer, Günther; Deppert, Knut; Stangl, Julian

    2015-01-01

    The spatial strain distribution in and around a single axial InAs 1-x Px hetero-segment in an InAs nanowire was analyzed using nano-focused X-ray diffraction. In connection with finite-element-method simulations a detailed quantitative picture of the nanowire's inhomogeneous strain state was achieved. This allows for a detailed understanding of how the variation of the nanowire's and hetero-segment's dimensions affect the strain in its core region and in the region close to the nanowire's side facets. Moreover, ensemble-averaging high-resolution diffraction experiments were used to determine statistical information on the distribution of wurtzite and zinc-blende crystal polytypes in the nanowires. PMID:25537589

  9. Control of the crystal structure of InAs nanowires by tuning contributions of adatom diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Ren, Xiaomin; Ye, Xian; Guo, Jingwei; Wang, Qi; Zhang, Xia; Cai, Shiwei; Huang, Yongqing

    2010-11-01

    The dependence of crystal structure on contributions of adatom diffusion (ADD) and precursor direct impingement (DIM) was investigated for vapor-liquid-solid growth of InAs nanowires (NWs). The ADD contributions from the sidewalls and substrate surface can be changed by using GaAs NWs of different length as the basis for growing InAs NWs. We found that pure zinc-blende structure is favored when DIM contributions dominate. Moreover, without changing the NW diameter or growth parameters (such as temperature or V/III ratio), a transition from zinc-blende to wurtzite structure can be realized by increasing the ADD contributions. A nucleation model is proposed in which ADD and DIM contributions play different roles in determining the location and phase of the nucleus.

  10. Au-free epitaxial growth of InAs nanowires.

    PubMed

    Mandl, Bernhard; Stangl, Julian; Mårtensson, Thomas; Mikkelsen, Anders; Eriksson, Jessica; Karlsson, Lisa S; Bauer, G Uuml Nther; Samuelson, Lars; Seifert, Werner

    2006-08-01

    III-V nanowires have been fabricated by metal-organic vapor-phase epitaxy without using Au or other metal particles as a catalyst. Instead, prior to growth, a thin SiOx layer is deposited on the substrates. Wires form on various III-V substrates as well as on Si. They are nontapered in thickness and exhibit a hexagonal cross-section. From high-resolution X-ray diffraction, the epitaxial relation between wires and substrates is demonstrated and their crystal structure is determined. PMID:16895379

  11. Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods

    NASA Astrophysics Data System (ADS)

    Gomes, U. P.; Ercolani, D.; Zannier, V.; Beltram, F.; Sorba, L.

    2015-11-01

    III-V semiconductor nanowires have attracted intensive research interest because of their promising optical and electronic properties that can be manipulated by tailoring nanowire composition and morphology. Therefore, it is crucial to measure and control the diameter distribution of the grown nanowires. In this study, we analyze the diameter distribution of Au-catalyzed InAs nanowires. Au colloidal nanoparticles dispersed on InAs (111) B substrates and nanoparticles obtained by the thermal annealing of Au films were used as catalysts for InAs nanowire growth. The annealing time and temperature, the thickness of the Au film and the colloid sizes were systematically varied not only to understand their influence on nanowire diameter distribution, but also to find the optimal parameters for realizing samples with uniform and controlled diameter distribution. Morphological characterization was performed by scanning electron microscopy measurements and the image analysis was carried out using in-house-developed automated image analysis software to accurately determine the diameter distribution of the nanowires. A description of the image analysis software is also presented. The thermal annealing of films turned out to be the most suitable method for uniformity and density control, while the colloidal nanoparticles yielded narrow and more reproducible diameter distributions.

  12. g-factor anisotropy in nanowire-based InAs quantum dots

    SciTech Connect

    D'Hollosy, Samuel; Fábián, Gábor; Baumgartner, Andreas; Schönenberger, Christian; Nygård, Jesper

    2013-12-04

    The determination and control of the electron g-factor in semiconductor quantum dots (QDs) are fundamental prerequisites in modern concepts of spintronics and spin-based quantum computation. We study the dependence of the g-factor on the orientation of an external magnetic field in quantum dots (QDs) formed between two metallic contacts on stacking fault free InAs nanowires. We extract the g-factor from the splitting of Kondo resonances and find that it varies continuously in the range between |g*| = 5 and 15.

  13. Photoresponse in arrays of thermoelectric nanowire junctions

    NASA Astrophysics Data System (ADS)

    Huber, T. E.; Scott, R.; Johnson, S.; Brower, T.; Belk, J. H.; Hunt, J. H.

    2013-07-01

    We report the first demonstration of optical detection by thermoelectric nanowire junctions. We employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by thermoelectric effects considering cooling rates given by heat diffusion through the array. In addition, under visible illumination, we observe a photovoltaic response.

  14. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Joyce, Hannah J.; Docherty, Callum J.; Gao, Qiang; Tan, H. Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M.; Johnston, Michael B.

    2013-05-01

    We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm2 V-1 s-1, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s-1. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 105  cm s-1. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

  15. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.

    PubMed

    Panda, Jaya Kumar; Chakraborty, Arup; Ercolani, Daniele; Gemmi, Mauro; Sorba, Lucia; Roy, Anushree

    2016-10-14

    In this article we demonstrate type-II band alignment at the wurtzite/zinc-blende hetero-interface in InAs polytype nanowires using resonance Raman measurements. Nanowires were grown with an optimum ratio of the above mentioned phases, so that in the electronic band alignment of such NWs the effect of the difference in the crystal structure dominates over other perturbing effects (e.g. interfacial strain, confinement of charge carriers and band bending due to space charge). Experimental results are compared with the band alignment obtained from density functional theory calculations. In resonance Raman measurements, the excitation energies in the visible range probe the band alignment formed by the E 1 gap of wurtzite and zinc-blende phases. However, we expect our claim to be valid also for band alignment near the fundamental gap at the heterointerface. PMID:27586817

  16. Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts.

    PubMed

    Heedt, S; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-05-11

    One-dimensional ballistic transport is demonstrated for a high-mobility InAs nanowire device. Unlike conventional quantum point contacts (QPCs) created in a two-dimensional electron gas, the nanowire QPCs represent one-dimensional constrictions formed inside a quasi-one-dimensional conductor. For each QPC, the local subband occupation can be controlled individually between zero and up to six degenerate modes. At large out-of-plane magnetic fields Landau quantization and Zeeman splitting emerge and comprehensive voltage bias spectroscopy is performed. Confinement-induced quenching of the orbital motion gives rise to significantly modified subband-dependent Landé g factors. A pronounced g factor enhancement related to Coulomb exchange interaction is reported. Many-body effects of that kind also manifest in the observation of the 0.7·2e(2)/h conductance anomaly, commonly found in planar devices. PMID:27104768

  17. Photocurrents in a Single InAs Nanowire/Silicon Heterojunction.

    PubMed

    Brenneis, Andreas; Overbeck, Jan; Treu, Julian; Hertenberger, Simon; Morkötter, Stefanie; Döblinger, Markus; Finley, Jonathan J; Abstreiter, Gerhard; Koblmüller, Gregor; Holleitner, Alexander W

    2015-10-27

    We investigate the optoelectronic properties of single indium arsenide nanowires, which are grown vertically on p-doped silicon substrates. We apply a scanning photocurrent microscopy to study the optoelectronic properties of the single heterojunctions. The measured photocurrent characteristics are consistent with an excess charge carrier transport through midgap trap states, which form at the Si/InAs heterojunctions. Namely, the trap states add an additional transport path across a heterojunction, and the charge of the defects changes the band bending at the junction. The bending gives rise to a photovoltaic effect at a small bias voltage. In addition, we observe a photoconductance effect within the InAs nanowires at large biases. PMID:26348461

  18. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime

    NASA Astrophysics Data System (ADS)

    Wang, Jiyin; Huang, Shaoyun; Lei, Zijin; Pan, Dong; Zhao, Jianhua; Xu, H. Q.

    2016-08-01

    We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO2 substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of ΔST ˜ 2.3 meV, a strong spin-orbit interaction of ΔSO ˜ 140 μeV, and a large and strongly level-dependent Landé g factor of ˜12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.

  19. Optical response of wurtzite and zinc blende GaP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Berg, Alexander; Lehmann, Sebastian; Pistol, Mats-Erik

    2015-11-16

    We compare the optical response of wurtzite and zinc blende GaP nanowire arrays for varying geometry of the nanowires. We measure reflectance spectra of the arrays and extract from these measurements the absorption in the nanowires. To support our experimental findings and to allow for more detailed investigations of the optical response of the nanowire arrays than possible in experiments, we perform electromagnetic modeling. This modeling highlights the validity of the extraction of the absorptance from reflectance spectra, as well as limitations of the extraction due to anti-reflection properties of the nanowires. In our combined experimental and theoretical study, we find for both zinc blende and wurtzite nanowires an absorption resonance that can be tuned into the ultraviolet by decreasing the diameter of the nanowires. This peak stops blue-shifting with decreasing nanowire diameter at a wavelength of approximately 330 nm for zinc blende GaP. In contrast, for the wurtzite GaP nanowires, the resonance continues blue-shifting at 310 nm for the smallest diameters we succeeded in fabricating. We interpret this as a difference in refractive index between wurtzite and zinc blende GaP in this wavelength region. These results open up for optical applications through resonant absorption in the visible and ultraviolet wavelength regions with both zinc blende and wurtzite GaP nanowire arrays. Notably, zinc blende and wurtzite GaP support resonant absorption deeper into the ultraviolet region than previously found for zinc blende and wurtzite InP and InAs. PMID:26698498

  20. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  1. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays. PMID:26698807

  2. Sensing and energy harvesting of fluidic flow by InAs nanowires.

    PubMed

    Chen, Ying; Liang, Dong; Gao, Xuan P A; Alexander, J Iwan D

    2013-08-14

    Indium arsenide (InAs) nanowire (NW) field effect transistors (FETs) were incorporated into a microfluidic channel to detect the flow rate change as well as to harvest fluid flow energy for electric power generation. Discrete changes in the electric current through InAs NW FETs were observed upon flow rate changes at steps of 1 mL/h (equivalent to ~3 mm/s change in average linear velocity). The current also showed a sign change upon reversing flow direction. By comparing the response of the device with and without a driving voltage between source-drain electrodes, we conclude that the dominant contribution in the response is the streaming potential tuned conductance of NW. In the absence of source-drain voltage, we further demonstrate that the ionic flow could enable generation of an ~mV electrical potential (or ~nA electrical current) inside the InAs NW per mL/h increase of flow rate, most likely due to the charge dragging effect. PMID:23899249

  3. The electrical and structural properties of n-type InAs nanowires grown from metal-organic precursors.

    PubMed

    Thelander, C; Dick, K A; Borgström, M T; Fröberg, L E; Caroff, P; Nilsson, H A; Samuelson, L

    2010-05-21

    The electrical and structural properties of 111B-oriented InAs nanowires grown using metal-organic precursors have been studied. On the basis of electrical measurements it was found that the trends in carbon incorporation are similar to those observed in the layer growth, where an increased As/In precursor ratio and growth temperature result in a decrease in carbon-related impurities. Our results also show that the effect of non-intentional carbon doping is weaker in InAs nanowires compared to bulk, which may be explained by lower carbon incorporation in the nanowire core. We determine that differences in crystal quality, here quantified as the stacking fault density, are not the primary cause for variations in resistivity of the material studied. The effects of some n-dopant precursors (S, Se, Si, Sn) on InAs nanowire morphology, crystal structure and resistivity were also investigated. All precursors result in n-doped nanowires, but high precursor flows of Si and Sn also lead to enhanced radial overgrowth. Use of the Se precursor increases the stacking fault density in wurtzite nanowires, ultimately at high flows leading to a zinc blende crystal structure with strong overgrowth and very low resistivity. PMID:20413840

  4. Highly integrated synthesis of heterogeneous nanostructures on nanowire heater array

    NASA Astrophysics Data System (ADS)

    Jin, Chun Yan; Yun, Jeonghoon; Kim, Jung; Yang, Daejong; Kim, Dong Hwan; Ahn, Jae Hyuk; Lee, Kwang-Cheol; Park, Inkyu

    2014-11-01

    We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method.We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04216f

  5. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  6. Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy

    SciTech Connect

    Wang, L. B.; Guo, J. K.; Kang, N. E-mail: hqxu@pku.edu.cn; Li, Sen; Fan, Dingxun; Pan, Dong; Zhao, Jianhua; Xu, H. Q. E-mail: hqxu@pku.edu.cn

    2015-04-27

    We report low-temperature magnetotransport studies of individual InAs nanowires grown by molecule beam epitaxy. At low magnetic fields, the magnetoconductance characteristics exhibit a crossover between weak antilocalization and weak localization by changing either the gate voltage or the temperature. The observed crossover behavior can be well described in terms of relative scales of the transport characteristic lengths extracted based on the quasi-one-dimensional theory of weak localization in the presence of spin-orbit interaction. The spin relaxation length extracted from the magnetoconductance data is found to be in the range of 80–100 nm, indicating the presence of strong spin-orbit coupling in the InAs nanowires. Moreover, the amplitude of universal conductance fluctuations in the nanowires is found to be suppressed at low temperatures due to the presence of strong spin-orbit scattering.

  7. Paramagnetic Meissner effect in Pb nanowire arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Shijun; Ren, Liyuan; Li, Fashen

    2004-03-01

    The Meissner effect is one of the basic properties of superconductors. Recently, many experiments have shown that small-size superconducting samples may be paramagnetic in a weak magnetic field, the so-called paramagnetic Meissner effect (PME). In this paper, we report the observation of the PME in Pb nanowire arrays. We find that the signal of the PME increases with decreasing diameter of the nanowires. In a lead nanowire array of diameter about 40 nm, the oscillations of the PME are observed in field-cooling temperature-dependent magnetization M(T) curves. Surprisingly, the PME was also observed in zero-field-cooling M(T) curves. We conclude that the PME is in association with the metastable states in superconductors. The PME plays an important role only if the proportion of surface superconductors is sufficiently large.

  8. Suspended InAs nanowire gate-all-around field-effect transistors

    SciTech Connect

    Li, Qiang; Huang, Shaoyun E-mail: hqxu@pku.edu.cn; Wang, Jingyun; Pan, Dong; Zhao, Jianhua; Xu, H. Q. E-mail: hqxu@pku.edu.cn

    2014-09-15

    Gate-all-around field-effect transistors are realized with thin, single-crystalline, pure-phase InAs nanowires grown by molecular beam epitaxy. At room temperature, the transistors show a desired high on-state current I{sub on} of ∼10 μA and an on-off current ratio I{sub on}/I{sub off} of as high as 10{sup 6} at source-drain bias voltage of 50 mV and gate length of 1 μm with a gate underlap spacing of 1 μm from the source and from the drain. At low temperatures, the on-state current I{sub on} is only slightly reduced, while the ratio I{sub on}/I{sub off} is increased to 10{sup 7}. The field-effect mobility in the nanowire channels is also investigated and found to be ∼1500 cm{sup 2}/V s at room temperature and ∼2000 cm{sup 2}/V s at low temperatures. The excellent performance of the transistors is explained in terms of strong electrostatic and quantum confinements of carriers in the nanowires.

  9. Mechanical properties of individual InAs nanowires studied by tensile tests

    SciTech Connect

    Li, X.; Wei, X. L. E-mail: qingchen@pku.edu.cn; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Chen, Q. E-mail: qingchen@pku.edu.cn; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.

    2014-03-10

    Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ∼10%. Their fracture strength distributes in a similar range of ∼2–5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16–78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34–79 GPa with an average value of 58 GPa for MBE NWs.

  10. Unit cell structure of crystal polytypes in InAs and InSb nanowires.

    PubMed

    Kriegner, Dominik; Panse, Christian; Mandl, Bernhard; Dick, Kimberly A; Keplinger, Mario; Persson, Johan M; Caroff, Philippe; Ercolani, Daniele; Sorba, Lucia; Bechstedt, Friedhelm; Stangl, Julian; Bauer, Günther

    2011-04-13

    The atomic distances in hexagonal polytypes of III-V compound semiconductors differ from the values expected from simply a change of the stacking sequence of (111) lattice planes. While these changes were difficult to quantify so far, we accurately determine the lattice parameters of zinc blende, wurtzite, and 4H polytypes for InAs and InSb nanowires, using X-ray diffraction and transmission electron microscopy. The results are compared to density functional theory calculations. Experiment and theory show that the occurrence of hexagonal bilayers tends to stretch the distances of atomic layers parallel to the c axis and to reduce the in-plane distances compared to those in zinc blende. The change of the lattice parameters scales linearly with the hexagonality of the polytype, defined as the fraction of bilayers with hexagonal character within one unit cell. PMID:21434674

  11. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  12. Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy

    SciTech Connect

    Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka

    2014-07-07

    We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.

  13. Mechanical properties of individual InAs nanowires studied by tensile tests

    NASA Astrophysics Data System (ADS)

    Li, X.; Wei, X. L.; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.; Chen, Q.

    2014-03-01

    Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ˜10%. Their fracture strength distributes in a similar range of ˜2-5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16-78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34-79 GPa with an average value of 58 GPa for MBE NWs.

  14. Plasmon resonant cavities in vertical nanowire arrays

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  15. Templated Synthesis of Uniform Perovskite Nanowire Arrays.

    PubMed

    Ashley, Michael J; O'Brien, Matthew N; Hedderick, Konrad R; Mason, Jarad A; Ross, Michael B; Mirkin, Chad A

    2016-08-17

    While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates. PMID:27501464

  16. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    NASA Astrophysics Data System (ADS)

    Fülöp, G.; d’Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  17. Signature of topological transition in InAs nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Strambini, Elia; Paajaste, J.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, S.; Ercolani, D.; Sorba, L.; Giazotto, F.

    The coupling of a conventional s-wave superconductors to semiconductors with strong spin-orbit (SO) coupling, like e. g. InAs or InSb nanowires (NWs), gives rise to unconventional p-wave superconductivity that may become a topological superconductor (TS), which is a natural host for exotic edge modes with Majorana character. Recently the enhancement of the critical supercurrent Ic in a strong SO semiconducting Josephson junction (JJ) have been proposed as a new evidence of the sought-after Majorana bound states. Here we report on the first observation of the colossal Ic enhancement induced by an external magnetic field on a mesoscopic JJ formed by InAs NWs and Ti/Al leads. This anomalous enhancement appears precisely above a threshold magnetic field Bth orthogonal to the substrate and in junctions of different lengths, suggesting that the origin of the enhancement is intrinsic, i.e. it is not related to geometrical resonances in the junction. None of the standard phenomenon known in JJ, including e. g. Fraunhofer patterns or π-junction behavior, can explain this colossal enhancement while a topological transition at Bth is qualitatively compatible with the observed phenomenology.

  18. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts.

    PubMed

    Fülöp, G; d'Hollosy, S; Hofstetter, L; Baumgartner, A; Nygård, J; Schönenberger, C; Csonka, S

    2016-05-13

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments. PMID:27040175

  19. Thermoelectric Nanowire Arrays Response to Illumination

    NASA Astrophysics Data System (ADS)

    Huber, Tito; Scott, Reum; Johnson, Scott; Brower, Tina; Nikolaeva, Albina; Konopko, Leonid

    Bismuth nanowire arrays configured on devices where they are capped with a transparent indium tin oxide electrode generate electric power when exposed to light. The arrays feature poor optical reflectivity and, possibly, light trapping. We show experimental results that indicate that the arrays respond to illumination owing to the thermoelectric conversion of heat absorbed at the surface. The unique features of the energy pathway are manifested through a strong temporal and photon wavelength dependence of the photoresponse. Energy conversion in thermoelectrics with light trapping surfaces is a path to fast infrared light detection and across-the-spectrum solar energy harvesting.

  20. Self-catalyzed growth mechanism of InAs nanowires and growth of InAs/GaSb heterostructured nanowires on Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoye; Du, Wenna; Yang, Xiaoguang; Zhang, Xingwang; Yang, Tao

    2015-09-01

    The growth mechanism of III-V nanowires (NWs) grown without the use of any foreign catalysts, especially the growth mechanism of InAs NWs grown on Si substrates, is still an open question and controversial. To make it clear, we in detail investigated metal-organic chemical vapor deposition (MOCVD) growth of InAs NWs on Si substrates. Based on assuming the growth of InAs NWs by self-catalyzed growth mode, we firstly realized the growth of InAs/GaSb heterostructured NWs both in the axial direction by utilizing the catalysis of In droplet and in the radial direction (core/shell structure) by consuming In droplet. In particular, we found the presence of a certain amount of In atoms in the top droplet of the InAs/GaSb axially heterostructured NWs, which is the direct evidence of self-catalyzed vapor-liquid-solid (VLS) growth mode for the growth of InAs NWs on Si. All the results obtained here support that the InAs NWs are grown by self-catalyzed VLS mechanism. The reasons for the absence of In droplets in the growth of InAs NWs were also discussed in details.

  1. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  2. Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111)

    NASA Astrophysics Data System (ADS)

    Park, Dong Woo; Jeon, Seong Gi; Lee, Cheul-Ro; Lee, Sang Jun; Song, Jae Yong; Kim, Jun Oh; Noh, Sam Kyu; Leem, Jae-Young; Kim, Jin Soo

    2015-11-01

    We report structural and electrical properties of catalyst-free Si-doped InAs nanowires (NWs) formed on Si(111) substrates. The average diameter of Si-doped InAs NWs was almost similar to that of undoped NWs with a slight increase in height. In the previous works, the shape and size of InAs NWs formed on metallic catalysts or patterned structures were significantly changed by introducing dopants. Even though the external shape and size of the Si-doped NWs in this work were not changed, crystal structures inside the NWs were significantly changed. For the undoped InAs NWs, both zincblende (ZB) and wurzite (WZ) structures were observed in transmission-electron microscope images, where the portion of WZ structure was estimated to be more than 30%. However, only ZB was observed with an increase in stacking fault (SF) for the Si-doped NWs. The undoped and Si-doped InAs NWs were used as channels of four-point electrical measurements with Al/Ni electrodes to investigate electrical properties. The resistivity calculated from the current-voltage curve of a Si-doped InAs NW showed 1.32 × 10-3 Ωcm, which was dramatically decreased from 10.14 × 10-3 Ωcm for the undoped InAs NW. A relatively low resistivity of catalyst-free Si-doped InAs NWs was achieved without significant change in structural dimensions.

  3. Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111).

    PubMed

    Park, Dong Woo; Jeon, Seong Gi; Lee, Cheul-Ro; Lee, Sang Jun; Song, Jae Yong; Kim, Jun Oh; Noh, Sam Kyu; Leem, Jae-Young; Kim, Jin Soo

    2015-01-01

    We report structural and electrical properties of catalyst-free Si-doped InAs nanowires (NWs) formed on Si(111) substrates. The average diameter of Si-doped InAs NWs was almost similar to that of undoped NWs with a slight increase in height. In the previous works, the shape and size of InAs NWs formed on metallic catalysts or patterned structures were significantly changed by introducing dopants. Even though the external shape and size of the Si-doped NWs in this work were not changed, crystal structures inside the NWs were significantly changed. For the undoped InAs NWs, both zincblende (ZB) and wurzite (WZ) structures were observed in transmission-electron microscope images, where the portion of WZ structure was estimated to be more than 30%. However, only ZB was observed with an increase in stacking fault (SF) for the Si-doped NWs. The undoped and Si-doped InAs NWs were used as channels of four-point electrical measurements with Al/Ni electrodes to investigate electrical properties. The resistivity calculated from the current-voltage curve of a Si-doped InAs NW showed 1.32 × 10(-3) Ωcm, which was dramatically decreased from 10.14 × 10(-3) Ωcm for the undoped InAs NW. A relatively low resistivity of catalyst-free Si-doped InAs NWs was achieved without significant change in structural dimensions. PMID:26581781

  4. Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111)

    PubMed Central

    Park, Dong Woo; Jeon, Seong Gi; Lee, Cheul-Ro; Lee, Sang Jun; Song, Jae Yong; Kim, Jun Oh; Noh, Sam Kyu; Leem, Jae-Young; Kim, Jin Soo

    2015-01-01

    We report structural and electrical properties of catalyst-free Si-doped InAs nanowires (NWs) formed on Si(111) substrates. The average diameter of Si-doped InAs NWs was almost similar to that of undoped NWs with a slight increase in height. In the previous works, the shape and size of InAs NWs formed on metallic catalysts or patterned structures were significantly changed by introducing dopants. Even though the external shape and size of the Si-doped NWs in this work were not changed, crystal structures inside the NWs were significantly changed. For the undoped InAs NWs, both zincblende (ZB) and wurzite (WZ) structures were observed in transmission-electron microscope images, where the portion of WZ structure was estimated to be more than 30%. However, only ZB was observed with an increase in stacking fault (SF) for the Si-doped NWs. The undoped and Si-doped InAs NWs were used as channels of four-point electrical measurements with Al/Ni electrodes to investigate electrical properties. The resistivity calculated from the current-voltage curve of a Si-doped InAs NW showed 1.32 × 10−3 Ωcm, which was dramatically decreased from 10.14 × 10−3 Ωcm for the undoped InAs NW. A relatively low resistivity of catalyst-free Si-doped InAs NWs was achieved without significant change in structural dimensions. PMID:26581781

  5. Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn.

    PubMed

    Ford, Alexandra C; Chuang, Steven; Ho, Johnny C; Chueh, Yu-Lun; Fan, Zhiyong; Javey, Ali

    2010-02-10

    Gas phase p-doping of InAs nanowires with Zn atoms is demonstrated as an effective route for enabling postgrowth dopant profiling of nanostructures. The versatility of the approach is demonstrated by the fabrication of high-performance gated diodes and p-MOSFETs. High Zn concentrations with electrically active content of approximately 1 x 10(19) cm(-3) are achieved which is essential for compensating the electron-rich surface layers of InAs to enable heavily p-doped structures. This work could have important practical implications for the fabrication of planar and nonplanar devices based on InAs and other III-V nanostructures which are not compatible with conventional ion implantation processes that often cause severe lattice damage with local stoichiometry imbalance. PMID:20044838

  6. Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles

    SciTech Connect

    Li, Wu; Mingo, Natalio

    2013-11-14

    We compute the thermal conductivity of the alternative zincblende (ZB) and wurtzite (WZ) phases of InAs, AlN, and BeO. The bulk thermal conductivity of the ZB phase of BeO is predicted to be even higher than that of its WZ phase (the highest amongst all ceramics used in electronic technology). Our calculations agree well with the available experimental measurements for bulk ZB InAs, WZ AlN, WZ BeO, and WZ and ZB InAs nanowires, and we provide predictions for the remaining cases. The predicted good thermal conductor ZB BeO might have interesting applications in improved heat sinks for high performance semiconductor electronics.

  7. X-ray diffraction strain analysis of a single axial InAs1–xPx nanowire segment

    PubMed Central

    Keplinger, Mario; Mandl, Bernhard; Kriegner, Dominik; Holý, Václav; Samuelsson, Lars; Bauer, Günther; Deppert, Knut; Stangl, Julian

    2015-01-01

    The spatial strain distribution in and around a single axial InAs1–xPx hetero-segment in an InAs nanowire was analyzed using nano-focused X-ray diffraction. In connection with finite-element-method simulations a detailed quantitative picture of the nanowire’s inhomogeneous strain state was achieved. This allows for a detailed understanding of how the variation of the nanowire’s and hetero-segment’s dimensions affect the strain in its core region and in the region close to the nanowire’s side facets. Moreover, ensemble-averaging high-resolution diffraction experiments were used to determine statistical information on the distribution of wurtzite and zinc-blende crystal polytypes in the nanowires. PMID:25537589

  8. Chemical beam epitaxy growth of III–V semiconductor nanowires

    SciTech Connect

    Mohummed Noori, Farah T.

    2013-12-16

    Indium- Arsenide (InAs) nanowires were grown in a high vacuum chemical beam epitaxy (CBE) unit on InAs(111) wafers substrates at 425–454°C. Two types of nanogold were used as orientation catalyst, 40nm and 80nm. The measurements were performed using scanning electron microscopy showed that uniform nanowires. The nanowires orient vertically in the InAs nanowire scanning electron microscopy of an array 80nm diameter InAs nanowire with length is in the range 0.5–1 μm and of an array 40nm diameter with length is in the range 0.3–0.7μm. The nanowire length with growth time shows that the linear increase of nanowires start to grow as soon as TMIn is available. The growth rate with temperature was studied.

  9. Fabrication, characterization and applications of magnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav

    Fe-Co-Ni ternary alloy nanowire arrays 32--106 nm in diameter are fabricated within nanoporous alumina membranes using 15 Vrms alternating current electrodeposition at frequencies of 50, 250, 500, 750, and 1000 Hz. The alumina membranes, 10--15 microns thick, are synthesized by anodization of aluminum foil using a two-step technique to increase pore uniformity. The alumina membrane structure is tailored with the end aim being uniform magnetic nanowire electrodeposition. Using an electrodeposition frequency of 1000 Hz, 15 Vrms, consistently and repeatably yield nanowire arrays over membranes several cm2 in extent. Electrochemical Impedance Spectroscopy (EIS) is used to explain the effects of AC electrodeposition frequency. The impedance of the residual alumina barrier layer, separating the underlying aluminum metal and the nanoporous membrane, decreases drastically with electrodeposition frequency facilitating uniform pore-filling of samples several cm2 in area. The magnetic coercivity and hysteresis loop squareness-ratio (Mr/Ms) were studied as functions of electrolyte composition, nanowire diameter, and nanowire aspect ratio. Anodic polarization studies on thin films having alloy compositions identical to the nanowires display excellent corrosion resistance properties. Two potential applications of the nanowire arrays are investigated. Iron nanowire arrays, oriented perpendicular to the substrate, are fabricated by electrodeposition of iron in nanoporous alumina membranes, followed by precise wet etching of the alumina membrane to partially expose the nanowire array. It is shown that oxidation of standing iron nanowire arrays, at 600°C in an oxygen ambient leads to standing alpha-Fe2O3 (hematite) nanowire arrays. These hematite nanowire arrays show a distinct photocurrent response and can be used as photocatalysts. Second, protein adsorption studies on standing Fe-Co-Ni nanowire arrays and flat Fe-Co-Ni thin films show that nanowire array morphology leads to

  10. Single crystalline molybdenum nanowires, nanowire arrays and nanopore arrays in nickel-aluminium.

    PubMed

    Milenkovic, Srdjan; Smith, Andrew Jonathan; Hassel, Achim Walter

    2009-06-01

    This work describes a novel fabrication method of single crystalline Mo nanowires and nanowire arrays. The method utilizes directional solidification (ds) of a NiAl-Mo eutectic alloy and its subsequent electrochemical processing. In the first step, a self-organized array of Mo nanowires embedded in a NiAl matrix is obtained. By combining the Pourbaix diagrams of the three elements involved, a strategy for selective removal of either of the two phases is derived. An oxidizing acidic solution of pH 0.2 dissolved the matrix and released an array of long and uniform Mo wires. Even a complete extraction of the wires is possible through entire dissolution of the matrix. On the other hand, electrodissolution of the Mo with a simultaneous passivation of the NiAl matrix at the pH 6 and the potential of 200 mV SHE yielded nanopore arrays with rectangular pores. This method has several advantages. First of all, it is one of the few top-down methods that allow the production of large amounts of nanostructures. In addition, both the wires and the matrix are single crystalline which makes them favorable for various applications. Further, the obtained nanostructures exhibit extremely high aspect ratios (> 1000), unreachable by most other techniques. This technique has the potential for the production of nanowire arrays either for employment in sensors or in field emission. PMID:19504862

  11. Synthesis and characterization of single crystalline selenium nanowire arrays

    SciTech Connect

    Zhang, X.Y. . E-mail: apzhxy@polyu.edu.hk; Xu, L.H.; Dai, J.Y.; Cai, Y.; Wang, N.

    2006-09-14

    Ordered selenium nanowire arrays with diameters about 40 nm have been fabricated by electrodeposition using anodic porous alumina templates. As determined by X-ray diffraction, Raman spectra, electron diffraction and high-resolution transmission electron microscopy, selenium nanowires have uniform diameters, which are fully controllable. Single crystalline trigonal selenium nanowires have been obtained after postannealing at 180 deg. C. These nanowires are perfect with a c-axis growth orientation. The optical absorption spectra reveal two types of electron transition activity.

  12. Designed Quasi-1D Potential Structures Realized in Compositionally Graded InAs1-xPx Nanowires.

    PubMed

    Nylund, Gustav; Storm, Kristian; Lehmann, Sebastian; Capasso, Federico; Samuelson, Lars

    2016-02-10

    III-V semiconductor heterostructures are important components of many solid-state optoelectronic devices, but the ability to control and tune the electrical and optical properties of these structures in conventional device geometries is fundamentally limited by the bulk dimensionality and the inability to accommodate lattice-mismatched material combinations. Here we demonstrate how semiconductor nanowires may enable the creation of arbitrarily shaped one-dimensional potential structures for new types of designed device functionality. We describe the controlled growth of stepwise compositionally graded InAs1-xPx heterostructures defined along the axes of InAs nanowires, and we show that nanowires with sawtooth-shaped composition profiles behave as near-ideal unipolar diodes with ratchet-like rectification of the electron transport through the nanowires, in excellent agreement with simulations. This new type of designed quasi-1D potential structure represents a significant advance in band gap engineering and may enable fundamental studies of low-dimensional hot-carrier dynamics, in addition to constituting a platform for implementing novel electronic and optoelectronic device concepts. PMID:26788886

  13. Development of nanowire arrays for neural probe

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.

    2005-05-01

    It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.

  14. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-04-01

    We report on a theoretical study of the electronic structures of the [1 1 1]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic s{{p}3}{{s}\\ast} , spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C 3v double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ -point and some of these bands will split into non-degenerate bands when the wave vector k moves away from the Γ -point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π /3 -rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [1 1 1]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement.

  15. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires.

    PubMed

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H Q

    2016-04-01

    We report on a theoretical study of the electronic structures of the [1 1 1]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic sp(3)s*, spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C(3v) double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ-point and some of these bands will split into non-degenerate bands when the wave vector k moves away from the Γ-point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π/3-rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [1 1 1]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement. PMID:26951953

  16. Amplified Thermionic Cooling Using Arrays of Nanowires

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu

    2007-01-01

    A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision

  17. III-V Nanowire Array Growth by Selective Area Epitaxy

    NASA Astrophysics Data System (ADS)

    Chu, Hyung-Joon; Yeh, Tingwei; Stewart, Lawrence; Dapkus, P. Daniel

    2011-12-01

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH3 decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  18. III-V Nanowire Array Growth by Selective Area Epitaxy

    SciTech Connect

    Chu, Hyung-Joon; Stewart, Lawrence; Yeh, Tingwei; Dapkus, P. Daniel

    2011-12-23

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH{sub 3} decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  19. Preparation and characterization of CuO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dongliang, Yu; Chuannan, Ge; Youwei, Du

    2009-07-01

    CuO nanowire arrays were prepared by oxidation of copper nanowires embedded in anodic aluminum oxide (AAO) membranes. The AAO was fabricated in an oxalic acid at a constant voltage. Copper nanowires were formed in the nanopores of the AAO membranes in an electrochemical deposition process. The oxidized copper nanowires at different temperatures were studied. X-ray diffraction patterns confirmed the formation of a CuO phase after calcining at 500 °C in air for 30 h. A transmission electron microscopy was used to characterize the nanowire morphologies. Raman spectra were performed to study the CuO nanowire arrays. After measuring, we found that the current-voltage curve of the CuO nanowires is nonlinear.

  20. Sensing properties of assembled Bi2S3 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kunakova, G.; Meija, R.; Bite, I.; Prikulis, J.; Kosmaca, J.; Varghese, J.; Holmes, J. D.; Erts, Donats

    2015-09-01

    Bismuth sulfide (Bi2S3) nanowires were grown in porous aluminium oxide template and a selective chemical etching was applied to transfer the nanowires to a solution. Well aligned nanowire arrays were assembled on pre-patterned silicon substrates employing dielectrophoresis. Electron beam lithography was used to connect aligned individual nanowires to the common macroelectrode. In order to evaluate the conductometric sensing performance of the Bi2S3 nanowires, current-voltage characteristics were measured at different relative humidity (RH) levels (5-80%) / argon medium. The response of the Bi2S3 nanowires depending of RH is found to be considerably different from those reported for other types of nanowire RH sensor devices.

  1. Solution processed semiconductor alloy nanowire arrays for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Shimpi, Paresh R.

    In this dissertation, we use ZnO nanowire as a model system to investigate the potential of solution routes for bandgap engineering in semiconductor nanowires. Excitingly, successful Mg-alloying into ZnO nanowire arrays has been achieved using a two-step sequential hydrothermal method at low temperature (<155°C) without using post-annealing process. Evidently, both room temperature and 40 K photoluminescence (PL) spectroscopy revealed enhanced and blue-shifted near-band-edge ultraviolet (NBE UV) emission in the Mg-alloyed ZnO (ZnMgO) nanowire arrays, compared with ZnO nanowires. The specific template of densely packed ZnO nanowires is found to be instrumental in achieving the Mg alloying in low temperature solution process. By optimizing the density of ZnO nanowires and precursor concentration, 8-10 at.% of Mg content has been achieved in ZnMgO nanowires. Post-annealing treatment is conducted in oxygen-rich and oxygen-deficient environment at different temperatures and time durations on silicon and quartz substrates in order to study the structural and optical property evolution in ZnMgO nanowire arrays. Vacuum annealed ZnMgO nanowires on both substrates retained their hexagonal structures and PL results showed the enhanced but red-shifted NBE UV emission compared to ZnO nanowires with visible emission nearly suppressed, suggesting the reduced defects concentration and improvement in crystallinity of the nanowires. On the contrast, for ambient annealed ZnMgO nanowires on silicon substrate, as the annealing temperature increased from 400°C to 900°C, intensity of visible emission peak across blue-green-yellow-red band (˜400-660 nm) increased whereas intensity of NBE UV peak decreased and completely got quenched. This might be due to interface diffusion of oxidized Si (SiOx) and formation of (Zn,Mg)1.7SiO4 epitaxially overcoated around individual ZnMgO nanowire. On the other hand, ambient annealed ZnMgO nanowires grown on quartz showed a ˜6-10 nm blue-shift in

  2. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  3. Modifying the emission of light from a semiconductor nanowire array

    NASA Astrophysics Data System (ADS)

    Anttu, Nicklas

    2016-07-01

    Semiconductor nanowire arrays have been identified as a promising platform for future light emitting diodes (LEDs), for example, due to the materials science freedom of combining lattice-mismatched materials in them. Furthermore, the emission of light from nanowires can be tailored by designing their geometry. Such tailoring could optimize the emission of light to the top side as well as enhance the emission rate through the Purcell effect. However, the possibility for enhanced light extraction from III-V nanowire arrays over a conventional bulk-like LED has not been investigated systematically. Here, we use electromagnetic modeling to study the emission of light from nanowire arrays. We vary both the diameter of the nanowires and the array period to show the benefit of moving from a bulk-like LED to a nanowire array LED. We study the fraction of light emitted to the top air side and to the substrate at wavelength λ. We find several diameter-dependent resonant peaks for which the emission to the top side is maximized. For the strongest such peak, by increasing the array period, the fraction of emitted light that is extracted at the top air side can be enhanced by a factor of 30 compared to that in a planar bulk LED. By modeling a single nanowire, we confirm that it is beneficial to place the nanowires further apart to enhance the emission to the top side. Furthermore, we predict that for a nanowire diameter D > λ/2, a majority of the emitted power ends up in the substrate. Our results offer direction for the design and optimization of nanowire-array based light emitting diodes.

