Science.gov

Sample records for inas nanowires controlled

  1. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  2. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  3. Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study

    PubMed Central

    Mandl, Bernhard; Dey, Anil W.; Stangl, Julian; Cantoro, Mirco; Wernersson, Lars-Erik; Bauer, Günther; Samuelson, Lars; Deppert, Knut; Thelander, Claes

    2011-01-01

    In this work, the nucleation and growth of InAs nanowires on patterned SiO2/Si(111) substrates is studied. It is found that the nanowire yield is strongly dependent on the size of the etched holes in the SiO2, where openings smaller than 180 nm lead to a substantial decrease in nucleation yield, while openings larger than ≈500nm promote nucleation of crystallites rather than nanowires. We propose that this is a result of indium particle formation prior to nanowire growth, where the size of the indium particles, under constant growth parameters, is strongly influenced by the size of the openings in the SiO2 film. Nanowires overgrowing the etched holes, eventually leading to a merging of neighboring nanowires, shed light into the growth mechanism. PMID:22053114

  4. Laser induced modification and ablation of InAs nanowires

    SciTech Connect

    He Jiayu; Chen Pingping; Lu Wei; Dai Ning; Zhu Daming

    2012-05-01

    InAs nanowires were irradiated locally under an ambient condition using a focused laser beam, which led to laser ablation and thinning of the nanowires. We show that the laser beam can induce a reduction of the local As concentration in an InAs nanowire; the change leads to a significant decrease of local melting temperature of InAs, which results in the thinning and eventually breaking of the nanowire. The results indicate that chemical and mechanical modifications of an InAs nanowire can be accomplished by using a confocal laser beam, which may prove to be a convenient approach in fabricating nanostructural materials and nanodevices.

  5. Ballistic InAs nanowire transistors.

    PubMed

    Chuang, Steven; Gao, Qun; Kapadia, Rehan; Ford, Alexandra C; Guo, Jing; Javey, Ali

    2013-02-13

    Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as ~150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theoretically assessed by a method that combines Fermi's golden rule and a numerical Schrödinger-Poisson simulation to determine the surface scattering potential with the theoretical calculations being consistent with experiments. Near ballistic transport (~80% of the ballistic limit) is demonstrated experimentally for transistors with a channel length of ~60 nm, owing to the long mean free path of electrons in InAs NWs. PMID:23256503

  6. Phase coherent transport in hollow InAs nanowires

    SciTech Connect

    Wenz, T.; Rosien, M.; Haas, F.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th.; Demarina, N.

    2014-09-15

    Hollow InAs nanowires are produced from GaAs/InAs core/shell nanowires by wet chemical etching of the GaAs core. At room temperature, the resistivity of several nanowires is measured before and after removal of the GaAs core. The observed change in resistivity is explained by simulating the electronic states in both structures. At cryogenic temperatures, quantum transport in hollow InAs nanowires is studied. Flux periodic conductance oscillations are observed when the magnetic field is oriented parallel to the nanowire axis.

  7. Thermal conductance of InAs nanowire composites.

    PubMed

    Persson, Ann I; Koh, Yee Kan; Cahill, David G; Samuelson, Lars; Linke, Heiner

    2009-12-01

    The ability to measure and understand heat flow in nanowire composites is crucial for applications ranging from high-speed electronics to thermoelectrics. Here we demonstrate the measurement of the thermal conductance of nanowire composites consisting of regular arrays of InAs nanowires embedded in PMMA using time-domain thermoreflectance (TDTR). On the basis of a proposed model for heat flow in the composite, we can, as a consistency check, extract the thermal conductivity Lambda of the InAs nanowires and find Lambda(NW) = 5.3 +/- 1.5 W m(-1) K(-1), in good agreement with theory and previous measurements of individual nanowires.

  8. Coherent electron transport in InAs nanowires

    NASA Astrophysics Data System (ADS)

    Sourribes, Marion J. L.; Isakov, Ivan; Panfilova, Marina; Ercolani, Daniele; Giazotto, Francesco; Sorba, Lucia; Warburton, Paul A.

    2013-03-01

    Indium arsenide nanowires are of special interest since they exhibit high mobility, strong spin-orbit coupling and form ohmic contacts with metals which make them good candidates for the observation of Majorana fermions in semiconductor/superconductor hybrid systems. InAs nanowires have already been used as Josephson elements in superconducting devices. Here we report our low-temperature experiments on InAs nanowires grown by two methods: (i) gold-catalyzed chemical beam epitaxy on InAs (111) substrates; (ii) catalyst-free molecular beam epitaxy on Si (111) substrates. Contacts to the nanowires are defined by e-beam lithography. Before metallization of the contacts, the nanowire surface is deoxidized by an in situ sputter-cleaning process leading to a specific contact resistance of 9 . 8 ×10-9 Ω .cm2. These highly transparent contacts allowed the observation of proximity-induced superconductivity in InAs nanowires connected with Nb contacts. The critical current was tuned by changing the gate voltage. Both magnetic-field-dependent and gate-voltage-dependent measurements of universal conductance fluctuations were performed to extract information on the electron phase coherence.

  9. Hall effect measurements on InAs nanowires

    SciTech Connect

    Bloemers, Ch.; Grap, T.; Lepsa, M. I.; Moers, J.; Gruetzmacher, D.; Lueth, H.; Trellenkamp, St.; Schaepers, Th.

    2012-10-08

    We have processed Hall contacts on InAs nanowires grown by molecular beam epitaxy using an electron beam lithography process with an extremely high alignment accuracy. The carrier concentrations determined from the Hall effect measurements on these nanowires are lower by a factor of about 4 in comparison with those measured by the common field-effect technique. The results are used to evaluate quantitatively the charging effect of the interface and surface states.

  10. Selective-Area Growth of InAs Nanowires on Ge and Vertical Transistor Application.

    PubMed

    Tomioka, Katsuhiro; Izhizaka, Fumiya; Fukui, Takashi

    2015-11-11

    III-V compound semiconductor and Ge are promising channel materials for future low-power and high-performance integrated circuits. A heterogeneous integration of these materials on the same platform, however, raises serious problem owing to a huge mismatch of carrier mobility. We proposed direct integration of perfectly vertically aligned InAs nanowires on Ge as a method for new alternative integrated circuits and demonstrated a high-performance InAs nanowire-vertical surrounding-gate transistor. Virtually 100% yield of vertically aligned InAs nanowires was achieved by controlling the initial surface of Ge and high-quality InAs nanowires were obtained regardless of lattice mismatch (6.7%). The transistor performance showed significantly higher conductivity with good gate control compared to Si-based conventional field-effect transistors: the drain current was 0.65 mA/μm, and the transconductance was 2.2 mS/μm at drain-source voltage of 0.50 V. These demonstrations are a first step for building alternative integrated circuits using vertical III-V/multigate planar Ge FETs.

  11. Direct observation of acoustic oscillations in InAs nanowires.

    PubMed

    Mariager, Simon O; Khakhulin, Dmitry; Lemke, Henrik T; Kjaer, Kasper S; Guerin, Laurent; Nuccio, Laura; Sørensen, Claus B; Nielsen, Martin M; Feidenhans'l, Robert

    2010-07-14

    Time-resolved X-ray diffraction and optical reflectivity are used to directly measure three different acoustic oscillations of InAs nanowires. The oscillations are excited by a femtosecond laser pulse and evolve at three different time scales. We measure the absolute scale of the initial radial expansion of the fundamental breathing eigenmode and determine the frequency by transient optical reflectivity. For the extensional eigenmode we measure the oscillations of the average radial and axial lattice constants and determine the amplitude of oscillations and the average extension. Finally we observe a bending motion of the nanowires. The frequencies of the eigenmodes are in good agreements with predictions made by continuum elasticity theory and we find no difference in the speed of sound between the wurtzite nanowires and cubic bulk crystals, but the measured strain is influenced by the interaction between different modes. The wurtzite crystal structure of the nanowires however has an anisotropic thermal expansion.

  12. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.

  13. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs. PMID:27002386

  14. In-situ mechanical characterization of wurtzite InAs nanowires

    NASA Astrophysics Data System (ADS)

    Erdélyi, Róbert; Hannibal Madsen, Morten; Sáfrán, György; Hajnal, Zoltán; Endre Lukács, István; Fülöp, Gergő; Csonka, Szabolcs; Nygård, Jesper; Volk, János

    2012-10-01

    High aspect ratio vertical InAs nanowires were mechanically characterized in a scanning electron microscope equipped with two micromanipulators. One, equipped with a calibrated atomic force microscope probe, was used for in-situ static bending of single nanowires along the <11-20> crystallographic direction. The other one was equipped with a tungsten tip for dynamic resonance excitation of the same nanowires. This setup enabled a direct comparison between the two techniques. The crystal structure was analyzed using transmission electron microscopy, and for InAs nanowires with a hexagonal wutzite crystal structure, the bending modulus value was found to BM=43.5 GPa. This value is significantly lower than previously reported for both cubic zinc blende InAs bulk crystals and InAs nanowires. Besides, due to their high resonance quality factor (Q>1200), the wurtzite InAs nanowires are shown to be a promising candidate for sub-femtogram mass detectors.

  15. Ballistic modeling of InAs nanowire transistors

    NASA Astrophysics Data System (ADS)

    Jansson, Kristofer; Lind, Erik; Wernersson, Lars-Erik

    2016-01-01

    In this work, the intrinsic performance of InAs nanowire transistors is evaluated in the ballistic limit. A self-consistent Schrödinger-Poisson solver is utilized in the cylindrical geometry, while accounting for conduction band non-parabolicity. The transistor characteristics are derived from simulations of ballistic transport within the nanowire. Using this approach, the performance is calculated for a continuous range of nanowire diameters and the transport properties are mapped. A transconductance exceeding 4S /mm is predicted at a gate overdrive of 0.5V and it is shown that the performance is improved with scaling. Furthermore, the influence from including self-consistency and non-parabolicity in the band structure simulations is quantified. It is demonstrated that the effective mass approximation underestimates the transistor performance due to the highly non-parabolic conduction band in InAs. Neglecting self-consistency severely overestimates the device performance, especially for thick nanowires. The error introduced by both of these approximations gets increasingly worse under high bias conditions.

  16. Bandgap Energy of Wurtzite InAs Nanowires.

    PubMed

    Rota, Michele B; Ameruddin, Amira S; Fonseka, H Aruni; Gao, Qiang; Mura, Francesco; Polimeni, Antonio; Miriametro, Antonio; Tan, H Hoe; Jagadish, Chennupati; Capizzi, Mario

    2016-08-10

    InAs nanowires (NWs) have been grown on semi-insulating InAs (111)B substrates by metal-organic chemical vapor deposition catalyzed by 50, 100, and 150 nm-sized Au particles. The pure wurtzite (WZ) phase of these NWs has been attested by high-resolution transmission electron microscopy and selected area diffraction pattern measurements. Low temperature photoluminescence measurements have provided unambiguous and robust evidence of a well resolved, isolated peak at 0.477 eV, namely 59 meV higher than the band gap of ZB InAs. The WZ nature of this energy band has been demonstrated by high values of the polarization degree, measured in ensembles of NWs both as-grown and mechanically transferred onto Si and GaAs substrates, in agreement with the polarization selection rules for WZ crystals. The value of 0.477 eV found here for the bandgap energy of WZ InAs agrees well with theoretical calculations.

  17. Bandgap Energy of Wurtzite InAs Nanowires.

    PubMed

    Rota, Michele B; Ameruddin, Amira S; Fonseka, H Aruni; Gao, Qiang; Mura, Francesco; Polimeni, Antonio; Miriametro, Antonio; Tan, H Hoe; Jagadish, Chennupati; Capizzi, Mario

    2016-08-10

    InAs nanowires (NWs) have been grown on semi-insulating InAs (111)B substrates by metal-organic chemical vapor deposition catalyzed by 50, 100, and 150 nm-sized Au particles. The pure wurtzite (WZ) phase of these NWs has been attested by high-resolution transmission electron microscopy and selected area diffraction pattern measurements. Low temperature photoluminescence measurements have provided unambiguous and robust evidence of a well resolved, isolated peak at 0.477 eV, namely 59 meV higher than the band gap of ZB InAs. The WZ nature of this energy band has been demonstrated by high values of the polarization degree, measured in ensembles of NWs both as-grown and mechanically transferred onto Si and GaAs substrates, in agreement with the polarization selection rules for WZ crystals. The value of 0.477 eV found here for the bandgap energy of WZ InAs agrees well with theoretical calculations. PMID:27467011

  18. Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon

    NASA Astrophysics Data System (ADS)

    Gomes, U. P.; Ercolani, D.; Zannier, V.; David, J.; Gemmi, M.; Beltram, F.; Sorba, L.

    2016-06-01

    We report on the nucleation and growth mechanism of self-catalyzed InAs nanowires (NWs) grown on Si (111) substrates by chemical beam epitaxy. Careful choices of the growth parameters lead to In-rich conditions such that the InAs NWs nucleate from an In droplet and grow by the vapor-liquid-solid mechanism while sustaining an In droplet at the tip. As the growth progresses, new NWs continue to nucleate on the Si (111) surface causing a spread in the NW size distribution. The observed behavior in NW nucleation and growth is described within a suitable existing theoretical model allowing us to extract relevant growth parameters. We argue that these results provide useful guidelines to rationally control the growth of self-catalyzed InAs NWs for various applications.

  19. Metal free growth and characterization of InAs1-xPx nanowires

    SciTech Connect

    Mandl, Bernhard; Stangl, Julian; Brehm, Moritz; Fromherz, Thomas; Bauer, Guenther; Maartensson, Thomas; Samuelson, Lars; Seifert, Werner

    2007-04-10

    InAs nanowires have been grown without the use of Au or other metal particles as catalyst by metal-organic vapor phase epitaxy. The nanowires growth is initiated by a thin layer of SiOx. The wires exhibit a non-tapered shape with a hexagonal cross section. In addition to InAs also InAs1-xPx wires are grown and the incorporation of P is studied by photoluminescence.

  20. Switching current distributions in InAs nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kim, Bum-Kyu; Doh, Yong-Joo

    2016-08-01

    We report on the switching current distributions in nano-hybrid Josephson junctions made of InAs semiconductor nanowires. The temperature dependence of the switching current distribution can be understood through the motion of Josephson phase particles escaping from a tilted washboard potential, and the data could be fitted well by using the macroscopic quantum tunneling, thermal activation or phase diffusion models, depending on temperature. Application of the gate voltage to tune the Josephson coupling strength enable us to adjust the effective temperature for the escape process, and holds promising for developing gate-tunable superconducting phase qubits.

  1. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires.

  2. Synthesis and structural characterization of vertical ferromagnetic MnAs/semiconducting InAs heterojunction nanowires

    NASA Astrophysics Data System (ADS)

    Kodaira, Ryutaro; Hara, Shinjiro; Kabamoto, Kyohei; Fujimagari, Hiromu

    2016-07-01

    The purpose of this study is to synthesize vertical ferromagnetic/semiconducting heterojunction nanowires by combing the catalyst-free selective-area growth of InAs nanowires and the endotaxial nanoclustering of MnAs and to structurally and magnetically characterize them. MnAs penetrates the InAs nanowires to form nanoclusters. The surface migration length of manganese adatoms on the nanowires, which is estimated to be 600 nm at 580 °C, is a key to the successful fabrication of vertical MnAs/InAs heterojunction nanowires with atomically abrupt heterointerfaces.

  3. Single-electron transport in InAs nanowire quantum dots formed by crystal phase engineering

    NASA Astrophysics Data System (ADS)

    Nilsson, Malin; Namazi, Luna; Lehmann, Sebastian; Leijnse, Martin; Dick, Kimberly A.; Thelander, Claes

    2016-05-01

    We report electrical characterization of quantum dots formed by introducing pairs of thin wurtzite (WZ) segments in zinc blende (ZB) InAs nanowires. Regular Coulomb oscillations are observed over a wide gate voltage span, indicating that WZ segments create significant barriers for electron transport. We find a direct correlation of transport properties with quantum dot length and corresponding growth time of the enclosed ZB segment. The correlation is made possible by using a method to extract lengths of nanowire crystal phase segments directly from scanning electron microscopy images, and with support from transmission electron microscope images of typical nanowires. From experiments on controlled filling of nearly empty dots with electrons, up to the point where Coulomb oscillations can no longer be resolved, we estimate a lower bound for the ZB-WZ conduction-band offset of 95 meV.

  4. InAs nanowire formation on InP(001)

    SciTech Connect

    Parry, H. J.; Ashwin, M. J.; Jones, T. S.

    2006-12-01

    The heteroepitaxial growth of InAs on InP(001) by solid source molecular beam epitaxy has been studied for a range of different growth temperatures and annealing procedures. Atomic force microscopy images show that nanowires are formed for deposition in the temperature range of 400-480 deg. C, and also following high temperature annealing (480 deg. C) after deposition at 400 deg. C. The wires show preferential orientation along <110> and often exhibit pronounced serpentine behavior due to the presence of kinks, an effect that is reduced at increasing growth temperature. The results suggest that the serpentine behavior is related to the degree of initial surface order. Kinks in the wires appear to act as nucleation centers for In adatoms migrating along the wires during annealing, leading to the coexistence of large three-dimensional islands.

  5. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    PubMed

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers.

  6. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    PubMed

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers. PMID:27248817

  7. Ag-catalyzed InAs nanowires grown on transferable graphite flakes.

    PubMed

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

  8. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    NASA Astrophysics Data System (ADS)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

  9. Ag-catalyzed InAs nanowires grown on transferable graphite flakes.

    PubMed

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy. PMID:27479073

  10. g-factor anisotropy in nanowire-based InAs quantum dots

    SciTech Connect

    D'Hollosy, Samuel; Fábián, Gábor; Baumgartner, Andreas; Schönenberger, Christian; Nygård, Jesper

    2013-12-04

    The determination and control of the electron g-factor in semiconductor quantum dots (QDs) are fundamental prerequisites in modern concepts of spintronics and spin-based quantum computation. We study the dependence of the g-factor on the orientation of an external magnetic field in quantum dots (QDs) formed between two metallic contacts on stacking fault free InAs nanowires. We extract the g-factor from the splitting of Kondo resonances and find that it varies continuously in the range between |g*| = 5 and 15.