  4. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  5. Conditions for high yield of selective-area epitaxy InAs nanowires on SiO x /Si(111) substrates.

    PubMed

    Robson, M T; Dubrovskii, V G; LaPierre, R R

    2015-11-20

    Experimental data and a model are presented which define the boundary values of V/III flux ratio and growth temperature for droplet-assisted nucleation of InAs semiconductor nanowires in selective-area epitaxy on SiO(x)/Si (111) substrates by molecular beam epitaxy. Within these boundaries, the substrate receives a balanced flux of group III and V materials allowing the growth of vertically oriented nanowires as compared to the formation of droplets or crystallites. PMID:26508403

  6. Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays.

    PubMed

    Barry, Sean; Dawson, Karen; Correa, Elon; Goodacre, Royston; O'Riordan, Alan

    2013-01-01

    We show a photolithography technique that permits gold nanowire array electrodes to be routinely fabricated at reasonable cost. Nanowire electrode arrays offer the potential for enhancements in electroanalysis such as increased signal-to-noise ratio and increased sensitivity while also allowing quantitative detection at much lower concentrations. We explore application of nanowire array electrodes to the detection of different nitroaromatic species. Characteristic reduction peaks of nitro groups are not observed at nanowire array electrodes using sweep voltammetric methods. By contrast, clear and well-defined reduction peaks are resolved using potential step square wave voltammetry. A Principle Component Analysis technique is employed to discriminate between nitroaromatic species including structural isomers of DNT. The analysis indicates that all compounds are successfully discriminated by unsupervised cluster analysis. Finally, the magnitude of the reduction peak at -671 mV for different concentrations of TNT exhibited excellent linearity with increasing concentrations enabling sub-150 ng mL(-1) limits of detection. PMID:24466670

  7. Effective field investigation in arrays of polycrystalline ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo Padrón; Rezende, S. M.; Azevedo, A.

    2008-04-01

    Nanowire arrays have been used as prototypes to investigate basic issues such as size effect, shape anisotropy, and dipolar interaction on the magnetic properties. Under ideal conditions, the nanowires are approximated as perfect long cylinders. Here, coherent rotation as the magnetization reversal mode cannot completely interpret the experimental data. The internal magnetic field value, in nanowire arrays, decreases due to the wire inhomogeneities and the dipolar interaction between the wires. Realistic models must account for the imperfections due to the fabrication process. Instead of it, in this work, a modified ellipsoid-chain array model is proposed to describe magnetization reversal in nanowire arrays. From the angular dependence of the ferromagnetic resonance field presented previously in the literature and from our proper results here, we present experimental confirmations to the model.

  8. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori; Law, Matthew

    2007-09-04

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  9. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori E.; Law, Matthew

    2009-06-09

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  10. Large area, dense silicon nanowire array chemical sensors

    SciTech Connect

    Talin, A. Alec; Hunter, Luke L.; Leonard, Francois; Rokad, Bhavin

    2006-10-09

    The authors present a simple top-down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes.

  11. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays.

    PubMed

    Ma, Ming; Djanashvili, Kristina; Smith, Wilson A

    2016-06-01

    In this work, the effect of Cu nanowire morphology on the selective electrocatalytic reduction of CO2 is presented. Cu nanowire arrays were prepared through a two-step synthesis of Cu(OH)2 and CuO nanowire arrays on Cu foil substrates and a subsequent electrochemical reduction of the CuO nanowire arrays to Cu nanowire arrays. By this simple synthesis method, Cu nanowire array electrodes with different length and density were able to be controllably synthesized. We show that the selectivity for hydrocarbons (ethylene, n-propanol, ethane, and ethanol) on Cu nanowire array electrodes at a fixed potential can be tuned by systematically altering the Cu nanowire length and density. The nanowire morphology effect is linked to the increased local pH in the Cu nanowire arrays and a reaction scheme detailing the local pH-induced formation of C2  products is also presented by a preferred CO dimerization pathway. PMID:27098996

  12. Oriented Mn-doped CuO nanowire arrays.

    PubMed

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-04-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO3)2 · 4H2O and Cu(NO3)2 · 3H2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future. PMID:26895391

  13. Oriented Mn-doped CuO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-04-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO3)2 · 4H2O and Cu(NO3)2 · 3H2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future.

  14. In situ doping of catalyst-free InAs nanowires with Si: Growth, polytypism, and local vibrational modes of Si

    SciTech Connect

    Dimakis, Emmanouil; Ramsteiner, Manfred; Huang, Chang-Ning; Trampert, Achim; Riechert, Henning; Geelhaar, Lutz; Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich

    2013-09-30

    Growth and structural aspects of the in situ doping of InAs nanowires with Si have been investigated. The nanowires were grown catalyst-free on Si(111) substrates by molecular beam epitaxy. The supply of Si influenced the growth kinetics, affecting the nanowire dimensions, but not the degree of structural polytypism, which was always pronounced. As determined by Raman spectroscopy, Si was incorporated as substitutional impurity exclusively on In sites, which makes it a donor. Previously unknown Si-related Raman peaks at 355 and 360 cm{sup −1} were identified, based on their symmetry properties in polarization-dependent measurements, as the two local vibrational modes of an isolated Si impurity on In site along and perpendicular, respectively, to the c-axis of the wurtzite InAs crystal.

  15. Controlled growth of Si nanowire arrays for device integration.

    PubMed

    Hochbaum, Allon I; Fan, Rong; He, Rongrui; Yang, Peidong

    2005-03-01

    Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices. PMID:15755094

  16. Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors

    PubMed Central

    2012-01-01

    We investigated the transport properties of lateral gate field effect transistors (FET) that have been realized by employing, as active elements, (111) B-oriented InAs nanowires grown by chemical beam epitaxy with different Se-doping concentrations. On the basis of electrical measurements, it was found that the carrier mobility increases from 103 to 104 cm2/(V × sec) by varying the ditertiarybutyl selenide (DtBSe) precursor line pressure from 0 to 0.4 Torr, leading to an increase of the carrier density in the transistor channel of more than two orders of magnitude. By keeping the DtBSe line pressure at 0.1 Torr, the carrier density in the nanowire channel measures ≈ 5 × 1017 cm-3 ensuring the best peak transconductances (> 100 mS/m) together with very low resistivity values (70 Ω × μm) and capacitances in the attofarad range. These results are particularly relevant for further optimization of the nanowire-FET terahertz detectors recently demonstrated. PACS: 73.63.-b, 81.07.Gf, 85.35.-p PMID:22373361

  17. Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth

    PubMed Central

    2015-01-01

    While shell growth engineering to the atomic scale is important for tailoring semiconductor nanowires with superior properties, a precise knowledge of the surface structure and morphology at different stages of this type of overgrowth has been lacking. We present a systematic scanning tunneling microscopy (STM) study of homoepitaxial shell growth of twinned superlattices in zinc blende InAs nanowires that transforms {111}A/B-type facets to the nonpolar {110}-type. STM imaging along the nanowires provides information on different stages of the shell growth revealing distinct differences in growth dynamics of the crystal facets and surface structures not found in the bulk. While growth of a new surface layer is initiated simultaneously (at the twin plane interface) on the {111}A and {111}B nanofacets, the step flow growth proceeds much faster on {111}A compared to {111}B leading to significant differences in roughness. Further, we observe that the atomic scale structures on the {111}B facet is different from its bulk counterpart and that shell growth on this facet occurs via steps perpendicular to the ⟨112⟩B-type directions. PMID:25710727

  18. Highly stretchable, printable nanowire array optical polarizers.

    PubMed

    Kwon, Soonshin; Lu, Dylan; Sun, Zhelin; Xiang, Jie; Liu, Zhaowei

    2016-09-21

    Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area. PMID:27537105

  19. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    NASA Astrophysics Data System (ADS)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi C.; Berthing, Trine; Madsen, Morten H.; Holm, Johannes; Nygård, Jesper; Martinez, Karen L.

    2013-10-01

    Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual NWs through several analytical steps, thereby allowing multiplexed detection of different proteins immobilized on different regions of the NW array. We use NW arrays for on-chip extraction, detection and functional analysis of proteins on a nano-scale platform that holds great promise for performing protein analysis on minute amounts of material. The demonstration made here on highly ordered arrays of indium arsenide (InAs) NWs is generic and can be extended to many high aspect ratio nanostructures.Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual

  20. Superconducting-nanowire single-photon-detector linear array

    NASA Astrophysics Data System (ADS)

    Zhao, Qingyuan; McCaughan, Adam; Bellei, Francesco; Najafi, Faraz; De Fazio, Domenico; Dane, Andrew; Ivry, Yachin; Berggren, Karl K.

    2013-09-01

    We designed, fabricated, and tested a one-dimensional array of superconducting-nanowire single-photon detectors, integrated with on-chip inductors and resistors. The architecture is suitable for monolithic integration on a single chip operated in a cryogenic environment, and inherits the characteristics of individual superconducting-nanowire single-photon detectors. We demonstrated a working array with four pixels showing position discrimination and a timing jitter of 124 ps. The electronic crosstalk between the pixels in the array was negligible.

  1. Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    He, Li-Zhong; Qin, Li-Rong; Zhao, Jian-Wei; Yin, Ying-Ying; Yang, Yu; Li, Guo-Qing

    2016-08-01

    Ordered Ni/Au multilayer nanowire arrays are successfully fabricated inside the nanochannels of anodic aluminum oxide template by pulse electrodeposition method. The thickness of the alternating layers is controlled to examine the magnetostatic interaction in Ni/Au multilayer nanowires. The magnetic easy axis parallel to the nanowires indicates that here the magnetostatic coupling along the wire axis dominates over the interactions perpendicular to the nanowires. However, the magnetostatic interaction between adjacent nanowires with larger magnetic layers is enhanced, leading to the existence of an optimum coercivity value. Project supported by the National Natural Science Foundation of China (Grant No. 11204246) and the Natural Science Foundation of CQCSTC (Grant No. cstc2014jcyjA50027).

  2. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation.

    PubMed

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  3. Anomalous polarization conversion in arrays of ultrathin ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Stashkevich, Andrey A.; Roussigné, Yves; Poddubny, Alexander N.; Chérif, S.-M.; Zheng, Y.; Vidal, Franck; Yagupov, Ilya V.; Slobozhanyuk, Alexei P.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-12-01

    We study the optical properties of arrays of ultrathin cobalt nanowires by means of the Brillouin scattering of light on magnons. We employ the Stokes/anti-Stokes scattering asymmetry to probe the circular polarization of a local electric field induced inside nanowires by linearly polarized light waves. We observe the anomalous polarization conversion of the opposite sign than that in a bulk medium or thick nanowires with a great enhancement of the degree of circular polarization attributed to the unconventional refraction in a nanowire medium. A rigorous simulation of the electric field polarization as a function of the wire diameter and spacing reveals the reversed polarization for a thin sparse wire array, in full quantitative agreement with experimental results.

  4. Structure and magnetic properties of hexagonal arrays of ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo Padrón; Azevedo, A.; Rezende, S. M.

    2009-04-01

    Here we present a model that explains a number of the magnetic properties of arrays of cylindrical ferromagnetic nanowires. The model properly considers the magnetostatic contributions from the wire inhomogeneities, here taken as a chain of ellipsoidal grains, as well as the dipolar interactions summed in the overall array of hexagonal symmetry. Carrying out the complete sum of both the dipolar interactions between the ellipsoidal grains and between the nanowires, we obtain an analytical expression for the magnetostatic energy. The effective anisotropy field extracted from the magnetostatic energy predicts the change in the magnetization easy direction from parallel to perpendicular to the wire axis. The expressions contain information on microscopic parameters such as packing factor, length and diameter of the nanowires, and shape and size of the ellipsoids. The model has been used to interpret ferromagnetic resonance data of Ni nanowires fabricated by electrodeposition in porous anodic aluminum oxide membranes.

  5. Spin dependent electronic structure and level crossings as a function of magnetic field in InAs nanowire

    NASA Astrophysics Data System (ADS)

    Jin, S. Q.; Waugh, J.; Matsuura, T.; Faniel, S.; Wu, H. Z.; Koga, Takaaki

    2010-01-01

    We point out that the electric field formed in the surface inversion layer in InAs nanowires leads to effective magnetic fields, due to the Rashba effect, that are mostly aligned along the wire axis, i.e., parallel to the external magnetic field B. While this situation leads to some similarities in spin splitting between the Zeeman and Rashba effects, extensive theoretical simulations revealed that large and small spin splittings should take place alternately at Fermi energies with increasing magnetic field B, as a result of the competition between the Rashba and Zeeman spin splittings. We suggest that an experimental detection of such characteristics should bring up quantitative insights into the relative strengths between the Rashba and Zeeman magnetic fields.

  6. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111)

    PubMed Central

    2011-01-01

    The growth of self-assisted InAs nanowires (NWs) by molecular beam epitaxy (MBE) on Si(111) is studied for different growth parameters and substrate preparations. The thickness of the oxide layer present on the Si(111) surface is observed to play a dominant role. Systematic use of different pre-treatment methods provides information on the influence of the oxide on the NW morphology and growth rates, which can be used for optimizing the growth conditions. We show that it is possible to obtain 100% growth of vertical NWs and no parasitic bulk structures between the NWs by optimizing the oxide thickness. For a growth temperature of 460°C and a V/III ratio of 320 an optimum oxide thickness of 9 ± 3 Å is found. PMID:21880130

  7. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  8. Oriented Growth of Pb1- x Snx Te Nanowire Arrays for Integration of Flexible Infrared Detectors.

    PubMed

    Wang, Qisheng; Li, Jie; Lei, Yin; Wen, Yao; Wang, Zhenxing; Zhan, Xueying; Wang, Feng; Wang, Fengmei; Huang, Yun; Xu, Kai; He, Jun

    2016-05-01

    Assembling nanowires into highly ordered arrays is crucial for developing integration circuits. Oriented growth of mid-infrared Pb1- x Snx Te nanowire arrays on bendable mica, extending the function of existing nanowire arrays, is reported. The flexible photodetectors of these nanowire arrays show a high photoresponsivity of 276 A W(-1) (at 800 nm), which is higher than many previously reported infrared nanosensors. PMID:26990637

  9. Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths

    NASA Astrophysics Data System (ADS)

    Cho, Jaehun; Fujii, Yuya; Konioshi, Katsunori; Yoon, Jungbum; Kim, Nam-Hui; Jung, Jinyong; Miwa, Shinji; Jung, Myung-Hwa; Suzuki, Yoshishige; You, Chun-Yeol

    2016-07-01

    We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, Nz (Ny) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while Nx is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case.

  10. Photoresponse and light trapping in nanowire array-graphene interfaces

    NASA Astrophysics Data System (ADS)

    Huber, Tito; Johnson, Scott; Barclift, Quinton; Brower, Tina; Hunt, Jeffrey H.; Belk, John H.

    2015-03-01

    Graphene is emerging as an optical material that features tunability by electrostatic doping and a photothermoelectric response, however it features low optical absorption. We studied interfaces between nanowire arrays and graphene and also other transparent electrodes such as indium tin oxide films. The nanowire arrays were fabricated using a template method. Graphene was transferred from copper substrates. The interfaces were characterized with a number of tools including Scanning Electron microscopy, Raman spectroscopy and optical reflectance. We also studied the photocurrent through the interface in particular the temporal and wavelength dependence that are revealing of the characteristic thermoelectric origin of the signal. In the photocurrent tests we employed devices composed of nanowire arrays which are capped with the transparent electrode. Interestingly, we observed that the interface has low optical reflectivity and high optical absorption, which we will discuss in terms of enhanced optical trapping. T.H. and S.J. acknowledge support from the National Science Foundation.

  11. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    PubMed Central

    MacKenzie, Robert; Fraschina, Corrado; Sannomiya, Takumi; Auzelyte, Vaida; Vörös, Janos

    2010-01-01

    This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP) confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer) upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance. PMID:22163441

  12. Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell

    PubMed Central

    2015-01-01

    Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III–V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III–V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper spectrum splitting as well as fabrication feasibility. The high efficiency is possible due to an enhanced absorption cross-section of standing nanowires and optimization of the geometric parameters. Furthermore, we propose a multiterminal contacting scheme that can be fabricated with a technology close to standard CMOS. As an alternative we also consider a single power source with a module level voltage matching. These new concepts open avenues for next-generation solar cells for terrestrial and space applications. PMID:26878027

  13. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    NASA Astrophysics Data System (ADS)

    Raposo, V.; Zazo, M.; Flores, A. G.; Garcia, J.; Vega, V.; Iñiguez, J.; Prida, V. M.

    2016-04-01

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires' diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al2O3 layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  14. Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.

    PubMed

    Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio

    2016-01-13

    We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns. PMID:26672801

  15. Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability.

    PubMed

    Hertenberger, S; Rudolph, D; Becker, J; Bichler, M; Finley, J J; Abstreiter, G; Koblmüller, G

    2012-06-15

    We identify the entire growth parameter space and rate-limiting mechanisms in non-catalytic InAs nanowires (NWs) grown by molecular beam epitaxy. Surprisingly huge growth temperature ranges are found with maximum temperatures close to ~600°C upon dramatic increase of V/III ratio, exceeding by far the typical growth temperature range for catalyst-assisted InAs NWs. Based on quantitative in situ line-of-sight quadrupole mass spectrometry, we determine the rate-limiting factors in high-temperature InAs NW growth by directly monitoring the critical desorption and thermal decomposition processes of InAs NWs. Both under dynamic (growth) and static (no growth, ultra-high vacuum) conditions the (111)-oriented InAs NWs evidence excellent thermal stability at elevated temperatures even under negligible supersaturation. The rate-limiting factor for InAs NW growth is hence dominated by In desorption from the substrate surface. Closer investigation of the group-III and group-V flux dependences on growth rate reveals two apparent growth regimes, an As-rich and an In-rich regime defined by the effective As/In flux ratio, and maximum achievable growth rates of > 6 µm h(-1). The unique features of high-T growth and excellent thermal stability provide the opportunity for operation of InAs-based NW materials under caustic environment and further allow access to temperature regimes suitable for alloying non-catalytic InAs NWs with GaAs. PMID:22595881

  16. Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability

    NASA Astrophysics Data System (ADS)

    Hertenberger, S.; Rudolph, D.; Becker, J.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G.

    2012-06-01

    We identify the entire growth parameter space and rate-limiting mechanisms in non-catalytic InAs nanowires (NWs) grown by molecular beam epitaxy. Surprisingly huge growth temperature ranges are found with maximum temperatures close to ˜600 °C upon dramatic increase of V/III ratio, exceeding by far the typical growth temperature range for catalyst-assisted InAs NWs. Based on quantitative in situ line-of-sight quadrupole mass spectrometry, we determine the rate-limiting factors in high-temperature InAs NW growth by directly monitoring the critical desorption and thermal decomposition processes of InAs NWs. Both under dynamic (growth) and static (no growth, ultra-high vacuum) conditions the (111)-oriented InAs NWs evidence excellent thermal stability at elevated temperatures even under negligible supersaturation. The rate-limiting factor for InAs NW growth is hence dominated by In desorption from the substrate surface. Closer investigation of the group-III and group-V flux dependences on growth rate reveals two apparent growth regimes, an As-rich and an In-rich regime defined by the effective As/In flux ratio, and maximum achievable growth rates of > 6 µm h-1. The unique features of high-T growth and excellent thermal stability provide the opportunity for operation of InAs-based NW materials under caustic environment and further allow access to temperature regimes suitable for alloying non-catalytic InAs NWs with GaAs.

  17. CONDUCTING-POLYMER NANOWIRE IMMUNOSENSOR ARRAYS FOR MICROBIAL PATHOGENS

    EPA Science Inventory

    The lack of methods for routine rapid and sensitive detection and quantification of specific pathogens has limited the amount of information available on their occurrence in drinking water and other environmental samples. The nanowire biosensor arrays developed in this study w...

  18. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    PubMed

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-26

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires. PMID:26695560

  19. Silicon nanowire arrays as learning chemical vapour classifiers.

    PubMed

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M

    2011-07-22

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions. PMID:21673389

  20. New Applications of Electrochemically Produced Porous Semiconductors and Nanowire Arrays.

    PubMed

    Leisner, Malte; Cojocaru, Ala; Ossei-Wusu, Emmanuel; Carstensen, Jürgen; Föll, Helmut

    2010-01-01

    The growing demand for electro mobility together with advancing concepts for renewable energy as primary power sources requires sophisticated methods of energy storage. In this work, we present a Li ion battery based on Si nanowires, which can be produced reliable and cheaply and which shows superior properties, such as a largely increased capacity and cycle stability. Sophisticated methods based on electrochemical pore etching allow to produce optimized regular arrays of nanowires, which can be stabilized by intrinsic cross-links, which serve to avoid unwanted stiction effects and allow easy processing. PMID:20730118

  1. Integrating Different Types of Nanowire Sensors in a Large Array

    NASA Astrophysics Data System (ADS)

    Dan, Yaping; Evoy, Stephane; Johnson, A. T. Charlie

    2008-03-01

    Biological olfactory systems have a key structural feature: different types of sensors in a large array. Humans, for example, possess several hundred distinct types of sensing cells, a level of sensor diversity not yet achieved in artificial olfactory systems. Here, we demonstrate a simple and low-cost electrochemical approach to integrate large numbers of different types of nanowire sensors in an array on the same silicon wafer. In our approach, nanowires are grown inside an on-chip nanochannel template by electrochemistry with each horizontal channel connected to a gold electrode. This design allows for addressable synthesis of a specific type of nanowire in specified channels by providing a voltage to the electrodes connecting to those channels. The process can be further repeated to produce different types of nanowires in other channels using different electroplating solutions. The scale and diversity of this array have a potential to compete with those of biological olfactory systems and the synthesis process is cost-effective enough for commercialization.

  2. A route to fabricate single crystalline bismuth nanowire arrays with different diameters

    NASA Astrophysics Data System (ADS)

    Li, Liang; Zhang, Yong; Li, Guanghai; Zhang, Lide

    2003-09-01

    Single crystalline bismuth nanowire arrays in anodic alumina membrane have been fabricated by pulsed electrodeposition. The nanowires of different diameters were obtained by changing the electrical parameter of the pulsed electrodeposition using anodic alumina membrane as template with the same pore size. X-ray diffraction and TEM analysis show that the bismuth nanowires are single crystalline with highly preferential orientation, and the diameter of nanowires increases with increasing the relaxation time of pulse. The growth mechanism of nanowires was discussed.

  3. Three Dimensional Sculpturing of Vertical Nanowire Arrays by Conventional Photolithography

    PubMed Central

    Shi, Run; Huang, Chengzi; Zhang, Linfei; Amini, Abbas; Liu, Kai; Shi, Yuan; Bao, Shuhan; Wang, Ning; Cheng, Chun

    2016-01-01

    Ordered nanoarchitectures have attracted an intense research interest recently because of their promising device applications. They are always fabricated by self-assembling building blocks such as nanowires, nanodots. This kind of bottom up approaches is limited in poor control over height, lateral resolution, aspect ratio, and patterning. Here, we break these limits and realize 3D sculpturing of vertical ZnO nanowire arrays (NAs) based on the conventional photolithography approach. These are achieved by immersing nanowire NAs in thick photoresist (PR) layers, which enable the cutting and patterning of ZnO NAs as well as the tailoring of NAs. Our strategy of 3D sculpturing of NAs promisingly paves the way for designing novel NAs-based nanoarchitectures. PMID:26729069

  4. Bright and dark spatial solitons in metallic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Fernandes, David E.; Silveirinha, Mário G.

    2014-08-01

    We investigate the formation and propagation of bright and dark three-dimensional unstaggered spatial solitons with cylindrical symmetry in a nonlinear nanowire metamaterial. The metamaterial is formed by metallic nanowires embedded in a Kerr-type dielectric host and is modeled using an effective medium approach. Unlike conventional Kerr media, the metamaterial supports bright solitons when the host is a self-defocusing material and dark solitons when the host is a self-focusing material. Our numerical calculations show that the confinement of the spatial-solitons results from the interplay of the host nonlinear response strength and the hyperbolic dispersion of the photonic states in the nanowire array. Subwavelength solitary beams may be observed for sufficiently strong nonlinearities.

  5. Silver nanowire array-polymer composite as thermal interface material

    NASA Astrophysics Data System (ADS)

    Xu, Ju; Munari, Alessio; Dalton, Eric; Mathewson, Alan; Razeeb, Kafil M.

    2009-12-01

    Silver nanowire arrays embedded inside polycarbonate templates are investigated as a viable thermal interface material for electronic cooling applications. The composite shows an average thermal diffusivity value of 1.89×10-5 m2 s-1, which resulted in an intrinsic thermal conductivity of 30.3 W m-1 K-1. The nanowires' protrusion from the film surface enables it to conform to the surface roughness to make a better thermal contact. This resulted in a 61% reduction in thermal impedance when compared with blank polymer. An ˜30 nm Au film on the top of the composite was found to act as a heat spreader, reducing the thermal impedance further by 35%. A contact impedance model was employed to compare the contact impedance of aligned silver nanowire-polymer composites with that of aligned carbon nanotubes, which showed that the Young's modulus of the composite is the defining factor in the overall thermal impedance of these composites.

  6. First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires

    SciTech Connect

    Ning, Feng; Tang, Li-Ming Zhang, Yong; Chen, Ke-Qiu

    2013-12-14

    We have used first principles methods to systematically investigate the quantum confinement effect on the electronic properties of zinc-blende (ZB) and wurtzite (WZ) InAs nanowires (NWs) with different orientations and diameters, and compared their electronic properties before and after pseudo-hydrogen passivation. The results show that the calculated carrier effective masses are dependent on the NW diameter, except for [110] ZB NWs, and the hole effective masses of [111] ZB NWs are larger than the electron effective masses when the NW diameter is ≥26 Å. The band alignments of [111] ZB and [0001] WZ NWs reveal that the effect of quantum confinement on the conduction bands is greater than on the valence bands, and the position of the valence band maximum level changes little with increasing NW diameter. The pseudo-hydrogen passivated NWs have larger band gaps than the corresponding unpassivated NWs. The carrier effective masses and mobilities can be adjusted by passivating the surface dangling bonds.

  7. Low temperature transport in p-doped InAs nanowires

    SciTech Connect

    Upadhyay, S.; Jespersen, T. S.; Madsen, M. H.; Krogstrup, P.; Nygård, J.

    2013-10-14

    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature dependence of electron and hole field effect mobilities are extracted. At low temperatures, we observe reproducible conductance fluctuations as a result of quantum interference, and magnetoconductance data show weak antilocalization.

  8. Dendritic Heterojunction Nanowire Arrays for High-Performance Supercapacitors

    PubMed Central

    Zou, Rujia; Zhang, Zhenyu; Yuen, Muk Fung; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2015-01-01

    Herein, we designed and synthesized for the first time a series of 3D dendritic heterojunction arrays on Ni foam substrates, with NiCo2S4 nanowires as cores and NiCo2O4, NiO, Co3O4, and MnO2 nanowires as branches, and studied systematically their electrochemical performance in comparison with their counterparts in core/shell structure. Attributed to the following reasons: (1) both core and branch are pseudocapacitively active materials, (2) the special dendritic structure with considerable inter-nanowire space enables easy access of electrolyte to the core and branch surfaces, and (3) the highly conductive NiCo2S4 nanowire cores provide “superhighways” for charge transition, NiCo2S4-cored dendritic heterojunction electrodes synergistically lead to ultrahigh specific capacitance, good rate capability, and excellent cycling life. These results of core/branch dentritic heterojunction arrays is universially superior to their core/shell conterparts, thus this is a significant improvement of overall electrochemical performance. PMID:25597402

  9. Automatic Release of Silicon Nanowire Arrays with a High Integrity for Flexible Electronic Devices

    PubMed Central

    Wu, Luo; Li, Shuxin; He, Weiwei; Teng, Dayong; Wang, Ke; Ye, Changhui

    2014-01-01

    Automatic release and vertical transferring of silicon/silicon oxide nanowire arrays with a high integrity are demonstrated by an Ag-assisted ammonia etching method. By adding a water steaming step between Ag-assisted HF/H2O2 and ammonia etching to form a SiOx protective layer sheathing Si nanowires, we can tune the composition of the nanowires from SiOx (0 ≤ x ≤ 2) to Si nanowires. Ag plays a key role to the neat and uniform release of Si/SiOx nanowire arrays from Si wafer in the ammonia etching process. The vertical Si nanowire array device, with both sides having high-quality Ohmic contact, can be transferred to arbitrary substrates, especially on a flexible substrate. The method developed here offers a facile method to realize flexible Si nanowire array functional devices. PMID:24487460

  10. Automatic release of silicon nanowire arrays with a high integrity for flexible electronic devices.

    PubMed

    Wu, Luo; Li, Shuxin; He, Weiwei; Teng, Dayong; Wang, Ke; Ye, Changhui

    2014-01-01

    Automatic release and vertical transferring of silicon/silicon oxide nanowire arrays with a high integrity are demonstrated by an Ag-assisted ammonia etching method. By adding a water steaming step between Ag-assisted HF/H2O2 and ammonia etching to form a SiOx protective layer sheathing Si nanowires, we can tune the composition of the nanowires from SiOx (0 ≤ x ≤ 2) to Si nanowires. Ag plays a key role to the neat and uniform release of Si/SiOx nanowire arrays from Si wafer in the ammonia etching process. The vertical Si nanowire array device, with both sides having high-quality Ohmic contact, can be transferred to arbitrary substrates, especially on a flexible substrate. The method developed here offers a facile method to realize flexible Si nanowire array functional devices. PMID:24487460

  11. Transport of fast electrons in a nanowire array with collisional effects included

    SciTech Connect

    Li, Boyuan; Zhang, Zhimeng; Wang, Jian; Zhang, Bo; Zhao, Zongqing; Shan, Lianqiang; Zhou, Weimin; Zhang, Baohan; Cao, Lihua; Gu, Yuqiu

    2015-12-15

    The transport of picosecond laser generated fast electrons in a nanowire array is studied with two-dimensional particle-in-cell simulations. Our simulations show that a fast electron beam is initially guided and collimated by strong magnetic filaments in the array. Subsequently, after the decomposition of the structure of nanowire array due to plasma expansion, the beam is still collimated by the resistive magnetic field. An analytical model is established to give a criterion for long-term beam collimation in a nanowire array; it indicates that the nanowire cell should be wide enough to keep the beam collimated in picosecond scale.

  12. Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications.

    PubMed

    Chen, Mu-Zhe; Chen, Wei-Sheng; Jeng, Shie-Chang; Yang, Sheng-Hsiung; Chung, Yueh-Feng

    2013-12-01

    The zinc oxide (ZnO) nanowire arrays on the indium tin oxide (ITO) glass substrates were fabricated by using the two-step hydrothermal method. A high transmittance ~92% of ZnO nanowire arrays on ITO substrate in the visible region was obtained. It was observed that the liquid crystal (LC) directors were aligned vertically to the (ZnO) nanowire arrays. The properties of ZnO nanowire arrays as vertical liquid crystal (LC) alignment layers and their applications for hybrid-aligned nematic LC modes were investigated in this work. PMID:24514480

  13. Generation of terahertz radiation in ordered arrays of GaAs nanowires

    SciTech Connect

    Trukhin, V. N.; Mustafin, I. A.; Bouravleuv, A. D.; Cirlin, G. E.; Kakko, J. P.; Huhtio, T.; Lipsanen, H.

    2015-06-22

    THz generation under excitation by ultrashort optical pulses in ordered arrays of GaAs nanowires is reported. It was found that the efficiency of THz radiation generation increases due to the resonant leaky mode excitation in nanowires. The maximum value of the THz field is achieved when the distance between the nanowires is of the order of the wavelength of exciting light.

  14. Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires

    SciTech Connect

    Liang, Liang; Liu, Jun; Windisch, Charles F.; Exarhos, Gregory J.; Lin, Yuehe

    2002-10-04

    Although oriented carbon nanotubes, oriented nanowires of metals, semiconductors and oxides have attracted wide attention, there have been few reports on oriented polymer nanostructures such as nanowires. In this paper we report the assembly of large arrays of oriented nanowires through controlled nucleation and growth during a stepwise electrochemical deposition process in which a large number of nuclei were first deposited on the substrate using a large current density. After the initial nucleation, the current density was reduced step by step to grow the oriented nanowires from the nucleation sites created in the first step. A very different morphology was also demonstrated by first depositing a monolayer of close-packed colloidal spheres using a similar step-wise deposition process. As a result, the polymer nanofibers grew from the spheres in a radial fashion and formed the continuous three-dimensional network of nanofibers in the film. The principles of control nucleation and growth in electrochemical deposition investigated in this paper should be applicable to other electrical conducting and electrochemical active materials, including metals and conducting oxides. We also hope the oriented electroactive polymer nanostructure will open the door for new applications, such as miniaturized biosensors.

  15. Electrical tuning of Rashba spin-orbit interaction in multigated InAs nanowires

    NASA Astrophysics Data System (ADS)

    Scherübl, Zoltán; Fülöp, Gergő; Madsen, Morten H.; Nygârd, Jesper; Csonka, Szabolcs

    2016-07-01

    Indium arsenide nanowires (NWs) are a promising platform to fabricate quantum electronic devices, among other advantages they have strong spin-orbit interaction (SOI). The controlled tuning of the SOI is desired in spin-based quantum devices. In this study we investigate the possibility of tuning the SOI by electrostatic fields generated by a back gate and two side gates placed on the opposite sides of the NW. The strength of the SOI is analyzed by weak anti-localization effect. We demonstrate that the strength of the SOI can be strongly tuned up to a factor of 2 with the electric field across the NW, while the average electron density is kept constant. Furthermore, a simple electrostatic model is introduced to calculate the expected change of the SOI. Good agreement is found between the experimental results and the estimated Rashba-type SOI generated by the gate-induced electric field.

  16. Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory.

    PubMed

    Yang, Yiming; Peng, Xingyue; Kim, Hong-Seok; Kim, Taeho; Jeon, Sanghun; Kang, Hang Kyu; Choi, Wonjun; Song, Jindong; Doh, Yong-Joo; Yu, Dong

    2015-09-01

    We report a novel negative photoconductivity (NPC) mechanism in n-type indium arsenide nanowires (NWs). Photoexcitation significantly suppresses the conductivity with a gain up to 10(5). The origin of NPC is attributed to the depletion of conduction channels by light assisted hot electron trapping, supported by gate voltage threshold shift and wavelength-dependent photoconductance measurements. Scanning photocurrent microscopy excludes the possibility that NPC originates from the NW/metal contacts and reveals a competing positive photoconductivity. The conductivity recovery after illumination substantially slows down at low temperature, indicating a thermally activated detrapping mechanism. At 78 K, the spontaneous recovery of the conductance is completely quenched, resulting in a reversible memory device, which can be switched by light and gate voltage pulses. The novel NPC based optoelectronics may find exciting applications in photodetection and nonvolatile memory with low power consumption. PMID:26226506

  17. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface

    PubMed Central

    Dai, Han; Ding, Ruiqiang; Li, Meicheng; Huang, Jinjer; Li, Yingfeng; Trevor, Mwenya

    2014-01-01

    Large-area Ag nanowires are ordered by spontaneous spreading of volatile droplet on a wettable solid surface. Compared with other nanowires orientation methods, radial shaped oriented Ag nanowires in a large ring region are obtained in an extremely short time. Furthermore, the radial shaped oriented Ag nanowires are transferred and aligned into one direction. Based on the hydrodynamics, the coactions among the microfluid, gravity effect and the adhesion of substrate on the orientation of the Ag nanowires are clearly revealed. This spreading method opens an efficient way for extreme economic, efficient and “green” way for commercial producing ordered nanowire arrays. PMID:25339118

  18. Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nicaise, Samuel M.; Cheng, Jayce J.; Kiani, Amirreza; Gradečak, Silvija; Berggren, Karl K.

    2015-02-01

    Hydrothermally synthesized zinc oxide nanowire arrays have been used as nanostructured acceptors in emerging photovoltaic (PV) devices. The nanoscale dimensions of such arrays allow for enhanced charge extraction from PV active layers, but the device performance critically depends on the nanowire array pitch and alignment. In this study, we templated hydrothermally-grown ZnO nanowire arrays via high-resolution electron-beam-lithography defined masks, achieving the dual requirements of high-resolution patterning at a pitch of several hundred nanometers, while maintaining hole sizes small enough to control nanowire array morphology. We investigated several process conditions, including the effect of annealing sputtered and spincoated ZnO seed layers on nanowire growth, to optimize array property metrics—branching from individual template holes and off-normal alignment. We found that decreasing template hole size decreased branching prevalence but also reduced alignment. Annealing seed layers typically improved alignment, and sputtered seed layers yielded nanowire arrays superior to spincoated seed layers. We show that these effects arose from variation in the size of the template holes relative to the ZnO grain size in the seed layer. The quantitative control of branching and alignment of the nanowire array that is achieved in this study will open new paths toward engineering more efficient electrodes to increase photocurrent in nanostructured PVs. This control is also applicable to inorganic nanowire growth in general, nanomechanical generators, nanowire transistors, and surface-energy engineering.

  19. Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications.

    PubMed

    Nicaise, Samuel M; Cheng, Jayce J; Kiani, Amirreza; Gradečak, Silvija; Berggren, Karl K

    2015-02-20

    Hydrothermally synthesized zinc oxide nanowire arrays have been used as nanostructured acceptors in emerging photovoltaic (PV) devices. The nanoscale dimensions of such arrays allow for enhanced charge extraction from PV active layers, but the device performance critically depends on the nanowire array pitch and alignment. In this study, we templated hydrothermally-grown ZnO nanowire arrays via high-resolution electron-beam-lithography defined masks, achieving the dual requirements of high-resolution patterning at a pitch of several hundred nanometers, while maintaining hole sizes small enough to control nanowire array morphology. We investigated several process conditions, including the effect of annealing sputtered and spincoated ZnO seed layers on nanowire growth, to optimize array property metrics-branching from individual template holes and off-normal alignment. We found that decreasing template hole size decreased branching prevalence but also reduced alignment. Annealing seed layers typically improved alignment, and sputtered seed layers yielded nanowire arrays superior to spincoated seed layers. We show that these effects arose from variation in the size of the template holes relative to the ZnO grain size in the seed layer. The quantitative control of branching and alignment of the nanowire array that is achieved in this study will open new paths toward engineering more efficient electrodes to increase photocurrent in nanostructured PVs. This control is also applicable to inorganic nanowire growth in general, nanomechanical generators, nanowire transistors, and surface-energy engineering. PMID:25642895

  20. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  1. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    PubMed Central

    2010-01-01

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively. PMID:20676211

  2. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  3. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  4. MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li

    Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.

  5. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study

    NASA Astrophysics Data System (ADS)

    Sergelius, Philip; Garcia Fernandez, Javier; Martens, Stefan; Zocher, Michael; Böhnert, Tim; Vega Martinez, Victor; de la Prida, Victor Manuel; Görlitz, Detlef; Nielsch, Kornelius

    2016-04-01

    The first-order reversal curve (FORC) method can be used to extract information about the interaction and switching field distribution of ferromagnetic nanowire arrays, yet it remains challenging to acquire reliable values. Within ordered pores of anodic alumina templates we electrochemically synthesize eight different Ni x Co1-x samples with x varying between 0.05 and 1. FORC diagrams are acquired using vibrating sample magnetometry. By dissolving the template and using the magneto-optical Kerr effect, we measure the hysteresis loops of up to 100 different and isolated nanowires for each sample to gain precise information about the intrinsic switching field distribution. Values of the interaction field are extracted from a deshearing of the major hysteresis loop. We present a comparative study between all methods in order to evaluate and reinforce current FORC theory with experimental findings.

  6. Silica Nanowire Arrays for Diffraction-Based Bioaffinity Sensing

    PubMed Central

    Loget, Gabriel; Corn, Robert M.

    2014-01-01

    Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm2) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and SEM measurements revealed that the SiO2 NW arrays had an average spacing of 10 micrometers and an average width of 700 nm with a significant grain structure that was a result of the sol-gel deposition process. The optical diffraction properties at 633 nm of the SiO2 NWs arrays were characterized when placed in contact with solutions using a prism-coupled total internal reflection geometry; quantification of changes in these diffraction properties was applied in various sensing applications. Bulk refractive index sensing using the SiO2 NWs grating was demonstrated with a refractive index resolution of 1.30 × 10−5 RIU. Toposelectively chemically-modified SiO2 NW arrays were used for diffraction biosensing measurements of surface binding events, such as the electrostatic adsorption of gold nanoparticles and the bioaffinity adsorption of streptavidin onto a biotin monolayer. Finally, the application of the SiO2 NWs arrays for practical medical diagnostic applications was demonstrated by monitoring the diffraction of SiO2 NWs arrays functionalized with a single-stranded DNA aptamer in order to detect human α-thrombin from solutions at sub-pathologic nanomolar concentrations. PMID:24590560

  7. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-01

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries. PMID:26284489

  8. Silica nanowire arrays for diffraction-based bioaffinity sensing.

    PubMed

    Loget, Gabriel; Corn, Robert M

    2014-08-18

    Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm(2)) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and scanning electron microscopy (SEM) measurements revealed that the SiO2 NW arrays had an average spacing of ten micrometers and an average width of 700 nm with a significant grain structure that was a result of the sol-gel deposition process. The optical diffraction properties at 633 nm of the SiO2 NW arrays were characterized when placed in contact with solutions by using a prism-coupled total internal reflection geometry; quantification of changes in these diffraction properties was applied in various sensing applications. Bulk refractive index sensing by using the SiO2 NW grating was demonstrated with a sensitivity of 1.30×10(-5) RIU. Toposelectively chemically modified SiO2 NW arrays were used for diffraction biosensing measurements of surface binding events, such as the electrostatic adsorption of gold nanoparticles and the bioaffinity adsorption of streptavidin onto a biotin monolayer. Finally, the application of the SiO2 NW arrays for practical medical-diagnostic applications was demonstrated by monitoring the diffraction of SiO2 NW arrays functionalized with a single-stranded (ss)DNA aptamer to detect human α-thrombin from solutions at sub-pathologic nanomolar concentrations. PMID:24590560

  9. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOEpatents

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  10. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M.

    2015-03-01

    FeCoNi nanowire arrays (175 nm in diameter and lengths ranging from 5 to 40 μm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. Increasing the length had no considerable effect on the composition and crystalline characteristics of Fe47Co38Ni15 nanowires (NWs). By eliminating the dendrites formed at the bottom of the pores, we report a careful investigation on the effect of magnetostatic interactions on magnetic properties and the effect of nanowire length on reversal modes. Hysteresis loop measurements indicated that increasing the length decreases coercivity and squareness values. On the other hand, first-order reversal curve measurements show a linear correlation between the magnetostatic interactions and length of NWs. Comparing reversal modes of the NWs both experimentally and theoretically using angular dependence of coercivity, we find that when L≤22 μm, a vortex domain wall mode is only occurred. When L>22 μm, a non-monotonic behavior indicates a transition from the vortex to transverse domain wall propagation. As a result, a critical length was found above which the transition between the reversal modes is occurred due the enhanced interactions. The transition angle also shifts toward a lower angle as the length increases. Moreover, with increasing length from 22 to 31 μm, the single domain structure of NWs changes to a pseudo single domain state. A multidomain-like behavior is also found for the longest NWs length.

  11. Light-controlled resistive switching of ZnWO{sub 4} nanowires array

    SciTech Connect

    Zhao, W. X.; Sun, B.; Liu, Y. H.; Wei, L. J.; Li, H. W.; Chen, P.

    2014-07-15

    ZnWO{sub 4} nanowires array was prepared on the titanium substrate by a facile hydrothermal synthesis, in which the average length of ZnWO{sub 4} nanowires is about 2um and the diameter of individual ZnWO{sub 4} nanowire ranges from 50 to 70 nm. The bipolar resistive switching effect of ZnWO{sub 4} nanowires array was observed. Moreover, the performance of the resistive switching device is greatly improved under white light irradiation compared with that in the dark.

  12. Patterned arrays of capped platinum nanowires with quasi-elastic mechanical response to lateral force

    SciTech Connect

    Hottes, M. Muench, F.; Rauber, M.; Stegmann, C.; Ensinger, W.; Dassinger, F.; Schlaak, H. F.

    2015-02-02

    In this Letter, we describe the electrodeposition of capped, micro-sized Pt nanowire arrays in ion-track etched polymer templates and measure their collective mechanical response to an external force. By using an aperture mask during the irradiation process, it was possible to restrict the creation of pores in the templates to defined areas, allowing the fabrication of small nanowire arrays in different geometries and sizes. The simultaneous and highly reliable formation of many nanowire arrays was achieved using a pulsed electrodeposition technique. After deposition, the polymer matrix was removed using a gentle, dry oxygen plasma treatment, resulting in an excellent preservation of the array nanostructure as confirmed by scanning electron microscopy. A force measuring station was set up to perform mechanical characterization series on free-standing arrays. The nanowire arrays show a high robustness and respond sensitively to the applied force, making them attractive as spring elements in miniaturized inertial sensors, for example.

  13. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates.

    PubMed

    Lu, Ming-Yen; Tseng, Yen-Ti; Chiu, Cheng-Yao

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s(-1) for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556

  14. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations. PMID:20050692

  15. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    SciTech Connect

    Fountaine, Katherine T.; Whitney, William S.; Atwater, Harry A.

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  16. Formation of InAs/AlGaAs/GaAs Nanowire Structures by Self-Organized Rod Growth on InAs Quantum Dots and Their Transport Properties

    NASA Astrophysics Data System (ADS)

    Ohmori, Masato; Vitushinskiy, Pavel; Kojima, Tomoya; Sakaki, Hiroyuki

    2013-04-01

    AlGaInAs nanowires or rods of 20-40 nm diameter were formed by depositing an AlGaAs/GaAs/InAs short-period superlattice onto self-organized InAs quantum dots on GaAs. The In content is found to be substantially higher in the rods than in the superlattice matrix, implying that rods serve as favorable paths for electrons. Transport properties measured at 4.2 K on a sample where 79-nm-long rods are buried between n+-GaAs electrodes show that rods are indeed far more conductive than their matrix barrier. Photoluminescence study has indicated that photogenerated carriers recombine mostly in the seed dot portion of rods.

  17. Self-assembled nanowire array capacitors: capacitance and interface state profile

    NASA Astrophysics Data System (ADS)

    Li, Qiliang; Xiong, Hao D.; Liang, Xuelei; Zhu, Xiaoxiao; Gu, Diefeng; Ioannou, Dimitris E.; Baumgart, Helmut; Richter, Curt A.

    2014-04-01

    Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal-oxide-semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal-oxide-semiconductor structures.

  18. Fabrication and assessment of structure, composition, and electronic properties of nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sander, Melissa

    2001-07-01

    Nanocomposite materials consisting of arrays of parallel, uniform-diameter nanowires within a supporting matrix have a variety of potential applications. The focus of this work is on two nanowire array systems, bismuth and bismuth telluride nanowires in alumina templates. These systems are both promising for thermoelectric applications due to an expected increase in thermoelectric efficiency with reduced dimensionality. Bismuth telluride nanowire arrays were fabricated by electrochemical deposition of Bi2Te3 into porous anodic alumina templates. A process has been developed that allows for the production of high density (˜5 x 109/cm2), high aspect-ratio (>1000), ordered nanowire arrays over large areas (>1mm2), which will enable routine assessment of the array properties as well as potential incorporation into existing device structures. High spatial resolution characterization techniques, including imaging, diffraction, and energy-dispersive spectroscopy in the transmission electron microscope (TEM), have been employed to assess the structure and composition in the arrays. The nanowires are dense, polycrystalline Bi2Te3 with strong texturing along the wire axis. A short (<5 mum) Te-rich composition gradient was identified at the base of the pores. In addition, the composition, structure, and electronic properties of pressure-injected bismuth nanowire arrays have been assessed at high spatial resolution by employing imaging, diffraction, and electron energy loss spectrometry (EELS) in the TEM. The nanowires are polycrystalline with high aspect-ratio grains, and there is evidence of internal localized strain fields. The Bi-Al 2O3 interface in the arrays is compositionally abrupt, with a narrow interphase region dominated by Bi-O bonding. Low-loss EELS studies indicate that the volume plasmon loss peak in individual Bi nanowires shifts to higher energy and broadens as the wire diameter decreases from 90 to 35nm. A low-loss excitation is present in spectra from the

  19. Wafer-scale fabrication of nanofluidic arrays and networks using nanoimprint lithography and lithographically patterned nanowire electrodeposition gold nanowire masters.

    PubMed

    Halpern, Aaron R; Donavan, Keith C; Penner, Reginald M; Corn, Robert M

    2012-06-01

    Wafer scale (cm(2)) arrays and networks of nanochannels were created in polydimethylsiloxane (PDMS) from a surface pattern of electrodeposited gold nanowires in a master-replica process and characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), and fluorescence imaging measurements. Patterns of gold nanowires with cross-sectional dimensions as small as 50 nm in height and 100 nm in width were prepared on silica substrates using the process of lithographically patterned nanowire electrodeposition (LPNE). These nanowire patterns were then employed as masters for the fabrication of inverse replica nanochannels in a special formulation of PDMS. SEM and AFM measurements verified a linear correlation between the widths and heights of the nanowires and nanochannels over a range of 50 to 500 nm. The PDMS replica was then oxygen plasma-bonded to a glass substrate in order to create a linear array of nanofluidic channels (up to 1 mm in length) filled with solutions of either fluorescent dye or 20 nm diameter fluorescent polymer nanoparticles. Nanochannel continuity and a 99% fill success rate was determined from the fluorescence imaging measurements, and the electrophoretic injection of both dye and nanoparticles in the nanochannel arrays was also demonstrated. Employing a double LPNE fabrication method, this master-replica process was also used to create a large two-dimensional network of crossed nanofluidic channels. PMID:22533970

  20. Facile route to high-density, ordered ZnO nanowire arrays and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Liu, Yuyang; Sun, Xiaohong; Hu, Zhigang; Fei, Bin

    2006-10-01

    A simple template-directed wet chemistry route based on traditional thermal decomposition technique has been developed for the preparation of high-density, ordered ZnO nanowire arrays. The fabrication was performed at relative low temperature without involving complex procedures, sophisticated equipment and rigorous experiment conditions, thereby providing a straightforward and mild method to produce metal/metal oxide ordered nanostructures. The nanowire array system was evaluated by SEM, XRD, TEM and PL. A stable luminescence at 425 nm was present.

  1. Template-assisted fabrication of tin and antimony based nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  2. GaN nanowire arrays by a patterned metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  3. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  4. Sensors and devices containing ultra-small nanowire arrays

    DOEpatents

    Xiao, Zhili

    2014-09-23

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  5. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  6. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Deng, Jiangxia; Zheng, Liang; Wu, Jun; Deng, Longjiang; Qin, Huibin

    2014-08-01

    In this work, we synthesize barium ferrite (BaFe12O19) nanowire array in porous silicon template. The porous silicon templates are prepared via gold-assisted chemical etching method. The gold (Au) nanoparticles with mean diameter of 30 nm and distance of 100 nm were ordered on the surface of Si substrate through the Polystyrene (510000)-block-poly (2-vinylpyridine) (31000) (PS510000-b-P2VP31000) diblock copolymer. Porous silicon templates with mean diameter of 500 nm and distance between the pores of 500 nm were fabricated by two etching steps. BaFe12O19 nanowires with mean diameter of 200 nm were synthesized into a porous silicon template by a sol-gel method. Magnetic hysteresis loops show an isotropic feature of the BaFe12O19 nanowires array. The coercivity (Hc) and squareness ratio (Mr/Ms) of nanowire arrays are 2560 Oe and 0.6, respectively.

  7. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Tou, Zhi-Qiang; Huang, Yinxi; Chen, Peng

    2009-09-01

    Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes.Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes. Electronic supplementary information (ESI) available: Process diagram of nanowire fabrication; specificity of nanowire detection; induced differentiation of 3T3-L1 cells. See DOI: 10.1039/b9nr00092e

  8. Scalable synthesis of vertically aligned, catalyst-free gallium arsenide nanowire arrays: towards optimized optical absorption

    NASA Astrophysics Data System (ADS)

    Yao, Maoqing; Madaria, Anuj R.; Chi, ChunYung; Huang, Ningfeng; Lin, Chenxi; Povinelli, Michelle L.; Dapkus, P. Daniel; Zhou, Chongwu

    2012-06-01

    Recently nanostructure materials have emerged as a building block for constructing next generation of photovoltaic devices. Nanowire based semiconductor solar cells, among other candidates, have shown potential to produce high efficiency. In a radial pn junction light absorption and carrier collection can be decoupled. Also nanowires can increase choice of materials one can use to fabricate high efficiency tandem solar cells by relaxing the lattice-match constraint. Here we report synthesis of vertical III-V semiconducting nanowire arrays using Selective-Area Metal Organic Chemical Vapor Deposition (SA-MOCVD) technique, which can find application in various optoelectronic devices. We also demonstrate nanosphere lithography (NSL) patterning techniques to obtain ordered pattern for SAMOCVD. Reflection spectrum of nanowires array made by this technique shows excellent light absorption performance without additional anti-reflection coating layer. Thus, we show that highly ordered nanowire structure is 'not needed' to maximize the absorption in vertical nanowire array. Our scalable approach for synthesis of vertical semiconducting nanowire can have application in high throughput and low cost optoelectronic devices including photovoltaic devices.

  9. Electrodeposition of bismuth:tellurium nanowire arrays into porous alumina templates for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Trahey, Lynn

    Bismuth telluride is a well-known thermoelectric material for refrigeration applications. Thermoelectrics possess several advantages over conventional refrigeration and power generation devices, yet are not widely-used due to low efficiencies. It has been predicted and shown experimentally that the efficiency of thermoelectric devices increases when the semiconducting materials have reduced dimensions. Therefore, the aim of this research was to show enhanced thermoelectric efficiency in one-dimensional nanowires. The nanowires were synthesized via electrochemical deposition into porous alumina templates. Electrodeposition is a versatile technique that ensures electrical continuity in the deposited material. The nanowire templates, porous alumina, were made by the double anodization of high-purity aluminum foil in oxalic acid solutions. This technique produces parallel, hexagonally packed, and nanometer-range diameter pores that can reach high aspect ratios (greater than 2000:1). The main anodization variables (electrolyte concentration, applied potential, 2nd anodization time, and temperature) were studied systematically in order to deconvolute their effects on the resulting pores and to obtain high aspect ratio pores. The porous alumina is of great importance because the pore dimensions determine the dimensions of the electrodeposited nanowires, which influence the thermoelectric performance of the nanowire arrays. Nanowire arrays were characterized in several ways. Powder X-ray diffraction was used to assess crystallinity and preferred orientation of the nanowires, revealing that the nanowires are highly crystalline and grow with strong preferred orientation such that the material is suited for optimal thermoelectric performance. Scanning electron microscopy was used to evaluate the nanowire nucleation percentage and growth-front uniformity, both of which were enhanced by pulsed-potential electrodeposition. Compositional analysis via electron microprobe indicates

  10. Controllable synthesis of branched ZnO/Si nanowire arrays with hierarchical structure

    PubMed Central

    2014-01-01

    A rational approach for creating branched ZnO/Si nanowire arrays with hierarchical structure was developed based on a combination of three simple and cost-effective synthesis pathways. The crucial procedure included growth of crystalline Si nanowire arrays as backbones by chemical etching of Si substrates, deposition of ZnO thin film as a seed layer by magnetron sputtering, and fabrication of ZnO nanowire arrays as branches by hydrothermal growth. The successful synthesis of ZnO/Si heterogeneous nanostructures was confirmed by morphologic, structural, and optical characterizations. The roles of key experimental parameters, such as the etchant solution, the substrate direction, and the seed layer on the hierarchical nanostructure formation, were systematically investigated. It was demonstrated that an etchant solution with an appropriate redox potential of the oxidant was crucial for a moderate etching speed to achieve a well-aligned Si nanowire array with solid and round surface. Meanwhile, the presence of gravity gradient was a key issue for the growth of branched ZnO nanowire arrays. The substrate should be placed vertically or facedown in contrast to the solution surface during the hydrothermal growth. Otherwise, only the condensation of the ZnO nanoparticles took place in a form of film on the substrate surface. The seed layer played another important role in the growth of ZnO nanowire arrays, as it provided nucleation sites and determined the growing direction and density of the nanowire arrays for reducing the thermodynamic barrier. The results of this study might provide insight on the synthesis of hierarchical three-dimensional nanostructure materials and offer an approach for the development of complex devices and advanced applications. PMID:25024688

  11. Potassium Chloride Nanowire Formation Inside a Microchannel Glass Array

    SciTech Connect

    Zhang, Daqing; Moore, Sam; Wei, Jiang; Alkhateeb, Abudullah I.; Gangadean, Dev; Mahmood, Hasan; Lantrips, Justin; McIlroy, David N.; LaLonde, Aaron D.; Norton, M G.; Young, James S.; Wang, Chong M.

    2005-06-27

    The synthesis of KCl nanowires has been achieved by atomic layer deposition inside high aspect ratio channels of microchannel glass. The average diameter of the KCl nanowires is 250 nm, with a minimum observed diameter of 50 nm, and lengths up to 5 {micro}m. The Cl precursor was TaCl5, while the source of K was determined to be impurities in the microchannel glass substrate. The process for KCl nanowire formation is a three-step chemical process that simultaneously etches K from the substrate concomitant with the formation of chlorine gas. It is postulated that the curvature of the channels may influence the diameters of the KCl nanowires.

  12. Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Tanta, Rawa; Kanne, Thomas; Amaduzzi, Francesca; Liao, Zhiyu; Madsen, Morten H.; Alarcón-Lladó, Esther; Krogstrup, Peter; Johnson, Erik; Morral, Anna Fontcuberta i.; Vosch, Tom; Nygård, Jesper; Jespersen, Thomas S.

    2016-07-01

    Any device exposed to ambient conditions will be prone to oxidation. This may be of particular importance for semiconductor nanowires because of the high surface-to-volume ratio and only little is known about the consequences of oxidation for these systems. Here, we study the properties of indium arsenide nanowires which were locally oxidized using a focused laser beam. Polarization dependent micro-Raman measurements confirmed the presence of crystalline arsenic, and transmission electron microscopy diffraction showed the presence of indium oxide. The surface dependence of the oxidation was investigated in branched nanowires grown along the [0001] and [01\\bar{1}0] wurtzite crystal directions exhibiting different surface facets. The oxidation did not occur at the [01\\bar{1}0] direction. The origin of this selectivity is discussed in terms transition state kinetics of the free surfaces of the different crystal families of the facets and numerical simulations of the laser induced heating.

  13. Formation of linear InAs quantum dot arrays on InGaAsP/InP (100) by self-organized anisotropic strain engineering and their optical properties

    SciTech Connect

    Sritirawisarn, N.; Otten, F. W. M. van; Eijkemans, T. J.; Noetzel, R.

    2007-09-01

    The formation of linear InAs quantum dot (QD) arrays based on self-organized anisotropic strain engineering of an InGaAsP/InP (100) superlattice (SL) template in chemical beam epitaxy is demonstrated, and the optimized growth window is determined. InAs QD formation, thin InGaAsP capping, annealing, InGaAsP overgrowth, and stacking in SL template formation produce wirelike InAs structures along [001] due to anisotropic surface migration and lateral and vertical strain correlations. InAs QD ordering is governed by the corresponding lateral strain field modulation on the SL template surface. Careful optimization of InGaAsP cap layer thickness, annealing temperature, InAs amount and growth rate, and number of SL periods results in straight and well-separated InAs QD arrays. The InAs QD arrays exhibit excellent photoluminescence (PL) emission up to room temperature which is tuned into the 1.55 {mu}m telecommunications wavelength region through the insertion of ultrathin GaAs interlayers. Temperature dependent PL measurements and the linear polarization behavior indicate lateral electronic coupling of the QDs in the arrays.

  14. Comparison of ordered and disordered silicon nanowire arrays: experimental evidence of photonic crystal modes.

    PubMed

    Dhindsa, Navneet; Saini, Simarjeet S

    2016-05-01

    We experimentally compared the reflectance between ordered and disordered silicon nanowires to observe the evidence of photonic crystal modes. For similar diameters, the resonance peaks for the ordered nanowires at a spacing of 400 nm was at a shorter wavelength than the disordered nanowires, consistent to the excitation of photonic crystal modes. Furthermore, the resonant wavelength didn't shift while changing the density of the disordered nanowires, whereas there was a significant shift observed in the ordered ones. At an ordered spacing of 800 nm, the resonance wavelength approached that of the disordered structures, indicating that the ordered structures were starting to behave like individual waveguides. To our knowledge, this is the first direct experimental observation of photonic crystal modes in vertical periodic silicon nanowire arrays. PMID:27128070

  15. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    PubMed

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature. PMID:27483827

  16. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  17. A Way of Tailoring Magnetic Anisotropy of Co Nanowire Arrays: Magnetic Field Annealing.

    PubMed

    Ren, Yong; Qu, Li; Fan, Jiangxia; Dai, Bo; Wang, Jianbo

    2015-06-01

    Hexagonal close-packed Co nanowire arrays in anodic aluminum oxide template with the diameter of 50 nm have been fabricated using an ac electrodeposition method. The effect of magnetic field annealing on the thermal stability and magnetic properties of these nanwire arrays was studied. XRD measurements indicate the increase of diffraction intensity with the increase of heat-treatment temperature without magnetic field. Furthermore, the intensity of diffraction peak decreases rapidly if the sample undergoes the magnetic field annealing. Influence of different annealing process on the magnetic properties of Co nanowire arrays has also been studied. It is found that the magnetocrystalline anisotropy of hcp Co becomes weaker after magnetic field annealing, which lead to increase of the total anisotropy of Co nanowire arrays. PMID:26369071

  18. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  19. Amorphous Alumina Nanowire Array Efficiently Delivers Ac-DEVD-CHO to Inhibit Apoptosis of Dendritic Cells

    PubMed Central

    Lampert, Lester; Timonen, Brittany; Smith, Sean; Davidge, Brittney; Li, Haiyan; Conley, John F.; Singer, Jeffrey D.; Jiao, Jun

    2014-01-01

    To create an effective well-ordered delivery platform still remains a challenge. Herein we fabricate vertically aligned alumina nanowire arrays via atomic layer deposition templated by carbon nanotubes. Using these arrays, a caspase-3/7 inhibitor was delivered into DC 2.4 cells and blocked apoptosis, as confirmed by fluorescence microscopy. PMID:24336780

  20. Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection

    NASA Astrophysics Data System (ADS)

    Shen, Yue; Liu, Yingyi; Zhu, Guang; Fang, Hao; Huang, Yunhui; Jiang, Xingyu; Wang, Zhong L.

    2012-12-01

    We report an array of polymeric nanowires for effectively immobilizing biomolecules on biochips owing to the large surface area. The nanowires were fabricated in predesigned patterns using an inductively coupled plasma (ICP) etching process. Microfluidic biochips integrated using the substrates with arrays of nanowires and polydimethylsiloxane channels have been demonstrated to be effective for detecting antigens, and a detection limit of antigens at 0.2 μg mL-1 has been achieved, which is improved by a factor of 50 compared to that based on flat substrates without the nanowires. In addition, the high sensitivity for clinical detection of human immunodeficiency virus (HIV) antibody has also been demonstrated, showing a 20 times enhancement in fluorescent signal intensity between the samples with positive and negative HIV.

  1. Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection.

    PubMed

    Shen, Yue; Liu, Yingyi; Zhu, Guang; Fang, Hao; Huang, Yunhui; Jiang, Xingyu; Wang, Zhong L

    2013-01-21

    We report an array of polymeric nanowires for effectively immobilizing biomolecules on biochips owing to the large surface area. The nanowires were fabricated in predesigned patterns using an inductively coupled plasma (ICP) etching process. Microfluidic biochips integrated using the substrates with arrays of nanowires and polydimethylsiloxane channels have been demonstrated to be effective for detecting antigens, and a detection limit of antigens at 0.2 μg mL(-1) has been achieved, which is improved by a factor of 50 compared to that based on flat substrates without the nanowires. In addition, the high sensitivity for clinical detection of human immunodeficiency virus (HIV) antibody has also been demonstrated, showing a 20 times enhancement in fluorescent signal intensity between the samples with positive and negative HIV. PMID:23223639

  2. Magnetic hysteresis in small-grained CoxPd1-x nanowire arrays

    NASA Astrophysics Data System (ADS)

    Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.

    2015-11-01

    Co-Pd nanowires with small grain size are fabricated by AC electrodeposition into hexagonally ordered alumina pores, 20-35 nm in diameter and about 1 μm long. The effects of the alloy composition, the nanowire diameter and the grain size on the hysteresis properties are considered. X-ray diffraction indicates that the nanowires are single phase, a fcc Co-Pd solid solution; electron microscopy results show that they are polycrystalline, with randomly oriented grains (7-12 nm), smaller than the wire diameter. Nanowire arrays are ferromagnetic, with an easy magnetization axis parallel to the nanowire long axis. Both, the coercive field and the loop squareness monotonously increase with the Co content and with the grain size, but no clear correlation with the wire diameter is found. The Co and Co-rich nanowire arrays exhibit coercive fields and reduced remanence values quite insensitive to temperature in the range 4 K-300 K; on the contrary, in Pd-rich nanowires both magnitudes are smaller and they largely increase during cooling below 100 K. These behaviors are systematized by considering the strong dependences displayed by the magneto-crystalline anisotropy and the saturation magnetostriction on composition and temperature. At low temperatures the effective anisotropy value and the domain-wall width to grain size ratio drastically change, promoting less cooperative and harder nucleation modes.

  3. Interdigitated design of a thermoelectric microgenerator based on silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Donmez, I.; Salleras, M.; Calaza, C.; Santos, J. D.; Gadea, G.; Morata, A.; Dávila, D.; Tarancón, A.; Fonseca, L.

    2015-05-01

    Silicon nanowires thermoelectric properties are much better than those of silicon bulk. Taking advantage of silicon microfabrication techniques and compatibilizing the device fabrication with the CVD-VLS silicon nanowire growth, we present a thermoelectric microgenerator based on silicon nanowire arrays with interdigitated structures which enhance the power density compared to previous designs presented by the authors. The proposed design features a thermally isolated silicon platform on the silicon device layer of an SOI silicon wafer. This silicon platform has vertical walls exposing <111< planes where gold nanoparticles are deposited by galvanic displacement. These gold nanoparticles act as seeds for the silicon nanowires. The growth takes place in a CVD with silane precursor, and uses the Vapor-Solid-Liquid synthesis. Once the silicon nanowires are grown, they connect the silicon platform with the silicon bulk. The proposed thermoelectric generator is unileg, which means that only one type of semiconductor is used, and the second connection is made through a metal. In addition, to improve the thermal isolation of the silicon platform, multiple trenches of silicon nanowire arrays are used, up to a maximum of nine. After packaging the device with nanowires, we are able to measure the Seebeck voltage and the power obtained with different operation modes: harvesting mode, where the bottom device is heated up, and the silicon platform is cooled down by natural or forced convection, and test mode, where a heater integrated on the silicon platform is used to produce a thermal gradient.

  4. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors. PMID:25402159

  5. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    SciTech Connect

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-03-16

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr{sub 2}O{sub 3} co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ∼43% at 375–450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.

  6. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    NASA Astrophysics Data System (ADS)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Trudeau, M. L.; Guo, H.; Mi, Z.

    2015-03-01

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr2O3 co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ˜43% at 375-450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.

  7. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    SciTech Connect

    Clément, N. E-mail: guilhem.larrieu@laas.fr; Han, X. L.; Larrieu, G. E-mail: guilhem.larrieu@laas.fr

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  8. Simulation Analysis on Photoelectric Conversion Characteristics of Silicon Nanowire Array Photoelectrodes.

    PubMed

    Zhao, Yong; Yu, Jin; Fang, Li-Guang; Zheng, Jun; Wang, Hui-Qin; Yuan, Ji-Ren; Wu, Shaolong; Cheng, Guo-An

    2015-12-01

    Semiconductor nanowire photoelectrochemical cells have attracted extensive attention in the light-conversion field owing to the low-cost preparation, excellent optical absorption, and short distance of carrier collection. Although there are numbers of experimental investigations to improve the device performance, the understanding of the detailed process of photoelectric conversion needs to be further improved. In this work, a thorough optoelectronic simulation is employed to figure out how the nanowire diameter, doping concentration, and illumination wavelength affect the photoelectric conversion characteristics of the silicon nanowire array photoelectrodes. We find that two balances should be carefully weighted between optical absorption and photogenerated-carrier collection, along with between short-circuit photocurrent density and open-circuit voltage. For the small-diameter nanowire array photoelectrodes, the overall absorption is higher than that of the larger-diameter ones with the most contribution from the nanowires. However, the substrate shows increasing absorption with increasing illumination wavelength. Higher doping density leads to a larger open-circuit voltage; while lower doping density can guarantee a relatively higher short-circuit photocurrent. To obtain high-light-conversion-efficiency photoelectrodes, the doping density should be carefully chosen with considerations of illumination wavelength and surface recombination. Suppressing the surface recombination velocity can effectively enhance the short-circuit photocurrent (open-circuit voltage) for the lightly (heavily) doped nanowire array photoelectrodes. Our systematical results provide a theoretical guidance for the photoelectrochemical devices based on semiconductor nanostructures. PMID:26123274

  9. Simulation Analysis on Photoelectric Conversion Characteristics of Silicon Nanowire Array Photoelectrodes

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Yu, Jin; Fang, Li-Guang; Zheng, Jun; Wang, Hui-Qin; Yuan, Ji-Ren; Wu, Shaolong; Cheng, Guo-An

    2015-06-01

    Semiconductor nanowire photoelectrochemical cells have attracted extensive attention in the light-conversion field owing to the low-cost preparation, excellent optical absorption, and short distance of carrier collection. Although there are numbers of experimental investigations to improve the device performance, the understanding of the detailed process of photoelectric conversion needs to be further improved. In this work, a thorough optoelectronic simulation is employed to figure out how the nanowire diameter, doping concentration, and illumination wavelength affect the photoelectric conversion characteristics of the silicon nanowire array photoelectrodes. We find that two balances should be carefully weighted between optical absorption and photogenerated-carrier collection, along with between short-circuit photocurrent density and open-circuit voltage. For the small-diameter nanowire array photoelectrodes, the overall absorption is higher than that of the larger-diameter ones with the most contribution from the nanowires. However, the substrate shows increasing absorption with increasing illumination wavelength. Higher doping density leads to a larger open-circuit voltage; while lower doping density can guarantee a relatively higher short-circuit photocurrent. To obtain high-light-conversion-efficiency photoelectrodes, the doping density should be carefully chosen with considerations of illumination wavelength and surface recombination. Suppressing the surface recombination velocity can effectively enhance the short-circuit photocurrent (open-circuit voltage) for the lightly (heavily) doped nanowire array photoelectrodes. Our systematical results provide a theoretical guidance for the photoelectrochemical devices based on semiconductor nanostructures.

  10. Optical assessment of silicon nanowire arrays fabricated by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays were prepared on silicon substrates by metal-assisted chemical etching and peeled from the substrates, and their optical properties were measured. The absorption coefficient of the SiNW arrays was higher than that for the bulk silicon over the entire region. The absorption coefficient of a SiNW array composed of 10-μm-long nanowires was much higher than the theoretical absorptance of a 10-μm-thick flat Si wafer, suggesting that SiNW arrays exhibit strong optical confinement. To reveal the reason for this strong optical confinement demonstrated by SiNW arrays, angular distribution functions of their transmittance were experimentally determined. The results suggest that Mie-related scattering plays a significant role in the strong optical confinement of SiNW arrays. PMID:23651912

  11. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    PubMed

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. PMID:26050844

  12. Low bandgap mid-infrared thermophotovoltaic arrays based on InAs

    NASA Astrophysics Data System (ADS)

    Krier, A.; Yin, M.; Marshall, A. R. J.; Kesaria, M.; Krier, S. E.; McDougall, S.; Meredith, W.; Johnson, A. D.; Inskip, J.; Scholes, A.

    2015-11-01

    We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∼3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345-950 °C suitable for electricity generation from waste heat and other applications.

  13. Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires: A first-principles study

    NASA Astrophysics Data System (ADS)

    Dos Santos, Cláudia L.; Piquini, Paulo

    2010-02-01

    Semiconductor nanowires (NWs) have ideal morphologies to act as active parts and connections in nanodevices since they naturally restrict the conduction channels and periodicity to one dimension. The advantages from the reduced spatial dimension can be greatly enhanced by wisely selecting the materials composing the NWs, through the knowledge of the properties of their bulk counterparts. NW’s properties can still be tailored by managing (i) internal or intrinsic characteristics as diameters, growth directions, structural phases, and the faceting or saturation of surfaces, and/or (ii) external or extrinsic influences as applied electric, magnetic, thermal, and mechanical fields. Bulk InAs has one of the lowest electron effective-masses among binary III-V semiconducting materials while bulk InP shows excellent optical properties, which make InAs and InP NWs candidates for optoelectronic materials. In this work, we use first-principles calculations to study the structural, electronic, and mechanical properties of [111] zinc-blende InAs and InP NWs as a function of diameter (ranging from 0.5 to 2.0 nm). The influence of external mechanical stress on the electronic properties is also analyzed. The axial lattice constants of the NWs are seen to decrease with decreasing diameter, as a consequence of a shorter surface lattice constant of the NWs, as compared to their bulk values. The Young’s modulus of both InAs and InP NWs is determined to decrease while the Poisson’s ratio to increase with decreasing diameters, with deviations from the bulk Young’s modulus estimated to occur for NWs with diameters lower than 15 nm. The increase in the band-gaps with decreasing diameters is seen to be slower than the expected from simple quantum-mechanical models ( 1/D2 , where D is the diameter), mainly for the smallest (<1.0nm) diameters. The electron effective-masses are seen to increase with decreasing diameters, due to a k -dependent energy shift of the conduction

  14. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  15. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage.

    PubMed

    Zhou, D; Shi, F; Xie, D; Wang, D H; Xia, X H; Wang, X L; Gu, C D; Tu, J P

    2016-03-01

    Metal-doping is considered to be an effective way for construction of advanced semiconducting metal oxides with tailored physicochemical properties. Herein, Mo-doped WO3 nanowire arrays are rationally fabricated by a sulfate-assisted hydrothermal method. Compared to the pure WO3, the optimized Mo-doped WO3 nanowire arrays exhibit improved electrochromic properties with fast switching speed (3.2s and 2.6s for coloration and bleaching, respectively), significant optical modulation (56.7% at 750nm, 83.0% at 1600nm and 48.5% at 10μm), high coloration efficiency (123.5cm(2)C(-1)) and excellent cycling stability. In addition, as a proof of concept, the Mo-doped WO3 nanowire arrays are demonstrated with electrochemical energy storage monitored by the electrochromism. This electrode design protocol can provide an alternative way for developing high-performance active materials for bi-functional electrochromic batteries. PMID:26669497

  16. Classification and concentration estimation of explosive precursors using nanowires sensor array and decision tree learning

    NASA Astrophysics Data System (ADS)

    Cho, Junghwan; Li, Xiaopeng; Gu, Zhiyong; Kurup, Pradeep

    2011-09-01

    This paper aims to classify and estimate concentrations of explosive precursors using a nanowire sensor array and decision tree learning algorithm. The nanowire sensor array consists of tin oxide sensors with four different additives, platinum (Pt), copper (Cu), indium (In), and nickel (Ni). The nanowire sensor array was tested using the vapors from four explosives precursors, acetone, nitrobenzene, nitrotoluene, and octane with 10 different concentration levels each. A pattern recognition technique based on decision tree learning was applied to classify the explosive precursors and estimate their concentration. Classification and regression tree (CART) analysis was used for classification. The CART was also utilized for the purpose of structure identification in Sugeno fuzzy inference system (FIS) for estimating the concentration of the precursors. Two CARTs were trained and their testing results were investigated.