  11. MBE growth of self-assisted InAs nanowires on graphene

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Hyun; Ronen, Yuval; Cohen, Yonatan; Convertino, Domenica; Rossi, Antonio; Coletti, Camilla; Heun, Stefan; Sorba, Lucia; Kacman, Perla; Shtrikman, Hadas

    2016-11-01

    Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ∼50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studied by changing the substrate from bilayer graphene through buffer layer to quasi-free-standing monolayer graphene. The positional relation of the InAs NWs with the graphene substrate was determined. A 30° orientation configuration of some of the InAs NWs is shown to be related to the surface corrugation of the graphene substrate. InAs NW-based devices for transport measurements were fabricated, and the conductance measurements showed a semi-ballistic behavior. In Josephson junction measurements in the non-linear regime, multiple Andreev reflections were observed, and an inelastic scattering length of about 900 nm was derived.

  12. Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts.

    PubMed

    Heedt, S; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-05-11

    One-dimensional ballistic transport is demonstrated for a high-mobility InAs nanowire device. Unlike conventional quantum point contacts (QPCs) created in a two-dimensional electron gas, the nanowire QPCs represent one-dimensional constrictions formed inside a quasi-one-dimensional conductor. For each QPC, the local subband occupation can be controlled individually between zero and up to six degenerate modes. At large out-of-plane magnetic fields Landau quantization and Zeeman splitting emerge and comprehensive voltage bias spectroscopy is performed. Confinement-induced quenching of the orbital motion gives rise to significantly modified subband-dependent Landé g factors. A pronounced g factor enhancement related to Coulomb exchange interaction is reported. Many-body effects of that kind also manifest in the observation of the 0.7·2e(2)/h conductance anomaly, commonly found in planar devices. PMID:27104768

  13. Defect-free zinc-blende structured InAs nanowires realized by in situ two V/III ratio growth in molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2015-08-01

    In this study, we devised a two-V/III-ratio procedure to control the Au-assisted growth of defect-free InAs nanowires in molecular beam epitaxy. The demonstrated two V/III ratio procedure consists of a first high V/III ratio growth step to prepare the nanowire foundation on the substrate surface, followed by a low V/III ratio step to induce the nanowire growth. By manipulating the V/III ratios in different steps, we have achieved the controlled growth of pure defect-free zinc-blende structured InAs nanowires on the GaAs {1̄1̄1̄} substrates. This study provides an approach to control not only the crystal structure of semiconductor nanowires, but also their structural qualities.

  14. Harmonic Generation in InAs Nanowire Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Schroer, M. D.; Jung, M.; Petersson, K. D.; Petta, J. R.

    2012-02-01

    InAs nanowires provide a useful platform for investigating the physics of confined electrons subjected to strong spin-orbit coupling. Using tunable, bottom-gated double quantum dots, we demonstrate electrical driving of single spin resonance.ootnotetextS. Nadj-Perge et al., Nature 468, 1084 (2010)^,ootnotetextM.D. Schroer et al., Phys. Rev. Lett. 107, 176811 (2011) We observe a standard spin response when the applied microwave frequency equals the Larmour frequency f0. However, we also observe an anomalous signal at frequencies fn= f0/ n for integer n up to n ˜5. This is equivalent to generation of harmonics of the spin resonance field. While a f0/2 signal has observed,ootnotetextE.A. Laird et al., Phys. Rev. Lett. 99, 246601 (2007) we believe this is the first observation of higher harmonics in spin resonance. Possible mechanisms will be discussed.ootnotetextE.I. Rashba, arXiv:1110.6569 (2011) Acknowledgements: Research supported by the Sloan and Packard Foundations, the NSF, and Army Research Office.

  15. Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires.

    PubMed

    Zheng, Kun; Zhang, Zhi; Hu, Yibin; Chen, Pingping; Lu, Wei; Drennan, John; Han, Xiaodong; Zou, Jin

    2016-03-01

    Understanding the electrical properties of defect-free nanowires with different structures and their responses under deformation are essential for design and applications of nanodevices and strain engineering. In this study, defect-free zinc-blende- and wurtzite-structured InAs nanowires were grown using molecular beam epitaxy, and individual nanowires with different structures and orientations were carefully selected and their electrical properties and electromechanical responses were investigated using an electrical probing system inside a transmission electron microscope. Through our careful experimental design and detailed analyses, we uncovered several extraordinary physical phenomena, such as the electromechanical characteristics are dominated by the nanowire orientation, rather than its crystal structure. Our results provide critical insights into different responses induced by deformation of InAs with different structures, which is important for nanowire-based devices. PMID:26837494

  16. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Berdnikov, Y.; Gomes, U. P.; Ercolani, D.; Zannier, V.; Sorba, L.

    2016-09-01

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  17. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  18. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires. PMID:27501469

  19. Schottky barrier heights at the interfaces between pure-phase InAs nanowires and metal contacts

    NASA Astrophysics Data System (ADS)

    Feng, Boyong; Huang, Shaoyun; Wang, Jiyin; Pan, Dong; Zhao, Jianghua; Xu, H. Q.

    2016-02-01

    Understanding of the Schottky barriers formed at metal contact-InAs nanowire interfaces is of great importance for the development of high-performance InAs nanowire nanoelectronic and quantum devices. Here, we report a systematical study of InAs nanowire field-effect transistors (FETs) and the Schottky barrier heights formed at the contact-nanowire interfaces. The InAs nanowires employed are grown by molecular beam epitaxy and are high material quality single crystals, and the devices are made by directly contacting the nanowires with a series of metals of different work functions. The fabricated InAs nanowire FET devices are characterized by electrical measurements at different temperatures and the Schottky barrier heights are extracted from the measured temperature and gate-voltage dependences of the channel current. We show that although the work functions of the contact metals are widely spread, the Schottky barrier heights are determined to be distributed over 35-55 meV, showing a weak but not negligible dependence on the metals. The deduced Fermi level in the InAs nanowire channels is found to be in the band gap and very close to the conduction band. The physical origin of the results is discussed in terms of Fermi level pinning by the surface states of the InAs nanowires and a shift in pinned Fermi level induced by the metal-related interface states.

  20. Giant thermovoltage in single InAs nanowire field-effect transistors.

    PubMed

    Roddaro, Stefano; Ercolani, Daniele; Safeen, Mian Akif; Suomalainen, Soile; Rossella, Francesco; Giazotto, Francesco; Sorba, Lucia; Beltram, Fabio

    2013-08-14

    Millivolt range thermovoltage is demonstrated in single InAs nanowire based field effect transistors. Thanks to a buried heating scheme, we drive both a large thermal bias ΔT > 10 K and a strong field-effect modulation of electric conductance on the nanostructures. This allows the precise mapping of the evolution of the Seebeck coefficient S as a function of the gate-controlled conductivity σ between room temperature and 100 K. Based on these experimental data a novel estimate of the electron mobility is given. This value is compared with the result of standard field-effect based mobility estimates and discussed in relation to the effect of charge traps in the devices. PMID:23869467

  1. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  2. Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy

    SciTech Connect

    Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka

    2014-07-07

    We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.

  3. Improvement of Terahertz Wave Radiation for InAs Nanowires by Simple Dipping into Tap Water

    PubMed Central

    Park, Dong Woo; Bin Ji, Young; Hwang, Jehwan; Lee, Cheul-Ro; Lee, Sang Jun; Kim, Jun Oh; Noh, Sam Kyu; Oh, Seung Jae; Kim, Sang-Hoon; Jeon, Tae-In; Jeong, Kwang-Un; Kim, Jin Soo

    2016-01-01

    We report improvement of terahertz (THz) wave radiation for Si-based catalyst-free InAs nanowires (NWs) by simple dipping into tap water (DTW). In addition, the possibility of using InAs NWs as a cost-effective method for biomedical applications is discussed by comparison to bulk InAs. The peak-to-peak current signals (PPCSs) of InAs NWs measured from THz time-domain spectroscopy increased with increasing NW height. For example, the PPCS of 10 μm-long InAs NWs was 2.86 times stronger than that of 2.1 μm-long NWs. The THz spectra of the InAs NWs obtained by applying a fast Fourier transformation to the current signals showed a main frequency of 0.5 THz, which can be applied to a variety of medical imaging systems. After the DTW process, structural variation was not observed for 2.1 μm-long InAs NWs. However, the top region of several InAs NWs with heights of 4.6 and 5.8 μm merged into a conical structure. InAs NWs with a height of 10 μm resulted in a bundle feature forming above the conical shape, where the length of bundle region was 4 μm. After the DTW process, the PPCS for 10 μm-long InAs NWs increased by 15 percent compared to that of the as-grown case. PMID:27782220

  4. A transmission line method for evaluation of vertical InAs nanowire contacts

    SciTech Connect

    Berg, M. Svensson, J. Lind, E. Wernersson, L.-E.

    2015-12-07

    In this paper, we present a method for metal contact characterization to vertical semiconductor nanowires using the transmission line method (TLM) on a cylindrical geometry. InAs nanowire resistors are fabricated on Si substrates using a hydrogen silsesquioxane (HSQ) spacer between the bottom and top contact. The thickness of the HSQ is defined by the dose of an electron beam lithography step, and by varying the separation thickness for a group of resistors, a TLM series is fabricated. Using this method, the resistivity and specific contact resistance are determined for InAs nanowires with different doping and annealing conditions. The contacts are shown to improve with annealing at temperatures up to 300 °C for 1 min, with specific contact resistance values reaching down to below 1 Ω µm{sup 2}.

  5. Field dependent transport properties in InAs nanowire field effect transistors.

    PubMed

    Dayeh, Shadi A; Susac, Darija; Kavanagh, Karen L; Yu, Edward T; Wang, Deli

    2008-10-01

    We present detailed studies of the field dependent transport properties of InAs nanowire field-effect transistors. Transconductance dependence on both vertical and lateral fields is discussed. Velocity-field plots are constructed from a large set of output and transfer curves that show negative differential conductance behavior and marked mobility degradation at high injection fields. Two dimensional electrothermal simulations at current densities similar to those measured in the InAs NWFET devices indicate that a significant temperature rise occurs in the channel due to enhanced phonon scattering that leads to the observed mobility degradation. Scanning transmission electron microscopy measurements on devices operated at high current densities reveal arsenic vaporization and crystal deformation in the subject nanowires.

  6. Strain-driven synthesis of <112> direction InAs nanowires in V-grooved trenches on Si using InP/GaAs buffer layers

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhou, Xuliang; Kong, Xiangting; Li, Mengke; Mi, Junping; Wang, Mengqi; Pan, Jiaoqing

    2016-09-01

    The catalyst-free metal organic vapor phase epitaxial growth of InAs nanowires on silicon (001) substrates is investigated by using selectively grown InP/GaAs buffer layers in V-grooved trenches. A strain-driven mechanism of self-aligned <112> direction InAs nanowires growing is proposed and demonstrated by the transmission electron microscopy measurement. The morphology of InAs nanowires is tapered in diameter and exhibits a hexagonal cross-section. The defect-free InAs nanowire shows a pure zinc blende crystal structure and an epitaxial relationship with InP buffer layer.

  7. Encapsulated gate-all-around InAs nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Sasaki, Satoshi; Tateno, Kouta; Zhang, Guoqiang; Suominen, Henri; Harada, Yuichi; Saito, Shiro; Fujiwara, Akira; Sogawa, Tetsuomi; Muraki, Koji

    2013-11-01

    We report the fabrication of lateral gate-all-around InAs nanowire field-effect transistors whose gate overlaps the source and drain electrodes and thus fully encapsulates the nanowire channel. They feature large drive current and transconductance that surpass those of conventional non-gate-overlap devices. The improved device characteristics can be attributed to the elimination of access resistance associated with ungated segments between the gate and source/drain electrodes. Our data also reveal a correlation between the normalized transconductance and the threshold voltage, which points to a beneficial effect of our wet-etching procedure performed prior to the atomic-layer-deposition of the gate dielectric.

  8. Encapsulated gate-all-around InAs nanowire field-effect transistors

    SciTech Connect

    Sasaki, Satoshi Tateno, Kouta; Zhang, Guoqiang; Suominen, Henri; Harada, Yuichi; Saito, Shiro; Fujiwara, Akira; Sogawa, Tetsuomi; Muraki, Koji

    2013-11-18

    We report the fabrication of lateral gate-all-around InAs nanowire field-effect transistors whose gate overlaps the source and drain electrodes and thus fully encapsulates the nanowire channel. They feature large drive current and transconductance that surpass those of conventional non-gate-overlap devices. The improved device characteristics can be attributed to the elimination of access resistance associated with ungated segments between the gate and source/drain electrodes. Our data also reveal a correlation between the normalized transconductance and the threshold voltage, which points to a beneficial effect of our wet-etching procedure performed prior to the atomic-layer-deposition of the gate dielectric.

  9. Anomalous photoconductive behavior of a single InAs nanowire photodetector

    SciTech Connect

    Li, Junshuai; Yan, Xin; Sun, Fukuan; Zhang, Xia Ren, Xiaomin

    2015-12-28

    We report on a bare InAs nanowire photodetector which exhibits an anomalous photoconductive behavior. Under low-power illumination, the current is smaller than the dark current, and monotonously decreases as the excitation power increases. When the excitation power is high enough, the current starts to increase normally. The phenomenon is attributed to different electron mobilities in the “core” and “shell” of a relatively thick nanowire originating from the surface effect, which result in a quickly dropped “core current” and slowly increased “shell current” under illumination.

  10. Theoretical interpretation of the electron mobility behavior in InAs nanowires

    SciTech Connect

    Marin, E. G. Ruiz, F. G. Godoy, A.; Tienda-Luna, I. M.; Martínez-Blanque, C.; Gámiz, F.

    2014-11-07

    This work studies the electron mobility in InAs nanowires (NWs), by solving the Boltzmann Transport Equation under the Momentum Relaxation Time approximation. The numerical solver takes into account the contribution of the main scattering mechanisms present in III-V compound semiconductors. It is validated against experimental field effect-mobility results, showing a very good agreement. The mobility dependence on the nanowire diameter and carrier density is analyzed. It is found that surface roughness and polar optical phonons are the scattering mechanisms that mainly limit the mobility behavior. Finally, we explain the origin of the oscillations observed in the mobility of small NWs at high electric fields.

  11. Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy

    PubMed Central

    2014-01-01

    We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions. PMID:25024683

  12. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Panda, Jaya Kumar; Chakraborty, Arup; Ercolani, Daniele; Gemmi, Mauro; Sorba, Lucia; Roy, Anushree

    2016-10-01

    In this article we demonstrate type-II band alignment at the wurtzite/zinc-blende hetero-interface in InAs polytype nanowires using resonance Raman measurements. Nanowires were grown with an optimum ratio of the above mentioned phases, so that in the electronic band alignment of such NWs the effect of the difference in the crystal structure dominates over other perturbing effects (e.g. interfacial strain, confinement of charge carriers and band bending due to space charge). Experimental results are compared with the band alignment obtained from density functional theory calculations. In resonance Raman measurements, the excitation energies in the visible range probe the band alignment formed by the E 1 gap of wurtzite and zinc-blende phases. However, we expect our claim to be valid also for band alignment near the fundamental gap at the heterointerface.

  13. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.

    PubMed

    Panda, Jaya Kumar; Chakraborty, Arup; Ercolani, Daniele; Gemmi, Mauro; Sorba, Lucia; Roy, Anushree

    2016-10-14

    In this article we demonstrate type-II band alignment at the wurtzite/zinc-blende hetero-interface in InAs polytype nanowires using resonance Raman measurements. Nanowires were grown with an optimum ratio of the above mentioned phases, so that in the electronic band alignment of such NWs the effect of the difference in the crystal structure dominates over other perturbing effects (e.g. interfacial strain, confinement of charge carriers and band bending due to space charge). Experimental results are compared with the band alignment obtained from density functional theory calculations. In resonance Raman measurements, the excitation energies in the visible range probe the band alignment formed by the E 1 gap of wurtzite and zinc-blende phases. However, we expect our claim to be valid also for band alignment near the fundamental gap at the heterointerface. PMID:27586817

  14. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.

    PubMed

    Panda, Jaya Kumar; Chakraborty, Arup; Ercolani, Daniele; Gemmi, Mauro; Sorba, Lucia; Roy, Anushree

    2016-10-14

    In this article we demonstrate type-II band alignment at the wurtzite/zinc-blende hetero-interface in InAs polytype nanowires using resonance Raman measurements. Nanowires were grown with an optimum ratio of the above mentioned phases, so that in the electronic band alignment of such NWs the effect of the difference in the crystal structure dominates over other perturbing effects (e.g. interfacial strain, confinement of charge carriers and band bending due to space charge). Experimental results are compared with the band alignment obtained from density functional theory calculations. In resonance Raman measurements, the excitation energies in the visible range probe the band alignment formed by the E 1 gap of wurtzite and zinc-blende phases. However, we expect our claim to be valid also for band alignment near the fundamental gap at the heterointerface.

  15. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy.