  17. E{sub 1} Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    SciTech Connect

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-12-23

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm{sup -1} reveals an E{sub 1} gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  18. Cross-stacked single-crystal organic nanowire p-n nanojunction arrays by nanotransfer printing.

    PubMed

    Park, Kyung Sun; Lee, Ki Seok; Kang, Chan-Mo; Baek, Jangmi; Han, Kyu Seok; Lee, Changhee; Koo Lee, Yong-Eun; Kang, Youngjong; Sung, Myung Mo

    2015-01-14

    We fabricated cross-stacked organic p-n nanojunction arrays made of single-crystal 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) nanowires as p-type and n-type semiconductors, respectively, by using a nanotransfer printing technique. Single-crystal C60 nanowires were synthesized inside nanoscale channels of a mold and directly transferred onto a desired position of a flexible substrate by a lubricant liquid layer. In the consecutive printing process, single-crystal TIPS-PEN nanowires were grown in the same way and then perpendicularly aligned and placed onto the C60 nanowire arrays, resulting in a cross-stacked single-crystal organic p-n nanojunction array. The cross-stacked single-crystal TIPS-PEN/C60 nanowire p-n nanojunction devices show rectifying behavior with on/off ratio of ∼ 13 as well as photodiode characteristic with photogain of ∼ 2 under a light intensity of 12.2 mW/cm(2). Our study provides a facile, solution-processed approach to fabricate a large-area array of organic crystal nanojunction devices in a desired arrangement for future nanoscale electronics. PMID:25470380

  19. Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes.

    PubMed

    Vega, V; Böhnert, T; Martens, S; Waleczek, M; Montero-Moreno, J M; Görlitz, D; Prida, V M; Nielsch, K

    2012-11-23

    Co(x)Ni(1-x) alloy nanowires with varying Co content (0 ≤ x ≤ 0.95), having a diameter of 130 nm and length of around 20 μm, are synthesized by template-assisted electrodeposition into the nanopores of SiO(2) conformal coated hard-anodic aluminum oxide membranes. The magneto-structural properties of both single isolated nanowires and hexagonally ordered nanowire arrays of Co-Ni alloys are systematically studied by means of magneto-optical Kerr effect magnetometry and vibrating sample magnetometry, respectively, allowing us to compare different alloy compositions and to distinguish between the magnetostatic and magnetocrystalline contributions to the effective magnetic anisotropy for each system. The excellent tunable soft magnetic properties and magnetic bistability exhibited by low Co content Co-Ni nanowires indicate that they might become the material of choice for the development of nanostructured magnetic systems and devices as an alternative to Fe-Ni alloy based systems, being chemically more robust. Furthermore, Co contents higher than 51 at.% allow us to modify the magnetic behavior of Co-rich nanowires by developing well controlled magnetocrystalline anisotropy, which is desirable for data storage applications. PMID:23095457

  20. Distortions of the coulomb blockade conductance line in scanning gate measurements of inas nanowire based quantum dots

    SciTech Connect

    Zhukov, A. A.; Volk, Ch.; Winden, A.; Hardtdegen, H.; Schaepers, Th.

    2013-01-15

    We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities-wobbling and splitting-arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.

  1. The influence of the droplet composition on the vapor-liquid-solid growth of InAs nanowires on GaAs (111)B by metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jens; Gottschalch, Volker; Wagner, Gerald

    2008-12-01

    The heteroepitaxial growth of InAs nanowires (NWs) on GaAs (1¯1¯1¯)B substrate was investigated by metal-organic vapor phase epitaxy. The vapor-liquid-solid (VLS) growth mechanism was applied with gold as seed material. InAs NW with two types of morphology were observed. The first morphology type exhibited a tapered NW shape. In a distinct region below the alloy particle the shape was influenced by the precursor surface diffusion. The NW growth was attributed to Au-rich liquid alloy particles containing gallium as a result of the initial Au-GaAs interaction. Differential scanning calorimetry measurements revealed the lowest eutectic temperature of the Au-Ga-In liquid alloy for different compositions. For a considerable amount of gallium inside the ternary alloy, the eutectic temperature was found to be below the InAs NW growth temperature window. A second type of morphology with a more columnlike shape was related to a very high indium fraction inside the liquid alloy particle during VLS growth. These NW exhibited a change in the side facet orientation from {2¯11} to {1¯10} below the droplet. Additionally, the sample structure was studied by transmission electron microscopy. A change in the InAs NW crystal structure from sphalerite-type to mainly wurtzite-type was observed with an increase in the growth temperature.

  2. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  3. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  4. Double-sided tin nanowire arrays for advanced thermal interface materials

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Faruque, Fardin; Bao, Peng; Chien, An-Ting; Kumar, Satish; Peterson, G. P.

    2013-03-01

    This investigation examines a type of thermal interface material (TIM) based on a double-sided array of tin nanowires (NWs) prepared using a hot-pressing approach with the assistance of anodic aluminum oxide templates. The metal based TIM effectively reduces the contact resistance, while the flexible nanowires show excellent mechanical compliance to increase the actual contact area with the mating rough surfaces. The results indicate that the overall thermal contact resistance of the two rough copper surfaces assisted by the tin NW array, can reduce the overall resistance to 29 mm2KW-1 at 0.25 MPa and 20 mm2KW-1 at 1.0 MPa.

  5. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    NASA Astrophysics Data System (ADS)

    Xavier, Stephane; Mátéfi-Tempfli, Stefan; Ferain, Etienne; Purcell, Stephen; Enouz-Védrenne, Shaïma; Gangloff, Laurent; Minoux, Eric; Hudanski, Ludovic; Vincent, Pascal; Schnell, Jean-Philippe; Pribat, Didier; Piraux, Luc; Legagneux, Pierre

    2008-05-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3 µm, a diameter of 80 nm and a density of ~107 cm-2. The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ~1 mA cm-2 for a 30 V µm-1 applied electric field.

  6. Wurtzite InP nanowire arrays grown by selective area MOCVD

    SciTech Connect

    Chu, Hyung-Joon; Yeh, Ting-Wei; Stewart, Lawrence; Dapkus, P. Daniel

    2010-06-22

    InP nanowires are a unique material phase because this normally zincblende material forms in the wurtzite crystal structure below a critical diameter owing to the contribution of sidewalls to the total formation energy. This may allow control of the carrier transport and optical properties of InP nanowires for applications such as nano scale transistors, lasers and detectors. In this work, we describe the fabrication of InP nanowire arrays by selective area growth using MOCVD in the diameter range where the wurtzite structure is formed. The spatial growth rate in selective area growth is modeled by a diffusion model for the precursors. The proposed model achieves an average error of 9%. Electron microscopy shows that the grown InP nanowires are in the wurtzite crystal phase with many stacking faults. The threshold diameter of the crystal phase transition of InP nanowires is larger than the thermodynamic estimation. In order to explain this tendency, we propose a surface kinetics model based on a 2×2 reconstruction. This model can explain the increased tendency for wurtzite nanowire formation on InP (111)A substrates and the preferred growth direction of binary III-V compound semiconductor nanowires.

  7. Performance Comparison of InAs, InSb, and GaSb n-Channel Nanowire Metal-Oxide-Semiconductor Field-Effect Transistors in the Ballistic Transport Limit

    NASA Astrophysics Data System (ADS)

    Shimoida, Kenta; Tsuchiya, Hideaki; Kamakura, Yoshinari; Mori, Nobuya; Ogawa, Matsuto

    2013-03-01

    Ballistic performances of InAs, InSb, and GaSb nanowire field-effect transistors (NWFETs) were theoretically investigated. We found that InAs and InSb NWFETs exhibit similar device performances due to 1D band structure effects. Furthermore, although these In-based NWFETs suffer from the density-of-states (DOS) bottleneck, a lower power switching is expected. On the other hand, GaSb NWs have multiple energy subbands at conduction band minima, as a result of the projection of L-valleys which thus improves the DOS. In particular, a <110>-oriented GaSb NW has an improved DOS and a high electron velocity simultaneously, and thus, it could be a strong competitor to In-based NWFETs.

  8. Simultaneous Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays.

    PubMed

    Gao, Qian; Dubrovskii, Vladimir G; Caroff, Philippe; Wong-Leung, Jennifer; Li, Li; Guo, Yanan; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2016-07-13

    Selective-area epitaxy is highly successful in producing application-ready size-homogeneous arrays of III-V nanowires without the need to use metal catalysts. Previous works have demonstrated excellent control of nanowire properties but the growth mechanisms remain rather unclear. Herein, we report a detailed growth study revealing that fundamental growth mechanisms of pure wurtzite InP ⟨111⟩A nanowires can indeed differ significantly from the simple picture of a facet-limited selective-area growth process. A dual growth regime with and without metallic droplet is found to coexist under the same growth conditions for different diameter nanowires. Incubation times and highly nonmonotonous growth rate behaviors are revealed and explained within a dedicated kinetic model. PMID:27253040

  9. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.

    PubMed

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H₂O₂) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM⁻¹·cm⁻²) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  10. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  11. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium

  12. Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures

    NASA Astrophysics Data System (ADS)

    Lei, Yuxiong; Chen, Zheng; Li, Liangliang

    2015-05-01

    Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures were investigated in this study. The periodic and quasi-periodic structures were designed based on Fibonacci sequence and golden ratio. Ni nanowires arrays were electrodeposited in anodic aluminum oxide (AAO) templates with patterned Cu electrodes, and then the AAO templates were attached to the coplanar waveguide lines fabricated on quartz substrate for measurement. The S21 of both periodic and quasi-periodic structure-patterned Ni nanowire arrays showed an extra absorption peak besides the absorption peak due to the ferromagnetic resonance of Ni nanowires. The frequency of the absorption peak caused by the patterned structure could be higher than 40 GHz when the length and arrangement of the structural units were modified. In addition, the frequency of the absorption peak due to the quasi-periodic structure was calculated based on a simple analytical model, and the calculated value was consistent with the measured one. The experimental data showed that it could be a feasible approach to tune the performance of microwave devices by patterning ferromagnetic nanowires.

  13. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays.

    PubMed

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco; Krahne, Roman; Di Fabrizio, Enzo

    2015-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires. PMID:25131422

  14. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-01

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1Terabit/in.2 The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15nm) and interwire spacing (24nm), whereas nanowire length (typically 50to1000nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7kOe at 300K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  15. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    SciTech Connect

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-15

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1 Terabit/in.{sup 2} The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15 nm) and interwire spacing (24 nm), whereas nanowire length (typically 50 to 1000 nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7 kOe at 300 K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  16. Microelectrode array with integrated nanowire FET switches for high-resolution retinal prosthetic systems

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Jung, Suk Won; Ahn, Jaehyun; Yoo, Hyung Jung; Oh, Sung Jin; ‘Dan' Cho, Dong-Il

    2014-07-01

    In this paper, a novel microelectrode array integrated with nanowire field-effect transistor (FET) switches is developed for retinal prosthetic systems. Retinal prosthetic systems require many electrodes (generally more than several hundreds) and this paper presents a novel method of integrating silicon nanowire-FET switches with microelectrodes that can significantly reduce wiring complexity. Also, in order to fit the curvature of an eyeball, the silicon nanowire FETs are transferred to a flexible substrate. In order to demonstrate the concept of using FETs for switching collocated retinal microelectrodes, a microelectrode array with 32 × 32 pixels is fabricated, which has 1,024 microelectrodes. Using the FET switches in a two-dimensional array addressing configuration, 1,024 microelectrodes are addressed by only 64 lines (32 for scan and 32 for data), as compared to requiring 1,024 lines in the conventional one-to-one configuration. With the gate voltage of -5 V, the threshold voltage, current on/off ratio, and on-resistance of the fabricated silicon nanowire-FET switch are -0.4 V, 1 × 107, and 37-47 kΩ, respectively. The maximum allowable current injection limit of the silicon nanowire-FET switch integrated microelectrode is 44 μA with a pulse duration of 1 ms. These results show an excellent potential for high-resolution retinal prosthetic systems.

  17. Photoelectrochemical Activity of As-Grown, a-Fe2O3 Nanowire Array Electrodes for Water Splitting

    SciTech Connect

    Chernomordik, B. D.; Russell, H. B.; Cvelbar, U.; Jasinski, J. B.; Kumar, V.; Deutsch, T.; Sunkara, M. K.

    2012-05-17

    Undoped hematite nanowire arrays grown using plasma oxidation of iron foils show significant photoactivity ({approx}0.38 mA cm{sup -2} at 1.5 V versus reversible hydrogen electrode in 1 M KOH). In contrast, thermally oxidized nanowire arrays grown on iron exhibit no photoactivity due to the formation of a thick (>7 {micro}m Fe{sub 1-x}O) interfacial layer. An atmospheric plasma oxidation process required only a few minutes to synthesize hematite nanowire arrays with a 1-5 {micro}m interfacial layer of magnetite between the nanowire arrays and the iron substrate. An amorphous oxide surface layer on hematite nanowires, if present, is shown to decrease the resulting photoactivity of as-synthesized, plasma grown nanowire arrays. The photocurrent onset potential is improved after removing the amorphous surface on the nanowires using an acid etch. A two-step method involving high temperature nucleation followed by growth at low temperature is shown to produce a highly dense and uniform coverage of nanowire arrays.

  18. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  19. Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing

    NASA Astrophysics Data System (ADS)

    DeMeo, Dante; MacNaughton, Sam; Wang, Zhilong; Zhang, Xinjie; Sonkusale, Sameer; Vandervelde, Thomas E.

    2014-04-01

    Vanadium oxide, manganese oxide, tungsten oxide, and nickel oxide nanowires were investigated for their applicability as chemiresistive gas sensors. Nanowires have excellent surface-to-volume ratios which yield higher sensitivities than bulk materials. Sensing elements consisting of these materials were assembled in an array to create an electronic nose platform. Dielectrophoresis was used to position the nanomaterials onto a microfabricated array of electrodes, which was subsequently mounted onto a leadless chip carrier and printed circuit board for rapid testing. Samples were tested in an enclosed chamber with vapors of acetone, isopropanol, methanol, and aqueous ammonia. The change in resistance of each assembly was measured. Responses varied between nanowire compositions, each demonstrating unique and repeatable responses to different gases; this enabled direct detection of the gases from the ensemble response. Sensitivities were calculated based on the fractional resistance change in a saturated environment and ranged from 6 × 10-4 to 2 × 10-5%change ppm-1.

  20. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  1. High-performance supercapacitor electrodes based on hierarchical Ti@MnO(2) nanowire arrays.

    PubMed

    Zhu, Dongdong; Wang, Yadong; Yuan, Guoliang; Xia, Hui

    2014-03-18

    Ti nanowire arrays (NAs) prepared by a facile and template-free hydrothermal method were used as three-dimensional (3D) current collectors for the electrodeposition of MnO2. The resulting Ti@MnO2 NAs exhibit remarkable electrochemical behavior with high specific capacitance, good rate performance and desired cycling stability. PMID:24488182

  2. MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance.

    PubMed

    Yao, Ming-Shui; Tang, Wen-Xiang; Wang, Guan-E; Nath, Bhaskar; Xu, Gang

    2016-07-01

    A strategy for combining metal oxides and metal-organic frameworks is proposed to design new materials for sensing volatile organic compounds, for the first time. The prepared ZnO@ZIF-CoZn core-sheath nanowire arrays show greatly enhanced performance not only on its selectivity but also on its response, recovery behavior, and working temperature. PMID:27153113

  3. An Ultralong, Highly Oriented Nickel-Nanowire-Array Electrode Scaffold for High-Performance Compressible Pseudocapacitors.

    PubMed

    Xu, Chao; Li, Ziheng; Yang, Cheng; Zou, Peichao; Xie, Binghe; Lin, Ziyin; Zhang, Zhexu; Li, Baohua; Kang, Feiyu; Wong, Ching-Ping

    2016-06-01

    Ultralong, highly oriented Ni nanowire arrays are used as the electrode scaffold to support metal-oxide- and conductive-polymer-based electrode materials with a high mass loading; the as-obtained asymmetric supercapacitor can be compressed by fourfold and exhibits superior energy and power densities with ultrahigh cycle stability. PMID:27062285

  4. Fabrication and properties of a branched (NH₄)xWO₃ nanowire array film and a porous WO3 nanorod array film.

    PubMed

    Liu, Ya; Zhao, Liang; Su, Jinzhan; Li, Mingtao; Guo, Liejin

    2015-02-18

    We describe the successful fabrication of a three-dimensional branched (NH4)xWO3 nanowire array film on fluorine-doped tin oxide coated glass by a facile one-step hydrothermal method. The porous WO3 nanorod array film formed after heat treatment and recrystallization. Specifically, the branched (NH4)xWO3 nanowire array film has very thin nanowires that were about 10 nm in diameter. The results of an optical and photoelectrochemical test show that the branched (NH4)xWO3 nanowire array film could be used as a near-infrared shielder, while the porous WO3 nanorod array film can be used as a photoanode for water splitting. Moreover, the morphology, structure, and composition of the as-prepared films are revealed, and the related changes caused by heat treatment are discussed in detail. PMID:25623076

  5. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications.

    PubMed

    Al-Zoubi, Omar H; Said, Tarek M; Alher, Murtadha Abdulmueen; El-Ghazaly, Samir; Naseem, Hameed

    2015-07-27

    In this study we report novel silicon nanowire (SiNW) array structures that have near-unity absorption spectrum. The design of the new SiNW arrays is based on radial diversity of nanowires with periodic diamond-like array (DLA) structures. Different array structures are studied with a focus on two array structures: limited and broad diversity DLA structures. Numerical electromagnetic modeling is used to study the light-array interaction and to compute the optical properties of SiNW arrays. The proposed arrays show superior performance over other types of SiNW arrays. Significant enhancement of the array absorption is achieved over the entire solar spectrum of interest with significant reduction of the amount of material. The arrays show performance independent of angle of incidence up to 70 degrees, and polarization. The proposed arrays achieved ultimate efficiency as high as 39% with filling fraction as low as 19%. PMID:26367679

  6. Synthesis, Characterization and Kinetics of Epitaxial-Oriented Silicon Nanowire Arrays on Si Substrates

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Bao, J. K.; Wan, Y. T.; Xia, W. W.; Wang, Y. W.; Sha, J.

    The fabrication of vertical-oriented, high aspect ratio silicon nanowires (SiNWs) with controllable density and length is of interest for the development of nanowire-based electronics and photovoltaic devices. Here we reported a both simple and economical method for synthesizing large-area epitaxial-oriented SiNW arrays, which was achieved on the Si (111) substrates by Au catalyzed vapor-liquid-solid mechanism using the conventional chemical vapor deposition furnace system. Their morphologies and microstructures were investigated with scanning electron microscopy and transmission electron microscopy, respectively. The results showed that most of nanowires were vertically grown on substrates, their density and length can be well controlled. As-grown SiNW is composed of a single crystalline silicon core and a thin amorphous silicon oxide coating layer. Furthermore, their growth kinetics was discussed in detail. It indicates that there are both the substrate-nanowire Si adatom surface diffusion and the slight radial growth during the upgrowth of nanowire, and besides, the migration of Au on the sidewall of nanowire was also found for such epitaxial-oriental SiNWs.

  7. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  8. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  9. Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics.

    PubMed

    Li, Junshuai; Yu, HongYu; Li, Yali

    2012-05-17

    Investigation of solar energy harvesting in hexagonally arranged Si nanowire (NW) arrays is performed through optimizing the structural parameters, such as array periodicity (P), Si NW diameter (D) and length (L). The results demonstrate that there exist wide P and D/P 'windows' for the Si NW arrays, locating around 600 nm and 0.833 (i.e., D=500 nm), respectively, for achieving enhanced light absorption compared to their thin film counterparts with the same thickness, but with much less materials consumption. Calculation of the ultimate efficiency (UE) indicates that the light trapping capability is not monotonically increased with L, and that UE vibration is found when L is >1000 nm. Comparison of the light absorption spectra for hexagonally and squarely arranged Si NW arrays demonstrates that these two most widely employed array symmetries in practice have little impact on the light trapping capability. PMID:22539152

  10. Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Yu; Xu, Cai-Ling; Guo, Dao-Jun; Li, Hua; Li, Hu-Lin

    Pt and Pt-Ru nanowire array electrodes were obtained by dc (direct current) electrodeposition of Pt and Ru into the pores of an anodic aluminum oxide (AAO) template on a Ti/Si substrate. Transmission electron microscope (TEM) examination showed all the nanowires had a uniform diameter of about 30 nm. The brush shaped Pt and Pt-Ru nanowire array electrodes could be seen clearly by scanning electron microscope. Pt and Pt-Ru nanowire array electrodes gave the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure. The electro-oxidation of methanol on these electrodes was investigated at room temperature using cyclic voltammetry. The results demonstrated that the alloy nanowire array electrode was catalytically more active than a pure platinum nanowire array electrode and the Pt-Ru nanowire array electrode may have good potential for applications in portable fuel cell power sources.

  11. Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Hou, Jun-wei; Lü, Xiao-yi

    2015-11-01

    The silver (Ag) nanowire arrays with regular and uniform size were successfully fabricated inside the nanochannels of anodic aluminum oxide (AAO) template by a simple paired cell method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicate that the as-synthesized samples are composed of face-centered cubic structure, and the average diameter is about 60-70 nm. Transmission electron microscopy (TEM) and the corresponding fast Fourier transformation (FFT) results show that Ag nanowires have a preferred single-crystal structure. Ultraviolet- visible (UV-vis) spectrum of Ag nanowire arrays exhibits UV emission band at 383 nm which can be attributed to the transverse dipole resonance of Ag nanowire arrays. A good surface-enhanced Raman scattering (SERS) spectrum is observed by excitation with a 514.5 nm laser, and the intensity of the SERS peak is about 23 times higher than that of the normal Raman peak measured from an empty AAO template. The high enhancement factor suggests that this method can be used to fabricate SERS sensor with high efficiency.

  12. Fabrication of nanowire arrays over micropyramids for efficient Si solar cell

    NASA Astrophysics Data System (ADS)

    Pant, Namrata; Singh, Prashant; Srivastava, Sanjay Kumar; Shukla, Vivek Kumar

    2016-05-01

    To improve the efficiency of solar cell, trapping the sunlight and using it to its maximum limit has been the area of research for past several decades. In the present work, texturisation of silicon surface has been done to make nanowire arrays over micropyramids. Micropyramids on Si surface increases the surface area, reduce the reflectivity and hence help to enhance the solar cell performance. Additionally, with the aim to further reduce the reflectance of Si surface, nanowire arrays over micro pyramids were fabricated. For this, samples with variation in their nanotexturisation time (etching time) were prepared. Measurements like SEM and UV-Vis reflectance spectroscopy were performed on the samples to investigate the changes with etching time. It was observed that the reflectance of planar Si in the spectral range 400 to 1000 nm is ˜35%. The reflectance of microtextured (micropyramid) Si surface is significantly reduced to ˜11%. A further decrease in reflectivity was observed when nanowire arrays were grown over the micropyramids. This may be attributed to the effective light trapping caused by multiple scattering of the incident light from the nanowires over micropyramids. Hence, it may improve silicon solar cell efficiency.

  13. Electrochemical fabrication and characterization of lepidocrocite (γ-FeOOH) nanowire arrays

    NASA Astrophysics Data System (ADS)

    Jagminas, A.; Mažeika, K.; Juška, E.; Reklaitis, J.; Baltrūnas, D.

    2010-04-01

    We report on the fabrication of γ-phase iron oxyhydroxide (γ-FeOOH, lepidocrocite) nanowire ( nw) arrays within the alumina pores by electrodeposition. An aqueous solution, friendly to alumina matrix, was generated and applied in this study for uniform deposition of γ-FeOOH nw arrays directly through the alumina barrier layer using an alternating current ( ac) mode. As-deposited nanowired products were characterized using 57Fe Mössbauer spectroscopy (MS), atomic absorption spectrophotometry analysis, field-emission scanning electron microscopy, UV-vis transmission spectroscopy, transmission electron microscopy and X-ray diffraction. The formation of pure lepidocrocite nw arrays in the alumina pores with the average Øpore of 45 and 150 nm was verified by transmission MS at cryogenic temperatures.

  14. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates.

    PubMed

    Zhang, Weixin; Yang, Shihe

    2009-10-20

    The full potential of nanotechnology can be unleashed only when one is able not only to synthesize a rich variety of nanoscale building blocks but also assemble them into various patterns at the supramolecular and supracluster levels. In particular, the application of nanoparticle and nanowire materials often requires their assembly in the form of thin films, preferably on conductive surfaces for electrical addressing, control, and detection. Although a dazzling array of nanostructures has been fabricated by bottom-up approaches, one of the contemporary challenges is to assemble these nanostructures so that they introduce and realize functionalities. An alluring avenue is to simultaneously accomplish both the nanostructure synthesis and assembly on a useful substrate in a parallel fashion, affording the advantages of simplicity, low cost, and high throughput. In this Account, we review our recent work on growing inorganic nanowires (for example, metal sulfides, metal oxides, and so forth) directly from and on metal substrates in arrays without using templates and catalysts. This method of engineering nanowire arrays on metal substrates integrates the nanowire synthesis and assembly into a parallel process, both in time and in space, by exploiting in situ chemistry on the metal substrates. Both gas-phase and solution-phase approaches have been developed to synthesize the aligned nanowires; here, full advantage is taken of interfacial kinetics of restricted diffusion and surface-specific reactions, often accompanied by new interfacial growth mechanisms. The setting of nanowire arrays on metal substrates has allowed exploration of their application potentials in areas such as field electron emission and chemical sensing. The approaches described here are general, and we predict that they will be extended to more inorganic materials, such as metal halides. Moreover, as more control is achieved with synthetic methods, inorganic nanowire arrays should provide unusual

  15. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    NASA Astrophysics Data System (ADS)

    Gotschke, T.; Schumann, T.; Limbach, F.; Stoica, T.; Calarco, R.

    2011-03-01

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (dh) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with dh and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  16. Hypersonic crystal band gaps in Ni/Cu superlattice nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hu, Jia-Guang; Shen, Tie

    2016-03-01

    The hexagonal and tetragonal ordered arrays were prepared by Ni/Cu superlattice nanowires on the porous anodic alumina membrane template, and their phonon band structures were calculated by using the plane wave expansion method. Numerical results show that the hypersonic band gaps can be acquired by adjusting the structural parameters. Along the different wave-vector directions, the width and position of band gap would vary. If the nanowires'filling fraction is increased continuously, the width of the first band gap firstly increases and then decreases within a certain range. The height of superlattice nanowire elementary unit can only affect the width of band gap within a quite narrow range. When the height of elementary unit remains unchanged, the decrease of the Cu-component ratio can contribute to the formation of a wider band gap. Additionally, the wide band gap is more easily formed in tetragonal structure than in hexagonal structure.

  17. XAFS study on the impact of local structure on electrochemical performance for Co3O4 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Cheng, Weiren; He, Jingfu; Huang, Junheng; Liu, Qinghua; Jiang, Yong; Wei, Shiqiang

    2016-05-01

    Determining the local structure of catalyst materials is critical for understanding the mechanism of enhanced electrochemical activity in semiconductor electrode. Here, using X-ray absorption fine structure (XAFS) spectra, we reveal that the local disorder structure is formed for the mixed-phase Co3O4 nanowire arrays due to the interaction between the phases of Co3O4 and Co2(OH)2CO3. Comparing to pure Co3O4 nanowire arrays, the mixed phase sample is richer in Co2+ and the electronic structure is changed by the local structure, which are demonstrated by the X-ray absorption near-edge structure (XANES) spectra. It is deduced that the mixed-phase Co3O4 nanowire arrays with abundant Co2+ sites provide more redox centres in electrochemical reaction than the pure Co3O4 nanowire arrays.

  18. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    NASA Astrophysics Data System (ADS)

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-09-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved.

  19. Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

    SciTech Connect

    Singleton, John; Aravamudhan, Shyan; Goddard, Paul A; Bhansali, Shekhar

    2008-01-01

    The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

  20. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  1. Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning.

    PubMed

    Chauvin, Adrien; Delacôte, Cyril; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Boujtita, Mohammed; Thiry, Damien; Du, Ke; Ding, Junjun; Choi, Chang-Hwan; Tessier, Pierre-Yves; El Mel, Abdel-Aziz

    2016-03-16

    Nanoporous materials are of great interest for various technological applications including sensors based on surface-enhanced Raman scattering, catalysis, and biotechnology. Currently, tremendous efforts are dedicated to the development of porous one-dimensional materials to improve the properties of such class of materials. The main drawback of the synthesis approaches reported so far includes (i) the short length of the porous nanowires, which cannot reach the macroscopic scale, and (ii) the poor organization of the nanostructures obtained by the end of the synthesis process. In this work, we report for the first time on a two-step approach allowing creating highly ordered porous gold nanowire arrays with a length up to a few centimeters. This two-step approach consists of the growth of gold/copper alloy nanowires by magnetron cosputtering on a nanograted silicon substrate, serving as a physical template, followed by a selective dissolution of copper by an electrochemical anodic process in diluted sulfuric acid. We demonstrate that the pore size of the nanowires can be tailored between 6 and 21 nm by tuning the dealloying voltage between 0.2 and 0.4 V and the dealloying time within the range of 150-600 s. We further show that the initial gold content (11 to 26 atom %) and the diameter of the gold/copper alloy nanowires (135 to 250 nm) are two important parameters that must carefully be selected to precisely control the porosity of the material. PMID:26926232

  2. Electro-physical characterization of individual and arrays of ZnO nanowires

    SciTech Connect

    Mallampati, Bhargav; Singh, Abhay; Philipose, U.; Shik, Alex; Ruda, Harry E.

    2015-07-21

    Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qualitative explanation for this behavior is presented, taking into account specific features of quasi-one-dimensional screening. The increasing or decreasing character of the capacitance-voltage characteristics were determined by the conductivity type of the nanowires, which in our case was n-type. A dispersion of the experimental capacitance was observed over the entire frequency range of 1 kHz to 5 MHz. This phenomenon is explained by the slow discharge of the nanowires through the thin dielectric layer that separates them from the top electrode. Separate measurements on individual identical nanowires in a field effect transistor configuration yielded an electron concentration and mobility of approximately 10{sup 17 }cm{sup −3} and 150 cm{sup 2}/Vs, respectively, at room temperature.

  3. Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Han, G. C.; Zong, B. Y.; Luo, P.; Wu, Y. H.

    2003-06-01

    Magnetization properties of magnetic nanowire arrays are studied on various ferromagnetic materials grown in anodic alumina (alumite) and track etched polycarbonate (PCTE) membranes by pulsed electrodeposition. Magnetization curves were measured as functions of wire material, field orientation, and wire length. The coercivity (Hc) and remanent squareness (S) of the various wire arrays were derived from hysteresis loops as a function of angle (θ) between the field and wire axis. For PCTE membranes, Hc(θ) curves for CoNiFe, NiFe, and Co nanowire arrays all show an otherwise-bell-type variation, while they change shapes from the otherwise bell to bell type for Ni nanowire arrays as the wire diameter decreases to 30 nm. These characteristics can be understood based on different magnetization reversal mechanisms of small wires. The effect of magnetostatic interaction among wires on the magnetic properties was examined by changing the wire lengths in alumite membranes. It is found that the interaction reduces Hc and S values significantly and may cause the overall easy axis change from parallel to perpendicular to the wire axis. However, the interaction is much weaker than expected from an independent precession theory. The strong coupling among the wire may also induce a change of magnetization reversal mechanism.

  4. Time limit for the efficient coupling of relativistic femtosecond laser pulses into aligned nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R.; Bargsten, C.; Shlyaptsev, V.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.; Rocca, J. J.; Pukhov, A.; Kaymak, V.; London, R.; Tommasini, R.

    2015-11-01

    Recent experiments at Colorado State University have demonstrated volumetric heating of near solid density plasmas to multi-keV temperatures by intense high contrast femtosecond laser irradiation of vertically aligned nanostructures. A key parameter is the time for the heated nanowires to expand and fill the inter-wire gaps with a super-critical density plasma. After this time the laser light can no longer penetrate deep into the array, effectively terminating volumetric heating. We have gained information on the gap closure time for arrays with different wire spacing by monitoring the intensity of He-like lines from arrays of nickel nanowires while varying the laser pulse width from 50 fs to 250 fs. Experiments conducted at constant laser energy show that He-like α line emission from arrays of 80 nm diameter nanowires separated by 205 nm is observed for pulse widths of 200 fs. It is possible to find an optimal wire separation to match the pulse width of the driving laser. The results are relevant to scaling the scheme to high energy laser facilities that are characterized by longer pulses. Work supported by the Office of Fusion Energy Science of the US Dept of Energy, and the DTRA. A.P was supported by DFG project TR18, and R.L. and R.T. by LLNL Contract No. DE-AC52-07NA27344.

  5. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  6. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Chieh; Chou, Po-Hsun

    2016-08-01

    The effects of hydrogen thermal and plasma treatment on the formation and photocatalytic activities of black TiO2 nanowire arrays were investigated and discussed. After either the hydrogen thermal or plasma treatment, the TiO2 nanowires remained. However, in contrast to the plasma treated nanowires, the diameter of the thermal treated TiO2 nanowires reduced more significantly, which was attributed to a thicker surface amorphous layer and more oxygen vacancies. A higher photoresponse in both UV and visible light regions and more hydroxide groups were also observed for the thermal treated nanowires. In addition, the black nanowires possessed greater carrier concentration, leading to a more efficient separation of electron–hole pairs. As a consequence, much enhanced photoelectrochemical water splitting and photocatalytic degradation of methylene blue were obtained.

  7. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays.

    PubMed

    Wang, Chih-Chieh; Chou, Po-Hsun

    2016-08-12

    The effects of hydrogen thermal and plasma treatment on the formation and photocatalytic activities of black TiO2 nanowire arrays were investigated and discussed. After either the hydrogen thermal or plasma treatment, the TiO2 nanowires remained. However, in contrast to the plasma treated nanowires, the diameter of the thermal treated TiO2 nanowires reduced more significantly, which was attributed to a thicker surface amorphous layer and more oxygen vacancies. A higher photoresponse in both UV and visible light regions and more hydroxide groups were also observed for the thermal treated nanowires. In addition, the black nanowires possessed greater carrier concentration, leading to a more efficient separation of electron-hole pairs. As a consequence, much enhanced photoelectrochemical water splitting and photocatalytic degradation of methylene blue were obtained. PMID:27354433

  8. A laser-assisted process to produce patterned growth of vertically aligned nanowire arrays for monolithic microwave integrated devices

    NASA Astrophysics Data System (ADS)

    Van Kerckhoven, Vivien; Piraux, Luc; Huynen, Isabelle

    2016-06-01

    An experimental process for the fabrication of microwave devices made of nanowire arrays embedded in a dielectric template is presented. A pulse laser process is used to produce a patterned surface mask on alumina templates, defining precisely the wire growing areas during electroplating. This technique makes it possible to finely position multiple nanowire arrays in the template, as well as produce large areas and complex structures, combining transmission line sections with various nanowire heights. The efficiency of this process is demonstrated through the realisation of a microstrip electromagnetic band-gap filter and a substrate-integrated waveguide.

  9. A laser-assisted process to produce patterned growth of vertically aligned nanowire arrays for monolithic microwave integrated devices.

    PubMed

    Kerckhoven, Vivien Van; Piraux, Luc; Huynen, Isabelle

    2016-06-10

    An experimental process for the fabrication of microwave devices made of nanowire arrays embedded in a dielectric template is presented. A pulse laser process is used to produce a patterned surface mask on alumina templates, defining precisely the wire growing areas during electroplating. This technique makes it possible to finely position multiple nanowire arrays in the template, as well as produce large areas and complex structures, combining transmission line sections with various nanowire heights. The efficiency of this process is demonstrated through the realisation of a microstrip electromagnetic band-gap filter and a substrate-integrated waveguide. PMID:27138863

  10. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy.

    PubMed

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-12-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication. PMID:27431495

  11. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Li, Meicheng; Fu, Pengfei; Li, Ruike; Gu, Tiansheng; Huang, Rui; Chen, Zhao; Jiang, Bing; Li, Yingfeng

    2015-05-01

    The ordered Ag nanorod (AgNR) arrays are fabricated through a simple electroless deposition technique using the isolated Si nanowire (SiNW) arrays as the Ag-grown scaffold. The AgNR arrays have the single-crystallized structure and the plasmonic crystal feature. It is found that the formation of the AgNR arrays is strongly dependent on the filling ratio of SiNWs. A mechanism is proposed based on the selective nucleation and the synergistic growth of Ag nanoparticles on the top of the SiNWs. Moreover, the special AgNR arrays grown on the substrate of SiNWs exhibit a detection sensitivity of 10-15M for rhodamine 6G molecules, which have the potential application to the highly sensitive surface-enhanced Raman scattering sensors.

  12. [101̅0] oriented multichannel ZnO nanowire arrays with enhanced optoelectronic device performance.

    PubMed

    He, Dongqing; Sheng, Xia; Yang, Jie; Chen, Liping; Zhu, Kai; Feng, Xinjian

    2014-12-01

    Crystallographic orientation and microstructure of metal oxide nanomaterials have great impact on their properties and applications. Here, we report [101̅0] oriented ZnO nanowire (NW) arrays with a multichannel mesostructure. The NW has a preferential growth of low energy (101̅0) crystal plane and exhibits 2-3 orders of magnitude faster electron transport rate than that in nanoparticle (NP) films. Furthermore, the surface area of the as-prepared NW arrays is about 5 times larger than that of conventional NW arrays with similar thickness. These lead to the highest power conversion efficiency of ZnO NW array-based sensitized solar cells. We anticipate that the unique crystallographic orientation and mesostructure will endow ZnO NW arrays new properties and expand their application fields. PMID:25411922

  13. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-07-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication.