    PubMed

    Joyce, Hannah J; Docherty, Callum J; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M; Johnston, Michael B

    2013-05-31

    We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm² V⁻¹ s⁻¹, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s⁻¹. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10⁵  cm s⁻¹. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

  16. Fabrication and optical properties of multishell InAs quantum dots on GaAs nanowires

    SciTech Connect

    Yan, Xin; Zhang, Xia Li, Junshuai; Cui, Jiangong; Ren, Xiaomin

    2015-02-07

    Hybrid nanostructures combining nanowires with quantum dots promote the development of nanoelectronic and nanophotonic devices with integrated functionalities. In this work, we present a complex nanostructure with multishell quantum dots grown on nanowires. 1–4 shells of Stranski-Krastanov InAs quantum dots are grown on the sidewalls of GaAs nanowires by metal organic chemical vapor deposition. Different dot shells are separated by 8 nm GaAs spacer shells. With increasing the number of shells, the quantum dots become sparser and tend to align in one array, which is caused by the shrinkage of facets on which dots prefer to grow as well as the strain fields produced by the lower set of dots which influences the migration of In adatoms. The size of quantum dots increases with the increase of shell number due to enhanced strain fields coupling. The spectra of multishell dots exhibit multiwavelength emission, and each peak corresponds to a dot shell. This hybrid structure may serve as a promising element in nanowire intermediate band solar cells, infrared nanolasers, and photodetectors.

  17. Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy

    SciTech Connect

    Wang, L. B.; Guo, J. K.; Kang, N. E-mail: hqxu@pku.edu.cn; Li, Sen; Fan, Dingxun; Pan, Dong; Zhao, Jianhua; Xu, H. Q. E-mail: hqxu@pku.edu.cn

    2015-04-27

    We report low-temperature magnetotransport studies of individual InAs nanowires grown by molecule beam epitaxy. At low magnetic fields, the magnetoconductance characteristics exhibit a crossover between weak antilocalization and weak localization by changing either the gate voltage or the temperature. The observed crossover behavior can be well described in terms of relative scales of the transport characteristic lengths extracted based on the quasi-one-dimensional theory of weak localization in the presence of spin-orbit interaction. The spin relaxation length extracted from the magnetoconductance data is found to be in the range of 80–100 nm, indicating the presence of strong spin-orbit coupling in the InAs nanowires. Moreover, the amplitude of universal conductance fluctuations in the nanowires is found to be suppressed at low temperatures due to the presence of strong spin-orbit scattering.

  18. Suspended InAs nanowire gate-all-around field-effect transistors

    SciTech Connect

    Li, Qiang; Huang, Shaoyun E-mail: hqxu@pku.edu.cn; Wang, Jingyun; Pan, Dong; Zhao, Jianhua; Xu, H. Q. E-mail: hqxu@pku.edu.cn

    2014-09-15

    Gate-all-around field-effect transistors are realized with thin, single-crystalline, pure-phase InAs nanowires grown by molecular beam epitaxy. At room temperature, the transistors show a desired high on-state current I{sub on} of ∼10 μA and an on-off current ratio I{sub on}/I{sub off} of as high as 10{sup 6} at source-drain bias voltage of 50 mV and gate length of 1 μm with a gate underlap spacing of 1 μm from the source and from the drain. At low temperatures, the on-state current I{sub on} is only slightly reduced, while the ratio I{sub on}/I{sub off} is increased to 10{sup 7}. The field-effect mobility in the nanowire channels is also investigated and found to be ∼1500 cm{sup 2}/V s at room temperature and ∼2000 cm{sup 2}/V s at low temperatures. The excellent performance of the transistors is explained in terms of strong electrostatic and quantum confinements of carriers in the nanowires.

  19. Noise thermometry applied to thermoelectric measurements in InAs nanowires

    NASA Astrophysics Data System (ADS)

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-10-01

    We apply noise thermometry to characterize charge and thermoelectric transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot noise measurements identify elastic diffusive transport in our NWs with negligible electron-phonon interaction. This enables us to set up a measurement of the diffusion thermopower. Unlike previous approaches, we make use of a primary electronic noise thermometry to calibrate a thermal bias across the NW. In particular, this enables us to apply a contact heating scheme, which is much more efficient in creating the thermal bias as compared to conventional substrate heating. The measured thermoelectric Seebeck coefficient exhibits strong mesoscopic fluctuations in dependence on the back-gate voltage that is used to tune the NW carrier density. We analyze the transport and thermoelectric data in terms of an approximate Mott's thermopower relation and evaluate a gate-voltage to the Fermi energy conversion factor.

  20. Mechanical properties of individual InAs nanowires studied by tensile tests

    SciTech Connect

    Li, X.; Wei, X. L. E-mail: qingchen@pku.edu.cn; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Chen, Q. E-mail: qingchen@pku.edu.cn; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.

    2014-03-10

    Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ∼10%. Their fracture strength distributes in a similar range of ∼2–5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16–78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34–79 GPa with an average value of 58 GPa for MBE NWs.

  1. Mechanical properties of individual InAs nanowires studied by tensile tests

    NASA Astrophysics Data System (ADS)

    Li, X.; Wei, X. L.; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.; Chen, Q.

    2014-03-01

    Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ˜10%. Their fracture strength distributes in a similar range of ˜2-5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16-78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34-79 GPa with an average value of 58 GPa for MBE NWs.

  2. Signature of topological transition in InAs nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Strambini, Elia; Paajaste, J.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, S.; Ercolani, D.; Sorba, L.; Giazotto, F.

    The coupling of a conventional s-wave superconductors to semiconductors with strong spin-orbit (SO) coupling, like e. g. InAs or InSb nanowires (NWs), gives rise to unconventional p-wave superconductivity that may become a topological superconductor (TS), which is a natural host for exotic edge modes with Majorana character. Recently the enhancement of the critical supercurrent Ic in a strong SO semiconducting Josephson junction (JJ) have been proposed as a new evidence of the sought-after Majorana bound states. Here we report on the first observation of the colossal Ic enhancement induced by an external magnetic field on a mesoscopic JJ formed by InAs NWs and Ti/Al leads. This anomalous enhancement appears precisely above a threshold magnetic field Bth orthogonal to the substrate and in junctions of different lengths, suggesting that the origin of the enhancement is intrinsic, i.e. it is not related to geometrical resonances in the junction. None of the standard phenomenon known in JJ, including e. g. Fraunhofer patterns or π-junction behavior, can explain this colossal enhancement while a topological transition at Bth is qualitatively compatible with the observed phenomenology.

  3. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts.

    PubMed

    Fülöp, G; d'Hollosy, S; Hofstetter, L; Baumgartner, A; Nygård, J; Schönenberger, C; Csonka, S

    2016-05-13

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  4. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    NASA Astrophysics Data System (ADS)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  5. Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111).

    PubMed

    Park, Dong Woo; Jeon, Seong Gi; Lee, Cheul-Ro; Lee, Sang Jun; Song, Jae Yong; Kim, Jun Oh; Noh, Sam Kyu; Leem, Jae-Young; Kim, Jin Soo

    2015-11-19

    We report structural and electrical properties of catalyst-free Si-doped InAs nanowires (NWs) formed on Si(111) substrates. The average diameter of Si-doped InAs NWs was almost similar to that of undoped NWs with a slight increase in height. In the previous works, the shape and size of InAs NWs formed on metallic catalysts or patterned structures were significantly changed by introducing dopants. Even though the external shape and size of the Si-doped NWs in this work were not changed, crystal structures inside the NWs were significantly changed. For the undoped InAs NWs, both zincblende (ZB) and wurzite (WZ) structures were observed in transmission-electron microscope images, where the portion of WZ structure was estimated to be more than 30%. However, only ZB was observed with an increase in stacking fault (SF) for the Si-doped NWs. The undoped and Si-doped InAs NWs were used as channels of four-point electrical measurements with Al/Ni electrodes to investigate electrical properties. The resistivity calculated from the current-voltage curve of a Si-doped InAs NW showed 1.32 × 10(-3) Ωcm, which was dramatically decreased from 10.14 × 10(-3) Ωcm for the undoped InAs NW. A relatively low resistivity of catalyst-free Si-doped InAs NWs was achieved without significant change in structural dimensions.

  6. Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles

    SciTech Connect

    Li, Wu; Mingo, Natalio

    2013-11-14

    We compute the thermal conductivity of the alternative zincblende (ZB) and wurtzite (WZ) phases of InAs, AlN, and BeO. The bulk thermal conductivity of the ZB phase of BeO is predicted to be even higher than that of its WZ phase (the highest amongst all ceramics used in electronic technology). Our calculations agree well with the available experimental measurements for bulk ZB InAs, WZ AlN, WZ BeO, and WZ and ZB InAs nanowires, and we provide predictions for the remaining cases. The predicted good thermal conductor ZB BeO might have interesting applications in improved heat sinks for high performance semiconductor electronics.

  7. X-ray diffraction strain analysis of a single axial InAs1–xPx nanowire segment

    PubMed Central

    Keplinger, Mario; Mandl, Bernhard; Kriegner, Dominik; Holý, Václav; Samuelsson, Lars; Bauer, Günther; Deppert, Knut; Stangl, Julian

    2015-01-01

    The spatial strain distribution in and around a single axial InAs1–xPx hetero-segment in an InAs nanowire was analyzed using nano-focused X-ray diffraction. In connection with finite-element-method simulations a detailed quantitative picture of the nanowire’s inhomogeneous strain state was achieved. This allows for a detailed understanding of how the variation of the nanowire’s and hetero-segment’s dimensions affect the strain in its core region and in the region close to the nanowire’s side facets. Moreover, ensemble-averaging high-resolution diffraction experiments were used to determine statistical information on the distribution of wurtzite and zinc-blende crystal polytypes in the nanowires. PMID:25537589

  8. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask

    NASA Astrophysics Data System (ADS)

    Shin, Jae Cheol; Zhang, Chen; Li, Xiuling

    2012-08-01

    We report a non-lithographical method for the fabrication of ultra-thin silicon (Si) nanowire (NW) and nano-sheet arrays through metal-assisted-chemical-etching (MacEtch) with gold (Au). The mask used for metal patterning is a vertical InAs NW array grown on a Si substrate via catalyst-free, strain-induced, one-dimensional heteroepitaxy. Depending on the Au evaporation angle, the shape and size of the InAs NWs are transferred to Si by Au-MacEtch as is (NWs) or in its projection (nano-sheets). The Si NWs formed have diameters in the range of ˜25-95 nm, and aspect ratios as high as 250 in only 5 min etch time. The formation process is entirely free of organic chemicals, ensuring pristine Au-Si interfaces, which is one of the most critical requirements for high yield and reproducible MacEtch.

  9. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask.

    PubMed

    Shin, Jae Cheol; Zhang, Chen; Li, Xiuling

    2012-08-01

    We report a non-lithographical method for the fabrication of ultra-thin silicon (Si) nanowire (NW) and nano-sheet arrays through metal-assisted-chemical-etching (MacEtch) with gold (Au). The mask used for metal patterning is a vertical InAs NW array grown on a Si substrate via catalyst-free, strain-induced, one-dimensional heteroepitaxy. Depending on the Au evaporation angle, the shape and size of the InAs NWs are transferred to Si by Au-MacEtch as is (NWs) or in its projection (nano-sheets). The Si NWs formed have diameters in the range of ∼25-95 nm, and aspect ratios as high as 250 in only 5 min etch time. The formation process is entirely free of organic chemicals, ensuring pristine Au-Si interfaces, which is one of the most critical requirements for high yield and reproducible MacEtch. PMID:22781145

  10. Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays.

    PubMed

    Shin, Hyun Wook; Lee, Sang Jun; Kim, Doo Gun; Bae, Myung-Ho; Heo, Jaeyeong; Choi, Kyoung Jin; Choi, Won Jun; Choe, Jeong-woo; Shin, Jae Cheol

    2015-06-02

    One-dimensional crystal growth enables the epitaxial integration of III-V compound semiconductors onto a silicon (Si) substrate despite significant lattice mismatch. Here, we report a short-wavelength infrared (SWIR, 1.4-3 μm) photodetector that employs InAs nanowires (NWs) grown on Si. The wafer-scale epitaxial InAs NWs form on the Si substrate without a metal catalyst or pattern assistance; thus, the growth is free of metal-atom-induced contaminations, and is also cost-effective. InAs NW arrays with an average height of 50 μm provide excellent anti-reflective and light trapping properties over a wide wavelength range. The photodetector exhibits a peak detectivity of 1.9 × 10(8) cm · Hz(1/2)/W for the SWIR band at 77 K and operates at temperatures as high as 220 K. The SWIR photodetector on the Si platform demonstrated in this study is promising for future low-cost optical sensors and Si photonics.

  11. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111)

    PubMed Central

    2011-01-01

    The growth of self-assisted InAs nanowires (NWs) by molecular beam epitaxy (MBE) on Si(111) is studied for different growth parameters and substrate preparations. The thickness of the oxide layer present on the Si(111) surface is observed to play a dominant role. Systematic use of different pre-treatment methods provides information on the influence of the oxide on the NW morphology and growth rates, which can be used for optimizing the growth conditions. We show that it is possible to obtain 100% growth of vertical NWs and no parasitic bulk structures between the NWs by optimizing the oxide thickness. For a growth temperature of 460°C and a V/III ratio of 320 an optimum oxide thickness of 9 ± 3 Å is found. PMID:21880130

  12. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  13. Molecular beam epitaxy of InAs nanowires in SiO2 nanotube templates: challenges and prospects for integration of III–Vs on Si

    NASA Astrophysics Data System (ADS)

    Vukajlovic-Plestina, Jelena; Dubrovskii, Vladimir G.; Tütüncuoǧlu, Gözde; Potts, Heidi; Ricca, Ruben; Meyer, Frank; Matteini, Federico; Leran, Jean-Baptiste; Morral, Anna Fontcuberta i.

    2016-11-01

    Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III–Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires in SiO2/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor–liquid–solid growth enabled by the local conditions inside the nanotube template. The conditions for high yield of vertical nanowires are investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model that further substantiates our findings. This work opens new perspectives for monolithic integration of III–Vs on the silicon platform enabling new applications in the electronics, optoelectronics and energy harvesting arena.

  14. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy.

    PubMed

    Zhuang, Q D; Anyebe, Ezekiel A; Chen, R; Liu, H; Sanchez, Ana M; Rajpalke, Mohana K; Veal, Tim D; Wang, Z M; Huang, Y Z; Sun, H D

    2015-02-11

    For the first time, we report a complete control of crystal structure in InAs(1-x)Sb(x) NWs by tuning the antimony (Sb) composition. This claim is substantiated by high-resolution transmission electron microscopy combined with photoluminescence spectroscopy. The pure InAs nanowires generally show a mixture of wurtzite (WZ) and zinc-blende (ZB) phases, where addition of a small amount of Sb (∼2-4%) led to quasi-pure WZ InAsSb NWs, while further increase of Sb (∼10%) resulted in quasi-pure ZB InAsSb NWs. This phase transition is further evidenced by photoluminescence (PL) studies, where a dominant emission associated with the coexistence of WZ and ZB phases is present in the pure InAs NWs but absent in the PL spectrum of InAs0.96Sb0.04 NWs that instead shows a band-to-band emission. We also demonstrate that the Sb addition significantly reduces the stacking fault density in the NWs. This study provides new insights on the role of Sb addition for effective control of nanowire crystal structure.

  15. First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires

    SciTech Connect

    Ning, Feng; Tang, Li-Ming Zhang, Yong; Chen, Ke-Qiu

    2013-12-14

    We have used first principles methods to systematically investigate the quantum confinement effect on the electronic properties of zinc-blende (ZB) and wurtzite (WZ) InAs nanowires (NWs) with different orientations and diameters, and compared their electronic properties before and after pseudo-hydrogen passivation. The results show that the calculated carrier effective masses are dependent on the NW diameter, except for [110] ZB NWs, and the hole effective masses of [111] ZB NWs are larger than the electron effective masses when the NW diameter is ≥26 Å. The band alignments of [111] ZB and [0001] WZ NWs reveal that the effect of quantum confinement on the conduction bands is greater than on the valence bands, and the position of the valence band maximum level changes little with increasing NW diameter. The pseudo-hydrogen passivated NWs have larger band gaps than the corresponding unpassivated NWs. The carrier effective masses and mobilities can be adjusted by passivating the surface dangling bonds.

  16. Low temperature transport in p-doped InAs nanowires

    SciTech Connect

    Upadhyay, S.; Jespersen, T. S.; Madsen, M. H.; Krogstrup, P.; Nygård, J.

    2013-10-14

    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature dependence of electron and hole field effect mobilities are extracted. At low temperatures, we observe reproducible conductance fluctuations as a result of quantum interference, and magnetoconductance data show weak antilocalization.

  17. Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si

    NASA Astrophysics Data System (ADS)

    Hertenberger, S.; Rudolph, D.; Bolte, S.; Döblinger, M.; Bichler, M.; Spirkoska, D.; Finley, J. J.; Abstreiter, G.; Koblmüller, G.

    2011-03-01

    The growth mechanism of self-induced InAs nanowires (NWs) grown on Si (111) by molecular beam epitaxy was investigated by in situ reflection high energy electron diffraction and ex situ scanning and transmission electron microscopy. Abrupt morphology transition and in-plane strain relaxation revealed that InAs NWs nucleate without any significant delay and under the absence of indium (In) droplets. These findings are independent of the As/In-flux ratio, revealing entirely linear vertical growth rate and nontapered NWs. No evidence of In droplets nor associated change in the NW apex morphology was observed for various growth termination procedures. These results highlight the absence of vapor-liquid-solid growth, providing substantial benefits for realization of atomically abrupt doping and composition profiles in future axial InAs-based NW heterostructures on Si.

  18. Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si

    SciTech Connect

    Hertenberger, S.; Rudolph, D.; Bichler, M.; Spirkoska, D.; Finley, J. J.; Koblmueller, G.; Bolte, S.; Doeblinger, M.; Abstreiter, G.

    2011-03-21

    The growth mechanism of self-induced InAs nanowires (NWs) grown on Si (111) by molecular beam epitaxy was investigated by in situ reflection high energy electron diffraction and ex situ scanning and transmission electron microscopy. Abrupt morphology transition and in-plane strain relaxation revealed that InAs NWs nucleate without any significant delay and under the absence of indium (In) droplets. These findings are independent of the As/In-flux ratio, revealing entirely linear vertical growth rate and nontapered NWs. No evidence of In droplets nor associated change in the NW apex morphology was observed for various growth termination procedures. These results highlight the absence of vapor-liquid-solid growth, providing substantial benefits for realization of atomically abrupt doping and composition profiles in future axial InAs-based NW heterostructures on Si.

  19. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential.

    PubMed

    Carrete, J; Longo, R C; Gallego, L J

    2011-05-01

    A number of different potentials are currently being used in molecular dynamics simulations of semiconductor nanostructures. Confusion can arise if an inappropriate potential is used. To illustrate this point, we performed direct molecular dynamics simulations to predict the room temperature lattice thermal conductivity λ of thin GaAs, InAs and InP nanowires. In each case, simulations performed using the classical Harrison potential afforded values of λ about an order of magnitude smaller than those obtained using more elaborate potentials (an Abell-Tersoff, as parameterized by Hammerschmidt et al for GaAs and InAs, and a potential of Vashishta type for InP). These results will be a warning to those wishing to use computer simulations to orient the development of quasi-one-dimensional systems as heat sinks or thermoelectric devices. PMID:21427474

  20. Shape-Controlled Deterministic Assembly of Nanowires.

    PubMed

    Zhao, Yunlong; Yao, Jun; Xu, Lin; Mankin, Max N; Zhu, Yinbo; Wu, Hengan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2016-04-13

    Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430,000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics. PMID:26999059

  1. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    SciTech Connect

    Tanta, R.; Krogstrup, P.; Nygård, J.; Jespersen, T. S.; Madsen, M. H.; Liao, Z.; Vosch, T.

    2015-12-14

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  2. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    NASA Astrophysics Data System (ADS)

    Tanta, R.; Madsen, M. H.; Liao, Z.; Krogstrup, P.; Vosch, T.; Nygârd, J.; Jespersen, T. S.

    2015-12-01

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  3. Controlling plasmonic wave packets in silver nanowires.

    SciTech Connect

    Cao, L.; Nome, R.; Montgomery, J. M.; Gray, S. K.; Scherer, N. F.

    2010-09-01

    Three-dimensional finite-difference time-domain simulations were performed to explore the excitation of surface plasmon resonances in long silver (Ag) nanowires. In particular, we show that it is possible to generate plasmonic wave packets that can propagate along the nanowire by exciting superpositions of surface plasmon resonances. By using an appropriately chirped pulse, it is possible to transiently achieve localization of the excitation at the distal end of the nanowire. Such designed coherent superpositions will allow realizing spatiotemporal control of plasmonic excitations for enhancing nonlinear responses in plasmonic 'circuits'.

  4. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime

    NASA Astrophysics Data System (ADS)

    Wang, Jiyin; Huang, Shaoyun; Lei, Zijin; Pan, Dong; Zhao, Jianhua; Xu, H. Q.

    2016-08-01

    We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO2 substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of ΔST ˜ 2.3 meV, a strong spin-orbit interaction of ΔSO ˜ 140 μeV, and a large and strongly level-dependent Landé g factor of ˜12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.

  5. Controlled fabrication of nanowire sensors.

    SciTech Connect

    Leonard, Francois

    2007-10-01

    We present a simple top down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes. For the liquid analytes considered, we find binding energies of 400 meV, indicating strong physisorption. Such values of the binding energies are ideal for stable and reusable sensors.

  6. Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Tanta, Rawa; Kanne, Thomas; Amaduzzi, Francesca; Liao, Zhiyu; Madsen, Morten H.; Alarcón-Lladó, Esther; Krogstrup, Peter; Johnson, Erik; Morral, Anna Fontcuberta i.; Vosch, Tom; Nygård, Jesper; Jespersen, Thomas S.

    2016-07-01

    Any device exposed to ambient conditions will be prone to oxidation. This may be of particular importance for semiconductor nanowires because of the high surface-to-volume ratio and only little is known about the consequences of oxidation for these systems. Here, we study the properties of indium arsenide nanowires which were locally oxidized using a focused laser beam. Polarization dependent micro-Raman measurements confirmed the presence of crystalline arsenic, and transmission electron microscopy diffraction showed the presence of indium oxide. The surface dependence of the oxidation was investigated in branched nanowires grown along the [0001] and [01\\bar{1}0] wurtzite crystal directions exhibiting different surface facets. The oxidation did not occur at the [01\\bar{1}0] direction. The origin of this selectivity is discussed in terms transition state kinetics of the free surfaces of the different crystal families of the facets and numerical simulations of the laser induced heating.

  7. E{sub 1} Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    SciTech Connect

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-12-23

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm{sup -1} reveals an E{sub 1} gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  8. Distortions of the coulomb blockade conductance line in scanning gate measurements of inas nanowire based quantum dots

    SciTech Connect

    Zhukov, A. A.; Volk, Ch.; Winden, A.; Hardtdegen, H.; Schaepers, Th.

    2013-01-15

    We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities-wobbling and splitting-arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.

  9. The influence of the droplet composition on the vapor-liquid-solid growth of InAs nanowires on GaAs (111)B by metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jens; Gottschalch, Volker; Wagner, Gerald

    2008-12-01

    The heteroepitaxial growth of InAs nanowires (NWs) on GaAs (1¯1¯1¯)B substrate was investigated by metal-organic vapor phase epitaxy. The vapor-liquid-solid (VLS) growth mechanism was applied with gold as seed material. InAs NW with two types of morphology were observed. The first morphology type exhibited a tapered NW shape. In a distinct region below the alloy particle the shape was influenced by the precursor surface diffusion. The NW growth was attributed to Au-rich liquid alloy particles containing gallium as a result of the initial Au-GaAs interaction. Differential scanning calorimetry measurements revealed the lowest eutectic temperature of the Au-Ga-In liquid alloy for different compositions. For a considerable amount of gallium inside the ternary alloy, the eutectic temperature was found to be below the InAs NW growth temperature window. A second type of morphology with a more columnlike shape was related to a very high indium fraction inside the liquid alloy particle during VLS growth. These NW exhibited a change in the side facet orientation from {2¯11} to {1¯10} below the droplet. Additionally, the sample structure was studied by transmission electron microscopy. A change in the InAs NW crystal structure from sphalerite-type to mainly wurtzite-type was observed with an increase in the growth temperature.

  10. Transmission electron microscopy assisted in-situ joule heat dissipation study of individual InAs nanowires

    NASA Astrophysics Data System (ADS)

    Xu, T. T.; Wei, X. L.; Shu, J. P.; Chen, Q.

    2013-11-01

    Managing heat transport at nanoscale is an important and challenging task for nanodevice applications and nanostructure engineering. Herein, through in-situ engineering nanowire (NW)-electrode contacts with electron beam induced carbon deposition in a transmission electron microscope, Joule heat dissipation along individual suspended Indium Arsenide NWs is well managed to obtain pre-designed temperature profiles along NWs. The temperature profiles are experimentally determined by the breakdown site of NWs under Joule heating and breakdown temperature measurement. A model with NW-electrode contacts being well considered is proposed to describe heat transport along a NW. By fitting temperature profiles with the model, thermal conductance at NW-electrode contacts is obtained. It is found that, the temperature profile along a specific NW is mainly governed by the relative thermal conductance at the two NW-electrode contacts, which is engineered in experiments.

  11. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  12. Intrinsic polarization control in rectangular GaN nanowire lasers.

    PubMed

    Li, Changyi; Liu, Sheng; Luk, Ting S; Figiel, Jeffrey J; Brener, Igal; Brueck, S R J; Wang, George T

    2016-03-14

    We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm(-2) and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates. PMID:26899502

  13. Controlled growth of Si nanowire arrays for device integration.

    PubMed

    Hochbaum, Allon I; Fan, Rong; He, Rongrui; Yang, Peidong

    2005-03-01

    Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices. PMID:15755094

  14. Controlled Fabrication of Si Nanowires with Nanodots Using Nanosphere Lithography.

    PubMed

    Li, Wei; Wang, Shaolei; He, Sufeng; Hu, Mingyue; Ge, Pengpeng; Wang, Jing; Guo, YanYan

    2016-02-01

    In this paper, we introduce an easy method for fabricating Si nanowires with nanodots using nanosphere lithography. First, a self-assembly ordered single layer of polystyrene nanospheres with a diameter of 220 nm was prepared on Si substrate. Secondly, the polystyrene spheres monolayer was etched by 02 with different time from 10 s to 35 s. After this etching process, the polystyrene nanowires between polystyrene spheres were fabrication. If the etching time was longer than 35 s, there were no polystyrene nanowires. Thereafter, the following etching process with carbon fluoride was performanced. The polystyrene nanowires and nanosphers were worked as masks. Finally, the Si nanowires with nanodots were formed. The size and morphology can be controlled by etching process. This technique for forming nanostructure arrays using nanosphere lithography can be applied in many areas of science and technology.

  15. The race of nanowires: morphological instabilities and a control strategy.

    PubMed

    Shin, Sangwoo; Al-Housseiny, Talal T; Kim, Beom Seok; Cho, Hyung Hee; Stone, Howard A

    2014-08-13

    The incomplete growth of nanowires that are synthesized by template-assisted electrodeposition presents a major challenge for nanowire-based devices targeting energy and electronic applications. In template-assisted electrodeposition, the growth of nanowires in the pores of the template is complex and unstable. Here we show theoretically and experimentally that the dynamics of this process is diffusion-limited, which results in a morphological instability driven by a race among nanowires. Moreover, we use our findings to devise a method to control the growth instability. By introducing a temperature gradient across the porous template, we manipulate ion diffusion in the pores, so that we can reduce the growth instability. This strategy significantly increases the length of nanowires. In addition to shedding light on a key nanotechnology, our results may provide fundamental insights into a variety of interfacial growth processes in materials science such as crystal growth and tissue growth in scaffolds.

  16. Segmented nanowires displaying locally controllable properties

    SciTech Connect

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  17. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy

    NASA Astrophysics Data System (ADS)

    Joyce, Hannah J.; Boland, Jessica L.; Davies, Christopher L.; Baig, Sarwat A.; Johnston, Michael B.

    2016-10-01

    Accurately measuring and controlling the electrical properties of semiconductor nanowires is of paramount importance in the development of novel nanowire-based devices. In light of this, terahertz (THz) conductivity spectroscopy has emerged as an ideal non-contact technique for probing nanowire electrical conductivity and is showing tremendous value in the targeted development of nanowire devices. THz spectroscopic measurements of nanowires enable charge carrier lifetimes, mobilities, dopant concentrations and surface recombination velocities to be measured with high accuracy and high throughput in a contact-free fashion. This review spans seminal and recent studies of the electronic properties of nanowires using THz spectroscopy. A didactic description of THz time-domain spectroscopy, optical pump-THz probe spectroscopy, and their application to nanowires is included. We review a variety of technologically important nanowire materials, including GaAs, InAs, InP, GaN and InN nanowires, Si and Ge nanowires, ZnO nanowires, nanowire heterostructures, doped nanowires and modulation-doped nanowires. Finally, we discuss how THz measurements are guiding the development of nanowire-based devices, with the example of single-nanowire photoconductive THz receivers.

  18. Controllable deformation of silicon nanowires with strain up to 24%

    SciTech Connect

    Walavalkar, Sameer S.; Homyk, Andrew P.; Henry, M. David; Scherer, Axel

    2010-06-15

    Fabricated silicon nanostructures demonstrate mechanical properties unlike their macroscopic counterparts. Here we use a force mediating polymer to controllably and reversibly deform silicon nanowires. This technique is demonstrated on multiple nanowire configurations, which undergo deformation without noticeable macroscopic damage after the polymer is removed. Calculations estimate a maximum of nearly 24% strain induced in 30 nm diameter pillars. The use of an electron activated polymer allows retention of the strained configuration without any external input. As a further illustration of this technique, we demonstrate nanoscale tweezing by capturing 300 nm alumina beads using circular arrays of these silicon nanowires.

  19. Uninterrupted and reusable source for the controlled growth of nanowires

    PubMed Central

    Sugavaneshwar, R. P.; Nanda, Karuna Kar

    2013-01-01

    Generally, the length of the oxide nanowires grown by vapor phase transport is limited by the degradation of the source materials. Furthermore, the source material is used once for the nanowires growth. By exploiting the Si-Zn phase diagram, we have developed a simple methodology for the non-catalytic growth of ultralong ZnO nanowires in large area with controllable aspect ratio and branched structures. The insolubility of Zn in Si and the use of a Si cap on the Zn source to prevent local source oxidation of Zn (i. e. prevents the degradation of the source) are the keys to grow longer nanowires without limitations. It has been shown that the aspect ratio can be controlled by thermodynamically (temperature) and more importantly by kinetically (vapor flux). One of the interesting findings is that the same source material can be used for several depositions of oxide nanostructured materials. PMID:23412010

  20. Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeshi; Singh, Rohan; Bayer, Manfred; Ludwig, Arne; Wieck, Andreas D.; Cundiff, Steven T.

    2016-10-01

    Coherent control of a strongly inhomogeneously broadened system, namely, InAs self-assembled quantum dots, is demonstrated. To circumvent the deleterious effects of the inhomogeneous broadening, which usually masks the results of coherent manipulation, we use prepulse two-dimensional coherent spectroscopy to provide a size-selective readout of the ground, exciton, and biexciton states. The dependence on the timing of the prepulse is due to the dynamics of the coherently generated populations. To further validate the results, we performed prepulse polarization dependent measurements and confirmed the behavior expected from selection rules. All measured spectra can be excellently reproduced by solving the optical Bloch equations for a 4-level system.

  1. Synthesis and characterization of nanowire coils of organometallic coordination polymers for controlled cargo release.

    PubMed

    Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing

    2014-06-12

    Nanowire coils of organometallic coordination polymers have been synthesized for the first time by using the emulsion periphery polymerization technique. An amphiphilic triblock copolymer terminated with inclusion complex of β-cyclodextrin and 4,4'-bipyridine self-assembles into oil-in-water emulsion in a toluene/water mixture. Subsequent coordination of bipyridine with Ni(II) in periphery of emulsions results in the formation of coordination polymer nanowire coils. The nanowire coils are composed of nanowires with diameter of 2 nm. Nanowire coils exhibit enhanced thermal stability in contrast to their parent triblock copolymer. Interestingly, nanowire coils are capable of encapsulating organic cargoes. Encapsulated cargoes can be selectively extracted from nanowire coils without damaging nanowire coils. Nanowire coils are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24842771

  2. Role of re-growth interface preparation process for spectral line-width reduction of single InAs site-controlled quantum dots.

    PubMed

    Herranz, Jesús; Wewior, Lukasz; Alén, Benito; Fuster, David; González, Luisa; González, Yolanda

    2015-05-15

    We present growth and optical characterization measurements of single InAs site-controlled quantum dots (SCQDs) grown by molecular beam epitaxy on GaAs (001) patterned substrates by atomic force microscopy oxidation lithography. InAs SCQDs directly grown on the patterned surface were used as a seed layer and strain template for the nucleation of optically active single InAs SCQDs. The preservation of the initial geometry of the engraved pattern motifs after the re-growth interface preparation process, the lack of buffer layer growth prior to InAs seed layer deposition and the development of suitable growth conditions provide us an improvement of the SCQDs' active layer optical properties while retaining a high ratio of single occupation (89%). In this work a fivefold reduction of the average optical line-width from 870 μeV to 156 μeV for InAs SCQDs located 15 nm from the re-growth interface is obtained by increasing the temperature of the initial thermal treatment step of the re-growth interface from 490 °C to 530 °C. PMID:25895541

  3. Role of re-growth interface preparation process for spectral line-width reduction of single InAs site-controlled quantum dots.

    PubMed

    Herranz, Jesús; Wewior, Lukasz; Alén, Benito; Fuster, David; González, Luisa; González, Yolanda

    2015-05-15

    We present growth and optical characterization measurements of single InAs site-controlled quantum dots (SCQDs) grown by molecular beam epitaxy on GaAs (001) patterned substrates by atomic force microscopy oxidation lithography. InAs SCQDs directly grown on the patterned surface were used as a seed layer and strain template for the nucleation of optically active single InAs SCQDs. The preservation of the initial geometry of the engraved pattern motifs after the re-growth interface preparation process, the lack of buffer layer growth prior to InAs seed layer deposition and the development of suitable growth conditions provide us an improvement of the SCQDs' active layer optical properties while retaining a high ratio of single occupation (89%). In this work a fivefold reduction of the average optical line-width from 870 μeV to 156 μeV for InAs SCQDs located 15 nm from the re-growth interface is obtained by increasing the temperature of the initial thermal treatment step of the re-growth interface from 490 °C to 530 °C.

  4. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    PubMed Central

    MacKenzie, Robert; Fraschina, Corrado; Sannomiya, Takumi; Auzelyte, Vaida; Vörös, Janos

    2010-01-01

    This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP) confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer) upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance. PMID:22163441

  5. Controlled growth mechanism of poly (3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R. T.; Peeters, F. M.; Zareie, H. M.; Zafer, C.

    2016-11-01

    Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both π–π stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.