  14. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    PubMed Central

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  15. Optical properties of silicon nanocrystals covered by periodic array of gold nanowires

    NASA Astrophysics Data System (ADS)

    Dyakov, S. A.; Zhigunov, D. M.; Marinins, A.; Shcherbakov, M. R.; Fedyanin, A. A.; Vorontsov, A. S.; Kashkarov, P. K.; Popov, S.; Qiu, M.; Zacharias, M.; Tikhodeev, S. G.; Gippius, N. A.

    2016-05-01

    Extinction and photoluminescence spectra are experimentally and theoretically studied for a periodic array of gold nanowires deposited on top of a dielectric substrate containing silicon nanocrystals. Quasiguided modes are observed in the substrate resulting in modification of optical properties of silicon nanocrystals. Our calculations of extinction and photoluminescence spectra are in good agreement with experimental results. The periodicity provides a powerful tool for achieving a high photoluminescence outcoupling efficiency of silicon nanocrystals.

  16. Photoelectric properties of an array of axial GaAs/AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Grigor'ev, R. V.; Shtrom, I. V.; Grigor'eva, N. R.; Novikov, B. V.; Soshnikov, I. P.; Samsonenko, Yu. B.; Khrebtov, A. I.; Buravleuv, A. D.; Cirlin, G. E.

    2015-05-01

    The results of studies of photoelectric properties of an array of axial n-type GaAs/Al x Ga1 - x As ( x ≈ 0.3) nanowires grown using molecular beam epitaxy on a p-type silicon substrate are presented. The ability to separate charges efficiently in a wide spectral range (from 450 to 1100 nm) is demonstrated. Such properties are important for designing active elements of photodetectors and solar cells.

  17. Flexible Dye-Sensitized Solar Cell based on Vertical ZnO Nanowire Arrays

    SciTech Connect

    Chu, Sheng; Li, Dongdong; Chang, Pai-Chun; Lu, Jia Grace

    2010-09-26

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  18. Stripe- or square-patterned arrays of tin dioxide nanowires for use in lithium-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Sang Ho; Kim, Won Bae

    2016-03-01

    This paper reports a novel electrode design for use in electrochemical lithium-ion storage. 3-dimensional patterns of tin dioxide nanowires that are grown directly over current collectors are suggested as electrode frameworks, representing the synergetic combination of nanometer-sized 1-dimensional electrode materials and micrometer-scaled hollow channels formed between the patterned nanowire arrays. The lithium-ion storage properties are investigated by changing the pattern geometries of these nanowire arrays in the shape of stripes and squares. The proposed electrode platforms show the enhanced electrochemical storage performances, which might be attributed to the effective diffusion of liquid phase electrolyte through the hollow channels between these patterned nanowire arrays. More interestingly, with increasing the hollow channels in these proposed systems, the high-rate performance and cycling stability are improved even further due to the structural effect of these electrode frameworks.

  19. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil.

    PubMed

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-17

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters. PMID:21832554

  20. Self-assembled and highly selective sensors based on air-bridge-structured nanowire junction arrays.

    PubMed

    Park, Won Jeong; Choi, Kyung Jin; Kim, Myung Hwa; Koo, Bon Hyeong; Lee, Jong-Lam; Baik, Jeong Min

    2013-08-14

    We describe a strategy for creating an air-bridge-structured nanowire junction array platform that capable of reliably discriminating between three gases (hydrogen, carbon monoxide, and nitrogen dioxide) in air. Alternatively driven dual nanowire species of ZnO and CuO with the average diameter of ∼30 nm on a single substrate are used and decorated with metallic nanoparticles to form two-dimensional microarray, which do not need to consider the post fabrications. Each individual nanowires in the array form n-n, p-p, and p-n junctions at the micro/nanoscale on single substrate and the junctions act as electrical conducting path for carriers. The adsorption of gas molecules to the surface changes the potential barrier height formed at the junctions and the carrier transport inside the straight semiconductors, which provide the ability of a given sensor array to differentiate among the junctions. The sensors were tested for their ability to distinguish three gases (H2, CO, and NO2), which they were able to do unequivocally when the data was classified using linear discriminant analysis. PMID:23841667

  1. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices

    NASA Astrophysics Data System (ADS)

    Ivanov, Yurii P.; Chuvilin, Andrey; Vivas, Laura G.; Kosel, Jurgen; Chubykalo-Fesenko, Oksana; Vázquez, Manuel

    2016-03-01

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

  2. Single crystalline cylindrical nanowires - toward dense 3D arrays of magnetic vortices.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Vivas, Laura G; Kosel, Jurgen; Chubykalo-Fesenko, Oksana; Vázquez, Manuel

    2016-01-01

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories. PMID:27030143

  3. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells.

    PubMed

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  4. Angular dependence of coercivity and remanence of Ni nanowire arrays and its relevance to magnetoviscosity

    NASA Astrophysics Data System (ADS)

    Günther, A.; Monz, S.; Tschöpe, A.; Birringer, R.; Michels, A.

    Ni nanowire arrays with varying wire dimensions (diameter d, length l) and center-to-center distances dCC were synthesized by pulsed electrodeposition of Ni in porous Al templates. The magnetization-reversal behavior of the arrays was investigated by means of magnetometry for different angles θ between the wire axes and the applied magnetic field. The functional dependences of the characteristic parameters coercivity HC( θ) and reduced remanence mR/mS( θ) exhibit a strong dependence on the wire dimensions and the center-to-center distance. For instance, for nanowire arrays with d=40 nm, dCC=100 nm, and for θ=0°, the coercivity takes on a rather large value of μ0HC=85 mT and mR/mS≅94%; reducing dCC to 30 nm and d to 17 nm results in μ0HC=49 mT and mR/mS≅57%, an observation which suggests an increasing magnetostatic interwire interaction at increased ( d/ dCC)-ratio. The potential application of nanowires as the constituents of ferrofluids is discussed.

  5. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  6. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    PubMed Central

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5–3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  7. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices

    PubMed Central

    Ivanov, Yurii P.; Chuvilin, Andrey; Vivas, Laura G.; Kosel, Jurgen; Chubykalo-Fesenko, Oksana; Vázquez, Manuel

    2016-01-01

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories. PMID:27030143

  8. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing.

    PubMed

    Dong, Junping; Ren, Linxiao; Zhang, Yuan; Cui, Xiaoli; Hu, Pengfei; Xu, Jiaqiang

    2015-01-01

    Vertically aligned cable-like CuO@Cu nanowires array was synthesized using a template-directed electrodeposition strategy. The morphology, crystal structure, and surface property of nanowires array were investigated by SEM, HRTEM, XRD, and XPS, respectively. It is found that the free standing namowires are highly dense, and possess about 20 μm in length and 200 nm in diameter. The bulk Cu nanowires are assembled by a number of single crystalline Cu nanoparticles and surface is wrapped by a thin layer of amorphous CuO with size of 2.5 nm. Electrocatalytic activity of the nanowires array towards glucose oxidation was investigated by cyclic voltammetry and amperometry in alkaline media. The nanowires array with 3×3 mm(2) was then used to fabricate a non-enzymatic glucose sensor. The sensor exhibits a wide concentration range of 1×10(-6)M-1×10(-2) M for glucose, with an ultra-high sensitivity of 1250.8 μA mM(-1) cm(-2) and excellent anti-interference ability. The good sensing performances could be attributed to the integration of the superior electrocatalysis of high density of Cu nanowires array and the outer shell of negatively charged CuO against interferences. PMID:25476370

  9. Dense, Regular GaAs Nanowire Arrays by Catalyst-Free Vapor Phase Epitaxy for Light Harvesting.

    PubMed

    Jin, Jiehong; Stoica, Toma; Trellenkamp, Stefan; Chen, Yang; Anttu, Nicklas; Migunov, Vadim; Kawabata, Rudy M S; Buenconsejo, Pio J S; Lam, Yeng M; Haas, Fabian; Hardtdegen, Hilde; Grützmacher, Detlev; Kardynał, Beata E

    2016-08-31

    Density dependent growth and optical properties of periodic arrays of GaAs nanowires (NWs) by fast selective area growth MOVPE are investigated. As the period of the arrays is decreased from 500 nm down to 100 nm, a volume growth enhancement by a factor of up to four compared with the growth of a planar layer is observed. This increase is explained as resulting from increased collection of precursors on the side walls of the nanowires due to the gas flow redistribution in the space between the NWs. Normal spectral reflectance of the arrays is strongly reduced compared with a flat substrate surface in all fabricated arrays. Electromagnetic modeling reveals that this reduction is caused by antireflective action of the nanowire arrays and nanowire-diameter dependent light absorption. Irrespective of the periodicity and diameter, Raman scattering and grazing angle X-ray diffraction show signal from zinc blende and wurtzite phases, the latter originating from stacking faults as observed by high resolution transmission electron microscopy. Raman spectra contain intense surface phonons peaks, whose intensity depends strongly on the nanowire diameters as a result of potential structural changes and as well as variations of optical field distribution in the nanowires. PMID:27504951

  10. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.

    PubMed

    Liu, Chun-Yi; Li, Wun-Shan; Chu, Li-Wei; Lu, Ming-Yen; Tsai, Cho-Jen; Chen, Lih-Juann

    2011-02-01

    A method was developed to grow ordered silicon nanowire with NiSi(2) tip arrays by reacting nickel thin films on silica-coated ordered Si nanowire (NW) arrays. The coating of thin silica shell on Si NW arrays has the effect of limiting the diffusion of nickel during the silicidation process to achieve the single crystalline NiSi(2) NWs. In the meantime, it relieves the distortion of the NWs caused by the strain associated with formation of NiSi(2) to maintain the straightness of the nanowire and the ordering of the arrays. Other nickel silicide phases such as Ni(2)Si and NiSi were obtained if the silicidation processes were conducted on the ordered Si NWs without a thin silica shell. Excellent field emission properties were found for NiSi(2)/Si NW arrays with a turn on field of 0.82 V µm(-1) and a threshold field of 1.39 V µm(-1). The field enhancement factor was calculated to be about 2440. The stability test showed a fluctuation of about 7% with an applied field of 2.6 V µm(-1) for a period of 24 h. The excellent field emission characteristics are attributed to the well-aligned and highly ordered arrangement of the single crystalline NiSi(2)/Si heterostructure field emitters. In contrast to other growth methods, the present growth of ordered nickel silicide/Si NWs on silicon is compatible with silicon nanoelectronics device processes, and also provides a facile route to grow other well-aligned metal silicide NW arrays. The advantages will facilitate its applications as field emission devices. PMID:21178255

  11. Fabrication of silicon carbide nanowires/carbon nanotubes heterojunction arrays by high-flux Si ion implantation.

    PubMed

    Liu, Huaping; Cheng, Guo-An; Liang, Changlin; Zheng, Ruiting

    2008-06-18

    An array of silicon carbide nanowire (SiCNW)-carbon nanotube (CNT) heterojunctions was fabricated by high-flux Si ion implantation into a multi-walled carbon nanotube (MWCNT) array with a metal vapor vacuum arc (MEVVA) ion source. Under Si irradiation, the top part of a CNT array was gradually transformed into an amorphous nanowire array with increasing Si dose while the bottom part still remained a CNT structure. X-ray photoelectron spectroscopy (XPS) analysis shows that the SiC compound was produced in the nanowire part even at the lower Si dose of 5 × 10(16) ions cm(-2), and the SiC amount increased with increasing the Si dose. Therefore, the fabrication of a SiCNW-CNT heterojunction array with the MEVVA technique has been successfully demonstrated. The corresponding formation mechanism of SiCNWs was proposed. PMID:21825818

  12. Homoepitaxial regrowth habits of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    Synthetic regrowth of ZnO nanowires [NWs] under a similar chemical vapor transport and condensation [CVTC] process can produce abundant ZnO nanostructures which are not possible by a single CVTC step. In this work, we report three different regrowth modes of ZnO NWs: axial growth, radial growth, and both directions. The different growth modes seem to be determined by the properties of initial ZnO NW templates. By varying the growth parameters in the first-step CVTC process, ZnO nanostructures (e.g., nanoantenna) with drastically different morphologies can be obtained with distinct photoluminescence properties. The results have implications in guiding the rational synthesis of various ZnO NW heterostructures. PMID:22151820

  13. Bi-stable resistive switching in an array of nanowires

    NASA Astrophysics Data System (ADS)

    Gayen, Sirshendu; Sanyal, Milan K.; Sarma, Abhisakh; Satpati, Biswarup

    2015-01-01

    A resistive switching system comprising of metal-insulator-metal sandwich-structured nanowires embedded within polycarbonate membrane has been investigated. The system switches from non-Ohmic high resistive state (HRS) to Ohmic low resistive state on application of a critical bias of 2.5 V. The bipolar switching can be performed by applying current bias as well. Driving two suitable currents, and we observe highly reproducible switching between two stable resistive states. The switching is initiated by establishment of filamentary conduction path commonly formed in oxide materials. However, the main charge transport in the HRS is governed with modified activated behavior, which is obvious from the antisymmetric, reversible I-V characteristic following where a, b and are constants. The exponential term corresponds to charge generation by field-enhanced thermal activation process, whereas the linear term is related to mobility.

  14. Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation

    SciTech Connect

    Shirato, N.; Strader, J.; Kumar, Amit; Vincent, A.; Zhang, P.; Karakoti, Ajay S.; Nachimuthu, Ponnusamy; Cho, H-J.; Seal, Sudipta; Kalyanaraman, R.

    2011-01-23

    Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage, transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are potential candidates for improved H2 sensor performance. The single directional conducting continuous nanowires can decrease electrical noise, and their large active surface area could improve the response and recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness ho and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent of ho for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating was performed. This showed that the temperature rise under laser heating was a strong non-monotonic function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs, eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that several unique synthesis approaches can be utilized to control the nanowire characteristics.

  15. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  16. Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation

    SciTech Connect

    Liu, Hailong; She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2012-12-15

    Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires. Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.

  17. Manufacturing a nanowire-based sensing system via flow-guided assembly in a microchannel array template

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zu, Yingbo; Rajagopalan, Kartik Kumar; Wang, Shengnian

    2015-06-01

    A novel flow-guided assembly approach is presented to accurately align and position nanowire arrays in pre-defined locations with high throughput and large-scale manufacturing capability. In this approach, a polymer solution is first filled in an array of microfluidic channels. Then a gas flow is introduced to blow out most of the solution while pushing a little leftover against the channel wall for assembly into polymer nanowires. In this way, highly ordered nanowires are conveniently aligned in the flow direction and patterned along both sides of the microchannels. In this study, we demonstrated this flow-guided assembly process by producing millimetre-long nanowires across a 5 × 12 mm area in the same orientation and with basic ‘I-shape’, ‘T-shape’, and ‘cross’ patterns. The assembled polymer nanowires were further converted to conductive carbon nanowires through a standard carbonization process. After being integrated into electronic sensors, high sensitivity was found in model protein sensing tests. This new nanowire manufacturing approach is anticipated to open new doors to the fabrication of nanowire-based sensing systems and serve as good manufacturing practice for its simplicity, low cost, alignment reliability, and high throughput.

  18. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays.

    PubMed

    Ren, Dingding; Dheeraj, Dasa L; Jin, Chengjun; Nilsen, Julie S; Huh, Junghwan; Reinertsen, Johannes F; Munshi, A Mazid; Gustafsson, Anders; van Helvoort, Antonius T J; Weman, Helge; Fimland, Bjørn-Ove

    2016-02-10

    Ternary semiconductor nanowire arrays enable scalable fabrication of nano-optoelectronic devices with tunable bandgap. However, the lack of insight into the effects of the incorporation of Vy element results in lack of control on the growth of ternary III-V(1-y)Vy nanowires and hinders the development of high-performance nanowire devices based on such ternaries. Here, we report on the origins of Sb-induced effects affecting the morphology and crystal structure of self-catalyzed GaAsSb nanowire arrays. The nanowire growth by molecular beam epitaxy is changed both kinetically and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses and the crystal phase evolution mechanism proposed in this Letter, the phase transition/stability in catalyst-assisted ternary III-V-V nanowire growth can be well explained. Wavelength tunability with good homogeneity of the optical emission from the self-catalyzed GaAsSb nanowire arrays with high crystal phase purity is demonstrated by only adjusting the Sb2 flux. PMID:26726825

  19. Fabrication of single crystalline, uniaxial single domain Co nanowire arrays with high coercivity

    SciTech Connect

    Ramazani, A. Almasi Kashi, M.; Montazer, A. H.

    2014-03-21

    Whilst Co nanorods with high coercivity were synthesized during recent years, they did not achieve the same results as for Co nanowires embedded in solid templates. In the present work, Co nanowire arrays (NWAs) with high coercivity were successfully fabricated in porous aluminum oxide template under optimum conditions by using pulsed ac electrodeposition technique. Magnetic properties and crystalline characteristics of the nanowires were investigated by hysteresis loop measurements, first-order reversal curve (FORC) analysis, X-ray diffraction (XRD), and selected area electron diffraction (SAED) patterns. Hysteresis loop measurements showed high coercivity of about 4.8 kOe at room temperature together with optimum squareness of 1, resulting in an increase of the previous maximum coercivity for Co NWAs up to 45%. XRD and SAED patterns revealed a single crystalline texture along the [0002] direction, indicating the large magnetocrystalline anisotropy. On the other hand, FORC analysis confirmed a single domain structure for the Co NWAs. In addition, the reversal mechanism of the single crystalline, single domain Co NWAs was studied which resulted in the fixed easy axis with a coherent rotation. Accordingly, these nanowires might offer promising applications in high density bit patterned media and low power logic devices.

  20. Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Vázquez, M.; Vega, V.; García, J.; Rosa, W. O.; del Real, R. P.; Prida, V. M.

    2012-04-01

    Co, Co(1-x)Pdx, and Co(1-y)Niy nanowire arrays have been prepared by electrochemical template-assisted growth. Hcp, fcc or both phases are detected in Co nanowires depending on their length (300 nm to 40 μm) and on the content of Pd (0 ≤ x ≤ 0.4) and Ni (0 ≤ y ≤ 0.8). Their magnetic behavior has been studied under longitudinal and perpendicular applied fields. The effective magnetic anisotropy is mostly determined by the balance between the shape and the crystalline terms, the latter depending on the fractional volume of hcp phase with strong perpendicular anisotropy and fcc phase with weaker longitudinal anisotropy. The temperature dependence of remanence and coercivity and the eventual observation of compensation temperature is interpreted as due to the different temperature dependence of shape and hcp crystalline anisotropy. Optimum longitudinal magnetic anisotropy is achieved in low Pd-content CoPd nanowires and in short Co nanowires.

  1. Molecular Motor Propelled Filaments Reveal Light-Guiding in Nanowire Arrays for Enhanced Biosensing

    PubMed Central

    2013-01-01

    Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluorophores attached along several μm long vertical Al2O3 coated gallium phosphide nanowires couples into the wires, is guided along them and emitted at the tip. This enables effective collection of light emitted by fluorescent analytes located at different focal planes along the nanowire. We unequivocally demonstrate the light-guiding effect using a novel method whereby the changes in emitted fluorescence intensity are observed when fluorescent cytoskeletal filaments are propelled by molecular motors along the wires. The findings are discussed in relation to nanobiosensor developments, other nanotechnological applications, and fundamental studies of motor function. PMID:24367994

  2. Fabrication of single crystalline, uniaxial single domain Co nanowire arrays with high coercivity

    NASA Astrophysics Data System (ADS)

    Ramazani, A.; Almasi Kashi, M.; Montazer, A. H.

    2014-03-01

    Whilst Co nanorods with high coercivity were synthesized during recent years, they did not achieve the same results as for Co nanowires embedded in solid templates. In the present work, Co nanowire arrays (NWAs) with high coercivity were successfully fabricated in porous aluminum oxide template under optimum conditions by using pulsed ac electrodeposition technique. Magnetic properties and crystalline characteristics of the nanowires were investigated by hysteresis loop measurements, first-order reversal curve (FORC) analysis, X-ray diffraction (XRD), and selected area electron diffraction (SAED) patterns. Hysteresis loop measurements showed high coercivity of about 4.8 kOe at room temperature together with optimum squareness of 1, resulting in an increase of the previous maximum coercivity for Co NWAs up to 45%. XRD and SAED patterns revealed a single crystalline texture along the [0002] direction, indicating the large magnetocrystalline anisotropy. On the other hand, FORC analysis confirmed a single domain structure for the Co NWAs. In addition, the reversal mechanism of the single crystalline, single domain Co NWAs was studied which resulted in the fixed easy axis with a coherent rotation. Accordingly, these nanowires might offer promising applications in high density bit patterned media and low power logic devices.

  3. Microstructure and superconductivity of highly ordered YBa(2)Cu(3)O(7-δ) nanowire arrays.

    PubMed

    Zhang, Genqiang; Lu, Xiaoli; Zhang, Tao; Qu, Jifeng; Wang, Wei; Li, Xiaoguang; Yu, Shuhong

    2006-08-28

    In order to explore the fundamental properties of one-dimensional nanostructured high-temperature superconductors and enhance their promising applications, a universal and general method for the synthesis of high-quality YBa(2)Cu(3)O(7-δ) (YBCO) nanowire arrays is developed, which involves the combination of a novel sol-gel process to lower the crystallization temperature of YBCO, and porous anodic alumina (PAA) as an effective morphology-directing hard template. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the as-prepared YBCO nanowires have average diameters of about 50 nm and lengths up to several microns. The structures of the samples were analysed by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDX) and inductively coupled plasma (ICP) analysis, which indicate that the nanowires are well crystallized with orthorhombic YBCO-123 structure. The magnetization measurement under zero-field-cooled (ZFC) mode indicates that the superconducting transition temperature (T(c)) of the nanowires is about 92 K, which is in agreement with that of a bulk YBCO sample. PMID:21727567

  4. Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, A.; Pacifici, D.; Ha, Jong-Yoon; Krylyuk, S.; Davydov, A. V.

    2015-03-01

    We report on the fabrication and photovoltaic characteristics of vertical arrays of silicon axial p-i-n junction nanowire (NW) solar cells grown by vapor-liquid-solid (VLS) epitaxy. NW surface passivation with silicon dioxide shell is shown to enhance carrier recombination time, open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The photovoltaic performance of passivated individual NW and NW arrays was compared under 532 nm laser illumination with power density of ˜10 W/cm2. Higher values of VOC and FF in the NW arrays are explained by enhanced light trapping. In order to verify the effect of NW density on light absorption and hence on the photovoltaic performance of NW arrays, dense Si NW arrays were fabricated using nanoimprint lithography to periodically arrange the gold seed particles prior to epitaxial growth. Compared to sparse NW arrays fabricated using VLS growth from randomly distributed gold seeds, the nanoimprinted NW array solar cells show a greatly increased peak external quantum efficiency of ˜8% and internal quantum efficiency of ˜90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying pitch (P) confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400-650 nm spectral range is calculated for a Si NW array with P = 250 nm, significantly outperforming a blanket Si film of the same thickness.

  5. Substantial influence on solar energy harnessing ability by geometries of ordered Si nanowire array

    PubMed Central

    2014-01-01

    The reflectance of the controlled periodic Si nanowire (NW) arrays is systematically explored, which characterizes the influence on the solar energy harnessing ability by the geometries of the NW. A unique dependence of the reflectance of the Si NW array on the diameter, the height, and the bending of the NW are disclosed. The solar energy loss caused by the reflection of the Si NW array exhibits the minimum for the NW with intermediate diameter and length. A plane-wave-based transfer-matrix method (TMM) simulation is performed, which is well consistent with the experimental results. Our results demonstrate the design principle to optimize the Si NW arrays for high-efficiency solar cells. PACS 81.07.-b; 78.67.-n; 81.16.-c PMID:25258613

  6. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors.

    PubMed

    Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Li, Liang; Liu, Baodan; Koide, Yasuo; Ma, Ying; Yao, Jiannian; Bando, Yoshio; Golberg, Dmitri

    2010-03-23

    The synthesis of high-quality In2Se3 nanowire arrays via thermal evaporation method and the photoconductive characteristics of In2Se3 individual nanowires are first investigated. The electrical characterization of a single In2Se3 nanowire verifies an intrinsic n-type semiconductor behavior. These single-crystalline In2Se3 nanowires are then assembled in visible-light sensors which demonstrate a fast, reversible, and stable response. The high photosensitivity and quick photoresponse are attributed to the superior single-crystal quality and large surface-to-volume ratio resulting in fewer recombination barriers in nanostructures. These excellent performances clearly demonstrate the possibility of using In2Se3 nanowires in next-generation sensors and detectors for commercial, military, and space applications. PMID:20146437

  7. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    PubMed Central

    2013-01-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130

  8. Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst.

    PubMed

    Wang, Rongyue; Higgins, Drew C; Hoque, Md Ariful; Lee, Dongun; Hassan, Fathy; Chen, Zhongwei

    2013-01-01

    Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2-5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2-3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst. PMID:23942256

  9. Amperometric biosensor based on 3D ordered freestanding porous Pt nanowire array electrode.

    PubMed

    Wang, Yunli; Zhu, Yingchun; Chen, Jingjing; Zeng, Yi

    2012-09-28

    A three-dimensionally (3D) ordered freestanding porous platinum (Pt) nanowire array electrode (PPNWAE) with pores of several nanometers in size and a Pt nanowire array electrode (PNWAE) without pores were facilely fabricated by metal electrodeposition and direct integration with a Pt disk electrode. The unusual PPNWAE with high active area showed excellent sensitivity (0.36 mA cm(-2) mM(-1)) and a wide detection range (4.5 μM-27.1 mM) to hydrogen peroxide (H(2)O(2)). A glucose oxidase (GOD)-based biosensor (PPNWAE/GOD) with a considerably wide detection range (4.5 μM-189.5 mM) to glucose was demonstrated. Furthermore, a lower detection limit, higher sensitivity and smaller value of Michaelis-Menten constant k(m) were recorded for PPNWAE-based biosensors compared with PNWAE-based biosensors. Particularly, the response current to glucose of PPNWAE/GOD was ca. 100% higher than that of PNWAE/GOD and the response current to H(2)O(2) of PPNWAE was ca. 50% higher than that of PNWAE, owing to the granular and rougher porous nanowire surface enabling greater bioactivity for GOD. The selectivity of PPNWAE/GOD glucose biosensor was also estimated. PMID:22898987

  10. Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst

    PubMed Central

    Wang, Rongyue; Higgins, Drew C.; Hoque, Md Ariful; Lee, DongUn; Hassan, Fathy; Chen, Zhongwei

    2013-01-01

    Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2–5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2–3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst. PMID:23942256

  11. Pt-Pb nanowire array electrode for enzyme-free glucose detection.

    PubMed

    Bai, Yu; Sun, Yingying; Sun, Changqing

    2008-12-01

    Pt-Pb nanowire array was directly synthesized by electrochemical deposition of Pt-Pb alloy into the pores of microporous polycarbonate template and subsequent chemical etching of the template. The morphology and the composition of the Pt-Pb nanowires were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Pt-Pb nanowire array electrode (Pt-PbNAE). Direct glucose oxidation on Pt-PbNAE was investigated in detail by discussing the effect of the structure and materials of the electrode on electrocatalytic oxidation of glucose. As a result, we found that the Pt-PbNAE with a three-dimensional structure exhibited high electrocatalytic activity to glucose oxidation in neutral condition and could be used for the development of nonenzymatic glucose sensor. To effectively avoid the interference coming from ascorbic acid, a negative potential of -0.20V was chosen for glucose detection, and the sensitivity of the sensor to glucose oxidation was 11.25 microAmM(-1)cm(-2) with a linearity up to 11 mM, and a detection limit of 8 microM (signal-to-noise ratio of 3). PMID:18619831

  12. ZnO Nanoparticles and Nanowire Arrays with Liquid Crystals for Photovoltaic Apprications

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Weadock, Nicholas; Martinez-Miranda, Luz

    2011-03-01

    Liquid crystals are small monodisperse molecules with high mobilities and are easy and cheap to process. In addition, some of their phases exhibit molecular orientation that can provide a path for the electrons, or holes, to move from one electrode to the other. We have mixed a smectic A liquid crystal (8CB) with varying concentrations of ZnO nanoparticles of ~ 5 nm in diameter and have observed a photovoltaic effect as a function of the concentration of ZnO. The liquid crystal is believed to enhance the alignment of the nanoparticles and aid in the diffusion of electrons through the particles to the collection electrode. We have also made PV cells of ZnO nanowire arrays grown on Au layers on Si substrates. The nanowire arrays are covered with 8CB liquid crystal for hole conduction. We compare the light absorption of the PV cells as a function of wavelength of the light for the ZnO nanoparticle and the ZnO nanowire cells. We present a detailed study of the structure of the two systems. Supported by the National Science Foundation under the University of Maryland MRSEC DMR 0520471.

  13. Wireless Remote Monitoring of Glucose Using a Functionalized ZnO Nanowire Arrays Based Sensor

    PubMed Central

    Ali, Syed M. Usman; Aijazi, Tasuif; Axelsson, Kent; Nur, Omer; Willander, Magnus

    2011-01-01

    This paper presents a prototype wireless remote glucose monitoring system interfaced with a ZnO nanowire arrays-based glucose sensor, glucose oxidase enzyme immobilized onto ZnO nanowires in conjunction with a Nafion® membrane coating, which can be effectively applied for the monitoring of glucose levels in diabetics. Global System for Mobile Communications (GSM) services like General Packet Radio Service (GPRS) and Short Message Service (SMS) have been proven to be logical and cost effective methods for gathering data from remote locations. A communication protocol that facilitates remote data collection using SMS has been utilized for monitoring a patient’s sugar levels. In this study, we demonstrate the remote monitoring of the glucose levels with existing GPRS/GSM network infra-structures using our proposed functionalized ZnO nanowire arrays sensors integrated with standard readily available mobile phones. The data can be used for centralized monitoring and other purposes. Such applications can reduce health care costs and allow caregivers to monitor and support to their patients remotely, especially those located in rural areas. PMID:22164087

  14. Synthesis and field emission of β-SiC nanowires on silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Zijiong; Kang, Liping; Li, Xinjian

    2012-10-01

    Nonaligned β-SiC nanowires (nw-SiC) were grown on silicon nanoporous pillar array (Si-NPA) by a chemical vapor deposition (CVD) method with nickel as the catalyst. The curly hair like SiC nanowires and the silicon pillar array formed a nanometer-micron hierarchy structure. The field-emission measurements to nw-SiC/Si-NPA showed that a lower turn-on field of 2.9 V μm-1 was obtained, and the enhancement factor of nw-SiC/Si-NPA according to the Fowler-Nordheim (F-N) theory reached 5200. The excellent field-emission performance was attributed to the nanometer-micron hierarchy structure of nw-SiC/Si-NPA, including the high aspect ratio of the SiC nanowires and the regular surface undulation of Si-NPA which increased the emission sites density and might have reduced the electrostatic shielding among the emitters.

  15. Selective growth of vertical silicon nanowire array guided by anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Hoang Nguyen, Van; Hoshi, Yusuke; Usami, Noritaka; Konagai, Makoto

    2015-09-01

    We report on the selective growth of vertical silicon nanowire arrays guided by an anodic aluminum oxide (AAO) template without the introduction of any metallic catalyst. Gas-source molecular beam epitaxy using disilane as a source gas was carried out. The growth conditions such as flow rate and growth temperature were changed to optimize the Si nanowire growth. It was found that the selective growth was promoted at a flow rate of 0.5 sccm, whereas the selective growth was poor at high flow rates of 1 and 2 sccm. One-micrometer-long Si nanowire arrays were obtained at a low flow rate of 0.5 sccm only at the growth temperature of 700 °C. The obtained Si grown at a temperature of 650 °C exhibited conglomerated structures with Si grains piled up inside the nanopores of the AAO template. We found that increasing the growth temperature and decreasing the flow rate are useful for improving the growth selectivity.

  16. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm‑2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm‑2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  17. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates.

    PubMed

    Guerrera, S A; Akinwande, A I

    2016-07-22

    We developed a fabrication process for embedding a dense array (10(8) cm(-2)) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm(-2)), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM). PMID:27292120

  18. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  19. Ultra-dense silicon nanowire array solar cells by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, Alexander; Pacifici, Domenico; Ha, Jong-Yoon; Krylyuk, Sergiy; Davydov, Albert

    Nanowire (NW) solar cells have been attracting increasing interest due to their potentially superior light absorption compared to thin bulk films. In order to improve light trapping, we have used nanoimprint lithography (NIL) to fabricate high-density NW arrays with deep sub-micron pitch (P) and diameter (D). We have grown dense vertical arrays of Si axial p - i - n junction NWs of D = 170 nm and P = 500 nm by vapor-liquid-solid epitaxy on seed arrays produced by NIL. The NWs were 9 µm length long with a 5 µm intrinsic section. The NW arrays were planarized using SU-8 photoresist, followed by reactive ion etching to expose the NW tips. Top n-contact was realized by sputter deposition of a transparent 200 nm IZO layer. The nanoimprinted NW array samples measured under AM 1.5 G illumination showed a peak external quantum efficiency of ~8% and internal quantum efficiency of ~90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying P confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400-650 nm spectral range is predicted for a Si NW array with an even smaller P = 250 nm, significantly outperforming a blanket Si film of the same thickness. Such pitch values are accessible to NIL and work on such arrays is in progress. National Science Foundation.

  20. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    SciTech Connect

    Tanta, R.; Krogstrup, P.; Nygård, J.; Jespersen, T. S.; Madsen, M. H.; Liao, Z.; Vosch, T.

    2015-12-14

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  1. High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity

    SciTech Connect

    Hwang, Yun Jeong; Boukai, Akram; Yang, Peidong

    2008-11-15

    There are currently great needs to develop low-cost inorganic materials that can efficiently perform solar water splitting as photoelectrolysis of water into hydrogen and oxygen has significant potential to provide clean energy. We investigate the Si/TiO2 nanowire heterostructures to determine their potential for the photooxidation of water. We observed that highly dense Si/TiO2 core/shell nanowire arrays enhanced the photocurrent by 2.5 times compared to planar Si/TiO2 structure due to their low reflectance and high surface area. We also showed that n-Si/n-TiO2 nanowire arrays exhibited a larger photocurrent and open circuit voltage than p-Si/n-TiO2 nanowires due to a barrier at the heterojunction.

  2. Design for strong absorption in a nanowire array tandem solar cell.

    PubMed

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-01-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1-2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells. PMID:27574019

  3. Design for strong absorption in a nanowire array tandem solar cell

    PubMed Central

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-01-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1–2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells. PMID:27574019

  4. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-11-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio ( D/ P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells.

  5. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells.

    PubMed

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-12-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio (D/P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells. PMID:26546326

  6. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array.

    PubMed

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-Beom; Choi, Heon-Jin

    2016-12-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes. PMID:27448026

  7. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-beom; Choi, Heon-Jin

    2016-07-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes.

  8. Nanoscale Ultradense Z -Pinch Formation from Laser-Irradiated Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Kaymak, Vural; Pukhov, Alexander; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2016-07-01

    We show that ultradense Z pinches with nanoscale dimensions can be generated by irradiating aligned nanowires with femtosecond laser pulses of relativistic intensity. Using fully three-dimensional relativistic particle-in-cell simulations, we demonstrate that the laser pulse drives a forward electron current in the area around the wires. This forward current induces return current densities of ˜0.1 GA per μ m2 through the wires. The resulting strong, quasistatic, self-generated azimuthal magnetic field pinches the nanowires into hot plasmas with a peak electron density of >9 ×1 024 cm-3 , exceeding 1000 times the critical density. Arrays of these new ultradense nanopinches can be expected to lead to efficient microfusion and other applications.

  9. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    PubMed

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics. PMID:23899165

  10. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon.

    PubMed

    Frost, Thomas; Jahangir, Shafat; Stark, Ethan; Deshpande, Saniya; Hazari, Arnab; Zhao, Chao; Ooi, Boon S; Bhattacharya, Pallab

    2014-08-13

    A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ = 533 nm) on (001) silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76 kA/cm(2), 3 × 10(-17) cm(2), 232 K, and 5.8 GHz respectively under continuous wave operation. Preliminary reliability measurements indicate a lifetime of 7000 h. The emission wavelength can be tuned by varying the alloy composition in the quantum disks. The monolithic nanowire laser on (001)Si can therefore address wide-ranging applications such as solid state lighting, displays, plastic fiber communication, medical diagnostics, and silicon photonics. PMID:24971807

  11. Field-effect memory transistors based on arrays of nanowires of a ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Cai, Ronggang; Kassa, Hailu G.; Marrani, Alessio; van Breemen, Albert J. J. M.; Gelinck, Gerwin H.; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M.

    2015-09-01

    Ferroelectric poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE), is increasingly used in organic non-volatile memory devices, e.g., in ferroelectric field effect transistors (FeFETs). Here, we report on FeFETs integrating nanoimprinted arrays of P(VDF-TrFE) nanowires. Two previously-unreported architectures are tested, the first one consisting of stacked P(VDF-TrFE) nanowires placed over a continuous semiconducting polymer film; the second one consisting of a nanostriped blend layer wherein the semiconducting and ferroelectric components alternate regularly. The devices exhibit significant reversible memory effects, with operating voltages reduced compared to their continuous film equivalent, and with different possible geometries of the channels of free charge carriers accumulating in the semiconductor.

  12. Nanoimprint-lithography patterned epitaxial Fe nanowire arrays with misaligned magnetocrystalline and shape anisotropies

    SciTech Connect

    Zhang, Wei; Bowden, Mark E.; Krishnan, Kannan M.

    2013-01-01

    We fabricated large area (>1 × 1 cm2), epitaxial Fe nanowire arrays on MgO(001) substrates by nanoimprint lithography with a direct metallization of epitaxial materials through a metallic mask, which avoided the disadvantageous metal-etching process in conventional methods. The magnetization reversals, as revealed by magneto-optic Kerr effect, showed competing effects between Fe cubic magnetocrystalline anisotropy and lithographically induced uniaxial shape anisotropy. Unlike the weakly induced uniaxial anisotropy observed in continuous films, both the magnitude and direction of the uniaxial shape anisotropy can be easily modulated in the nanowires. Complex magnetization reversal processes including two-step and three-step loops were observed when magnetizing the samples along different Fe cubic easy axes, respectively. Finally, these modified magnetization reversal processes were explained by the nucleation and propagation of the domain walls along the non-superimposed easy axes of the competing magnetocrystalline and shape anisotropies.