  6. Synthesis of size-controlled colloidal InAs quantum dots using triphenylarsine as a stable arsenic source

    NASA Astrophysics Data System (ADS)

    Uesugi, Hideo; Kita, Masao; Omata, Takahisa

    2015-04-01

    Colloidal indium arsenide (InAs) quantum dots (QDs) were synthesized by heating an organometallic solution containing the easy-to-handle arsenic source triphenylarsine and indium tribromide in a mixture of oleylamine, tri-n-octylphosphine and octadecene. The one-pot reaction was heated at 320 °C to give spherical, monodisperse QDs in less than 15 min; the size of the QDs was controlled in the range from 3 to 6 nm by changing the reaction time. Tetrahedral QDs composed of four enclosed {111} faces of zincblende InAs were obtained after reaction for 30 min. The dependence of the shape of the QDs on reaction time was rationalized in terms of the adsorption strength of the capping ligand. The obtained QDs exhibited size-dependent optical gaps and PL emission, indicating narrow size distribution and good crystal quality. Because the PL emission exhibited a large Stokes shift of 100-200 meV, the electronic transition responsible for the PL emission was related to defects inside the QDs, and must involve the relaxation of excited electrons at the quantized electron state 1Se because of the large size-dependent energy variation.

  7. Control of photon transport properties in nanocomposite nanowires

    NASA Astrophysics Data System (ADS)

    Moffa, M.; Fasano, V.; Camposeo, A.; Persano, L.; Pisignano, D.

    2016-02-01

    Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.

  8. Synthesis of gold nanowires with controlled crystallographic characteristics

    NASA Astrophysics Data System (ADS)

    Karim, S.; Toimil-Molares, M. E.; Maurer, F.; Miehe, G.; Ensinger, W.; Liu, J.; Cornelius, T. W.; Neumann, R.

    2006-09-01

    The controlled fabrication of poly- and single-crystalline Au nanowires is reported. In polycarbonate templates, prepared by heavy-ion irradiation and subsequent etching, Au nanowires with diameters down to 25 nm are electrochemically synthesized. Four-circle X-ray diffraction and transmission electron microscopy measurements demonstrate that wires deposited potentiostatically at a voltage of -1.2 V at 65 °C are single-crystalline and oriented along the [110] direction. By reverse-pulse electrodeposition, wires oriented along the [100] direction are grown. The wires are cylindrical over their whole length. The morphology of the caps growing on top of poly- and single-crystalline wires is a strong indication of the particular crystalline structure of the nanowires.

  9. ``Hot spots'' growth on single nanowire controlled by electric charge

    NASA Astrophysics Data System (ADS)

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    ``Hot spots'' - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. ``hot spots'' on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag+ to form the ``hot spots'' on the nanowire during the GRR. The appearance probability of ``hot spots'' is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent ``hot spots'' is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials.``Hot spots'' - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. ``hot spots'' on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag+ to form the ``hot spots'' on the nanowire during the GRR. The appearance probability of ``hot spots'' is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent ``hot spots'' is also controlled by the charge, and obeys a

  10. Planar Gallium arsenide nanowire arrays for nanoelectronics: Controlled growth, doping, characterization, and devices

    NASA Astrophysics Data System (ADS)

    Dowdy, Ryan Stewart

    The Vapor-Liquid-Solid (VLS) mechanism is a bottom-up approach to produce onedimensional semiconductor structures, or nanowires. VLS nanowires are formed via a chemical or physical deposition process, where a metallic nanoparticle (seed) facilitates the growth. Nanowire growth diameter is strongly correlated to seed size, therefore top-down patterning can control site location and diameter of nanowire growth. Nanowires are sought after for their potential use as a manageable way produce small dimensioned semiconductor features without the need of expensive lithographic techniques. VLS nanowires commonly grow out-of-plane with respect to their growth substrate, resulting in difficulty with integrating VLS nanowires into existing device processing which is intended for planar geometries. Nanowires are typically removed from the substrate, which requires painstaking and uneconomical methods to pattern and align the nanowires. Planar nanowires are a potential solution to this issue; they grow in-plane on the substrate surface, epitaxially attached along its entire axis. Planar nanowires, as is, can be integrated into any preexisting planar semiconductor process, combining the advantages of nanowires with increased manufacturability. In this dissertation, planar GaAs nanowires are grown using metal organic chemical vapor deposition (MOCVD) with Au nanoparticles as the liquid metal seed. Growth occurs across multiple substrates to elucidate the mechanism behind planar nanowire growth direction. Knowledge gained by observing planar nanowire growth is used to precisely control nanowire growth direction. Subsequently the doping of planar nanowires is explored and unique phenomena related to the p-type doping of planar nanowires are investigated and discussed. The advantages of using planar nanowires are demonstrated through the controlled growth and doping of planar nanowires, and ultimately fabrication of electronic devices using conventional planar process techniques

  11. Superconducting qubits with semiconductor nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Petersson, K. D.; Larsen, T. W.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M.

    2015-03-01

    Superconducting transmon qubits are a promising basis for a scalable quantum information processor. The recent development of semiconducting InAs nanowires with in situ molecular beam epitaxy-grown Al contacts presents new possibilities for building hybrid superconductor/semiconductor devices using precise bottom up fabrication techniques. Here, we take advantage of these high quality materials to develop superconducting qubits with superconductor-normal-superconductor Josephson junctions (JJs) where the normal element is an InAs semiconductor nanowire. We have fabricated transmon qubits in which the conventional Al-Al2O3-Al JJs are replaced by a single gate-tunable nanowire JJ. Using spectroscopy to probe the qubit we observe fluctuations in its level splitting with gate voltage that are consistent with universal conductance fluctuations in the nanowire's normal state conductance. Our gate-tunable nanowire transmons may enable new means of control for large scale qubit architectures and hybrid topological quantum computing schemes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation and the European Commission.

  12. Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Chen, Ying; Guo, Qiuquan; Li, Ruying; Sun, Xueliang; Yang, Jun

    2011-03-01

    Assembly and alignment of nanowires or nanotubes are critical steps for integrating functional nanodevices by the bottom-up strategy. However, it is still challenging to manipulate either an array of nanowires or individual nanowires in a controllable manner. Here we present a simple but versatile method of positioning and aligning nanowires by hydrodynamic focusing that functions as 'hydro-tweezers'. By adjusting the flow duration and flow rates of the sheath flows and sample flow, the density, width and position of the nanowire arrays, as building blocks of nanodevices, can be readily tuned in the hydrodynamic focusing process. This approach exhibits great potentials in the assembly of an array of functional nanodevices. With this method, multiple nanowire arrays can be positioned and aligned on predefined locations. Further focusing the sample flow, nanowires flow in single file. Thus single nanowires can also be lined up and located to desired positions.

  13. "Hot spots" growth on single nanowire controlled by electric charge.

    PubMed

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    "Hot spots" - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. "hot spots" on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag(+) to form the "hot spots" on the nanowire during the GRR. The appearance probability of "hot spots" is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent "hot spots" is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials.

  14. "Hot spots" growth on single nanowire controlled by electric charge.

    PubMed

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    "Hot spots" - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. "hot spots" on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag(+) to form the "hot spots" on the nanowire during the GRR. The appearance probability of "hot spots" is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent "hot spots" is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials. PMID:27240743

  15. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    NASA Astrophysics Data System (ADS)

    Calahorra, Yonatan; Kerlich, Alexander; Amram, Dor; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan

    2016-04-01

    Catalyst assisted vapour-liquid-solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology.

  16. Simultaneous integration of different nanowires on single textured Si (100) substrates.

    PubMed

    Rieger, Torsten; Rosenbach, Daniel; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2015-03-11

    By applying a texturing process to silicon substrates, we demonstrate the possibility to integrate III-V nanowires on (100) oriented silicon substrates. Nanowires are found to grow perpendicular to the {111}-oriented facets of pyramids formed by KOH etching. Having control of the substrate orientation relative to the incoming fluxes enables not only the growth of nanowires on selected facets of the pyramids but also studying the influence of the fluxes on the nanowire nucleation and growth. Making use of these findings, we show that nanowires with different dimensions can be grown on the same sample and, additionally, it is even possible to integrate nanowires of different semiconductor materials, for example, GaAs and InAs, on the very same sample.

  17. Electrically Controlling and Monitoring InP Nanowire Growth from Solution.

    PubMed

    Dorn, August; Allen, Peter M; Bawendi, Moungi G

    2009-10-27

    Indium phosphide nanowires are of significant technological interest for applications ranging from single junction solar cells to high speed electronics. However, the efficient placement and integration of nanowires into devices remains a significant challenge. Here we extend the technique of electrically controlled solution-liquid-solid (EC-SLS) catalytic nanowire growth to indium phosphide. We are able to control the amount of nanowire growth by varying the bias voltage between the electrodes in solution, and to monitor nanowire bridging across the electrodes by recording the conductivity as a function of growth time. The as-grown indium phosphide nanowires exhibit n-type conductivity as was determined by the in situ integration of nanowires into a field effect transistor geometry. The ability to monitor nanowire growth and electrically control nanowire placement are valuable tools for fabricating nanowire devices. The EC-SLS process has the potential to aid in the fabrication of nanowire devices that could find applications in nanoelectronics, and as electrodes in solar cells and batteries.

  18. Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584

  19. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    PubMed

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers.

  20. Correction: β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties

    NASA Astrophysics Data System (ADS)

    Huang, Juntong; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Chen, Kai; Huang, Yaoting; Huang, Saifang; Ji, Haipeng; Yang, Jingzhou; Wu, Xiaowen; Zhang, Shaowei

    2016-07-01

    Correction for `β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties' by Juntong Huang, et al., Nanoscale, 2014, 6, 424-432.

  1. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    PubMed Central

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  2. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization.

    PubMed

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  3. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  4. Glucose biosensor based on multisegment nanowires exhibiting reversible magnetic control.

    PubMed

    Gerola, Gislaine P; Takahashi, Giovanna S; Perez, Geraldo G; Recco, Lucas C; Pedrosa, Valber A

    2014-11-01

    We describe the amperometric detection of glucose using oriented nanowires with magnetic switching of the bioelectrochemical process. The fabrication process of the nanowires was prepared through controlled nucleation and growth during a stepwise electrochemical deposition, and it was characterized using scanning electron microscopy. Cyclic voltammetry and amperometry were used to study the magnetoswitchable property; this control was accomplished by changing the surface orientation of nanowires. Under the optimal condition, the amperometric response was also linear up to a glucose concentration of 0.1-16.0 mmol L(-1) with a sensitivity of 81 μA mM(-1). The detection limit was estimated for 4.8×10(-8) mol L(-1), defined from a signal/noise ratio of 3. It also exhibits good reproducibility and high selectivity with insignificant interference from ascorbic acid, acetoaminophen, and uric acid. The resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay. PMID:25127595

  5. Glucose biosensor based on multisegment nanowires exhibiting reversible magnetic control.

    PubMed

    Gerola, Gislaine P; Takahashi, Giovanna S; Perez, Geraldo G; Recco, Lucas C; Pedrosa, Valber A

    2014-11-01

    We describe the amperometric detection of glucose using oriented nanowires with magnetic switching of the bioelectrochemical process. The fabrication process of the nanowires was prepared through controlled nucleation and growth during a stepwise electrochemical deposition, and it was characterized using scanning electron microscopy. Cyclic voltammetry and amperometry were used to study the magnetoswitchable property; this control was accomplished by changing the surface orientation of nanowires. Under the optimal condition, the amperometric response was also linear up to a glucose concentration of 0.1-16.0 mmol L(-1) with a sensitivity of 81 μA mM(-1). The detection limit was estimated for 4.8×10(-8) mol L(-1), defined from a signal/noise ratio of 3. It also exhibits good reproducibility and high selectivity with insignificant interference from ascorbic acid, acetoaminophen, and uric acid. The resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.

  6. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet

    NASA Astrophysics Data System (ADS)

    Panciera, Federico; Norton, Michael M.; Alam, Sardar B.; Hofmann, Stephan; Mølhave, Kristian; Ross, Frances M.

    2016-07-01

    Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour-liquid-solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth.

  7. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet.

    PubMed

    Panciera, Federico; Norton, Michael M; Alam, Sardar B; Hofmann, Stephan; Mølhave, Kristian; Ross, Frances M

    2016-01-01

    Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour-liquid-solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth. PMID:27470536

  8. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet

    PubMed Central

    Panciera, Federico; Norton, Michael M.; Alam, Sardar B.; Hofmann, Stephan; Mølhave, Kristian; Ross, Frances M.

    2016-01-01

    Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour–liquid–solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth. PMID:27470536

  9. Chemical beam epitaxy growth of III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Mohummed Noori, Farah T.

    2013-12-01

    Indium- Arsenide (InAs) nanowires were grown in a high vacuum chemical beam epitaxy (CBE) unit on InAs(111) wafers substrates at 425-454°C. Two types of nanogold were used as orientation catalyst, 40nm and 80nm. The measurements were performed using scanning electron microscopy showed that uniform nanowires. The nanowires orient vertically in the InAs nanowire scanning electron microscopy of an array 80nm diameter InAs nanowire with length is in the range 0.5-1 μm and of an array 40nm diameter with length is in the range 0.3-0.7μm. The nanowire length with growth time shows that the linear increase of nanowires start to grow as soon as TMIn is available. The growth rate with temperature was studied.

  10. Chemical beam epitaxy growth of III–V semiconductor nanowires

    SciTech Connect

    Mohummed Noori, Farah T.

    2013-12-16

    Indium- Arsenide (InAs) nanowires were grown in a high vacuum chemical beam epitaxy (CBE) unit on InAs(111) wafers substrates at 425–454°C. Two types of nanogold were used as orientation catalyst, 40nm and 80nm. The measurements were performed using scanning electron microscopy showed that uniform nanowires. The nanowires orient vertically in the InAs nanowire scanning electron microscopy of an array 80nm diameter InAs nanowire with length is in the range 0.5–1 μm and of an array 40nm diameter with length is in the range 0.3–0.7μm. The nanowire length with growth time shows that the linear increase of nanowires start to grow as soon as TMIn is available. The growth rate with temperature was studied.

  11. Controllable growth and optical properties of InP and InP/InAs nanostructures on the sidewalls of GaAs nanowires

    SciTech Connect

    Yan, Xin; Zhang, Xia Li, Junshuai; Cui, Jiangong; Ren, Xiaomin

    2014-12-07

    The growth and optical properties of InP and InP/InAs nanostructures on GaAs nanowires are investigated. InP quantum well and quantum dots (QDs) are formed on the sidewalls of GaAs nanowires successively with increasing the deposition time of InP. The GaAs/InP nanowire heterostructure exhibits a type-II band alignment. The wavelength of the InP quantum well is in the range of 857–892 nm at 77 K, which means that the quantum well is nearly fully strained. The InP quantum dot, which has a bow-shaped cross section, exhibits dislocation-free pure zinc blende structure. Stranski-Krastanow InAs quantum dots are subsequently formed on the GaAs/InP nanowire core-shell structure. The InAs quantum dots are distributed over the middle part of the nanowire, indicating that the In atoms contributing to the quantum dots mainly come from the vapor rather than the substrate. The longest emission wavelength obtained from the InAs QDs is 1039 nm at 77 K. The linewidth is as narrow as 46.3 meV, which is much narrower than those on planar InP substrates and wurtzite InP nanowires, suggesting high-crystal-quality, phase-purity, and size-uniformity of quantum dots.

  12. Surface-controlled contact printing for nanowire device fabrication on a large scale

    NASA Astrophysics Data System (ADS)

    Roßkopf, D.; Strehle, S.

    2016-05-01

    Assembly strategies for functional nanowire devices that merge bottom-up and top-down technologies have been debated for over a decade. Although several breakthroughs have been reported, nanowire device fabrication techniques remain generally incompatible with large-scale and high-yield top-down microelectronics manufacturing. Strategies enabling the controlled transfer of nanowires from the growth substrate to pre-defined locations on a target surface would help to address this challenge. Based on the promising concept of mechanical nanowire transfer, we developed the technique of surface-controlled contact printing, which is based purely on dry friction between a nanowire and a target surface. Surface features, so-called catchers, alter the local frictional force or deposition probability and allow the positioning of single nanowires. Surface-controlled contact printing extends the current scope of nanowire alignment strategies with the intention to facilitate efficient nanowire device fabrication. This is demonstrated by the simultaneous assembly of 36 nanowire resistors within a chip area of greater than 2 cm2 aided only by mask-assisted photolithography.

  13. Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nicaise, Samuel M.; Cheng, Jayce J.; Kiani, Amirreza; Gradečak, Silvija; Berggren, Karl K.

    2015-02-01

    Hydrothermally synthesized zinc oxide nanowire arrays have been used as nanostructured acceptors in emerging photovoltaic (PV) devices. The nanoscale dimensions of such arrays allow for enhanced charge extraction from PV active layers, but the device performance critically depends on the nanowire array pitch and alignment. In this study, we templated hydrothermally-grown ZnO nanowire arrays via high-resolution electron-beam-lithography defined masks, achieving the dual requirements of high-resolution patterning at a pitch of several hundred nanometers, while maintaining hole sizes small enough to control nanowire array morphology. We investigated several process conditions, including the effect of annealing sputtered and spincoated ZnO seed layers on nanowire growth, to optimize array property metrics—branching from individual template holes and off-normal alignment. We found that decreasing template hole size decreased branching prevalence but also reduced alignment. Annealing seed layers typically improved alignment, and sputtered seed layers yielded nanowire arrays superior to spincoated seed layers. We show that these effects arose from variation in the size of the template holes relative to the ZnO grain size in the seed layer. The quantitative control of branching and alignment of the nanowire array that is achieved in this study will open new paths toward engineering more efficient electrodes to increase photocurrent in nanostructured PVs. This control is also applicable to inorganic nanowire growth in general, nanomechanical generators, nanowire transistors, and surface-energy engineering.

  14. Surface dislocation nucleation controlled deformation of Au nanowires

    SciTech Connect

    Roos, B.; Kapelle, B.; Volkert, C. A.; Richter, G.

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of the deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.

  15. Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae).