  13. Nanowire-organic thin film transistor integration and scale up towards developing sensor array for biomedical sensing applications

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Hankins, Phillip T.; Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    Exploratory research works have demonstrated the capability of conducting nanowire arrays in enhancing the sensitivity and selectivity of bio-electrodes in sensing applications. With the help of different surface manipulation techniques, a wide range of biomolecules have been successfully immobilized on these nanowires. Flexible organic electronics, thin film transistor (TFT) fabricated on flexible substrate, was a breakthrough that enabled development of logic circuits on flexible substrate. In many health monitoring scenarios, a series of biomarkers, physical properties and vital signals need to be observed. Since the nano-bio-electrodes are capable of measuring all or most of them, it has been aptly suggested that a series of electrode (array) on single substrate shall be an excellent point of care tool. This requires an efficient control system for signal acquisition and telemetry. An array of flexible TFTs has been designed that acts as active matrix for controlled switching of or scanning by the sensor array. This array is a scale up of the flexible organic TFT that has been fabricated and rigorously tested in previous studies. The integration of nanowire electrodes to the organic electronics was approached by growing nanowires on the same substrate as TFTs and fl ip chip packaging, where the nanowires and TFTs are made on separate substrates. As a proof of concept, its application has been explored in various multi-focal biomedical sensing applications, such as neural probes for monitoring neurite growth, dopamine, and neuron activity; myocardial ischemia for spatial monitoring of myocardium.

  14. Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Tang, Zirong; Zhang, Lei; Xi, Shuang; Li, Xiaoping; Lai, Wuxing

    2011-11-01

    We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a gaseous environment of N2 and H2 in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 µm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.

  15. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  16. Microscopic structure and magnetic behavior of arrays of electrodeposited Ni and Fe nanowires

    SciTech Connect

    Xu, X.; Zangari, G.

    2005-05-15

    Arrays of Ni and Fe nanowires with length up to 6 {mu}m were fabricated by voltage controlled electrodeposition within track etched polycarbonate membranes with nominal pore diameter 50 nm, using dc or pulsed voltage. Magnetostatic interactions between wires are found to be important in determining magnetic properties and switching processes. Ni arrays switch by quasicoherent rotation when the magnetic field is applied near to the average wire axis, and by curling at large angles. The importance of curling processes increases with wire length, due to the larger demagnetizing field. The properties of Fe wires are dominated by magnetostatic interactions; these arrays switch by curling and no definite easy axis is observed in pulse-plated, amorphous wires.

  17. Peculiarities of Bi 0 nanowire arrays growth within the alumina template pores by ac electrolysis

    NASA Astrophysics Data System (ADS)

    Jagminas, A.; Valsiūnas, I.; Šimkūnaitė, B.; Vaitkus, R.

    2008-09-01

    A stable aqueous solution, well-compatible with the template material, was developed with interest to synthesize densely packed arrays of pure phase Bi 0 nanowires (nws) in micrometer length using various alumina templates and a simple alternating current (ac) deposition protocol. Structural, morphological and optical features exhibited by Bi 0 nw arrays were studied ex-situ for several alumina templates with average ∅pore from 10 to 100 nm. The blue-shift effect in the absorption energy of the Bi 0 nw arrays with decrease in ∅Bi is demonstrated. Cyclic voltammograms recorded in-situ in the studied solution for polycrystalline Au, Pt, Bi and nano-Bi 0/alumina electrodes are also presented, composed and discussed.

  18. Universal disorder in the microwave conductance spectra of doped silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Highstrete, Clark; Lee, Mark; Vallett, Aaron; Eichfeld, Sarah; Redwing, Joan; Mayer, Theresa

    2008-03-01

    Microwave conductance spectra of doped silicon nanowire (SiNW) arrays were measured from 0.1 to 50 GHz at temperatures between 4 K and 293 K. SiNWs were synthesized by VLS growth, assembled into arrays on co-planar waveguides and measured using microwave vector network analysis. The complex conductance of the arrays was found to increase with frequency at all temperatures as f^s, with 0.25 < s < 0.4, and to agree with the expected Kramers-Kronig relations. This AC conductance is consistent with behavior found universally in disordered systems. The likely cause is disorder from Si/SiOx interface states dominating the conduction due to the high surface-to-volume ratio of the nanowires. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Penn State authors acknowledge partial support from NSF DMR-0213623 and NSF NIRT ECCS-0609282.

  19. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhao, Xiaoli; Cai, Bin; Pei, Tengfei; Tong, Yanhong; Tang, Qingxin; Liu, Yichun

    2014-01-01

    A multiple drop-casting method of growing the ultralong dibenzo-tetrathiafulvalene (DB-TTF) micro/nanowire arrays has been developed which has the success ratio as high as 94%. This method enables the arrays with a length over a few hundreds of micrometers to locate between droplets with the definite orientation. The width of the micro/nanowires is controlled via tuning the concentration of DB-TTF solution in dichloromethane. The large-scale arrays can be grown onto Si, SiO2, glass, and the flexible polyethylene terephthalate (PET) substrates. These results show the promising potential of this facile solution-based process for the growth of the high-quality organic micro/nanowires, the fabrication of high-performance and flexible devices, and the fabrication of controlled assemblies of nanoscale circuits for fundamental studies and future applications.

  20. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-01

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes. PMID:26575957

  1. Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires.

    PubMed

    Rivera, Vivian Farías; Auras, Florian; Motto, Paolo; Stassi, Stefano; Canavese, Giancarlo; Celasco, Edvige; Bein, Thomas; Onida, Barbara; Cauda, Valentina

    2013-10-18

    Aqueous chemical growth of zinc oxide nanowires is a flexible and effective approach to obtain dense arrays of vertically oriented nanostructures with high aspect ratio. Herein we present a systematic study of the different synthesis parameters that influence the ZnO seed layer and thus the resulting morphological features of the free-standing vertically oriented ZnO nanowires. We obtained a homogeneous coverage of transparent conductive substrates with high-aspect-ratio nanowire arrays (length/diameter ratio of up to 52). Such nanostructured vertical arrays were examined to assess their electric and piezoelectric properties, and showed an electric charge generation upon mechanical compressive stress. The principle of energy harvesting with these nanostructured ZnO arrays was demonstrated by connecting them to an electronic charge amplifier and storing the generated charge in a series of capacitors. We found that the generated charge and the electrical behavior of the ZnO nanowires are strictly dependent on the nanowire length. We have shown the importance of controlling the morphological properties of such ZnO nanostructures for optimizing a nanogenerator device. PMID:24027171

  2. N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution.

    PubMed

    Li, Qun; Cui, Wei; Tian, Jingqi; Xing, Zhicai; Liu, Qian; Xing, Wei; Asiri, Abdullah M; Sun, Xuping

    2015-08-10

    It is highly desired but still challenging to develop active nonprecious metal hydrogen evolution reaction (HER) electrocatalysts operating under all pH conditions. Herein, the development of three-dimensional N-doped carbon-coated tungsten oxynitride nanowire arrays on carbon cloth as a highly efficient and durable HER cathode was explored. The material delivers current densities of 10 and 100 mA cm(-2) at overpotentials of 106 and 172 mV, respectively, in acidic medium, and it also performs well in neutral and basic electrolytes. PMID:26121606

  3. Scanning tunneling microscope-induced modification of Cu(100) surfaces and Ag nanowire arrays

    NASA Astrophysics Data System (ADS)

    Leibsle, Fred; York, Mike; Aurongzeb, Deeder

    2001-03-01

    We have used scanning tunneling microscopy to selectively modify areas of Cu(100) surfaces. By scanning repeatedly over areas with extremely low bias voltages and high tunneling currents, we can create nanometer-scale pits several layers deep. The atoms removed from these pits form nearby islands. The evolution of these pits and islands is also studied with images showing changes in shape, coalescence and both rapid and gradual decay. We also demonstrate how we can selectively modify segments of Ag nanowire arrays grown on atomic nitrogen-modified Cu(100) surfaces.

  4. Fabrication of a wafer-scale uniform array of single-crystal organic nanowire complementary inverters by nanotransfer printing

    NASA Astrophysics Data System (ADS)

    Park, Kyung Sun; Baek, Jangmi; Koo Lee, Yong-Eun; Sung, Myung Mo

    2015-02-01

    We report the fabrication and electrical characterization of a wafer-scale array of organic complementary inverters using single-crystal 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) nanowires as p- and n-channels, respectively. Two arrays of single-crystal organic nanowires were generated consecutively on desired locations of a common substrate with a desired mutual alignment by a direct printing method (liquid-bridge-mediated nanotransfer molding). Another direct printing of silver micron scale structures, as source and drain electrodes, on the substrate with the two printed nanowire arrays produced an array of complementary inverters with a bottom gate, top contact configuration. Field-effect mobilities of single-crystal TIPS-PEN and C60 nanowire field-effect transistors (FETs) in the arrays were uniform with 1.01 ± 0.14 and 0.10 ± 0.01 cm2V-1 s-1, respectively. A wafer-scale array of complementary inverters produced all by the direct printing method showed good performance with an average gain of 25 and with low variations among the inverters.

  5. Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura

    2016-08-01

    Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.

  6. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    SciTech Connect

    Palmero, E. M. Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-07-21

    Arrays of Ni{sub 100−x}Cu{sub x} nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  7. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    PubMed Central

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-01-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936

  8. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    NASA Astrophysics Data System (ADS)

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-12-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm-2) and medium (1 μm-2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm-2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing.

  9. Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications

    SciTech Connect

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, A.; Pacifici, D.; Ha, Jong-Yoon; Krylyuk, S.; Davydov, A. V.

    2015-03-28

    We report on the fabrication and photovoltaic characteristics of vertical arrays of silicon axial p-i-n junction nanowire (NW) solar cells grown by vapor-liquid-solid (VLS) epitaxy. NW surface passivation with silicon dioxide shell is shown to enhance carrier recombination time, open-circuit voltage (V{sub OC}), short-circuit current density (J{sub SC}), and fill factor (FF). The photovoltaic performance of passivated individual NW and NW arrays was compared under 532 nm laser illumination with power density of ∼10 W/cm{sup 2}. Higher values of V{sub OC} and FF in the NW arrays are explained by enhanced light trapping. In order to verify the effect of NW density on light absorption and hence on the photovoltaic performance of NW arrays, dense Si NW arrays were fabricated using nanoimprint lithography to periodically arrange the gold seed particles prior to epitaxial growth. Compared to sparse NW arrays fabricated using VLS growth from randomly distributed gold seeds, the nanoimprinted NW array solar cells show a greatly increased peak external quantum efficiency of ∼8% and internal quantum efficiency of ∼90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying pitch (P) confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400–650 nm spectral range is calculated for a Si NW array with P = 250 nm, significantly outperforming a blanket Si film of the same thickness.

  10. Study of the Electrochemical System of Antimony-Tellurium in Dimethyl Sulfoxide for Growth of Nanowire Arrays, and an Innovative Method for Single Nanowire Measurements

    NASA Astrophysics Data System (ADS)

    Kalisman, Philip Taubman

    There is a strong interest in thermoelectric materials for energy production and savings. The properties which are integral to thermoelectric performance are typically linked, typically changing one of these properties for the better will change another for the worse. The intertwined nature of these properties has limited bulk thermoelectrics to low efficiencies, which has curbed their use to only niche applications. There has been theoretical and experimental work which has shown that limiting these materials in one or more dimensions will result in deconvolution of properties. Nanowires of well established thermoelectrics should show impressively high performance. Tellurium is attractive in many fields, including thermoelectrics. Nanowires of tellurium have been grown, but with limited success and with out the ability to dope the tellurium. Working on previous work with other systems, tellurium was studied in dimethyl sulfoxide (DMSO). The electrochemical system of tellurium was found to be quite dierent from its aqueous analog, but through comprehensive cyclic voltammetric study, all events were identified and explained. The binary antimony-tellurium system was also studied, as doping of tellurium is integral for many applications. Cyclic voltammograms of this system were studied, and the insight from these studies was used to grow nanowire arrays. Arrays of tellurium were grown and analysis showed that by using DMSO, antimony doped tellurium nanowire arrays could be grown. Furthermore, analysis showed that the antimony doped tellurium interstitially, resulting in a n-type material. Measurements were also performed on arrays and individual wires. Arrays of 1.15% antimony showed ZT of 0.092, with the low ZT attributed to poor contact methods. Although contacting was an obstacle towards measuring whole arrays, single wire measurements were also performed. Single wire measurements were done by a novel method which allows for easy, reproducible measurements of wire

  11. Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays.

    PubMed

    Cadafalch Gazquez, Gerard; Lei, Sidong; George, Antony; Gullapalli, Hemtej; Boukamp, Bernard A; Ajayan, Pulickel M; Ten Elshof, Johan E

    2016-06-01

    Well aligned nanowires of ZnO have been made with an electrospinning technique using zinc acetate precursor solutions. Employment of two connected parallel collector plates with a separating gap of 4 cm resulted in a very high degree of nanowire alignment. By adjusting the process parameters, the deposition density of the wires could be controlled. Field effect transistors were prepared by depositing wires between two gold electrodes on top of a heavily doped Si substrate covered with a 300 nm oxide layer. These devices showed good FET characteristics and photosensitivity under UV-illumination. The method provides a fast and scalable fabrication route for functional nanowire arrays with a high degree of alignment and control over nanowire spacing. PMID:27173007

  12. Two-fluid wetting behavior of a hydrophobic silicon nanowire array.

    PubMed

    Kim, Yongkwan; Chung, Yunsie; Tian, Ye; Carraro, Carlo; Maboudian, Roya

    2014-11-11

    The two-fluid wetting behavior of surfaces textured by an array of silicon nanowires is investigated systematically. The Si nanowire array is produced by a combination of colloidal patterning and metal-catalyzed etching, with control over its roughness depending upon the wire length. The nanowires are made hydrophobic and oleophobic by treatment with hydrocarbon and fluorinated self-assembled monolayers, respectively. Static, advancing, and receding contact angles are measured with water, hexadecane, and perfluorotripentylamine in both single-fluid (droplet on solid in an air environment) and two-fluid (droplet on solid in a liquid environment) configurations. The single-fluid measurements show wetting behavior similar to that expected by the Wenzel and Cassie-Baxter models, where the wetting or non-wetting behaviors are amplified with increasing roughness. The two-fluid systems on the rough surface exhibit more complex configurations because either the droplet or the environment fluid can penetrate the asperities depending upon the wettability of each fluid. It is observed that, when the Young contact angles are significantly increased or reduced from single-liquid to two-liquid systems, the effect of roughness is relatively minimal. However, when the Young contact angles are similar, roughness has almost identical influence on apparent contact angles in single- and two-liquid systems. The Wenzel and Cassie-Baxter models are modified to describe various two-fluid wetting states. In cases where metastable behavior is observed for the droplet, advancing and receding measurements are performed to suggest the equilibrium state of the droplet. PMID:25356959

  13. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    SciTech Connect

    Nakata, M.; Toko, K. Suemasu, T.; Jevasuwan, W.; Fukata, N.; Saitoh, N.; Yoshizawa, N.

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  14. Electrical properties of high density arrays of silicon nanowire field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Young; Lee, Kangho; Lee, Jae Woo; Kim, Sangwook; Kim, Gyu-Tae; Duesberg, Georg S.

    2013-10-01

    Proximity effect corrected e-beam lithography of hydrogen silsesquioxane on silicon on insulator was used to fabricate multi-channel silicon nanowire field-effect transistors (SiNW FETs). Arrays of 15-channels with a line width of 18 nm and pitch as small as 50 nm, the smallest reported for electrically functional devices, were fabricated. These high density arrays were back-gated by the substrate and allowed for investigation of the effects of scaling on the electrical performance of this multi-channel SiNW FET. It was revealed that the drain current and the transconductance (gm) are both reduced with decreasing pitch size. The drain induced barrier lowering and the threshold voltage (Vth) are also decreased, whereas the subthreshold swing (S) is increased. The results are in agreement with our simulations of the electric potential profile of the devices. The study contains valuable information on SiNW FET integration and scaling for future devices.

  15. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution.

    PubMed

    Meng, Huan; Fan, Ke; Low, Jingxiang; Yu, Jiaguo

    2016-09-21

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen by sunlight is a promising approach to solve energy and environmental problems. In this work, silicon nanowire arrays (SiNWs) photocathodes decorated with reduced graphene oxide (rGO) for PEC water splitting were successfully prepared by a flexible and scalable electrochemical reduction method. The SiNWs photocathode with the optimized rGO decoration (SiNWs/rGO20) shows an enhanced activity with a much higher photocurrent density and significantly positive shift of onset potential compared to the bare SiNWs arrays for the hydrogen evolution reaction (HER). The enhanced PEC activity is ascribed to the high electrical conductivity of rGO and improved separation of the photogenerated charge carriers. This work not only demonstrates a facile, rapid and tunable electrochemical reduction method to produce rGO, but also exhibits an efficient protocol to enhance the PEC water splitting of silicon-based materials. PMID:27461187

  16. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    PubMed Central

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-01-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g−1 at 0.1 A g−1, and had no loss of capacitance after 200 cycles at 2 A g−1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors. PMID:24356535

  17. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

    PubMed

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-09-01

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. PMID:20681617

  18. Highly efficient and stable Si nanowires array embedded into transparent polymer for visible light photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wang, Jian-Tao; Ou, Xue-Mei; Li, Fan; Zhang, Xiao-Hong

    2014-07-01

    Photoelectrochemical (PEC) cell supports a renewable method for solving current environmental and energy issues by combining solar energy collection and photocatalysis in a single semiconductor photoelectrode. However, it is still challenged by visible light photoelectrodes. The present work reports fabricating highly efficient and stable Si nanowires (SiNWs) array as visible light photoelectrodes. It involves embedding SiNWs arrays into a transparent polymer substrate to build an axial carrier collection geometry. We demonstrated that this strategy could significantly strengthen the chemical stability of SiNWs by largely reducing their surface area. Moreover, this device structure can also enhance visible light absorption efficiency through taking advantage of the highly crystalline structure of vapor-liquid-solid (VLS) grown SiNWs. Thus it can double the photodegradation ability of SiNWs.

  19. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  20. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame.

    PubMed

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  1. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  2. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    NASA Astrophysics Data System (ADS)

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-06-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.

  3. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    PubMed Central

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-01-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625

  4. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    NASA Astrophysics Data System (ADS)

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-07-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting.

  5. Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.

    2015-11-01

    Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.

  6. Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays.

    PubMed

    Lu, Na; Gao, Anran; Dai, Pengfei; Mao, Hongju; Zuo, Xiaolei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2015-11-17

    A direct, rapid, highly sensitive and specific biosensor for detection of cancer biomarkers is desirable in early diagnosis and prognosis of cancer. However, the existing methods of detecting cancer biomarkers suffer from poor sensitivity as well as the requirement of enzymatic labeling or nanoparticle conjugations. Here, we proposed a two-channel PDMS microfluidic integrated CMOS-compatible silicon nanowire (SiNW) field-effect transistor arrays with potentially single use for label-free and ultrasensitive electrical detection of cancer biomarkers. The integrated nanowire arrays showed not only ultrahigh sensitivity of cytokeratin 19 fragment (CYFRA21-1) and prostate specific antigen (PSA) with detection to at least 1 fg/mL in buffer solution but also highly selectivity of discrimination from other similar cancer biomarkers. In addition, this method was used to detect both CYFRA21-1 and PSA real samples as low as 10 fg/mL in undiluted human serums. With its excellent properties and miniaturization, the integrated SiNW-FET device opens up great opportunities for a point-of-care test (POCT) for quick screening and early diagnosis of cancer and other complex diseases. PMID:26473941

  7. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties.

    PubMed

    Sheng, Xia; He, Dongqing; Yang, Jie; Zhu, Kai; Feng, Xinjian

    2014-01-01

    Developing high surface area nanostructured electrodes with rapid charge transport is essential for artificial photosynthesis, solar cells, photocatalysis, and energy storage devices. Substantial research efforts have been recently focused on building one-dimensional (1D) nanoblocks with fast charge transport into three-dimensional (3D) hierarchical architectures. However, except for the enlargement in surface area, there is little experimental evidence of fast electron transport in these 3D nanostructure-based solar cells. In this communication, we report single-crystal-like 3D TiO2 branched nanowire arrays consisting of 1D branch epitaxially grown from the primary trunk. These 3D branched nanoarrays not only demonstrate 71% enlargement in large surface area (compared with 1D nanowire arrays) but also exhibit fast charge transport property (comparable to that in 1D single crystal nanoarrays), leading to 52% improvement in solar conversion efficiency. The orientated 3D assembly strategy reported here can be extended to assemble other metal oxides with one or multiple components and thus represents a critical avenue toward high-performance optoelectronics. PMID:24628675

  8. Structure and field emission of graphene layers on top of silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Chan, Hui-Wen; Jou, Shyankay; Chen, Guan-Yu; Kuo, Hsiu-An; Song, Wan-Jhen

    2016-01-01

    Monolayer graphene was grown on copper foils and then transferred on planar silicon substrates and on top of silicon nanowire (SiNW) arrays to form single- to quadruple-layer graphene films. The morphology, structure, and electron field emission (FE) of these graphene films were investigated. The graphene films on the planar silicon substrates were continuous. The single- to triple-layer graphene films on the SiNW arrays were discontinuous and while the quadruple-layer graphene film featured a mostly continuous area. The Raman spectra of the graphene films on the SiNW arrays showed G and Gʹ bands with a singular-Lorentzian shape together with a weak D band. The D band intensity decreased as the number of graphene layers increased. The FE efficiency of the graphene films on the planar silicon substrates and the SiNW arrays varied with the number of graphene layers. The turn-on field for the single- to quadruple-layer graphene films on planar silicon substrates were 4.3, 3.7, 3.5 and 3.4 V/μm, respectively. The turn-on field for the single- to quadruple-layer graphene films on SiNW arrays decreased to 3.9, 3.3, 3.0 and 3.3 V/μm, respectively. Correlation of the FE with structure and morphology of the graphene films is discussed.

  9. A novel Co-Li2O@Si core-shell nanowire array composite as a high-performance lithium-ion battery anode material

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2016-02-01

    We report a novel material of Co-Li2O@Si core-shell nanowire array synthesized via the lithiation of pre-synthesized CoO@Si core-shell nanowire arrays during the first cycle. When the potential window versus lithium was controlled between 0.01-1.2 V, the coated Si shell could be electrochemically active, while the Co-Li2O nanowire core could function as a stable mechanical support and an efficient electron conducting pathway during the charge-discharge process. The Co-Li2O@Si core-shell nanowire array anodes exhibit good cyclic stability and high power capability compared to planar Si film electrodes.We report a novel material of Co-Li2O@Si core-shell nanowire array synthesized via the lithiation of pre-synthesized CoO@Si core-shell nanowire arrays during the first cycle. When the potential window versus lithium was controlled between 0.01-1.2 V, the coated Si shell could be electrochemically active, while the Co-Li2O nanowire core could function as a stable mechanical support and an efficient electron conducting pathway during the charge-discharge process. The Co-Li2O@Si core-shell nanowire array anodes exhibit good cyclic stability and high power capability compared to planar Si film electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06120b

  10. Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates

    PubMed Central

    2012-01-01

    We report the growth and characterization of ZnO/ZnTe core/shell nanowire arrays on indium tin oxide. Coating of the ZnTe layer on well-aligned vertical ZnO nanowires has been demonstrated by scanning electron microscope, tunneling electron microscope, X-ray diffraction pattern, photoluminescence, and transmission studies. The ZnO/ZnTe core/shell nanowire arrays were then used as the active layer and carrier transport medium to fabricate a photovoltaic device. The enhanced photocurrent and faster response observed in ZnO/ZnTe, together with the quenching of the UV emission in the PL spectra, indicate that carrier separation in this structure plays an important role in determining their optical response. The results also indicate that core/shell structures can be made into useful photovoltaic devices. PMID:22804871

  11. Self-catalytic synthesis and photoluminescence property of cluster-like CdSiO3 nanowire arrays.

    PubMed

    Shi, Jianfeng; Jiang, Yang; Li, Guohua; Wang, Chun; Li, Nan

    2008-11-01

    Cluster-like cadmium silicate (CdSiO3) nanowire arrays on Si substrate have been synthesized via a self-catalytic growth using a modified vapor-phase evaporation method. XRD and HRTEM analyses indicated that the CdSiO3 nanowire had a monoclinic single-crystal structure. The growth mechanism of the cluster-like nanowire array is proposed as vapor-liquid-solid mechanism, in which lower melting point Cd serves as the catalyst. The PL measurements revealed the strong photoluminescence peaks in the purple region of 358-476 nm due to the self-activated luminescence, which was different from those of CdSiO3 bulk powder. PMID:19198312

  12. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    PubMed Central

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved. PMID:25213321

  13. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    PubMed Central

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-01-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode – a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2–based nanowire arrays for constructing next-generation supercapacitors. PMID:24132040

  14. α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors.

    PubMed

    Lu, Xue-Feng; Chen, Xiao-Yan; Zhou, Wen; Tong, Ye-Xiang; Li, Gao-Ren

    2015-07-15

    Highly ordered three-dimensional α-Fe2O3@PANI core-shell nanowire arrays with enhanced specific areal capacity and rate performance are fabricated by a simple and cost-effective electrodeposition method. The α-Fe2O3@PANI core-shell nanowire arrays provide a large reaction surface area, fast ion and electron transfer, and good structure stability, which all are beneficial for improving the electrochemical performance. Here, high-performance asymmetric supercapacitors (ASCs) are designed using α-Fe2O3@PANI core-shell nanowire arrays as anode and PANI nanorods grown on carbon cloth as cathode, and they display a high volumetric capacitance of 2.02 mF/cm3 based on the volume of device, a high energy density of 0.35 mWh/cm3 at a power density of 120.51 mW/cm3, and very good cycling stability with capacitance retention of 95.77% after 10,000 cycles. These findings will promote the application of α-Fe2O3@PANI core-shell nanowire arrays as advanced negative electrodes for ASCs. PMID:26090902

  15. Laser modified ZnO/CdSSe core-shell nanowire arrays for Micro-Steganography and improved photoconduction.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved. PMID:25213321

  16. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Minchan; Lv, Fucong; Yang, Mingyang; Tao, Pengpeng; Tang, Yougen; Liu, Hongtao; Lu, Zhouguang

    2015-10-01

    A novel heterogeneous NiCo2O4@PPy core/sheath nanowire arrays are directly grown on Ni foam involving three facile steps, hydrothermal synthesis and calcination of NiCo2O4 nanowire arrays and subsequent in-situ oxidative polymerization of polypyrrole (PPy). When investigated as binder- and conductive additive-free electrodes for supercapacitors (SCs) in 6 M KOH, the NiCo2O4@PPy core/sheath nanowire arrays exhibit high areal capacitance of 3.49 F cm-2 at a discharge current density of 5 mA cm-2, which is almost 1.5 times as much as the pristine NiCo2O4 (2.30 F cm-2). More importantly, it can remain 3.31 F cm-2 (94.8% retention) after 5000 cycles. The as-obtained electrode also displays excellent rate capability, whose areal capacitance can still remain 2.79 F cm-2 while the discharge current density is increased to 50 mA cm-2. The remarkable electrochemical performance is mainly attributed to the unique heterogeneous core/sheath nanowire-array architectures.

  17. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  18. Application of free-standing InP nanowire arrays and their optical properties for resource-saving solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Muyi; Nakai, Eiji; Tomioka, Katsuhiro; Fukui, Takashi

    2015-01-01

    III-V compound semiconductor nanowire (NW) arrays have exhibited remarkable behavior in photovoltaic applications. We embedded an orderly vertical InP NW array in poly(dimethylsiloxane) (PDMS) and peeled it off from the substrate to form a AuZn contact. The sample with the substrate exhibited a very high average absorptance of 92%. However, when the array was peeled off, the optical absorptance degraded, particularly in the longer-wavelength region. After the AuZn was deposited on the back side of the NW array, the absorptance increased. This technology could enable a new approach for NW-based photovoltaics with a lower fabrication cost.

  19. A technique for large-area position-controlled growth of GaAs nanowire arrays.

    PubMed

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth. PMID:26895144

  20. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  1. Synthesis and characterization of barium silicide (BaSi2) nanowire arrays for potential solar applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song

    2015-10-01

    In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable

  2. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  3. External cavity laser using a InAs quantum dot gain chip and an arrayed-waveguide grating for T-band optical communications

    NASA Astrophysics Data System (ADS)

    Shibutani, Hideki; Tomomatsu, Yasunori; Sawado, Yoshinori; Yoshizawa, Katsumi; Asakura, Hideaki; Idris, Nazirul Afham; Tsuda, Hiroyuki

    2015-02-01

    Utilizing T-band (1000 nm to 1260 nm) for optical communications is promising for short reach, and large capacity networks, such as data centers or access networks. It is feasible to use this with low-cost coarse wavelength division multiplexing (WDM). However, a tunable wavelength light source is necessary for such applications. In this paper, we propose a new configuration for an external cavity laser, which uses a silica-based arrayed waveguide grating (AWG) for the wavelength selecting element. The external cavity laser consists of a gain chip with high reflection (HR) and anti-reflection (AR) coated facets, coupling lenses, an AWG with AR/HR coatings, and an output fiber. The AWG has 17 connection ports, which correspond to 17 wavelengths with a channel spacing of 1.67 nm. The width of the connection port waveguides was optimized to achieve high coupling efficiency. The AWG chip size is 15 mm x 30 mm. The active layer in the gain chip has InAs quantum dots. The spontaneous emission 3-dB bandwidth was 48 nm (1108 nm to 1156 nm) when a current of 150 mA was injected into the gain chip. The lasing wavelength of the external cavity laser was successfully tuned from 1129.9 nm to 1154.4 nm by selecting the connection ports of the AWG. The typical threshold current was about 130 mA.

  4. The synthesis and electrical characterization of Cu2O/Al:ZnO radial p-n junction nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Lin; Wang, Ruey-Chi; Huang, Jow-Lay; Liu, Chuan-Pu; Wang, Chun-Kai; Chang, Sheng-Po; Chu, Wen-Huei; Wang, Chao-Hung; Tu, Chia-hao

    2009-09-01

    Vertically aligned large-area p-Cu2O/n-AZO (Al-doped ZnO) radial heterojunction nanowire arrays were synthesized on silicon without using catalysts in thermal chemical vapor deposition followed by e-beam evaporation. Scanning electron microscopy and high-resolution transmission electron microscopy results show that poly-crystalline Cu2O nano-shells with thicknesses around 10 nm conformably formed on the entire periphery of pre-grown Al:ZnO single-crystalline nanowires. The Al doping concentration in the Al:ZnO nanowires with diameters around 50 nm were determined to be around 1.19 at.% by electron energy loss spectroscopy. Room-temperature photoluminescence spectra show that the broad green bands of pristine ZnO nanowires were eliminated by capping with Cu2O nano-shells. The current-voltage (I-V) measurements show that the p-Cu2O/n-AZO nanodiodes have well-defined current rectifying behavior. This paper provides a simple method to fabricate superior p-n radial nanowire arrays for developing nano-pixel optoelectronic devices and solar cells.

  5. The synthesis and electrical characterization of Cu2O/Al:ZnO radial p-n junction nanowire arrays.

    PubMed

    Kuo, Chien-Lin; Wang, Ruey-Chi; Huang, Jow-Lay; Liu, Chuan-Pu; Wang, Chun-Kai; Chang, Sheng-Po; Chu, Wen-Huei; Wang, Chao-Hung; Tu, Chia-Hao

    2009-09-01

    Vertically aligned large-area p-Cu(2)O/n-AZO (Al-doped ZnO) radial heterojunction nanowire arrays were synthesized on silicon without using catalysts in thermal chemical vapor deposition followed by e-beam evaporation. Scanning electron microscopy and high-resolution transmission electron microscopy results show that poly-crystalline Cu(2)O nano-shells with thicknesses around 10 nm conformably formed on the entire periphery of pre-grown Al:ZnO single-crystalline nanowires. The Al doping concentration in the Al:ZnO nanowires with diameters around 50 nm were determined to be around 1.19 at.% by electron energy loss spectroscopy. Room-temperature photoluminescence spectra show that the broad green bands of pristine ZnO nanowires were eliminated by capping with Cu(2)O nano-shells. The current-voltage (I-V) measurements show that the p-Cu(2)O/n-AZO nanodiodes have well-defined current rectifying behavior. This paper provides a simple method to fabricate superior p-n radial nanowire arrays for developing nano-pixel optoelectronic devices and solar cells. PMID:19687549

  6. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    PubMed

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-01

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute). PMID:23455517

  7. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Xie, Yibing; Xia, Chi; Du, Hongxiu; Wang, Wei

    2015-07-01

    The ternary nanocomposite of polyaniline/carbon/titanium nitride (PANI/C/TiN) nanowire array (NWA) is fabricated as electroactive electrode material for flexible supercapacitor application. Firstly, TiN NWA is formed through ammonia nitridation treatment of TiO2 NWA, which is synthesized via seed-assisted hydrothermal reaction. PANI/C/TiN NWA is then formed through sequentially coating carbon and PANI on the surface of TiN NWA. PANI/C/TiN NWA has unique shell/shell/core architecture, including a core layer of TiN NWA with a diameter of 40-160 nm and a length of 1.5 μm, a middle shell layer of carbon with a thickness of about 6.0 nm and an external surface layer of PANI with a thickness of 20-50 nm. PANI/C/TiN NWA provides ion diffusion channel at interspaces between the neighboring nanowires and electron transfer route along independent nanowires. The carbon shell layer is able to protect TiN NWA from electrochemical corrosion during charge/discharge process. PANI/C/TiN NWA displays high specific capacitance of 1093 F g-1 at 1.0 Ag-1, and good cycling stability with a capacity retention of 98% after 2000 cycles, presenting better supercapacitive performance than other integrated nanocomposites of C/PANI/TiN, PANI/TiN and PANI/C/TiO2 NWA. Such a ternary nanocomposite of PANI/C/TiN NWA can be used as an electrode material of flexible supercapacitors.

  8. Flexible high-output nanogenerator based on lateral ZnO nanowire array.

    PubMed

    Zhu, Guang; Yang, Rusen; Wang, Sihong; Wang, Zhong Lin

    2010-08-11

    We report here a simple and effective approach, named scalable sweeping-printing-method, for fabricating flexible high-output nanogenerator (HONG) that can effectively harvesting mechanical energy for driving a small commercial electronic component. The technique consists of two main steps. In the first step, the vertically aligned ZnO nanowires (NWs) are transferred to a receiving substrate to form horizontally aligned arrays. Then, parallel stripe type of electrodes are deposited to connect all of the NWs together. Using a single layer of HONG structure, an open-circuit voltage of up to 2.03 V and a peak output power density of approximately 11 mW/cm(3) have been achieved. The generated electric energy was effectively stored by utilizing capacitors, and it was successfully used to light up a commercial light-emitting diode (LED), which is a landmark progress toward building self-powered devices by harvesting energy from the environment. This research opens up the path for practical applications of nanowire-based piezoelectric nanogeneragtors for self-powered nanosystems. PMID:20698630

  9. Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chia; Kramer, Corinne M.; Chen, Christopher S.; Reich, Daniel H.

    2012-02-01

    In this paper, the use of magnetic nanowires for the study of cellular response to force is demonstrated. High-aspect ratio Ni rods with diameter 300 nm and lengths up to 20 μm were bound to or internalized by pulmonary artery smooth muscle cells (SMCs) cultured on arrays of flexible micropost force sensors. Forces and torques were applied to the cells by driving the nanowires with AC magnetic fields in the frequency range 0.1-10 Hz, and the changes in cellular contractile forces were recorded with the microposts. These local stimulations yield global force reinforcement of the cells’ traction forces, but this contractile reinforcement can be effectively suppressed upon addition of a calcium channel blocker, ruthenium red, suggesting the role of calcium channels in the mechanical response. The responsiveness of the SMCs to actuation depends on the frequency of the applied stimulation. These results show that the combination of magnetic nanoparticles and micropatterned, flexible substrates can provide new approaches to the study of cellular mechanotransduction.

  10. Self-assembled nanowire arrays as three-dimensional nanopores for filtration of DNA molecules.

    PubMed

    Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu

    2015-01-01

    Molecular filtration and purification play important roles for biomolecule analysis. However, it is still necessary to improve efficiency and reduce the filtration time. Here, we show self-assembled nanowire arrays as three-dimensional (3D) nanopores embedded in a microfluidic channel for ultrafast DNA filtration. The 3D nanopore structure was formed by a vapor-liquid-solid (VLS) nanowire growth technique, which allowed us to control pore size of the filtration material by varying the number of growth cycles. λ DNA molecules (48.5 kbp) were filtrated from a mixture of T4 DNA (166 kbp) at the entrance of the 3D nanopore structure within 1 s under an applied electric field. Moreover, we observed single DNA molecule migration of T4 and λ DNA molecules to clarify the filtration mechanism. The 3D nanopore structure has simplicity of fabrication, flexibility of pore size control and reusability for biomolecule filtration. Consequently it is an excellent material for biomolecular filtration. PMID:25765268

  11. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  12. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array

    NASA Astrophysics Data System (ADS)

    Pan, Caofeng; Dong, Lin; Zhu, Guang; Niu, Simiao; Yu, Ruomeng; Yang, Qing; Liu, Ying; Wang, Zhong Lin

    2013-09-01

    Emulation of the sensation of touch through high-resolution electronic means could become important in future generations of robotics and human-machine interfaces. Here, we demonstrate that a nanowire light-emitting diode-based pressure sensor array can map two-dimensional distributions of strain with an unprecedented spatial resolution of 2.7 µm, corresponding to a pixel density of 6,350 dpi. Each pixel is composed of a single n-ZnO nanowire/p-GaN light-emitting diode, the emission intensity of which depends on the local strain owing to the piezo-phototronic effect. A pressure map can be created by reading out, in parallel, the electroluminescent signal from all of the pixels with a time resolution of 90 ms. The device may represent a major step towards the digital imaging of mechanical signals by optical means, with potential applications in artificial skin, touchpad technology, personalized signatures, bio-imaging and optical microelectromechanical systems.