    PubMed

    Braband, Anke; Podsiadlowski, Lars; Cameron, Stephen L; Daniels, Savel; Mayer, Georg

    2010-10-01

    The phylogeny of Onychophora (velvet worms) is unresolved and even the monophyly of the two major onychophoran subgroups, Peripatidae and Peripatopsidae, is uncertain. Previous studies of complete mitochondrial genomes from two onychophoran species revealed two strikingly different gene arrangement patterns from highly conserved in a representative of Peripatopsidae to highly derived in a species of Peripatidae, suggesting that these data might be informative for clarifying the onychophoran phylogeny. In order to assess the diversity of mitochondrial genomes among onychophorans, we analyzed the complete mitochondrial genome of Metaperipatus inae, a second representative of Peripatopsidae from Chile. Compared to the proposed ancestral gene order in Onychophora, the mitochondrial genome of M. inae shows dramatic rearrangements, although all protein-coding and ribosomal RNA genes are encoded on the same strands as in the ancestral peripatopsid genome. The retained strand affiliation of all protein-coding and ribosomal RNA genes and the occurrence of three control regions and several pseudo-genes suggest that the derived mitochondrial gene arrangement pattern in M. inae evolved by partial genome duplications, followed by a subsequent loss of redundant genes. Our findings, thus, confirm the diversity of the mitochondrial gene arrangement patterns among onychophorans and support their utility for clarifying the phylogeography of Onychophora, in particular of the Peripatopsidae species from South Africa and Chile. PMID:20510379

  16. Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae).

    PubMed

    Braband, Anke; Podsiadlowski, Lars; Cameron, Stephen L; Daniels, Savel; Mayer, Georg

    2010-10-01

    The phylogeny of Onychophora (velvet worms) is unresolved and even the monophyly of the two major onychophoran subgroups, Peripatidae and Peripatopsidae, is uncertain. Previous studies of complete mitochondrial genomes from two onychophoran species revealed two strikingly different gene arrangement patterns from highly conserved in a representative of Peripatopsidae to highly derived in a species of Peripatidae, suggesting that these data might be informative for clarifying the onychophoran phylogeny. In order to assess the diversity of mitochondrial genomes among onychophorans, we analyzed the complete mitochondrial genome of Metaperipatus inae, a second representative of Peripatopsidae from Chile. Compared to the proposed ancestral gene order in Onychophora, the mitochondrial genome of M. inae shows dramatic rearrangements, although all protein-coding and ribosomal RNA genes are encoded on the same strands as in the ancestral peripatopsid genome. The retained strand affiliation of all protein-coding and ribosomal RNA genes and the occurrence of three control regions and several pseudo-genes suggest that the derived mitochondrial gene arrangement pattern in M. inae evolved by partial genome duplications, followed by a subsequent loss of redundant genes. Our findings, thus, confirm the diversity of the mitochondrial gene arrangement patterns among onychophorans and support their utility for clarifying the phylogeography of Onychophora, in particular of the Peripatopsidae species from South Africa and Chile.

  17. Positioned growth of InP nanowires

    NASA Astrophysics Data System (ADS)

    Poole, P. J.; Dalacu, D.; Lapointe, J.; Kam, A.; Mnaymneh, K.

    2011-02-01

    We describe two different approaches to growing precisely positioned InP nanowires on InP wafers. Both of these approaches utilize the selective area growth capabilities of Chemical Beam Epitaxy, one using the Au catalysed Vapour-Liquid-Solid (VLS) growth mode, the other being catalyst-free. Growth is performed on InP wafers which are first coated with 20 nm of SiO2. These are then patterned using e-beam lithography to create nanometer scale holes in the SiO2 layer to expose the InP surface. For the VLS growth Au is then deposited into the holes in the SiO2 mask layer using a self-aligned lift-off process. For the catalyst-free growth no Au is deposited. In both cases the deposition of InP results in the formation of InP nanowires. In VLS growth the nanowire diameter is controlled by the size of the Au particle, whereas when catalyst-free the diameter is that of the opening in the SiO2 mask. The orientation of the nanowires is also different, <111>B when using Au particles and <111>A when catalyst-free. For the catalysed growth the effect of the Au particle can be turned off by modifying growth conditions allowing the nanowire to be clad, dramatically enhancing the optical emission from InAs quantum dots grown inside the nanowire.

  18. Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching.

    PubMed

    Sun, Bo; Shi, Tielin; Sheng, Wenjun; Liao, Guanglan

    2013-08-01

    We investigated the controlled fabrication of uniform vertical aligned silicon nanowires with desired length, diameter and location by combining nanosphere lithograph and metal assisted chemical etching techniques. The close-packed polystyrene nanospheres array was obtained by self-assemble technique, followed by reactive ion etching to acquire a non-close-packed monolayer template. Subsequently, the template was used to create a metal film with nanoholes array, which enable the controlled fabrication of ordered silicon nanowires via metal assisted chemical etching technique. By adjusting the monolayer of polystyrene nanospheres and the conditions for the metal assisted chemical etching, we obtained uniform distributed silicon nanowires with desired morphology. The aspect ratio of the silicon nanowires can reach to about 86:1. Furthermore, we have obtained the double-layer silicon nanowires by slight modifying the process. The influences of various conditions during etching were also discussed for improving the controlled fabrication.

  19. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires.

    PubMed

    Mayer, Martin; Scarabelli, Leonardo; March, Katia; Altantzis, Thomas; Tebbe, Moritz; Kociak, Mathieu; Bals, Sara; García de Abajo, F Javier; Fery, Andreas; Liz-Marzán, Luis M

    2015-08-12

    Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes. PMID:26134470

  20. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires.

    PubMed

    Mayer, Martin; Scarabelli, Leonardo; March, Katia; Altantzis, Thomas; Tebbe, Moritz; Kociak, Mathieu; Bals, Sara; García de Abajo, F Javier; Fery, Andreas; Liz-Marzán, Luis M

    2015-08-12

    Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes.

  1. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires

    PubMed Central

    2015-01-01

    Inspired by the concept of living polymerization reaction, we are able to produce silver–gold–silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes. PMID:26134470

  2. Size-controllable Ni5TiO7 nanowires as promising catalysts for CO oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Yanan; Liu, Baodan; Yang, Lini; Yang, Bing; Liu, Xiaoyuan; Liu, Lusheng; Weimer, Christian; Jiang, Xin

    2015-09-01

    Ni5TiO7 nanowires with controllable sizes are synthesized using PEO method combined with impregnation and annealing at 1050oC in air, with adjustment of different concentrations of impregnating solution to control the dimension of nanowires. The resulting nanowires are characterized in details using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis. In addition, the CO catalytic oxidation performance of the Ni5TiO7 nanowires is investigated using a fixed-bed quartz tubular reactor and an on-line gas chromatography system, indicating that the activity of this catalytic system for CO oxidation is a strong dependency upon the nanocrystal size.When the size of the Ni5TiO7 nanowires is induced from 4 μm to 50 nm, the corresponding maximum conversion temperature is lowered by ~100 oC.

  3. Size-controllable Ni5TiO7 nanowires as promising catalysts for CO oxidation

    PubMed Central

    Jiang, Yanan; Liu, Baodan; Yang, Lini; Yang, Bing; Liu, Xiaoyuan; Liu, Lusheng; Weimer, Christian; jiang, Xin

    2015-01-01

    Ni5TiO7 nanowires with controllable sizes are synthesized using PEO method combined with impregnation and annealing at 1050oC in air, with adjustment of different concentrations of impregnating solution to control the dimension of nanowires. The resulting nanowires are characterized in details using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis. In addition, the CO catalytic oxidation performance of the Ni5TiO7 nanowires is investigated using a fixed-bed quartz tubular reactor and an on-line gas chromatography system, indicating that the activity of this catalytic system for CO oxidation is a strong dependency upon the nanocrystal size.When the size of the Ni5TiO7 nanowires is induced from 4 μm to 50 nm, the corresponding maximum conversion temperature is lowered by ~100 oC. PMID:26395314

  4. Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

    NASA Astrophysics Data System (ADS)

    Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu

    2014-04-01

    Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

  5. Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique.

    PubMed

    Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu

    2014-04-28

    Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

  6. The role of surface passivation in controlling Ge nanowire faceting

    DOE PAGES

    Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; Zakharov, D. N.; Ross, F. M.; Stach, E. A.

    2015-11-05

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. Furthermore, these results illustrate the essential roles of themore » precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, <111>-oriented nanowires.« less

  7. The role of surface passivation in controlling Ge nanowire faceting

    SciTech Connect

    Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; Zakharov, D. N.; Ross, F. M.; Stach, E. A.

    2015-11-05

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. Furthermore, these results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, <111>-oriented nanowires.

  8. The Role of Surface Passivation in Controlling Ge Nanowire Faceting.

    PubMed

    Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A

    2015-12-01

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires. PMID:26539668

  9. Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots

    SciTech Connect

    Zhang, Y. Nagai, N.; Shibata, K.; Hirakawa, K.; Ndebeka-Bandou, C.; Bastard, G.

    2015-09-07

    We have observed a terahertz (THz) induced single electron photovoltaic effect in self-assembled InAs quantum dots (QDs). We used a single electron transistor (SET) geometry that consists of a single InAs QD and nanogap electrodes coupled with a bowtie antenna. Under a weak, broadband THz radiation, a photocurrent induced by THz intersublevel transitions in the QD is generated even when no bias voltage is applied to the SET. The observed single electron photovoltaic effect is due to an energy-dependent tunneling asymmetry in the QD-SET. Moreover, the tunneling asymmetry changes not only with the shell but also with the electron number in the QD, suggesting the manybody nature of the electron wavefunctions. The THz photovoltaic effect observed in the present QD-SET system may have potential applications to nanoscale energy harvesting.

  10. Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shibata, K.; Nagai, N.; Ndebeka-Bandou, C.; Bastard, G.; Hirakawa, K.

    2015-09-01

    We have observed a terahertz (THz) induced single electron photovoltaic effect in self-assembled InAs quantum dots (QDs). We used a single electron transistor (SET) geometry that consists of a single InAs QD and nanogap electrodes coupled with a bowtie antenna. Under a weak, broadband THz radiation, a photocurrent induced by THz intersublevel transitions in the QD is generated even when no bias voltage is applied to the SET. The observed single electron photovoltaic effect is due to an energy-dependent tunneling asymmetry in the QD-SET. Moreover, the tunneling asymmetry changes not only with the shell but also with the electron number in the QD, suggesting the manybody nature of the electron wavefunctions. The THz photovoltaic effect observed in the present QD-SET system may have potential applications to nanoscale energy harvesting.

  11. Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition.

    PubMed

    Wang, Jin-Guo; Tian, Ming-Liang; Kumar, Nitesh; Mallouk, Thomas E

    2005-07-01

    A systematic study was conducted on the fabrication, structural characterization, and transport properties of Zn nanowires with diameters between 40 and 100 nm. Zinc nanowires were fabricated by electrodepositing Zn into commercially available polycarbonate (PC) or anodic aluminum oxide (AAO) membranes. By controlling the electrodeposition process, we found that the nanowires can be single-crystal, polycrystalline Zn, crystalline Zn/nanocrystalline ZnO composites, or entirely ZnO. The microstructure and chemistry was characterized by using transmission electron microscopy. Transport studies on single-crystal or polycrystalline Zn nanowire arrays embedded inside the membrane showed that the superconducting transition temperature, Tc, is insensitive to the nanowire diameter and morphology. The superconductivity shows a clear crossover from bulklike to quasi-1D behavior, as evidenced by residual low-temperature resistance, when the diameter of the wires is reduced to 70 nm (20 times smaller than the bulk coherence length). PMID:16178219

  12. Control of the micrometric scale morphology of silicon nanowires through ion irradiation-induced metal dewetting

    NASA Astrophysics Data System (ADS)

    Lo Savio, R.; Repetto, L.; Guida, P.; Angeli, E.; Firpo, G.; Volpe, A.; Ierardi, V.; Valbusa, U.

    2016-08-01

    We propose ion-induced dewetting of Au thin films as a mechanism to modify and control the morphology of Si nanowires formed through metal-assisted chemical etching. We show that the patterns formed upon irradiation resemble those typical of dewetting phenomena, with a characteristic length in the nanometer range. Irradiated Au films are then used as a template for the fabrication of Si nanowires, and we show that a long-range order exists also in etched substrates, although at much longer length scales in the micrometer range. Investigation of the optical properties reveals that the Si nanowires emit broadband photoluminescence peaked at 700 nm. The proposed synthesis method allows tuning the morphological features of the nanowire bundles at the nanoscale without affecting the optical properties. This approach can be exploited for the engineering of nanowires-based devices where the morphological features become important.

  13. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  14. Control of gold surface diffusion on si nanowires.

    PubMed

    den Hertog, Martien I; Rouviere, Jean-Luc; Dhalluin, Florian; Desré, Pierre J; Gentile, Pascal; Ferret, Pierre; Oehler, Fabrice; Baron, Thiery

    2008-05-01

    Silicon nanowires (NW) were grown by the vapor-liquid-solid mechanism using gold as the catalyst and silane as the precursor. Gold from the catalyst particle can diffuse over the wire sidewalls, resulting in gold clusters decorating the wire sidewalls. The presence or absence of gold clusters was observed either by high angle annular darkfield scanning transmission electron microscopy images or by scanning electron microscopy. We find that the gold surface diffusion can be controlled by two growth parameters, the silane partial pressure and the growth temperature, and that the wire diameter also affects gold diffusion. Gold clusters are not present on the NW side walls for high silane partial pressure, low temperature, and small NW diameters. The absence or presence of gold on the NW sidewall has an effect on the sidewall morphology. Different models are qualitatively discussed. The main physical effect governing gold diffusion seems to be the adsorption of silane on the NW sidewalls. PMID:18422363

  15. Controlling the Interface Areas of Organic/Inorganic Semiconductor Heterojunction Nanowires for High-Performance Diodes.

    PubMed

    Xue, Zheng; Yang, Hui; Gao, Juan; Li, Jiaofu; Chen, Yanhuan; Jia, Zhiyu; Li, Yongjun; Liu, Huibiao; Yang, Wensheng; Li, Yuliang; Li, Dan

    2016-08-24

    A new method of in situ electrically induced self-assembly technology combined with electrochemical deposition has been developed for the controllable preparation of organic/inorganic core/shell semiconductor heterojunction nanowire arrays. The size of the interface of the heterojunction nanowire can be tuned by the growing parameter. The heterojunction nanowires of graphdiyne/CuS with core/shell structure showed the strong dependence of rectification ratio and perfect diode performance on the size of the interface. It will be a new way for controlling the structures and properties of one-dimensional heterojunction nanomaterials. PMID:27472226

  16. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.

    PubMed

    Consonni, Vincent; Sarigiannidou, Eirini; Appert, Estelle; Bocheux, Amandine; Guillemin, Sophie; Donatini, Fabrice; Robin, Ivan-Christophe; Kioseoglou, Joseph; Robaut, Florence

    2014-05-27

    Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices.

  17. Speedy fabrication of diameter-controlled Ag nanowires using glycerolunder microwave irradiation conditions

    EPA Science Inventory

    Diameter-controlled Ag nanowires were rapidly fabricated (1 min) using inexpensive, abundant, and environmentally-friendly glycerol as both reductant and solvent under non-stirred microwave irradiation conditions; no Ag particles were formed using conventional heating methods. Th...

  18. Stable and metastable nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2014-11-18

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  19. Morphological control of heterostructured nanowires synthesized by sol-flame method

    NASA Astrophysics Data System (ADS)

    Luo, Runlai; Cho, In Sun; Feng, Yunzhe; Cai, Lili; Rao, Pratap M.; Zheng, Xiaolin

    2013-08-01

    Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid-solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications.

  20. Morphological control of heterostructured nanowires synthesized by sol-flame method

    PubMed Central

    2013-01-01

    Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid–solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications. PMID:23924299

  1. Germanium nanowire growth controlled by surface diffusion effects

    SciTech Connect

    Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert; Teubner, Thomas; Boeck, Torsten; Fornari, Roberto

    2012-07-23

    Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.

  2. Fabrication of nickel and gold nanowires by controlled electrodeposition on deoxyribonucleic acid molecules

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Jin, Helena; Dai, Kun

    2009-01-01

    Magnetic and electrical nanowires are two important materials in the development of futuristic nanoelectronics, data storage media and nanosensors. Ni and Au nanowires with a diameter of a few tens of nanometres have been fabricated using deoxyribonucleic acid (DNA) molecules as a template through nanoparticle-controlled electroless deposition (ELD). Nanowire precursors, 1-3 nm Pt(0)-DNA and 1.4 nm Au(0)-DNA, were assembled using two different methods. Chemical reduction was used to deposit Pt(0) particles on DNA which catalyzed Ni nanowire growth. Positively charged Au nanoparticles were directly assembled on phosphate groups of DNA which were stretched and anchored between micrometre-spaced electrodes. Electrical measurement has shown that Au nanowires, catalyzed by Au(0)-DNA in a subsequent ELD, are highly conductive and show linear I-V characteristics. The major factors for the resistivity of nanowires were discussed in detail. This work involves important aspects in the field of DNA-based self-assembly, such as DNA and surface interaction, DNA nanoparticle assembly and electrical property of fabricated nanowires.

  3. Controlling the Lithiation-Induced Strain and Charging Rate in Nanowire Electrodes by Coating

    SciTech Connect

    Zhang, Li Q.; Liu, Xiao H.; Liu, Yang; Huang, Shan; Zhu, Ting; Gui, Liangjin; Mao, Scott X.; Ye, Zhi Zhen; Wang, Chong M.; Sullivan, J. P.; Huang, Jian Yu

    2011-05-04

    Lithiation-induced-strain (LIS) in electrode materials plagues the performance and lifetime of lithium ion batteries (LIBs). Controlling the LIS is one of the ultimate goals for making better LIBs. Here we report that by carbon or aluminum coating, the charging rate and LIS of individual SnO2 nanowire electrodes can be altered dramatically: namely the carbon or aluminum coated nanowires can be charged about 10 times faster than the non-coated nanowires, and the radial expansion of the coated nanowires was completely suppressed, resulting little or no mismatch strain at the reaction front, as evidenced by the lack of dislocations near the reaction front. The improved charging rate and the suppression of the radial expansion were attributed to the mechanical confinement of the coatings. These studies demonstrate an effective route to control the charging rate and LIS, enabling the design of better LIBs.

  4. Generic technique to grow III-V semiconductor nanowires in a closed glass vessel

    NASA Astrophysics Data System (ADS)

    Li, Kan; Xing, Yingjie; Xu, H. Q.

    2016-06-01

    Crystalline III-V semiconductor nanowires have great potential in fabrication of nanodevices for applications in nanoelectronics and optoelectronics, and for studies of novel physical phenomena. Sophisticated epitaxy techniques with precisely controlled growth conditions are often used to prepare high quality III-V nanowires. The growth process and cost of these experiments are therefore dedicated and very high. Here, we report a simple but generic method to synthesize III-V nanowires with high crystal quality. The technique employs a closed evacuated tube vessel with a small tube carrier containing a solid source of materials and another small tube carrier containing a growth substrate inside. The growth of nanowires is achieved after heating the closed vessel in a furnace to a preset high temperature and then cooling it down naturally to room temperature. The technique has been employed to grow InAs, GaAs, and GaSb nanowires on Si/SiO2 substrates. The as-grown nanowires are analyzed by SEM, TEM and Raman spectroscopy and the results show that the nanowires are high quality zincblende single crystals. No particular condition needs to be adjusted and controlled in the experiments. This technique provides a convenient way of synthesis of III-V semiconductor nanowires with high material quality for a wide range of applications.

  5. Thermal conductivity of silicon nanowire arrays with controlled roughness

    SciTech Connect

    Feser, JP; Sadhu, JS; Azeredo, BP; Hsu, KH; Ma, J; Kim, J; Seong, M; Fang, NX; Li, XL; Ferreira, PM; Sinha, S; Cahill, DG

    2012-12-01

    A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767456

  6. Thermal conductivity of silicon nanowire arrays with controlled roughness

    NASA Astrophysics Data System (ADS)

    Feser, Joseph P.; Sadhu, Jyothi S.; Azeredo, Bruno P.; Hsu, Keng H.; Ma, Jun; Kim, Junhwan; Seong, Myunghoon; Fang, Nicholas X.; Li, Xiuling; Ferreira, Placid M.; Sinha, Sanjiv; Cahill, David G.

    2012-12-01

    A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction.

  7. Multisegmented FeCo/Cu nanowires: electrosynthesis, characterization, and magnetic control of biomolecule desorption.

    PubMed

    Özkale, Berna; Shamsudhin, Naveen; Chatzipirpiridis, George; Hoop, Marcus; Gramm, Fabian; Chen, Xiangzhong; Martí, Xavi; Sort, Jordi; Pellicer, Eva; Pané, Salvador

    2015-04-01

    In this paper, we report on the synthesis of FeCo/Cu multisegmented nanowires by means of pulse electrodeposition in nanoporous anodic aluminum oxide arrays supported on silicon chips. By adjustment of the electrodeposition conditions, such as the pulse scheme and the electrolyte, alternating segments of Cu and ferromagnetic FeCo alloy can be fabricated. The segments can be built with a wide range of lengths (15-150 nm) and exhibit a close-to-pure composition (Cu or FeCo alloy) as suggested by energy-dispersive X-ray mapping results. The morphology and the crystallographic structure of different nanowire configurations have been assessed thoroughly, concluding that Fe, Co, and Cu form solid solution. Magnetic characterization using vibrating sample magnetometry and magnetic force microscopy reveals that by introduction of nonmagnetic Cu segments within the nanowire architecture, the magnetic easy axis can be modified and the reduced remanence can be tuned to the desired values. The experimental results are in agreement with the provided simulations. Furthermore, the influence of nanowire magnetic architecture on the magnetically triggered protein desorption is evaluated for three types of nanowires: Cu, FeCo, and multisegmented FeCo15nm/Cu15nm. The application of an external magnetic field can be used to enhance the release of proteins on demand. For fully magnetic FeCo nanowires the applied oscillating field increased protein release by 83%, whereas this was found to be 45% for multisegmented FeCo15nm/Cu15nm nanowires. Our work suggests that a combination of arrays of nanowires with different magnetic configurations could be used to generate complex substance concentration gradients or control delivery of multiple drugs and macromolecules.

  8. Controlled fabrication of ion track nanowires and channels

    NASA Astrophysics Data System (ADS)

    Spohr, Reimar; Zet, Cristian; Eberhard Fischer, Bernd; Kiesewetter, Helge; Apel, Pavel; Gunko, Igor; Ohgai, Takeshi; Westerberg, Lars

    2010-03-01

    We describe a system for fabricating prescribed numbers of ion track nanochannels and nanowires from a few hundred down to one. It consists of two parts: first, a mobile tape transport system, which, in connection with an ion beam from a heavy-ion accelerator (nuclear charge Z above 18 and specific energy between 1 and 10 MeV/nucleon) tuned down to low flux density by means of defocusing and a set of sensitive fluorescence screens, can fabricate a series of equidistant irradiation spots on a tape, whereby each spot corresponds to a preset number of ion tracks. The tape transport system uses films of 36 mm width and thicknesses between 5 and 100 μm. The aiming precision of the system depends on the diameter of the installed beam-defining aperture, which is between 50 and 500 μm. The distance between neighboring irradiation spots on the tape is variable and typically set to 25 mm. After reaching the preset number of ion counts the irradiation is terminated, the tape is marked and moved to the next position. The irradiated frames are punched out to circular membranes with the irradiation spot in the center. The second part of the setup is a compact conductometric system with 10 picoampere resolution consisting of a computer controlled conductometric cell, sealing the membrane hermetically between two chemically inert half-chambers containing electrodes and filling/flushing openings, and is encased by an electrical shield and a thermal insulation. The ion tracks can be etched to a preset diameter and the system can be programmed to electroreplicate nanochannels in a prescribed sequence of magnetic/nonmagnetic metals, alloys or semiconductors. The goal of our article is to make the scientific community aware of the special features of single-ion fabrication and to demonstrate convincingly the significance of controlled etching and electro-replication.

  9. Nanowire Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  10. Templated Control of Au nanospheres in Silica Nanowires

    SciTech Connect

    Tringe, J W; Vanamu, G; Zaidi, S H

    2007-03-15

    The formation of regularly-spaced metal nanostructures in selectively-placed insulating nanowires is an important step toward realization of a wide range of nano-scale electronic and opto-electronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with minimum area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  11. Templated control of Au nanospheres in silica nanowires

    SciTech Connect

    Tringe, Joseph W.; Vanamu, Ganesh; Zaidi, Saleem H.

    2008-11-01

    The formation of regularly spaced metal nanostructures in selectively placed insulating nanowires is an important step toward realization of a wide range of nanoscale electronic and optoelectronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with smaller area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  12. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil

    NASA Astrophysics Data System (ADS)

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-01

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH4 on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm-1, and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters.

  13. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  14. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction.

    PubMed

    Jradi, S; Balan, L; Zeng, X H; Plain, J; Lougnot, D J; Royer, P; Bachelot, R; Akil, S; Soppera, O; Vidal, L

    2010-03-01

    The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

  15. Tuning the local temperature during feedback controlled electromigration in gold nanowires

    SciTech Connect

    Xiang, An; Hou, Shimin Liao, Jianhui

    2014-06-02

    Feedback controlled electromigration (FCE) in metallic nanowires has been widely used for various purposes. However, the control of the local temperature during FCE remains a challenge. Here, we report that the environment temperature can be used as a knob to tune the local temperature during FCE in gold nanowires. FCE was performed in gold nanowires at various environment temperatures ranging from 4.2 K to 300 K. We find that the dissipated power normalized by the cross section area of the nano constriction is linearly proportional to the environment temperature. Interestingly, the estimated local maximum temperature parabolically depends on the environment temperature. A minimum in the local temperature can be reached if an appropriate environment temperature is chosen. Our findings are well supported by the finite element simulation. Moreover, the data indicates the coupling between FCE triggering current density and local temperature.

  16. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations.

    PubMed

    Shen, Youde; Turner, Stuart; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I; Wu, Tom

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. PMID:24971997

  17. Flash nano-welding: investigation and control of the photothermal response of ultrathin bismuth sulfide nanowire films.

    PubMed

    Thomson, Jordan W; Lawson, Gregor; O'Brien, Paul; Klenkler, Richard; Helander, Michael G; Petrov, Srebri; Lu, Zheng-Hong; Kherani, Nazir P; Adronov, Alex; Ozin, Geoffery

    2010-10-15

    Ultrathin Bi₂S₃ nanowires undergo a pronounced photothermal response to irradiation from a commercial camera flash. Controlled nano-welding was shown by using single walled carbon nanotube mats as an electrically and thermally conductive substrate. The resulting welded nanowire film is denser and has significantly lower resistance than unflashed bilayer films.

  18. Bipolar electrochemical method for dynamic in situ control of single metal nanowire growth.

    PubMed

    Wood, Marissa; Zhang, Bo

    2015-03-24

    Fabrication plays a key role in determining the unique electrical, optical, and catalytic properties of metal nanowires. Here we present a bipolar electrochemical method for dynamically monitoring and controlling the rate of single metal nanowire growth in situ without a direct electrical connection. Solutions of a metal precursor and a reducing agent are placed on either side of a silica nanochannel, and a pair of electrodes is used to apply a tunable electric potential across the channel. Metal nanowire growth is initiated by chemical reduction when the two solutions meet and continues until the nanochannel is blocked by the formation of a short metal wire segment. Further growth is driven by a bipolar electrochemical mechanism which enables the reduction of metal precursor ions at one end of the nanowire and the oxidation of the reducing agent at the other. The growth rate is monitored in real time by simultaneously recording both the faradaic current and optical microscope video and can be adjusted accordingly by changing the applied electric potential. The resulting nanowire is solid, electrically insulated, and can be used as a bipolar nanoelectrode. This technique can be extended to other electrochemical systems, as well, and provides a confined reaction space for studying the dynamics of any process that can be optically or electrically monitored.

  19. Real-time visualization of diffusion-controlled nanowire growth in solution.

    PubMed

    Ye, Shengrong; Chen, Zuofeng; Ha, Yoon-Cheol; Wiley, Benjamin J

    2014-08-13

    This Letter shows that copper nanowires grow through the diffusion-controlled reduction of dihydroxycopper(I), Cu(OH)2(-). A combination of potentiostatic coulometry, UV-visible spectroscopy, and thermodynamic calculations was used to determine the species adding to growing Cu nanowires is Cu(OH)2(-). Cyclic voltammetry was then used to measure the diffusion coefficient of Cu(OH)2(-) in the reaction solution. Given the diameter of a Cu nanowire and the diffusion coefficient of Cu(OH)2(-), we calculated the dependence of the diffusion-limited growth rate on the concentration of copper ions to be 26 nm s(-1) mM(-1). Independent measurements of the nanowire growth rate with dark-field optical microscopy yielded 24 nm s(-1) mM(-1) for the growth rate dependence on the concentration of copper. Dependence of the nanowire growth rate on temperature yielded a low activation energy of 11.5 kJ mol(-1), consistent with diffusion-limited growth. PMID:25054865

  20. Bipolar electrochemical method for dynamic in situ control of single metal nanowire growth.

    PubMed

    Wood, Marissa; Zhang, Bo

    2015-03-24

    Fabrication plays a key role in determining the unique electrical, optical, and catalytic properties of metal nanowires. Here we present a bipolar electrochemical method for dynamically monitoring and controlling the rate of single metal nanowire growth in situ without a direct electrical connection. Solutions of a metal precursor and a reducing agent are placed on either side of a silica nanochannel, and a pair of electrodes is used to apply a tunable electric potential across the channel. Metal nanowire growth is initiated by chemical reduction when the two solutions meet and continues until the nanochannel is blocked by the formation of a short metal wire segment. Further growth is driven by a bipolar electrochemical mechanism which enables the reduction of metal precursor ions at one end of the nanowire and the oxidation of the reducing agent at the other. The growth rate is monitored in real time by simultaneously recording both the faradaic current and optical microscope video and can be adjusted accordingly by changing the applied electric potential. The resulting nanowire is solid, electrically insulated, and can be used as a bipolar nanoelectrode. This technique can be extended to other electrochemical systems, as well, and provides a confined reaction space for studying the dynamics of any process that can be optically or electrically monitored. PMID:25695464

  1. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.

    PubMed

    Hofmann, Stephan; Sharma, Renu; Wirth, Christoph T; Cervantes-Sodi, Felipe; Ducati, Caterina; Kasama, Takeshi; Dunin-Borkowski, Rafal E; Drucker, Jeff; Bennett, Peter; Robertson, John

    2008-05-01

    Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although catalytic chemical vapour deposition of nanowires below the eutectic temperature has been demonstrated in many semiconductor-catalyst systems, growth from solid catalysts is still disputed and the overall mechanism is largely unresolved. Here, we present a video-rate environmental transmission electron microscopy study of Si nanowire formation from Pd silicide crystals under disilane exposure. A Si crystal nucleus forms by phase separation, as observed for the liquid Au-Si system, which we use as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant also to their contact formation.

  2. Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogen.

    PubMed

    Webb, James L; Knutsson, Johan; Hjort, Martin; Gorji Ghalamestani, Sepideh; Dick, Kimberly A; Timm, Rainer; Mikkelsen, Anders

    2015-08-12

    We present a study of InAs/InSb heterostructured nanowires by X-ray photoemission spectroscopy (XPS), scanning tunneling microscopy (STM), and in-vacuum electrical measurements. Starting with pristine nanowires covered only by the native oxide formed through exposure to ambient air, we investigate the effect of atomic hydrogen cleaning on the surface chemistry and electrical performance. We find that clean and unreconstructed nanowire surfaces can be obtained simultaneously for both InSb and InAs by heating to 380 ± 20 °C under an H2 pressure 2 × 10(-6) mbar. Through electrical measurement of individual nanowires, we observe an increase in conductivity of 2 orders of magnitude by atomic hydrogen cleaning, which we relate through theoretical simulation to the contact-nanowire junction and nanowire surface Fermi level pinning. Our study demonstrates the significant potential of atomic hydrogen cleaning regarding device fabrication when high quality contacts or complete control of the surface structure is required. As hydrogen cleaning has recently been shown to work for many different types of III-V nanowires, our findings should be applicable far beyond the present materials system.

  3. Controlled Structure of Electrochemically Deposited Pd Nanowires in Ion-Track Templates

    NASA Astrophysics Data System (ADS)

    Duan, Jinglai; Lyu, Shuangbao; Yao, Huijun; Mo, Dan; Chen, Yonghui; Sun, Youmei; Maaz, K.; Maqbool, M.; Liu, Jie

    2015-12-01

    Understanding and controlling structural properties of the materials are crucial in materials research. In this paper, we report that crystallinity and crystallographic orientation of Pd nanowires can be tailored by varying the fabrication conditions during electrochemical deposition in polycarbonate ion-track templates. By changing the deposition temperature during the fabrication process, the nanowires with both single- and poly-crystallinities were obtained. The wires with preferred crystallographic orientations along [111], [100], and [110] directions were achieved via adjusting the applied voltage and temperature during electrochemical deposition.

  4. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. PMID:27138460

  5. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices.

  6. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity.

    PubMed

    Large, Matthew J; Burn, Jake; King, Alice A; Ogilvie, Sean P; Jurewicz, Izabela; Dalton, Alan B

    2016-05-09

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures.

  7. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity

    PubMed Central

    Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.

    2016-01-01

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures. PMID:27158132

  8. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; Patra, Partha Pratim; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2016-08-01

    Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be modulated up to a factor of 6 by varying the excitation polarization state of surface plasmons. Our observations were corroborated with full-wave three-dimensional finite-difference time-domain calculations performed on vertically-tapered nanowire geometry. Our work introduces a new optical platform to study coupling between propagating plasmons and propagating excitons, and may have implications in emerging fields such as hybrid-polariton based light emitting devices and vertical-cavity nano-optomechanics.Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be

  9. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction.

    PubMed

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-01-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m(2) g(-1)), a high mass activity (398 mA mg(-1)) and specific activity (0.98 mA cm(-2)), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst. PMID:27550737

  10. Initialization of a spin qubit in a site-controlled nanowire quantum dot

    NASA Astrophysics Data System (ADS)

    Lagoudakis, Konstantinos G.; McMahon, Peter L.; Fischer, Kevin A.; Puri, Shruti; Müller, Kai; Dalacu, Dan; Poole, Philip J.; Reimer, Michael E.; Zwiller, Val; Yamamoto, Yoshihisa; Vučković, Jelena

    2016-05-01

    A fault-tolerant quantum repeater or quantum computer using solid-state spin-based quantum bits will likely require a physical implementation with many spins arranged in a grid. Self-assembled quantum dots (QDs) have been established as attractive candidates for building spin-based quantum information processing devices, but such QDs are randomly positioned, which makes them unsuitable for constructing large-scale processors. Recent efforts have shown that QDs embedded in nanowires can be deterministically positioned in regular arrays, can store single charges, and have excellent optical properties, but so far there have been no demonstrations of spin qubit operations using nanowire QDs. Here we demonstrate optical pumping of individual spins trapped in site-controlled nanowire QDs, resulting in high-fidelity spin-qubit initialization. This represents the next step towards establishing spins in nanowire QDs as quantum memories suitable for use in a large-scale, fault-tolerant quantum computer or repeater based on all-optical control of the spin qubits.