  13. Layer-by-layer assembly synthesis of ZnO/SnO{sub 2} composite nanowire arrays as high-performance anode for lithium-ion batteries

    SciTech Connect

    Wang, Jiazheng; Du, Ning; Zhang, Hui; Yu, Jingxue; Yang, Deren

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer SnO{sub 2} nanoparticles was deposited on ZnO nanoarrays through layer-by-layer assembly. Black-Right-Pointing-Pointer The composite nanowire arrays show improved performance as anode for Li-ion battery. Black-Right-Pointing-Pointer Improved performance was attributed to the combining advantages of each ingredient. -- Abstract: A layer-by-layer approach has been developed to synthesize ZnO/SnO{sub 2} composite nanowire arrays on copper substrate. ZnO nanowire arrays have been first prepared on copper substrate through seed-assisted method, and then, the surface of ZnO nanowires have been modified by the polyelectrolyte. After oxidation-reduction reaction, SnO{sub 2} layer has been deposited onto the surface of ZnO nanowires. The as-synthesized ZnO/SnO{sub 2} composite nanowire arrays have been applied as anode for lithium-ion batteries, which show high reversible capacity and good cycling stability compared to pure ZnO nanowire arrays and SnO{sub 2} nanoparticles. It is believed that the improved performance may be attributed to the high capacity of SnO{sub 2} and the good cycling stability of the array structure on current collector.

  14. Effect of Xe ion irradiation on photocatalytic performance of oblique TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Li, Zhengcao; Teng, Yi; Chen, Chienhua; Lv, Shasha; Wang, Guojing; Zhang, Zhengjun

    2015-02-01

    In this work oblique TiO2 nanowire arrays (NWs) were prepared by magnetron sputtering method and irradiated by 200 keV Xe ion with different doses. The photocatalytic activity of TiO2 was studied by degrading methyl orange dye (MO) under ultraviolet (UV) light, which indicates that the photocatalytic performance of as-deposited and irradiated TiO2 NWs. It was found that when the dose was relatively low, the Ti3+ content on the surface was increased upon irradiation, dominating the enhancement of the photocatalytic property of the TiO2 NWs. By this means, an optimization of Xe ion dose can largely improve the photocatalytic performance of TiO2 NWs.

  15. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 Ω cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  16. Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Fen; Ye, Ke; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-03-01

    Fully metallic nickel nanowire arrays (NWAs) electrode is prepared by electrodepositing nickel within the pores and over-plating on the surface of polycarbonate template (PCT) with subsequent dissolution of the template in dichloromethane. The as-prepared electrode is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Urea electro-oxidation reaction in KOH solution on the nickel NWAs electrode is investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The results show that the nickel NWAs electrode achieves an onset oxidation potential of 0.25 V (vs. Ag/AgCl) and a peak current density of 160 mA cm-2 in 5 mol L-1 KOH and 0.33 mol L-1 urea accompanied with considerable stability.

  17. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far. PMID:27097727

  18. Effective electrocatalysis based on Ag2O nanowire arrays supported on a copper substrate.

    PubMed

    Ji, Rong; Wang, Lingling; Yu, Liutao; Geng, Baoyou; Wang, Guangfeng; Zhang, Xiaojun

    2013-11-13

    Silver oxide nanowire arrays (Ag2O NWAs) were first synthesized on a copper (Cu) rod by a simple and facile wet-chemistry approach without using any surfactants. The as-synthesized Ag2O NWA/Cu rod not only can be used as an integrated electrode (called a Ag2O NWA/CRIE) to detect hydrazine (HZ) but also can serve as the catalyst layer for a direct HZ fuel cell. The current density of HZ oxidation on Ag2O NWA (94.4 mA cm(-2)) is much bigger than that on a bare Cu rod (3.9 mA cm(-2)) at -0.6 V, and other Ag2O NWAs have the lowest onset potential (-0.85 V). This suggests that a Ag2O NWA integrated electrode has potential application in catalytic fields that contain the HZ fuel cell. PMID:23978111

  19. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  20. Broadband absorptance enhancement of silicon nanowire arrays with germanium as the substrate

    NASA Astrophysics Data System (ADS)

    Wang, Han; Xia, Xin-Lin

    2013-08-01

    A composite structure with silicon nanowire arrays on germanium substrate is proposed as a good candidate for highly efficient solar cells. The Bruggeman approximation considering anisotropic wave propagating in uniaxial media is employed to calculate the radiative properties. Meantime, finite-difference time-domain (FDTD) method is used to verify for both normal and oblique incidence. It is found that the composite structure has superior absorption characteristics over thin Si film, particularly near the bandgap. With a thickness only of 4 μm, the composite structure improved the absorptance to above 0.6 across the whole wavelength band with the lattice constant of 100 nm, and the ultimate efficiency about 10% is higher than that of infinite bulk silicon, owing to the combined effects of suppressed reflection and high light trapping capability. To better understand the absorption enhancement process in the composite structure, the photogeneration profiles are provided by using FDTD method.

  1. Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells

    PubMed Central

    Wu, Wu-Qiang; Lei, Bing-Xin; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-01-01

    Hierarchical anatase TiO2 nano-architecture arrays consisting of long TiO2 nanowire trunk and numerous short TiO2 nanorod branches on transparent conductive fluorine-doped tin oxide glass are successfully synthesized for the first time through a facile one-step hydrothermal route without any surfactant and template. Dye-sensitized solar cells based on the hierarchical anatase TiO2 nano-architecture array photoelectrode of 18 μm in length shows a power conversion efficiency of 7.34% because of its higher specific surface area for adsorbing more dye molecules and superior light scattering capacity for boosting the light-harvesting efficiency. The present photovoltaic performance is the highest value for the reported TiO2 nanowires array photoelectrode. PMID:23443301

  2. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Alhmoud, H. Z.; Elnathan, R.; Delalat, B.; Voelcker, N. H.; Kraus, T.

    2016-02-01

    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.

  3. GaAs/InGaP Core-Multishell Nanowire-Array-Based Solar Cells

    NASA Astrophysics Data System (ADS)

    Nakai, Eiji; Yoshimura, Masatoshi; Tomioka, Katsuhiro; Fukui, Takashi

    2013-05-01

    Semiconductor nanowires (NWs) are good candidate for light-absorbing material in next generation photovoltaic and III-V NW-based multi-heterojunction solar cells using lattice-mismatched material system are expected as high energy-conversion efficiencies under concentrated light. Here we demonstrate core-shell GaAs NW arrays by using catalyst-free selective-area metal organic vapor phase epitaxy (SA-MOVPE) as a basis for multijunction solar cells. The reflectance of the NW array without any anti-reflection coating showed much lower reflection than that of a planar wafer. Next we then fabricated core-shell GaAs NW array solar cells with radial p-n junction. Despite the low reflectance, the energy-conversion efficiency was 0.71% since a high surface recombination rate of photo-generated carriers and poor ohmic contact between the GaAs and transparent indium-tin-oxide (ITO) electrode. To avoid these degradations, we introduced an InGaP layer and a Ti/ITO electrode. As a result, we obtained a short-circuit current of 12.7 mA cm-2, an open-circuit voltage of 0.5 V, and a fill factor of 0.65 for an overall efficiency of 4.01%.

  4. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation

    NASA Astrophysics Data System (ADS)

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Zang, Nanzhi; Jiang, Peng; Ziegler, Kirk J.

    2016-04-01

    Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity.

  5. Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays.

    PubMed

    Xie, W Q; Oh, J I; Shen, W Z

    2011-02-11

    We have successfully fabricated well-ordered silicon nanowire (SiNW) arrays of smooth surface by using a low-cost and facile Ag-assisted chemical etching technique. We have experimentally found that the reflectance can be significantly suppressed (<1%) over a wide solar spectrum (300-1000 nm) in the as-grown samples. Also, based on our bundled model, we have used rigorous coupled-wave analysis to simulate the reflectance in SiNW arrays, and found that the calculated results are in good agreement with the experimental data. From a further simulation study on the light absorption in SiNW arrays, we have obtained a photocurrent enhancement of up to 425% per unit volume of material as compared to crystalline Si, implying that effective light trapping can be realized in the as-grown samples. In addition, we have demonstrated experimentally and theoretically that the as-grown samples have an omnidirectional high-efficiency antireflection property. PMID:21212474

  6. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    NASA Astrophysics Data System (ADS)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2016-05-01

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  7. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation.

    PubMed

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Zang, Nanzhi; Jiang, Peng; Ziegler, Kirk J

    2016-04-22

    Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity. PMID:26953775

  8. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials. PMID:27223050

  9. An in-situ hard mask block copolymer approach for the fabrication of ordered, large scale, horizontally aligned, Si nanowire arrays on Si substrate

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Holmes, Justin D.; Morris, Michael A.

    2014-03-01

    We report a simple technique to fabricate horizontal, uniform Si nanowire arrays with controlled orientation and density at spatially well defined locations on substrate based on insitu hard mask pattern formation approach by microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin films. The methodology may be applicable to large scale production. Ordered microphase separated patterns of the BCP were defined by solvent annealing and the orientation was controlled by film thickness and annealing time. Films of PEO cylinders with parallel orientation (to the surface plane) were applied to create `frames' for the generation of inorganic oxide nanowire arrays. These PEO cylinders were subject to selective metal ion inclusion and subsequent processing was used to create iron oxide nanowire arrays. The oxide nanowires were isolated, of uniform diameter and their structure a mimic of the original BCP nanopatterns. The phase purity, crystallinity and thermal stability of the nanowires coupled to the ease of large scale production may make them useful in technological applications. Here, we demonstrate that the oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. The techniques may have significant application in the manufacture of transistor circuitry.

  10. Highly Ordered Vertical Arrays of TiO2/ZnO Hybrid Nanowires: Synthesis and Electrochemical Characterization.

    PubMed

    Gujarati, Tanvi P; Ashish, Ajithan G; Rai, Maniratnam; Shaijumon, Manikoth M

    2015-08-01

    We report the fabrication of vertically aligned hierarchical arrays of TiO2/ZnO hybrid nanowires, consisting of ZnO nanowires grown directly from within the pores of TiO2 nanotubes, through a combination of electrochemical anodization and hydrothermal techniques. These novel nano-architectured hybrid nanowires with its unique properties show promise as high performance supercapacitor electrodes. The electrochemical behaviour of these hybrid nanowires has been studied using Cyclic voltammetry, Galvanostatic charge-discharge and Electrochemical impedance spectroscopy (EIS) measurements using 1.5 M tetraethylammoniumtetrafluoroborate in acetonitrile as the electrolyte. Excellent electrochemical performances with a maximum specific capacitance of 2.6 mF cm-2 at a current density of 10 µA cm-2, along with exceptional cyclic stability, have been obtained for TiO2/ZnO-1 h hybrid material. The obtained results demonstrate the possibility of fabricating new geometrical architectures of inorganic hybrid nanowires with well adhered interfaces for the development of hybrid energy devices. PMID:26369158

  11. Influence of the packing fraction and host matrix on the magnetoelastic anisotropy in Ni nanowire composite arrays

    NASA Astrophysics Data System (ADS)

    Piraux, Luc; Hamoir, Gaël; Encinas, Armando; De La Torre Medina, Joaquin; Abreu Araujo, Flavio

    2013-09-01

    The influence of the packing fraction on thermally induced magnetoelastic effects has been studied in Ni nanowires embedded in polycarbonate, poly(vinylidene difluoride), and alumina nanoporous membranes of different porosities for temperatures between 77 K and 345 K. For nanowires embedded in polymer membranes, the contrasting shift in the ferromagnetic resonance frequency when the temperature is either above or below ambient temperature is consistent with the occurrence of uniaxial magnetoelastic anisotropy effects due to the large thermal expansion coefficient mismatch between the metal nanowires and the membrane. A model which considers the influence of the nanowires packing fraction and the membrane material on the magnetoelastic effects, arising from the matrix-assisted deformation process, is proposed. The model is able to successfully explain the experimentally observed effects for the Ni nanowire arrays embedded in the different porous membranes and their variation with the packing fraction. The possibility to modulate the magnetic anisotropy of such nanocomposites by an appropriate choice of membrane material, packing fraction, and sample temperature is of considerable importance to achieve magnetically tunable devices.

  12. Fast and enhanced broadband photoresponse of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range.

    PubMed

    Liu, Hao; Sun, Qi; Xing, Jie; Zheng, Zhiyuan; Zhang, Zhili; Lü, Zhiqing; Zhao, Kun

    2015-04-01

    In the present work, a ZnO nanowire array/reduced graphene oxide film hybrid nanostructure was realized, and the photovoltaic responses from the visible to the near-infrared range were investigated. Compared with the pure ZnO nanowire array and rGO thin film, the hybrid composite exhibited a fast and greatly enhanced broadband photovoltaic response that resulted from the formation of interfacial Schottky junctions between ZnO and rGO. PMID:25768384

  13. Silicon Nanowire Array Solar Cell Prepared by Metal-Induced Electroless Etching with a Novel Processing Technology

    NASA Astrophysics Data System (ADS)

    Han-Don Um,; Jin-Young Jung,; Hong-Seok Seo,; Kwang-Tae Park,; Sang-Won Jee,; S. A. Moiz,; Jung-Ho Lee,

    2010-04-01

    We inexpensively fabricated vertically aligned Si nanowire solar cells using metal-induced electroless etching and a novel doping technique. Co-doping of boron and phosphorus was achieved using a spin-on-doping method for the simultaneous formation of a front-side emitter and a back surface field in a one-step thermal cycle. Nickel electroless deposition was also performed in order to form a continuous metal grid electrode on top of an array of vertically aligned Si nanowires. A highly dense array of Si nanowires with low reflectivity was obtained using Ag nanoparticles of optimal size (60-90 nm). We also obtained an open circuit voltage of 544 mV, a short circuit current of 14.68 mA/cm2, and a cell conversion efficiency of 5.25% at 1.5AM illumination. The improved photovoltaic performance was believed to be the result of the excellent optical absorption of the Si nanowires and the improved electrical properties of the electroless deposited electrode.

  14. Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties.

    PubMed

    Wang, Chang; Fang, Dong; Wang, Hong'en; Cao, Yunhe; Xu, Weilin; Liu, Xiaoqing; Luo, Zhiping; Li, Guangzhong; Jiang, Ming; Xiong, Chuanxi

    2016-01-01

    Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal properties of the as-prepared Ni3V2O8 nanowire arrays are carried out and their morphology has changed obviously in the following heat treatment at 300 and 500 °C. As an electrode material for lithium ion batteries, the unique configuration of Ni3V2O8 nanowires presents enhanced capacitance, satisfying rate capability and good cycling stability. The reversible capacity of the as-prepared Ni3V2O8 nanowire arrays reaches 969.72 mAh · g(-1) with a coulombic efficiency over 99% at 500 mA · g(-1) after 500 cycles. PMID:26860692

  15. Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.

    PubMed

    Cao, Yunhe; Fang, Dong; Liu, Ruina; Jiang, Ming; Zhang, Hang; Li, Guangzhong; Luo, Zhiping; Liu, Xiaoqing; Xu, Jie; Xu, Weilin; Xiong, Chuanxi

    2015-12-23

    Development of three-dimensional nanoarchitectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a new type of three-dimensional porous iron vanadate (Fe0.12V2O5) nanowire arrays on a Ti foil has been synthesized by a hydrothermal method. The as-prepared Fe0.12V2O5 nanowires are about 30 nm in diameter and several micrometers in length. The effect of reaction time on the resulting morphology is investigated and the mechanism for the nanowire formation is proposed. As an electrode material used in lithium-ion batteries, the unique configuration of the Fe0.12V2O5 nanowire arrays presents enhanced capacitance, satisfying rate capability and good cycling stability, as evaluated by cyclic voltammetry and galvanostatic discharge-charge cycling. It delivers a high discharge capacity of 293 mAh·g(-1) at 2.0-3.6 V or 382.2 mAh·g(-1) at 1.0-4.0 V after 50 cycles at 30 mA·g(-1). PMID:26610426

  16. ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum-dot-sensitized solar cells.

    PubMed

    Jiang, Yan; Zhang, Xing; Ge, Qian-Qing; Yu, Bin-Bin; Zou, Yu-Gang; Jiang, Wen-Jie; Song, Wei-Guo; Wan, Li-Jun; Hu, Jin-Song

    2014-01-01

    Quantum-dot-sensitized solar cell (QDSSC) has been considered as an alternative to new generation photovoltaics, but it still presents very low power conversion efficiency. Besides the continuous effort on improving photoanodes and electrolytes, the focused investigation on charge transfer at interfaces and the rational design for counter electrodes (CEs) are recently receiving much attention. Herein, core-shell nanowire arrays with tin-doped indium oxide (ITO) nanowire core and Cu2S nanocrystal shell (ITO@Cu2S) were dedicatedly designed and fabricated as new efficient CEs for QDSSCs in order to improve charge collection and transport and to avoid the intrinsic issue of copper dissolution in popular and most efficient Cu/Cu2S CEs. The high-quality tunnel junctions formed between n-type ITO nanowires and p-type Cu2S nanocrystals led to the considerable decrease in sheet resistance and charge transfer resistance and thus facilitated the electron transport during the operation of QDSSCs. The three-dimensional structure of nanowire arrays provided high surface area for more active catalytic sites and easy accessibility for an electrolyte. As a result, the power conversion efficiency of QDSSCs with the designed ITO@Cu2S CEs increased by 84.5 and 33.5% compared to that with planar Au and Cu2S CEs, respectively. PMID:24350879

  17. Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties

    NASA Astrophysics Data System (ADS)

    Hui, Zheng; Man-Gui, Han; Long-Jiang, Deng

    2016-02-01

    CoFe2O4 ferrite nanowire arrays are fabricated in porous silicon templates. The porous silicon templates are prepared via metal-assisted chemical etching with gold (Au) nanoparticles as the catalyst. Subsequently, CoFe2O4 ferrite nanowires are successfully synthesized into porous silicon templates by the sol-gel method. The magnetic hysteresis loop of nanowire array shows an isotropic feature of magnetic properties. The coercivity and squareness ratio (Mr/Ms) of ensemble nanowires are found to be 630 Oe (1 Oe, = 79.5775 A·m-1 and 0.4 respectively. However, the first-order reversal curve (FORC) is adopted to reveal the probability density function of local magnetostatic properties (i.e., interwire interaction field and coercivity). The FORC diagram shows an obvious distribution feature for interaction field and coercivity. The local coercivity with a value of about 1000 Oe is found to have the highest probability. Project supported by the National Natural Science Foundation of China (Grant No. 61271039), the Scientific Projects of Sichuan Province, China (Grant No. 2015HH0016), and the Natural Science Foundations of Zhejiang Province, China (Grant Nos. LQ12E02001 and Y107255).

  18. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination.

    PubMed

    Chen, Po-Chiang; Ishikawa, Fumiaki N; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-25

    A novel hybrid chemical sensor array composed of individual In(2)O(3) nanowires, SnO(2) nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents. PMID:19420469

  19. Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array.

    PubMed

    Dai, Yanmeng; Cai, Hongbing; Ding, Huaiyi; Ning, Zhen; Pan, Nan; Zhu, Hong; Shi, Qinwei; Wang, Xiaoping

    2015-04-01

    Metasurfaces made of subwavelength resonators can modify the wave front of light within the thickness much less than free space wavelength, showing great promises in integrated optics. In this paper, we theoretically show that electric and magnetic resonances supported simultaneously by a subwavelength nanowire with high refractive-index can be utilized to design metasurfaces with near-unity transmittance. Taking silicon nanowire for instance, we design numerically a near-infrared quarter-waveplate with high transmittance using a subwavelength nanowire array. The operation bandwidth of the waveplate is 0.14 μm around the center wavelength of 1.71 μm. The waveplate can convert a 45° linearly polarized incident light to circularly polarized light with conversion efficiency ranging from 94% to 98% over the operation band. The performance of quarter waveplate can in principle be tuned and improved through optimizing the parameters of nanowire arrays. Its compatibility to microelectronic technologies opens up a distinct possibility to integrate nanophotonics into the current silicon-based electronic devices. PMID:25968730

  20. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chiang; Ishikawa, Fumiaki N.; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-01

    A novel hybrid chemical sensor array composed of individual In2O3 nanowires, SnO2 nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents.

  1. Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties

    PubMed Central

    Wang, Chang; Fang, Dong; Wang, Hong’en; Cao, Yunhe; Xu, Weilin; Liu, Xiaoqing; Luo, Zhiping; Li, Guangzhong; Jiang, Ming; Xiong, Chuanxi

    2016-01-01

    Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal properties of the as-prepared Ni3V2O8 nanowire arrays are carried out and their morphology has changed obviously in the following heat treatment at 300 and 500 °C. As an electrode material for lithium ion batteries, the unique configuration of Ni3V2O8 nanowires presents enhanced capacitance, satisfying rate capability and good cycling stability. The reversible capacity of the as-prepared Ni3V2O8 nanowire arrays reaches 969.72 mAh·g−1 with a coulombic efficiency over 99% at 500 mA·g−1 after 500 cycles. PMID:26860692

  2. Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties

    NASA Astrophysics Data System (ADS)

    Wang, Chang; Fang, Dong; Wang, Hong'En; Cao, Yunhe; Xu, Weilin; Liu, Xiaoqing; Luo, Zhiping; Li, Guangzhong; Jiang, Ming; Xiong, Chuanxi

    2016-02-01

    Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal properties of the as-prepared Ni3V2O8 nanowire arrays are carried out and their morphology has changed obviously in the following heat treatment at 300 and 500 °C. As an electrode material for lithium ion batteries, the unique configuration of Ni3V2O8 nanowires presents enhanced capacitance, satisfying rate capability and good cycling stability. The reversible capacity of the as-prepared Ni3V2O8 nanowire arrays reaches 969.72 mAh·g-1 with a coulombic efficiency over 99% at 500 mA·g-1 after 500 cycles.

  3. Effective blockage of the interfacial recombination process at TiO(2) nanowire array electrodes in dye-sensitized solar cells.

    PubMed

    Jiang, Dianlu; Hao, Yuanqiang; Shen, Rujuan; Ghazarian, Sevak; Ramos, Angela; Zhou, Feimeng

    2013-11-27

    Effective blockage of recombination electron transfer of a fast electron transfer redox couple (ferrocenium/ferrocene or Fc(+)/Fc) at TiO2 nanowire array electrodes is achieved by silanization of the dye loaded TiO2 nanowire array. FT-IR clearly shows the formation of polysiloxane network at fluorine doped tin electrodes covered with TiO2 nanowire arrays and the dye molecules. Compared to the commonly used TiO2 nanoparticle film electrodes, the TiO2 nanowire array has a more spatially accessible structure, facilitating the formation of uniform polysiloxane films. Energy-dispersive X-ray spectroscopy (EDS) also reveals the presence of Si over multiple spots at the cross sections of the silanized TiO2 nanowire array electrodes. As a result, a rather high open-cell voltage Voc (0.69 V) and an enhanced efficiency (0.749 %) for DSSC with the Fc(+)/Fc couple were obtained. Contrary to the passivated TiO2 nanoparticle film electrodes at which a complex, biphasic dependence of electron lifetime on Voc was observed, we recorded a logarithm linear dependence of the lifetime on Voc after the silanization treatment. The nanowire arrays with optimal salinization treatments afford a useful surface for the study of electron recombination and photovoltaic generation in DSSCs. PMID:24191693

  4. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.

    PubMed

    Dao, Thang Duy; Han, Gui; Arai, Nono; Nabatame, Toshihide; Wada, Yoshiki; Hoang, Chung Vu; Aono, Masakazu; Nagao, Tadaaki

    2015-03-21

    We report on measurements and simulations of the efficient sunlight-driven and visible-active photocatalysts composed of plasmonic metal nanoparticles and ZnO nanowire (NW) arrays fabricated via an all-wet-chemical route. Because of the coupling between the ZnO dielectric response and the excitation of the Ag or Au nanoparticles, efficient electronic excitation can be induced in the vicinity of the metal-ZnO interfaces because optically-excited plasmonic particles can not only concentrate the electromagnetic field at the ZnO/particle interface, but also act as efficient sources of plasmonic hot electrons to be injected into the conduction band of the ZnO catalyst. The catalytic activities of the fabricated ZnO NWs are examined by photodegradation of methylene blue and by photocurrent measurements in a photovoltaic configuration. Numerical electromagnetic simulations were used to understand the behavior of the light on the nanometer-scale to clarify the catalytic enhancement mechanisms in both the ultraviolet (UV) and visible (VIS) regions. In addition, simulation results indicated that a near-surface normal but slightly tilted ZnO NW array geometry would provide an increased optical path length and enhanced multiple scattering and absorption processes arising from the localized surface plasmon resonances of the nanoparticles. The results obtained here clarify the role of the plasmon resonance and provide us with useful knowledge for the development of metal-oxide nano-hybrid materials for solar energy conversion. PMID:25700130

  5. Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays

    PubMed Central

    Timko, Brian P.; Cohen-Karni, Tzahi; Qing, Quan; Tian, Bozhi; Lieber, Charles M.

    2010-01-01

    Nanowire FETs (NWFETs) are promising building blocks for nanoscale bioelectronic interfaces with cells and tissue since they are known to exhibit exquisite sensitivity in the context of chemical and biological detection, and have the potential to form strongly coupled interfaces with cell membranes. We present a general scheme that can be used to assemble NWs with rationally designed composition and geometry on either planar inorganic or biocompatible flexible plastic surfaces. We demonstrate that these devices can be used to measure signals from neurons, cardiomyocytes, and heart tissue. Reported signals are in millivolts range, which are equal to or substantially greater than those recorded with either planar FETs or multielectrode arrays, and demonstrate one unique advantage of NW-based devices. Basic studies showing the effect of device sensitivity and cell/substrate junction quality on signal magnitude are presented. Finally, our demonstrated ability to design high-density arrays of NWFETs enables us to map signal at the subcellular level, a functionality not enabled by conventional microfabricated devices. These advances could have broad applications in high-throughput drug assays, fundamental biophysical studies of cellular function, and development of powerful prosthetics. PMID:21785576

  6. Defect level characterization of silicon nanowire arrays: Towards novel experimental paradigms

    SciTech Connect

    Carapezzi, Stefania; Castaldini, Antonio; Cavallini, Anna

    2014-02-21

    The huge amount of knowledge, and infrastructures, brought by silicon (Si) technology, make Si Nanowires (NWs) an ideal choice for nano-electronic Si-based devices. This, in turn, challenges the scientific research to adapt the technical and theoretical paradigms, at the base of established experimental techniques, in order to probe the properties of these systems. Metal-assisted wet-Chemical Etching (MaCE) [1, 2] is a promising fast, easy and cheap method to grow high aspect-ratio aligned Si NWs. Further, contrary to other fabrication methods, this method avoids the possible detrimental effects related to Au diffusion into NWs. We investigated the bandgap level diagram of MaCE Si NW arrays, phosphorous-doped, by means of Deep Level Transient Spectroscopy. The presence of both shallow and deep levels has been detected. The results have been examined in the light of the specificity of the MaCE growth. The study of the electronic levels in Si NWs is, of course, of capital importance in view of the integration of Si NW arrays as active layers in actual devices.

  7. Origin of luminescence from ZnO/CdS core/shell nanowire arrays.

    PubMed

    Wang, Zhiqiang; Wang, Jian; Sham, Tsun-Kong; Yang, Shaoguang

    2014-08-21

    Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little. PMID:25008783

  8. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire

    NASA Astrophysics Data System (ADS)

    Wang, Renjie; Ra, Yong-Ho; Wu, Yuanpeng; Zhao, Songrui; Nguyen, Hieu P. T.; Shih, Ishiang; Mi, Zetian

    2016-02-01

    The monolithic integration of red, green and blue (RGB) GaN-based light-emitting diodes (LEDs) directly on a single chip is critically important for smart lighting and full color display applications. In this work, RGB InGaN/GaN dot-in-a-wire LED arrays were laterally arranged on a Si wafer using a three-step SiOx-mask selective area growth (SAG) technique, and on a sapphire wafer using a Ti-mask SAG technique. Tunable emission across the entire visible spectral range (~ 450 nm to 700 nm) can be readily achieved on a single Si wafer by varying the sizes and/or compositions of the dots. By separately biasing lateral-arranged multi-color LED subpixels, the correlated color temperature (CCT) values of such a ~ 0.016 mm2 pixel can be varied from ~ 1900 K to 6800 K. The RGB pixel size can be further reduced by using the Ti-mask SAG technique on sapphire wafer. Full-color InGaN/GaN nanowire arrays with sizes of 2.8 × 2.8 μm2 have been monolithically fabricated into the same pixel.

  9. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    NASA Astrophysics Data System (ADS)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective

  10. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    NASA Astrophysics Data System (ADS)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective

  11. Ultra high density three dimensional capacitors based on Si nanowires array grown on a metal layer

    NASA Astrophysics Data System (ADS)

    Morel, P. H.; Haberfehlner, G.; Lafond, D.; Audoit, G.; Jousseaume, V.; Leroux, C.; Fayolle-Lecocq, M.; Baron, T.; Ernst, T.

    2012-08-01

    We report the fabrication and the characterization of chemical vapor deposition (CVD) grown silicon nanowires capacitors using a complementary-metal-oxide-semiconductor (CMOS) circuit interconnect level compatible process. Silicon nanowires have been grown by CVD on metallic interconnect lines used in today's CMOS circuits at low temperature (<425 °C) and using copper as catalyst. The nanowire assembly develops a huge surface leading to very high measured capacitance densities reaching 18 μF/cm2, and featuring a ×23 gain when compared to the same structure without nanowires. This opens the path toward embedded capacitances technologies by using bottom-up nanowires.

  12. Domain configurations in Co/Pd and L10-FePt nanowire arrays with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ho, Pin; Tu, Kun-Hua; Zhang, Jinshuo; Sun, Congli; Chen, Jingsheng; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Voyles, Paul M.; Ross, Caroline A.

    2016-02-01

    Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ~75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the domains along the nanowires. These narrow wires provide model system for exploring domain wall structure and dynamics in perpendicular anisotropy systems.Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ~75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the

  13. Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes

    NASA Astrophysics Data System (ADS)

    Lu, Fang; Qiu, Mengchun; Qi, Xiang; Yang, Liwen; Yin, Jinjie; Hao, Guolin; Feng, Xiang; Li, Jun; Zhong, Jianxin

    2011-08-01

    Highly ordered NiO coated Si nanowire arrays are fabricated as electrode materials for electrochemical supercapacitors (ES) via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The electrochemical tests reveal that the constructed electrode has superior electrical conductibility and more active sites per unit area for chemical reaction processes, thereby possessing good cycle stability, high specific capacity, and low internal resistance. The specific capacity is up to 787.5 F g-1 at a discharge current of 2.5 mA and decreases slightly with 4.039% loss after 500 cycles, while the equivalent internal resistance is ˜3.067 Ω. Owing to its favorable electrochemical performance, this ordered hybrid array nanostructure is a promising electrode material in future commercial ES.

  14. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays.

    PubMed

    Liu, Dong; Yang, Dong; Gao, Yang; Ma, Jun; Long, Ran; Wang, Chengming; Xiong, Yujie

    2016-03-24

    The development of flexible near-infrared (NIR) photovoltaic (PV) devices containing silicon meets the strong demands for solar utilization, portability, and sustainable manufacture; however, improvements in the NIR light absorption and conversion efficiencies in ultrathin crystalline Si are required. We have developed an approach to improve the quantum efficiency of flexible PV devices in the NIR spectral region by integrating Si nanowire arrays with plasmonic Ag nanoplates. The Ag nanoplates can directly harvest and convert NIR light into plasmonic hot electrons for injection into Si, while the Si nanowire arrays offer light trapping. Taking the wavelength of 800 nm as an example, the external quantum efficiency has been improved by 59 % by the integration Ag nanoplates. This work provides an alternative strategy for the design and fabrication of flexible NIR PVs. PMID:26929103

  15. Probing the spatial extension of light trapping-induced enhanced Raman scattering in high-density Si nanowire arrays

    NASA Astrophysics Data System (ADS)

    Bontempi, Nicolò; Salmistraro, Marco; Ferroni, Matteo; Depero, Laura E.; Alessandri, Ivano

    2014-11-01

    This paper reports an experimental investigation of surface-enhanced Raman scattering in high-density Si nanowire arrays obtained by electroless etching. A direct relationship between light trapping capabilities of Si nanowires and enhanced Raman scattering was demonstrated. Optimized arrays allowed for a remarkable increase of Raman sensitivity in comparison to reference planar samples. As a result, the detection limit of molecular probes under resonant excitation (e.g. methylene blue) can be extended by three orders of magnitude. In addition, continuous ultrathin films, that cannot be analyzed in conventional Raman experiments, are made detectable. In the case of anatase thin films, the detection limit of 5 nm was reached. Raman spectra of Si/TiO2 core/shell heterostructures demonstrate that the enhanced field resulting from surface multiple scattering is characterized by a large spatial extension (about fifty nanometers), making these materials a potential alternative to plasmonic metals for SERS experiments.

  16. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection

    NASA Astrophysics Data System (ADS)

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-03-01

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution.We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08370b

  17. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon.

    PubMed

    Wang, Renjie; Nguyen, Hieu P T; Connie, Ashfiqua T; Lee, J; Shih, Ishiang; Mi, Zetian

    2014-12-15

    We demonstrate controllable and tunable full color light generation through the monolithic integration of blue, green/yellow, and orange/red InGaN nanowire light-emitting diodes (LEDs). Such multi-color nanowire LED arrays are fabricated directly on Si substrate using a three-step selective area molecular beam epitaxy growth process. The lateral-arranged multi-color subpixels enable controlled light mixing at the chip-level and yield color-tunable light emission with CCT values in the range from 1900 K to 6800 K, while maintaining excellent color rendering capability. This work provides a viable approach for achieving micron and nanoscale tunable full-color LED arrays without the compromise between the device efficiency and light quality associated with conventional phosphor-based LEDs. PMID:25607491

  18. Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Shimizu, Tomohiro; Sugawa, Kosuke; Aono, Takashige; Shirai, Yuma; Nishida, Tomohiko; Shingubara, Shoso

    2016-06-01

    Nanowires embedded in nanopores are potentially tough against surface scraping and agglomeration. In this study, we have fabricated Au and Ni nanowires embedded into anodic porous alumina (APA) and investigated their reflectance to study the effects of surface plasmon absorption properties and conversion from solar energy to thermal energy. Au nanowires embedded into APA show typical gold surface plasmon absorption at approximately 530 nm. On the other hand, Ni nanowires show quite a low reflectance under 600 nm. In the temperature elevation test, both Au and Ni nanowire samples present the same capability to warm up water. It means that Ni nanowires embedded into APA have almost the same photothermal activity as Au nanowires.

  19. Real-Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy.

    PubMed

    Bose, Riya; Sun, Jingya; Khan, Jafar I; Shaheen, Basamat S; Adhikari, Aniruddha; Ng, Tien Khee; Burlakov, Victor M; Parida, Manas R; Priante, Davide; Goriely, Alain; Ooi, Boon S; Bakr, Osman M; Mohammed, Omar F

    2016-07-01

    A breakthrough in the development of 4D scanning ultrafast electron microscopy is described for real-time and space imaging of secondary electron energy loss and carrier diffusion on the surface of an array of nanowires as a model system, providing access to a territory that is beyond the reach of either static electron imaging or any time-resolved laser spectroscopy. PMID:27111855

  20. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection.

    PubMed

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-04-14

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution. PMID:26983941

  1. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    PubMed

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-01

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate. PMID:24323873

  2. Piezo-generator integrating a vertical array of GaN nanowires.

    PubMed

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters. PMID:27363777

  3. Piezo-generator integrating a vertical array of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Jamond, N.; Chrétien, P.; Houzé, F.; Lu, L.; Largeau, L.; Maugain, O.; Travers, L.; Harmand, J. C.; Glas, F.; Lefeuvre, E.; Tchernycheva, M.; Gogneau, N.

    2016-08-01

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm‑3. This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  4. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Yang, Zhengchun; Qi, Wen; Li, Yutao; Wu, Ying; Zhou, Shaoxiong; Huang, Shengming; Wei, Jun; Li, Huijun; Yao, Pei

    2016-02-01

    Herein, binder-free Co3O4@NiCoAl-layered double hydroxide (Co3O4@LDH) core-shell hybrid architectural nanowire arrays were prepared via a two-step hydrothermal synthesis route. LDH nanosheets possessing a large electroactive surface area uniformly dispersed on the surface of Co3O4 nanowires were successfully fabricated allowing for fast electron transport that enhances the electrochemical performance of LDH nanosheets. Co3O4@LDH nanowire arrays of 2 to 1.5 molar ratio (Co3O4:LDH) exhibit high specific capacitance (1104 F g-1 at 1 A g-1), adequate rate capability and cycling stability (87.3% after 5000 cycles), attributed to the synergistic effect between the robust Co3O4 nanowire arrays and LDH nanosheets.

  5. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction.

    PubMed

    Chen, Pengzuo; Xu, Kun; Fang, Zhiwei; Tong, Yun; Wu, Junchi; Lu, Xiuli; Peng, Xu; Ding, Hui; Wu, Changzheng; Xie, Yi

    2015-12-01

    Designing highly efficient electrocatalysts for oxygen evolution reaction (OER) plays a key role in the development of various renewable energy storage and conversion devices. In this work, we developed metallic Co4N porous nanowire arrays directly grown on flexible substrates as highly active OER electrocatalysts for the first time. Benefiting from the collaborative advantages of metallic character, 1D porous nanowire arrays, and unique 3D electrode configuration, surface oxidation activated Co4N porous nanowire arrays/carbon cloth achieved an extremely small overpotential of 257 mV at a current density of 10 mA cm(-2), and a low Tafel slope of 44 mV dec(-1) in an alkaline medium, which is the best OER performance among reported Co-based electrocatalysts to date. Moreover, in-depth mechanistic investigations demonstrate the active phases are the metallic Co4N core inside with a thin cobalt oxides/hydroxides shell during the OER process. Our finding introduces a new concept to explore the design of high-efficiency OER electrocatalysts. PMID:26437900

  6. Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhao, Renjie; Su, Yanjie; Yang, Zhi; Zhang, Yafei

    2016-04-01

    The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1.05 mA cm-2 at 0 V vs. NHE and an optimal photocathode efficiency of 0.148% under illumination of AM 1.5G (100 mW cm-2), which is 4 times higher than that of the pristine Cu2S NWAs. This can be attributed to the improved electron transfer and the energy-down-shift effect of CQDs. We believe that this inexpensive Cu2S/CQD photocathode with increased photocurrent density opens up new opportunities in PEC water splitting.The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1.05 mA cm-2 at 0 V vs. NHE and an optimal photocathode efficiency of 0.148% under illumination of AM 1.5G (100 mW cm-2), which is 4 times higher than that of the pristine Cu2S NWAs. This can be attributed to the improved electron transfer and the energy-down-shift effect of CQDs. We believe that this inexpensive Cu2S/CQD photocathode with increased photocurrent density opens up new opportunities in PEC water splitting. Electronic supplementary information (ESI) available

  7. Nanowires: A Lattice-Strained Organic Single-Crystal Nanowire Array Fabricated via Solution-Phase Nanograting-Assisted Pattern Transfer for Use in High-Mobility Organic Field-Effect Transistors (Adv. Mater. 16/2016).

    PubMed

    Kim, Kyunghun; Rho, Yecheol; Kim, Yebyeol; Kim, Se Hyun; Hahm, Suk Gyu; Park, Chan Eon

    2016-04-01

    S. H. Kim, S. G. Hahm, C. E. Park, and co-workers fabricate a 50 nm-wide organic single-crystalline nanowire array on a centimeter-sized substrate via a facile roll-to-plate process, as described on page 3209. Nanowire growth in a nano-confined space adopts a lattice-strained and single-crystalline packing motif, which can be harnessed for strong intermolecular electronic coupling. Thus, nanowire-based field-effect transistors show extremely high field-effect mobilities up to 9.71 cm(2) V(-1) s(-1) . PMID:27105809

  8. Domain configurations in Co/Pd and L10-FePt nanowire arrays with perpendicular magnetic anisotropy.

    PubMed

    Ho, Pin; Tu, Kun-Hua; Zhang, Jinshuo; Sun, Congli; Chen, Jingsheng; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Voyles, Paul M; Ross, Caroline A

    2016-03-01

    Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ∼75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the domains along the nanowires. These narrow wires provide model system for exploring domain wall structure and dynamics in perpendicular anisotropy systems. PMID:26883011

  9. First order reversal curve investigation of the hard and soft magnetic phases of annealed CoFeCu nanowire arrays

    NASA Astrophysics Data System (ADS)

    Almasi-Kashi, M.; Ramazani, A.; Golafshan, E.; Arefpour, M.; Jafari-Khamse, E.

    2013-11-01

    (CoFe)1-xCux (x=0.12-0.84) nanowire arrays were ac-pulse electrodeposited into anodic aluminum oxide templates. The electrodeposition was performed in a constant electrolyte while Cu content was controlled by off-time between pulses. Nanowires with 30 nm diameter and the certain lengths with the both bcc-CoFe and fcc-Cu phases were obtained. Magnetization and coercivity of the nanowires decreased with increasing the Cu content. Annealing improved the coercivity and a remarkable increase in magnetization of nanowires with high Cu contents was observed. A two-phase treatment was seen for annealed samples with high Cu contents. First order reversal curves showed a hard magnetic phase with almost constant magnetic properties and coercivity of ~2500 Oe. The results showed that main source of the various magnetic behaviors of the samples may be attributed to increase in soft magnetic phase. A single domain treatment with a narrow interacting field and coercive field distributions was also observed for the annealed samples with high Cu content.

  10. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  11. Ultra-thin g-C{sub 3}N{sub 4} nanosheets wrapped silicon nanowire array for improved chemical stability and enhanced photoresponse

    SciTech Connect

    Wang, Beibei; Yu, Hongtao; Quan, Xie Chen, Shuo

    2014-11-15

    Highlights: • g-C{sub 3}N{sub 4}, as an oxygen free and metal free protective material for Si, was proposed. • g-C{sub 3}N{sub 4} nanosheets wrapped Si nanowire array was synthesized. • SiNW/g-C{sub 3}N{sub 4} exhibited enhancement of photoelectrochemical stability and photocurrent. - Abstract: In order to inhibit the oxidation of Si materials in aqueous solution, Si nanowire array was wrapped by ultra-thin g-C{sub 3}N{sub 4} nanosheets via an electrophoresis process. Scanning electron microscopy and transmission electron microscopy images showed that g-C{sub 3}N{sub 4} nanosheets were evenly distributed on the surface of Si nanowire array. X-ray diffraction patterns indicated that Si nanowire array/g-C{sub 3}N{sub 4} nanosheets were composed of Si (4 0 0 crystal plane) and g-C{sub 3}N{sub 4} (0 0 2 and 1 0 0 crystal planes). The cyclic voltammetry curves revealed that the corrosion of Si nanowire array was restrained under the protection of g-C{sub 3}N{sub 4} nanosheets. Furthermore, the photocurrent density of Si nanowire array/g-C{sub 3}N{sub 4} nanosheets increased by nearly 3 times compared to that of bare Si nanowire array due to the effective charge separation caused by the built-in electric field at the interface. This work will facilitate the applications of Si materials in aqueous solution, such as solar energy harvest and photocatalytic pollution control.

  12. Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film

    NASA Astrophysics Data System (ADS)

    Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj

    2016-06-01

    In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire–spacer–plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.

  13. Double ferromagnetic resonance and configuration-dependent dipolar coupling in unsaturated arrays of bistable magnetic nanowires

    NASA Astrophysics Data System (ADS)

    de La Torre Medina, J.; Piraux, L.; Olais Govea, J. M.; Encinas, A.

    2010-04-01

    The ferromagnetic resonance properties in arrays of low diameter bistable nanowires have been studied. Measurements performed in the frequency swept mode show that in nonsaturated states, wires magnetized in the positive and negative direction absorb at different frequencies giving place to spectra with two absorption peaks. Moreover, the positive and negative wires obey different dispersion relations, which allow interpreting their different frequency-field dependence in terms of the uniform precession mode. Measurements along sets of first-order reversal curves allow to determine the dipolar interaction field as a function of the magnetic state. The configuration dependence of the interaction field is found to be proportional to the value of the dipolar interaction field of the saturated state. An analytical mean-field expression, which explicitly incorporates the dependence of the interaction field with the magnetic configuration, is proposed and used to obtain a general expression for both the effective field and the dispersion relation, which describes with remarkable agreement the ferromagnetic resonance measurements in saturated and nonsaturated states.

  14. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides

    PubMed Central

    2013-01-01

    Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications. PMID:24279451

  15. Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays

    NASA Astrophysics Data System (ADS)

    Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Mao, Shengchun

    2015-08-01

    Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F-) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F-, smaller azimuth angle of Fsbnd Ag(T4)sbnd Si, shorter bond length of Fsbnd Si compared with Fsbnd Ag. As F- was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF4 when it bonded with enough F- while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F- to Si.

  16. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Kim, So-Eun; Han, Sanghun; Kim, Hyungsuk; Lee, Jaehyung; Jeong, Du-Won; Kim, Ju-Jin; Lim, Yong-beom; Choi, Heon-Jin

    2013-11-01

    Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications.

  17. Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays.

    PubMed

    Wang, Guojing; Li, Zhengcao; Li, Mingyang; Liao, Jiecui; Chen, Chienhua; Lv, Shasha; Shi, Chuanqing

    2015-12-21

    This work presents a new method to improve the field emission (FE) properties of semiconductors decorated with low-cost graphene oxide (GO) nanosheets and trace amounts of noble metal. The Ag/GO/ZnO composite emitter exhibited efficient FE properties with a low turn-on field of 1.4 V μm(-1) and a high field enhancement factor of 7018. The excellent FE properties of the Ag/GO/ZnO composite can be attributed to the tunneling effect of electrons through the heterojunction. The FE properties of the Ag/GO/ZnO composite are slightly better than those of the Ag/ZnO composite which forms an energy well that collects electrons on interfaces when an electric field is applied. This behavior is associated with heterostructures that offer more contact points and protrusions between ZnO nanowire arrays (NWAs) and Ag/GO, which leads to easier electron transfer. High-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterise the connection and evolution of the ZnO NWAs and Ag/GO composites. PMID:26565977

  18. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    NASA Astrophysics Data System (ADS)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-04-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.

  19. Thermally responsive silicon nanowire arrays for native/denatured-protein separation

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Wang, Yanwei; Yuan, Lin; Wang, Lei; Yang, Weikang; Wu, Zhaoqiang; Li, Dan; Chen, Hong

    2013-03-01

    We present our findings of the selective adsorption of native and denatured proteins onto thermally responsive, native-protein resistant poly(N-isopropylacrylamide) (PNIPAAm) decorated silicon nanowire arrays (SiNWAs). The PNIPAAm-SiNWAs surface, which shows very low levels of native-protein adsorption, favors the adsorption of denatured proteins. The amount of denatured-protein adsorption is higher at temperatures above the lower critical solution temperature (LCST) of PNIPAAm. Temperature cycling surrounding the LCST, which ensures against thermal denaturation of native proteins, further increases the amount of denatured-protein adsorption. Moreover, the PNIPAAm-SiNWAs surface is able to selectively adsorb denatured protein even from mixtures of different protein species; meanwhile, the amount of native proteins in solution is kept nearly at its original level. It is believed that these results will not only enrich current understanding of protein interactions with PNIPAAm-modified SiNWAs surfaces, but may also stimulate applications of PNIPAAm-SiNWAs surfaces for native/denatured protein separation.

  20. Spray-coating route for highly aligned and large-scale arrays of nanowires.

    PubMed

    Assad, Ossama; Leshansky, Alexander M; Wang, Bin; Stelzner, Thomas; Christiansen, Silke; Haick, Hossam

    2012-06-26

    Technological implementation of nanowires (NWs) requires these components to be organized with controlled orientation and density on various substrates. Here, we report on a simple and efficient route for the deposition of highly ordered and highly aligned NW arrays on a wide range of receiver substrates, including silicon, glass, metals, and flexible plastics with controlled density. The deposition approach is based on spray-coating of a NW suspension under controlled conditions of the nozzle flow rate, droplet size of the sprayed NWs suspension, spray angle, and the temperature of the receiver substrate. The dynamics of droplet generation is understood by a combined action of shear forces and capillary forces. Provided that the size of the generated droplet is comparable to the length of the single NW, the shear-driven elongation of the droplets results presumably in the alignment of the confined NW in the spraying direction. Flattening the droplets upon their impact with the substrate yields fast immobilization of the spray-aligned NWs on the surface due to van der Waals attraction. The availability of the spray-coating technique in the current microelectronics technology would ensure immediate implementation in production lines, with minimal changes in the fabrication design and/or auxiliary tools used for this purpose. PMID:22554272

  1. Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance.

    PubMed

    Li, Ming; Zhao, Renjie; Su, Yanjie; Yang, Zhi; Zhang, Yafei

    2016-04-28

    The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1.05 mA cm(-2) at 0 V vs. NHE and an optimal photocathode efficiency of 0.148% under illumination of AM 1.5G (100 mW cm(-2)), which is 4 times higher than that of the pristine Cu2S NWAs. This can be attributed to the improved electron transfer and the energy-down-shift effect of CQDs. We believe that this inexpensive Cu2S/CQD photocathode with increased photocurrent density opens up new opportunities in PEC water splitting. PMID:26693806

  2. Tailoring magnetic properties in arrays of pulse-electrodeposited Co nanowires: The role of Cu additive

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-01-01

    In this study, we aim to report the role of Cu additive in arrays of pulse-electrodeposited Co nanowires (NWs) with diameters from 30 to 75 nm, embedded in porous aluminum oxide templates. This features the role of Cu additive in composition and crystalline characteristics as well as in the magnetic properties of Co NWs. Increasing the duration of off-time between pulses during the electrodeposition of Co NWs made it possible to increase the amount of Cu content, so that Co-rich CoCu NWs were obtained. The parallel coercivity and squareness values increased up to 1500 Oe and 0.8 for 30 nm diameter Co94Cu6 NWs, starting from 500 Oe and 0.3 for pure Co NWs. On the other hand, although there was a substantial difference between the crystalline characteristics of 75 nm diameter pure Co and CoCu NWs, no considerable change in their magnetic properties was observed using hysteresis loop measurements. In this respect, the first-order reversal curve (FORC) analysis revealed strong inter-wire magnetostatic interactions for the CoCu NWs. Moreover, we studied the effect of thermal annealing, which resulted in an increase in the coercivity of CoCu NWs with different diameters up to 15%. As a result, the addition of small amount of Cu provides an alternative approach to tailoring the magnetic properties of Co NWs.

  3. Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Shenli; Wang, Xinwei; Liu, Hong; Shen, Wenzhong

    2014-01-01

    Silicon nanowires (SiNWs) have long been considered a promising material due to their extraordinary electrical and optical properties. As a simple, highly efficient fabrication method for SiNWs, metal-assisted chemical etching (MACE) has been intensively studied over recent years. However, effective control by modulation of simple parameters is still a challenging topic and some key questions still remain in the mechanistic processes. In this work, a novel method to manipulate SiNWs with a light-modulated MACE process has been systematically investigated. Conic structures consisting of inclined and clustered SiNWs can be generated and effectively modified by the incident light while new patterns such as ‘bamboo shoot’ arrays can also be formed under certain conditions. More importantly, detailed study has revealed a new top-down ‘diverting etching’ model of the conic structures in this process, different from the previously proposed ‘bending’ model. As a consequence of this mechanism, preferential lateral mass transport of silver particles occurs. Evidence suggests a relationship of this phenomenon to the inhomogeneous distribution of the light-induced electron-hole pairs beneath the etching front. Study on the morphological change and related mechanism will hopefully open new routes to understand and modulate the formation of SiNWs and other nanostructures.

  4. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    PubMed Central

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-01-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe. PMID:27112197

  5. Synthesis, characterization and application of electroless metal assisted silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sahoo, Sumanta Kumar; Marikani, Arumugam

    2015-12-01

    Vertically aligned silicon nanowire arrays (SiNWs) have been synthesized by electroless metal deposition process. The fabricated SiNWs have an average diameter of 75 nm and 3.5-4.0 μm length, as confirmed from scanning electron microscopy. A characteristic asymmetric peak broadening at 520 cm-1 from Raman spectroscopy was obtained for the SiNWs as compared to the bulk silicon crystal due to phonon confinement. The as-prepared SiNWs exhibit good electron field-emission properties with turn-on field of about 8.26 V μm-1 at a current density of 4.9 μA cm-2. The SiNWs was functionalized by coating with a thin gold metallic film for 60 s, and then used as bio-probe for the detection of bovine serum albumin (BSA) protein molecules. From the linear sweep voltammetry analysis, the Au coated SiNWs, exhibit linear response to the BSA analyte with increase in concentration. The minimum detection limit of the protein molecule was calculated of about 1.16 μM by the as-synthesized SiNWs probe.

  6. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.

    PubMed

    Kornienko, Nikolay; Gibson, Natalie A; Zhang, Hao; Eaton, Samuel W; Yu, Yi; Aloni, Shaul; Leone, Stephen R; Yang, Peidong

    2016-05-24

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising strategy to absorb solar energy and directly convert it into a dense storage medium in the form of chemical bonds. The continual development and improvement of individual components of PEC systems is critical toward increasing the solar to fuel efficiency of prototype devices. Within this context, we describe a study on the growth of wurtzite indium phosphide (InP) nanowire (NW) arrays on silicon substrates and their subsequent implementation as light-absorbing photocathodes in PEC cells. The high onset potential (0.6 V vs the reversible hydrogen electrode) and photocurrent (18 mA/cm(2)) of the InP photocathodes render them as promising building blocks for high performance PEC cells. As a proof of concept for overall system integration, InP photocathodes were combined with a nanoporous bismuth vanadate (BiVO4) photoanode to generate an unassisted solar water splitting efficiency of 0.5%. PMID:27124203

  7. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    NASA Astrophysics Data System (ADS)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  8. InGaAs axial-junction nanowire-array solar cells

    NASA Astrophysics Data System (ADS)

    Nakai, Eiji; Chen, Muyi; Yoshimura, Masatoshi; Tomioka, Katsuhiro; Fukui, Takashi

    2015-01-01

    Axial p-i-n junction nanowire (NW) solar cells (SCs) with a position-controlled GaAs-based NW array were fabricated by selective-area metal organic vapor phase epitaxy (SA-MOVPE). The measured electron-beam-induced current (EBIC) signals showed the formation of an axial p-i-n junction, which confirms power generation under sunlight illumination. The series resistance of the NW SCs is much higher than that of conventional planar SCs based on Si or other III-V compound semiconductors. The main difficulty concerning the fabrication of these NW SCs is the degradation of series resistance between the GaAs-based NWs and the indium-tin oxide (ITO) deposited as a transparent electrode. The series resistance of the fabricated GaAs-based NW SCs was reduced by introducing a tin doping contact layer between the ITO and the NW array, which is formed by pulse doping. As a result of this improved structure, the fabricated SCs exhibited an open-circuit voltage of 0.544 V, a short-circuit current of 18.2 mA/cm2, and a fill factor of 0.721 for an overall conversion efficiency of 7.14% under AM1.5G illumination. The series resistance of the SCs could be decreased to 0.132 Ω·cm2, which is one order of magnitude lower than that of the SC without a highly doped contact layer. This reduced series resistance indicates that nanostructure SCs with transparent electrodes and multijunction NW SCs with high efficiencies can be fabricated on a commercial basis in the near future.

  9. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    SciTech Connect

    Wang Guoping; Chu Sheng; Zhan Ning; Liu Jianlin; Lin Yuqing; Chernyak, Leonid

    2011-01-24

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  10. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Qin, Shuijie

    2016-05-01

    A novel periodic array CdSe nanowire is prepared on a substrate of the porous titanium dioxide by using a self-assembly method of the colloidal CdSe quantum dots (QDs). The experimental results show that the colloidal CdSe QDs have renewedly assembled on its space scale and direction in process of losing background solvent and form the periodic array nanowire. The main peak wavelength of Photoluminescence (PL) spectra, which is measured by using a 100-nm aperture laser beam spot on a scanning near-field optics microscopy, has shifted 60 nm with compared to the colloidal CdSe QDs. Furthermore, we have measured smaller ordered nanometer structure in thin QDs area as well, a 343-nm periodic nanowire in thick QDs area and the colloidal QDs in edge of well-ordered nanowire.

  11. Change of the topology of a superconducting thin film electromagnetically coupled with an array of ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Trezza, M.; Cirillo, C.; Dolgiy, A. L.; Redko, S. V.; Bondarenko, V. P.; Andreyenka, A. V.; Danilyuk, A. L.; Prischepa, S. L.; Attanasio, C.

    2016-01-01

    We report on the superconducting properties of a Nb thin film deposited, with an interleaved insulating layer to avoid the proximity effect, on an array of ferromagnetic (Ni) nanowires embedded in a porous template. By investigating the T c (H) phase boundary and by measuring V(I) characteristics and critical currents as a function of the applied magnetic field, we find that the Nb film exhibits properties similar to those of a network of one-dimensional superconducting nanowires. We attribute this behavior to the stray fields of the magnetic dipoles, which create an almost regular lattice of normal regions in the superconductor, ultimately changing its topology. Furthermore, there is evidence that the magnetic pinning of vortices is negligible in this structure.

  12. Magnetization mechanisms in ordered arrays of polycrystalline Fe{sub 100−x}Co{sub x} nanowires

    SciTech Connect

    Viqueira, M. S.; Bajales, N.; Urreta, S. E.; Bercoff, P. G.

    2015-05-28

    Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe{sub 100−x}Co{sub x} nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.

  13. Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol-gel derived ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kitazawa, Nobuaki; Aono, Masami; Watanabe, Yoshihisa

    2014-11-01

    Vertically aligned one-dimensional ZnO nanowire arrays have been synthesized by a hydrothermal method on sol-gel derived ZnO films. Sol-gel derived ZnO films and corresponding ZnO nanowire arrays have been characterized by X-ray diffraction and field-emission scanning electron microscopy. The effect of sol-gel derived ZnO film surface on the morphology of ZnO nanowire arrays has been investigated. The authors suggest from our investigation that sol-gel derived ZnO films affect the growth of one-dimensional ZnO nanostructures. Not only crystalline ZnO films but also amorphous ones can act as a scaffold for ZnO nucleus. Tilted ZnO micro-rods are grown on ZnO gel films, whereas vertically aligned ZnO nanowire arrays are grown on nanometer-sized ZnO grains. The average diameter of ZnO nanowire arrays are correlated strongly with the grain size of sol-gel derived ZnO films.

  14. Wavelength controlled multilayer-stacked linear InAs quantum dot arrays on InGaAsP/InP (100) by self-organized anisotropic strain engineering: A self-ordered quantum dot crystal

    SciTech Connect

    Sritirawisarn, N.; Otten, F. W. M. van; Eijkemans, T. J.; Noetzel, R.

    2008-09-29

    Multilayer-stacked linear InAs quantum dot (QD) arrays are created on InAs/InGaAsP superlattice templates formed by self-organized anisotropic strain engineering on InP (100) substrates in chemical beam epitaxy. Stacking of the QD arrays with identical emission wavelength in the 1.55 {mu}m region at room temperature is achieved through the insertion of ultrathin GaAs interlayers beneath the QDs with increasing interlayer thickness in successive layers. The increment in the GaAs interlayer thickness compensates the QD size/wavelength increase during strain correlated stacking. This is the demonstration of a three-dimensionally self-ordered QD crystal with fully controlled structural and optical properties.

  15. Wavelength controlled multilayer-stacked linear InAs quantum dot arrays on InGaAsP/InP (100) by self-organized anisotropic strain engineering: A self-ordered quantum dot crystal

    NASA Astrophysics Data System (ADS)

    Sritirawisarn, N.; van Otten, F. W. M.; Eijkemans, T. J.; Nötzel, R.

    2008-09-01

    Multilayer-stacked linear InAs quantum dot (QD) arrays are created on InAs/InGaAsP superlattice templates formed by self-organized anisotropic strain engineering on InP (100) substrates in chemical beam epitaxy. Stacking of the QD arrays with identical emission wavelength in the 1.55 μm region at room temperature is achieved through the insertion of ultrathin GaAs interlayers beneath the QDs with increasing interlayer thickness in successive layers. The increment in the GaAs interlayer thickness compensates the QD size/wavelength increase during strain correlated stacking. This is the demonstration of a three-dimensionally self-ordered QD crystal with fully controlled structural and optical properties.

  16. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.

    PubMed

    Chen, Haining; Wei, Zhanhua; Yan, Keyou; Bai, Yang; Zhu, Zonglong; Zhang, Teng; Yang, Shihe

    2014-11-01

    Single-crystalline and branched 1D arrays, ZnO nanowires/nanodisks (NWs/NDs) arrays, are fabricated to significantly enhance the performance of photoelectrochemical (PEC) water splitting. The epitaxial growth of the ZnO NDs with large exposed polar facets on ZnO NWs exhibits a laminated structure, which dramatically increases the light scattering capacity of the NWs arrays, especially in the wavelength region around 400 nm. The ND branching of the 1D arrays in the epitaxial fashion not only increase surface area and light utilization, but also support fast charge transport, leading to the considerable increase of photocurrent. Moreover, the tiny size NDs can facilitate charge separation and reduce charge recombination, while the large exposed polar facets of NDs reduce the external potential bias needed for water splitting. These advantages land the ZnO NWs/NDs arrays a four times higher power conversion efficiency than the ZnO NWs arrays. By sensitizing the ZnO NWs/NDs with CdS and CdSe quantum dots, the PEC performance can be further improved. This work advocates a trunk/leaf in forest concept for the single-crystalline NWs/NDs in array with enlarged exposure of polar facets, which opens the way for optimizing light harvesting and charge separation and transport, and thus the PEC water splitting. PMID:24990800

  17. Exploring the Potential of Turbulent Flow Control Using Vertically Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Calhoun, John; Guskey, Christopher; Seigler, Michael; Koka, Aneesh; Sodano, Henry

    2012-11-01

    We present evidence that turbulent flow can be influenced by oscillating nanowires. A substrate coated with vertically aligned nanowires was installed in the boundary wall of fully-developed turbulent channel flow, and the substrate was excited by a piezoceramic actuator to oscillate the nanowires. Because the nanowires are immersed in the viscous sublayer, it was previously unclear whether the small scale flow oscillations imparted into the bulk flow by the nanowires would influence the turbulent flow or be dissipated by the effects of viscosity. Our experiments demonstrated that the nanowires produced perturbations in the flow and contributed energy throughout the depth of the turbulent layer. A parallel investigation using a dynamically scaled surface of vertically aligned wires in laminar flow found that, even at low Reynolds numbers, significant momentum transport can be produced in the flow by the introduction of a travelling wave motion into the surface. These findings reflect the potential for using oscillating nanowires as a novel method of near-wall turbulent flow control. This work was supported by the Air Force Office of Scientific Research under FA9550-11-1-0140.

  18. Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

    PubMed Central

    Rowell, N L; Benkouider, A; Ronda, A; Favre, L; Berbezier, I

    2014-01-01

    Summary We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.15. Their photoluminescence (PL) spectra were measured at low temperatures (from 6 to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980–1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si–Si mode, NW-transverse acoustic (TA), Si–substrate–TO and NW-no-phonon (NP) lines, respectively. From these results the NW TA and TO phonon energies are found to be 15.7 and 57.8 meV, respectively, which agree very well with the values expected for bulk Si1− xGex with x = 0.15, while the measured NW NP energy of 1099 meV would indicate a bulk-like Ge concentration of x = 0.14. Both of these concentrations values, as determined from PL, are in agreement with the target value. The NWs are too large in diameter for a quantum confinement induced energy shift in the band gap. Nevertheless, NW PL is readily observed, indicating that efficient carrier recombination is occurring within the NWs. PMID:25671145

  19. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  20. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes.

    PubMed

    Ma, Tian Yi; Dai, Sheng; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-10-01

    Hybrid porous nanowire arrays composed of strongly interacting Co3O4 and carbon were prepared by a facile carbonization of the metal-organic framework grown on Cu foil. The resulting material, possessing a high surface area of 251 m(2) g(-1) and a large carbon content of 52.1 wt %, can be directly used as the working electrode for oxygen evolution reaction without employing extra substrates or binders. This novel oxygen evolution electrode can smoothly operate in alkaline solutions (e.g., 0.1 and 1.0 M KOH), affording a low onset potential of 1.47 V (vs reversible hydrogen electrode) and a stable current density of 10.0 mA cm(-2) at 1.52 V in 0.1 M KOH solution for at least 30 h, associated with a high Faradaic efficiency of 99.3%. The achieved ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the state-of-the-art noble-metal/transition-metal and nonmetal catalysts, originate from the unique nanowire array electrode configuration and in situ carbon incorporation, which lead to the large active surface area, enhanced mass/charge transport capability, easy release of oxygen gas bubbles, and strong structural stability. Furthermore, the hybrid Co3O4-carbon porous nanowire arrays can also efficiently catalyze oxygen reduction reaction, featuring a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. PMID:25216300

  1. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds.

    PubMed

    Cho, Soo-Yeon; Yoo, Hae-Wook; Kim, Ju Ye; Jung, Woo-Bin; Jin, Ming Liang; Kim, Jong-Seon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2016-07-13

    The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure. PMID:27304752

  2. Dye-sensitized InGaN nanowire arrays for efficient hydrogen production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kibria, M. G.; Chowdhury, F. A.; Trudeau, M. L.; Guo, H.; Mi, Z.

    2015-07-01

    Solar water splitting is a key sustainable energy technology for clean, storable and renewable source of energy in the future. Here we report that Merocyanine-540 dye-sensitized and Rh nanoparticle-decorated molecular beam epitaxially grown In0.25Ga0.75N nanowire arrays have produced hydrogen from ethylenediaminetetraacetic acid (EDTA) and acetonitrile mixture solution under green, yellow and orange solar spectra (up to 610 nm) for the first time. An apparent quantum efficiency of 0.3% is demonstrated for wavelengths 525-600 nm, providing a viable approach to harness deep-visible and near-infrared solar energy for efficient and stable water splitting.

  3. ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications

    NASA Astrophysics Data System (ADS)

    Zhong, Miao; Sato, Yukio; Kurniawan, Mario; Apostoluk, Aleksandra; Masenelli, Bruno; Maeda, Etsuo; Ikuhara, Yuichi; Delaunay, Jean-Jacques

    2012-12-01

    A single crystal domain texture quality (a unique in-plane and out-of-plane crystalline orientation over a large area) ZnO nanostructure of a dense nanowire array on a thick film has been homogeneously synthesized on a-plane sapphire substrates over large areas through a one-step chemical vapor deposition (CVD) process. The growth mechanism is clarified: a single crystal [0\\bar {2}1] oriented ZnAl2O4 buffer layer was formed at the ZnO film and the a-plane sapphire substrate interface via a diffusion reaction process during the CVD process, providing improved epitaxial conditions that enable the synthesis of the high crystalline quality ZnO nanowire array on a film structure. The high optoelectronic quality of the ZnO nanowire array on a film sample is evidenced by the free exitonic emissions in the low-temperature photoluminescence spectroscopy. A carrier density of ˜1017 cm-3 with an n-type conductivity of the ZnO nanowire array on a film sample is obtained by electrochemical impedance analysis. Finally, the ZnO nanowire array on a film sample is demonstrated to be an ideal template for a further synthesis of a single crystal quality ZnO-ZnGa2O4 core-shell nanowire array on a film structure. The fabricated ZnO-ZnGa2O4 sample revealed an enhanced anticorrosive ability and photoelectrochemical performance when used as a photoanode in a photoelectrochemical water splitting application.

  4. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled.

    PubMed

    Huang, Jianfei; Zhu, Yihua; Yang, Xiaoling; Chen, Wei; Zhou, Ying; Li, Chunzhong

    2015-01-14

    Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices. PMID:25415769

  5. High performance binderless TiO2 nanowire arrays electrode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Yueming; Lv, Xiaojun; Li, Jinghong

    2009-09-01

    Binderless lithium ion battery electrode fabricated by anodizing Ti foil, in which TiO2 nanowire serves as active materials and unreacted Ti foil as the current collector, exhibited high electrochemical performance.

  6. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled

    NASA Astrophysics Data System (ADS)

    Huang, Jianfei; Zhu, Yihua; Yang, Xiaoling; Chen, Wei; Zhou, Ying; Li, Chunzhong

    2014-12-01

    Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices.Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires

  7. One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyang; Chen, Guanghui; Tang, Jingjing; Ren, Yongpeng; Yang, Juan

    2015-12-01

    With the ever-increasing power and energy needs in application of advanced consumer electronics and related technologies, developing electrode materials with both high energy and power densities holds the key for satisfying the urgent demand of energy storage worldwide. Herein, we report the successful preparation of NiCo2O4 nanowire arrays that are grown on nickel foam via a simple hydrothermal method followed by an annealing process. The electron microscopy images of the obtained NiCo2O4 nanowires reveal that the NiCo2O4 nanowires are uniformly distributed and anchored on the surface of nickel foam. Benefited from the unique structure of NiCo2O4 nanowires on a nickel foam substrate, the as prepared materials exhibit a high reversible capacity of 1048.8 mAh g-1 at 100 mA g-1 and show excellent rate performance for lithium storage.

  8. Synthesis of pyrite/carbon shells on cobalt nanowires forming core/branch arrays as high-performance cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, F.; Pan, G. X.; Chen, J.; Zhang, Y. J.; Xia, X. H.

    2016-01-01

    Construction of self-supported porous metal sulfide arrays is critical for the development of high-performance electrochemical energy storage devices. Herein we report hierarchical porous Co/FeS2-C core/branch nanowires arrays by the combination of facile solution-based methods. FeS2-C nanoflakes branch is uniformly coated on the Co nanowire core forming composite core/branch arrays. The as-prepared Co/FeS2-C core/branch nanowire arrays possess combined properties of highly porous structure and strong mechanical stability. As cathode of lithium ion batteries, the Co/FeS2-C core/branch nanowire arrays exhibit good electrochemical performances with initial discharge capacity of 850 mAh g-1 at 0.25 °C and stable high-rate cycling life (539 mAh g-1 after 70 cycles at 0.25 °C). The hierarchical core/branch architecture provides positive roles in the enhancement of electrochemical properties, including fast transportation path of electron, short diffusion of ions and high contact area between the active material and electrolyte.

  9. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Ma, Liuhong; Han, Weihua Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-21

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  10. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    NASA Astrophysics Data System (ADS)

    Ma, Liuhong; Han, Weihua; Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-01

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  11. Vertically Well-Aligned ZnO Nanowire Arrays Directly Synthesized from Zn Vapor Deposition Without Catalyst

    NASA Astrophysics Data System (ADS)

    Van Khai, Tran; Van Thu, Le; Huu, Nguyen The; Lam, Tran Dai

    2016-05-01

    Vertically well-aligned ZnO nanowire (NW) arrays with high density have been successfully synthesized on sapphire substrate by thermal evaporation of the zinc powders without catalysts or additives. The ZnO NWs were characterized by scanning electron microscopy, transmission electronic microscopy (TEM), x-ray diffraction, ultraviolet-visible, photoluminescence, Raman, and x-ray photoelectron spectroscopy. The results showed that the obtained ZnO NWs had diameters in the range of 100-130 nm, lengths over several micrometers and well aligned in the direction perpendicular to the substrate surface. The as-synthesized ZnO NWs, which were single crystalline in a hexagonal structure, showed uniform morphology, faceted planes at the tips of the NWs, and grown along the [001] direction. The as-synthesized NW arrays had a good crystal quality with excellent optical properties, showing a sharp and strong ultraviolet emission at 380 nm and a weak visible emission at around 500 nm.

  12. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation.

    PubMed

    Fellahi, Ouarda; Barras, Alexandre; Pan, Guo-Hui; Coffinier, Yannick; Hadjersi, Toufik; Maamache, Mustapha; Szunerits, Sabine; Boukherroub, Rabah

    2016-03-01

    We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K2Cr2O7) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO3 aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K2Cr2O7 (10(-4)M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ>420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst. PMID:26610097

  13. Electroactive polypyrrole nanowire arrays: synergistic effect of cancer treatment by on-demand drug release and photothermal therapy.

    PubMed

    Lee, HyungJae; Hong, Wooyoung; Jeon, Seunghyun; Choi, Yongdoo; Cho, Youngnam

    2015-04-14

    An electroresponsive drug release system based on polypyrrole (Ppy) nanowires was developed to induce the local delivery of anticancer drug, doxorubicin (DOX), according to the applied electric field. DOX-conjugated Ppy nanowire (NW) (DOX/Ppy NW) array was initially prepared by electrochemical deposition of a mixture of pyrrole monomers and biotin as dopants in the anodic alumina oxide membrane as a sacrificial template. Morphological observation by scanning electron microscopy revealed free-standing and 3D nanotopographical features with large surface area and high density. In addition, we investigated the antitumor efficacy of DOX released from DOX/Ppy NW array in response to the external electric field using two kinds of cancer cell lines, human oral squamous carcinoma cells (KB cells) and human breast cancer cells (MCF7 cells). Meanwhile, strong photothermal effect as a result of a near-infrared absorbing ability of Ppy synergistically maximizes the chemotherapeutic efficacy. Our results suggested that the proposed multifunctional Ppy platform possessing several beneficial features is very promising for many therapeutic applications including cancer. PMID:25815804

  14. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    PubMed

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. PMID:24418144

  15. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  16. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    PubMed Central

    Wnęk, M; Górzny, M Ł; Ward, M B; Wälti, C; Davies, A G; Brydson, R; Evans, S D; Stockley, P G

    2016-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. PMID:23220929

  17. GaAs nanowire array solar cells with axial p-i-n junctions.

    PubMed

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics. PMID:24849203

  18. Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters.

    PubMed

    Deng, Kaimo; Lu, Hao; Shi, Zhiwei; Liu, Qiong; Li, Liang

    2013-08-28

    Flexible three-dimensional SnO2 nanowire arrays were synthesized on a carbon cloth template in combination with atomic layer deposition and vapor transport. The as-grown nanostructures were assembled by high density quasi-aligned nanowires with a large aspect ratio. Nanoscale photodetectors based on the flexible nanostructure demonstrate excellent ultraviolet light selectivity, a high speed response time less than 0.3 s, and dark current as low as 2.3 pA. Besides, field emission measurements of the hierarchical structure show a rather low turn-on field (3.3 Vμm(-1)) and threshold field (4.5 Vμm(-1)), as well as an excellent field enhancment factor (2375) with a long-term stability up to 20 h. These results indicate that the flexible three-dimensional SnO2 nanowire arrays can be used as functional building blocks for efficient photodetectors and field emitters. PMID:23879602

  19. Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance

    PubMed Central

    2014-01-01

    An easy and low-cost method to transfer large-scale horizontally aligned Si nanowires onto a substrate is reported. Si nanowires prepared by metal-assisted chemical etching were assembled and anchored to fabricate multiwire photoconductive devices with standard Si technology. Scanning electron microscopy images showed highly aligned and successfully anchored Si nanowires. Current-voltage tests showed an approximately twofold change in conductivity between the devices in dark and under laser irradiation. Fully reversible light switching ON/OFF response was also achieved with an ION/IOFF ratio of 230. Dynamic response measurement showed a fast switching feature with response and recovery times of 10.96 and 19.26 ms, respectively. PMID:25520603

  20. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

    PubMed

    Wang, Gongming; Wang, Hanyu; Ling, Yichuan; Tang, Yuechao; Yang, Xunyu; Fitzmorris, Robert C; Wang, Changchun; Zhang, Jin Z; Li, Yat

    2011-07-13

    We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO(2) nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO(2) (H:TiO(2)) nanowires were prepared by annealing the pristine TiO(2) nanowires in hydrogen atmosphere at various temperatures in a range of 200-550 °C. In comparison to pristine TiO(2) nanowires, H:TiO(2) samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO(2) samples have exceptionally low photocurrent saturation potentials of -0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO(2) nanowire sample yields a photocurrent density of ∼1.97 mA/cm(2) at -0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm(2) from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ∼1.63%. After eliminating the discrepancy between the irradiance of the xenon lamp and solar light, by integrating the incident-photon-to-current-conversion efficiency (IPCE) spectrum of the H:TiO(2) nanowire sample with a standard AM 1.5G solar spectrum, the STH efficiency is calculated to be ∼1.1%, which is the best value for a TiO(2) photoanode. IPCE analyses confirm the photocurrent enhancement is mainly due to the improved photoactivity of TiO(2) in the UV region. Hydrogen treatment increases the donor density of TiO(2) nanowires by 3 orders of magnitudes, via creating a high density of oxygen vacancies that serve as electron donors. Similar enhancements in photocurrent were also observed in anatase H:TiO(2) nanotubes. The capability of making highly photoactive H:TiO(2) nanowires and nanotubes opens up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis. PMID:21710974