  11. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    PubMed Central

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-01-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g−1), a high mass activity (398 mA mg−1) and specific activity (0.98 mA cm−2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst. PMID:27550737

  12. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g‑1), a high mass activity (398 mA mg‑1) and specific activity (0.98 mA cm‑2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  13. Controlled Growth of Copper Oxide Nano-Wires through Direct Oxidation

    NASA Astrophysics Data System (ADS)

    Hilman, Joann; Neupane, Ravi; Yost, Andrew J.; Chien, Teyu

    Copper oxides, both Cu2O and CuO, have many applications in solar cells, sensors, and nano-electronics. The properties of the copper oxides are further influenced by the dimension of the materials, especially when made in nanoscale. In particular, the properties of the copper oxide nanowires could be tuned by their structures, lengths, and widths. While several methods have been reported to grow nanowires, direct oxidation is arguably the most economical one. This research examines the effects of oxidization duration and temperature in dry air environment on the development of copper oxide nanowires in order to achieve cost effective controllable growth. Using the direct oxidation method in dry air we have demonstrated growth of CuO nano-wires at temperatures as low as 300 °C and as short as 1hr. Furthermore we have observed that the lengths and diameters of the CuO NWs can be controlled by the duration and temperature of the oxidation process. WY NASA Space Grant Consortium.

  14. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control.

    PubMed

    Wu, Shiting; Huang, Kai; Shi, Enzheng; Xu, Wenjing; Fang, Ying; Yang, Yanbing; Cao, Anyuan

    2014-04-22

    We present here an efficient blown bubble method for large-scale assembly of semiconducting nanowires, with simultaneous control on the material shape. As-synthesized Te nanowires in powder form are dispersed in a polymethylmethacrylate (PMMA) solution, assembled in a large size bubble blown from the solution, and then transferred (repeatedly) to arbitrary substrates. By this way, we have obtained single-layer (aligned) and double-layer (crossed) Te nanowires as well as buckled Te nanosprings which are converted from initially straight nanowires in situ during bubble blowing. The PMMA bubble film can be removed by direct dissolution in acetone to expose nanostructures with clean surface while maintaining original configuration. After matrix removal, these clean nanowire and nanospring arrays can be fabricated into functional nanoelectronic devices such as photodetectors and gas sensors with high performance.

  15. Controlling surface plasmon interference in branched silver nanowire structures.

    PubMed

    Wei, Hong; Xu, Hongxing

    2012-11-21

    Using quantum dot fluorescence imaging, we investigated the interference of surface plasmon beams in branched silver nanowire structures. Depending on the phases and polarizations of the incident light, interferences of plasmon beams modulate the plasmon propagation in the branched structures and the output light intensity in the distal ends. The interference visibility is strongly dependent on the incident polarization at the main wire terminal, and the mechanism is revealed by quantum dot fluorescence imaging of the near field distribution of propagating plasmons. The near field distribution pattern resulting from the beating of different plasmon modes plays a critical role in the plasmon interference. The overlap of the antinode in the near field pattern with the connection junction in the nanowire structure is required for a large interference visibility, since the overlap makes the electric field intensity difference of the two plasmon beams smaller. It is found that the plasmon interference is strongly dependent on the polarization of the excitation light at the main wire terminal, but weakly dependent on the polarization at the branch wire terminal.

  16. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-01-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties. PMID:26940294

  17. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires.

    PubMed

    Chikkaraddy, Rohit; Patra, Partha Pratim; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2016-08-21

    Organic molecular nanophotonics has emerged as an important avenue to harness molecular aggregation and crystallization on various functional platforms to obtain nano-optical devices. To this end, there is growing interest to combine organic molecular nanostructures with plasmonic surfaces and interfaces. Motivated by this, herein we introduce a unique geometry: vertically-tapered organic nanowires grown on a plasmonic thin film. A polarization-sensitive plasmon-polariton on a gold thin-film was harnessed to control the exciton-polariton propagation and subsequent photoluminescence from an organic nanowire made of diaminoanthraquinone (DAAQ) molecules. We show that the exciton-polariton emission from individual DAAQ nanowires can be modulated up to a factor of 6 by varying the excitation polarization state of surface plasmons. Our observations were corroborated with full-wave three-dimensional finite-difference time-domain calculations performed on vertically-tapered nanowire geometry. Our work introduces a new optical platform to study coupling between propagating plasmons and propagating excitons, and may have implications in emerging fields such as hybrid-polariton based light emitting devices and vertical-cavity nano-optomechanics. PMID:27444822

  18. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Zhang, Shaowei

    2016-01-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties. PMID:26940294

  19. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-04

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  20. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  1. Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property.

    PubMed

    Wang, Chaoqi; Zhang, Zhaorui; Yang, Guang; Chen, Qiang; Yin, Yadong; Jin, Mingshang

    2016-09-14

    Structural defects have been proven to determine many of the materials' properties. Here, we demonstrate a unique approach to the creation of Ag nanowires with high-density defects through controllable nanoparticles coalescence in one-dimensional pores of mesoporous silica. The density of defects can be easily adjusted by tuning the annealing temperature during synthetic process. The high-density defects promote the adsorption and activation of more reactants on the surface of Ag nanowires during catalytic reactions. As a result, the as-prepared Ag nanowires exhibit enhanced activities in catalyzing dehydrogenative coupling reaction of silane in terms of apparent activation energy and turnover frequency (TOF). We show further that the silane conversion rate can be enhanced by maximizing the defect density and thus the number of active sites on the Ag nanowires, reaching a remarkable TOF of 8288 h(-1), which represents the highest TOF that has been achieved by far on Ag catalysts. This work not only proves the important role of structural defects in catalysis but also provides a new and general strategy for constructing high-density defects in metal catalysts.

  2. Ultra-low density InAs quantum dots

    SciTech Connect

    Dubrovskii, V. G. Cirlin, G. E.; Brunkov, P. A.; Perimetti, U.; Akopyan, N.

    2013-10-15

    We show that InAs quantum dots (QDs) can be grown by molecular beam epitaxy (MBE) with an ultralow density of sin 10{sup 7} cm{sup -2} without any preliminary or post-growth surface treatment. The strain-induced QD formation proceeds via the standard Stranski-Krastanow mechanism, where the InAs coverage is decreased to 1.3-1.5 monolayers (MLs). By using off-cut GaAs (100) substrates, we facilitate the island nucleation in this subcritical coverage range without any growth interruption. The QD density dependences on the InAs coverage are studied by photoluminescence, atomic force microscopy, transmission electron microscopy, and are well reproduced by the universal double exponential shapes. This method enables the fabrication of InAs QDs with controllable density in the range 10{sup 7}-10{sup 8} cm{sup -2}, exhibiting bright photoluminescence.

  3. Growth strategies to control tapering in Ge nanowires

    NASA Astrophysics Data System (ADS)

    Periwal, P.; Baron, T.; Gentile, P.; Salem, B.; Bassani, F.

    2014-04-01

    We report the effect of PH3 on the morphology of Au catalyzed Ge nanowires (NWs). Ge NWs were grown on Si (111) substrate at 400 °C in the presence of PH3, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH3/GeH4 ratio causes passivation at NW surface. At high PH3 concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH3 flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH3-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  4. Growth strategies to control tapering in Ge nanowires

    SciTech Connect

    Periwal, P.; Baron, T. Salem, B.; Bassani, F.; Gentile, P.

    2014-04-01

    We report the effect of PH{sub 3} on the morphology of Au catalyzed Ge nanowires (NWs). Ge NWs were grown on Si (111) substrate at 400 °C in the presence of PH{sub 3}, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH{sub 3}/GeH{sub 4} ratio causes passivation at NW surface. At high PH{sub 3} concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH{sub 3} flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH{sub 3}-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  5. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration

    PubMed Central

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3- dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  6. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration.

    PubMed

    Park, Jun-Young; Moon, Dong-Il; Seol, Myeong-Lok; Jeon, Chang-Hoon; Jeon, Gwang-Jae; Han, Jin-Woo; Kim, Choong-Ki; Park, Sang-Jae; Lee, Hee Chul; Choi, Yang-Kyu

    2016-01-01

    The importance of poly-crystalline silicon (poly-Si) in semiconductor manufacturing is rapidly increasing due to its highly controllable conductivity and excellent, uniform deposition quality. With the continuing miniaturization of electronic components, low dimensional structures such as 1-dimensional nanowires (NWs) have attracted a great deal of attention. But such components have a much higher current density than 2- or 3-dimensional films, and high current can degrade device lifetime and lead to breakdown problems. Here, we report on the electrical and thermal characteristics of poly-Si NWs, which can also be used to control electrical and physical breakdown under high current density. This work reports a controllable catastrophic change of poly-Si NWs by thermally-assisted electromigration and underlying mechanisms. It also reports the direct and real time observation of these catastrophic changes of poly-Si nanowires for the first time, using scanning electron microscopy. PMID:26782708

  7. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    PubMed

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-01

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.

  8. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators.

    PubMed

    Kumar, Brijesh; Lee, Keun Young; Park, Hyun-Kyu; Chae, Seung Jin; Lee, Young Hee; Kim, Sang-Woo

    2011-05-24

    Precise control of morphologies of one- or two-dimensional nanostructures during growth has not been easy, usually degrading device performance and therefore limiting applications to various advanced nanoscale electronics and optoelectronics. Graphene could be a platform to serve as a substrate for both morphology control and direct use of electrodes due to its ideal monolayer flatness with π electrons. Here, we report that, by using graphene directly as a substrate, vertically well-aligned zinc oxide (ZnO) nanowires and nanowalls were obtained systematically by controlling gold (Au) catalyst thickness and growth time without inflicting significant thermal damage on the graphene layer during thermal chemical vapor deposition of ZnO at high temperature of about 900 °C. We clarify Au nanoparticle positions at graphene-ZnO heterojunctions that are very important in realizing advanced nanoscale electronic and optoelectronic applications of such nanostructures. Further, we demonstrate a piezoelectric nanogenerator that was fabricated from the vertically aligned nanowire-nanowall ZnO hybrid/graphene structure generates a new type of direct current through the specific electron dynamics in the nanowire-nanowall hybrid. PMID:21495657

  9. Evidence of space charge regions within semiconductor nanowires from Kelvin probe force microscopy.

    PubMed

    Narváez, Angela C; Chiaramonte, Thalita; Vicaro, Klaus O; Clerici, João H; Cotta, Mônica A

    2009-11-18

    We have studied the equilibrium electrostatic profile of III-V semiconductor nanowires using Kelvin probe force microscopy. Qualitative agreement of the measured surface potential levels and expected Fermi level variation for pure InP and InAs nanowires is obtained from electrical images with spatial resolution as low as 10 nm. Surface potential mapping for pure and heterostructured nanowires suggests the existence of charge transfer mechanisms and the formation of a metal-semiconductor electrical contact at the nanowire apex.

  10. Time scales for Majorana manipulation using Coulomb blockade in gate-controlled superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Hell, Michael; Danon, Jeroen; Flensberg, Karsten; Leijnse, Martin

    2016-07-01

    We numerically compute the low-energy spectrum of a gate-controlled superconducting topological nanowire segmented into two islands, each Josephson coupled to a bulk superconductor. This device may host two pairs of Majorana bound states and could provide a platform for testing Majorana fusion rules. We analyze the crossover between (i) a charge-dominated regime utilizable for initialization and readout of Majorana bound states, (ii) a single-island regime for dominating interisland Majorana coupling, (iii) a Josephson-plasmon regime for large coupling to the bulk superconductors, and (iv) a regime of four Majorana bound states allowing for topologically protected Majorana manipulations. From the energy spectrum, we derive conservative estimates for the time scales of a fusion-rule testing protocol proposed recently (D. Aasen et al., arXiv:1511.05153). We also analyze the steps needed for basic Majorana braiding operations in branched nanowire structures.

  11. Controlling the stability of both the structure and velocity of domain walls in magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Brandão, J.; Atkinson, D.

    2016-08-01

    For magnetic nanowire devices, the precise control of both domain wall (DW) motion and pinning behaviour is essential for reliable functional performance. The domain wall velocity and wall structure are typically sensitive to the driving field or spin-polarized current, and the pinning behaviour depends on the walls' structure and chirality, leading to variability in behaviour. Here, a systematic study combining experimental measurements and micromagnetic simulations of planar nanowires with small fixed-angle structural modulations on both edges was undertaken to study the domain wall reversal regime. A phase diagram for the reversal field as a function of modulation amplitude was obtained that shows that three DW reversal regime. A range of field and modulation amplitudes were identified in which stable DW reversal occurs, where the wall velocity is constant as a function of field and the wall structure is stable, which is well suited to applications.

  12. Doping control of Cu in pH-tuned hydrothermal growth of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Jin-su; Lee, Yong-min; Boo, Jin-Hyo

    2015-11-01

    Un-doped and Cu-doped ZnO nanowires were grown on glass substrates by hydrothermal method. To investigate the effect of pH values on dopant concentration and distribution in the as-grown ZnO nanowires, we carried out hydrothermal process in conjunction with controlling pH values ranging from 5.5 to 7.0. The results show that the disorder and chemical impurity induced lattice distortion are clearly affected by pH values. In Cu 2p3/2 core level, Cu element has a mixed valence state (Cu+, Cu2+). Cu2+ state rather than Cu+ was greatly affected by pH value of solution, resulting in controlled dopant concentration. As such, the dopant concentration is highest at 5.5 of pH, which was confirmed by X-ray diffractometry and micro-Raman spectroscopy. In addition, energy dispersive X-ray spectroscopic elemental mapping indicates the uniform distribution of Cu in ZnO nanowires.

  13. Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst

    PubMed Central

    Wang, Rongyue; Higgins, Drew C.; Hoque, Md Ariful; Lee, DongUn; Hassan, Fathy; Chen, Zhongwei

    2013-01-01

    Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2–5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2–3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst. PMID:23942256

  14. Controllable synthesis and characterization of α-MnO2 nanowires

    NASA Astrophysics Data System (ADS)

    Hu, Xiulan; Zhu, Shoufeng; Huang, Huihong; Zhang, Jianbo; Xu, Yanqiu

    2016-01-01

    Size controllable α-MnO2 nanowires were synthesized from KMnO4 and ethanol via a low-temperature hydrothermal route assisted with subsequently heat treatment. No acid or alkali was added. XRD and SEM results clarified α-MnO2 nanoparticles (5-30 nm) began to form at room temperature, and then grew up to nanowires (~12 nm in diameter) when temperature increasing up to 120-160 °C for an appropriate reaction time. Otherwise, octahedron-like Mn3O4 began to form at 120 °C more than 4 h or at 160 °C more than 2 h. Hydrothermal-synthesized α-MnO2 show well thermal-stability even it was heated at 900 °C. And various size α-MnO2 nanowires were controllable prepared by adjusting heat treatment temperature of hydrothermal-synthesized α-MnO2 at range from 150 °C to 750 °C for 3 h, which show the strongest diffraction peak (211) plane. The capacity of hydrothermal-synthesized α-MnO2 at 120 °C for 2 h was about 125 F/g, which exhibited a promising electrochemical property.

  15. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    PubMed

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-01

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  16. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil.

    PubMed

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-17

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters.

  17. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil.

    PubMed

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-17

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters. PMID:21832554

  18. Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates.

    PubMed

    Martín-Sánchez, J; Muñoz-Matutano, G; Herranz, J; Canet-Ferrer, J; Alén, B; González, Y; Alonso-González, P; Fuster, D; González, L; Martínez-Pastor, J; Briones, F

    2009-06-23

    We present a fabrication method to produce site-controlled and regularly spaced InAs/GaAs quantum dots for applications in quantum optical information devices. The high selectivity of our epitaxial regrowth procedure can be used to allocate the quantum dots only in positions predefined by ex-situ local oxidation atomic force nanolithography. The quantum dots obtained following this fabrication process present a high optical quality which we have evaluated by microphotoluminescence and photon correlation experiments.

  19. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    NASA Astrophysics Data System (ADS)

    Ma, Ying; An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong; Shang, Yanli; Wang, Dan; Zhao, Cong

    2015-07-01

    By using an electron donor-acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH2Cl2. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices.

  20. Silicon Nanowire Devices

    NASA Astrophysics Data System (ADS)

    Kamins, Theodore

    2006-03-01

    Metal-catalyzed, self-assembled, one-dimensional semiconductor nanowires are being considered as possible device elements to augment and supplant conventional electronics and to extend the use of CMOS beyond the physical and economic limits of conventional technology. Such nanowires can create nanostructures without the complexity and cost of extremely fine scale lithography. The well-known and controllable properties of silicon make silicon nanowires especially attractive. Easy integration with conventional electronics will aid their acceptance and incorporation. For example, connections can be formed to both ends of a nanowire by growing it laterally from a vertical surface formed by etching the top silicon layer of a silicon-on-insulator structure into isolated electrodes. Field-effect structures are one class of devices that can be readily built in silicon nanowires. Because the ratio of surface to volume in a thin nanowire is high, conduction through the nanowire is very sensitive to surface conditions, making it effective as the channel of a field-effect transistor or as the transducing element of a gas or chemical sensor. As the nanowire diameter decreases, a greater fraction of the mobile charge can be modulated by a given external charge, increasing the sensitivity. Having the gate of a nanowire transistor completely surround the nanowire also enhances the sensitivity. For a field-effect sensor to be effective, the charge must be physically close to the nanowire so that the majority of the compensating charge is induced in the nanowire and so that ions in solution do not screen the charge. Because only induced charge is being sensed, a coating that selectively binds the target species should be added to the nanowire surface to distinguish between different species in the analyte. The nanowire work at Hewlett-Packard Laboratories was supported in part by the Defense Advanced Research Projects Agency.

  1. Controllable synthesis of SnO{sub 2} nanowires and nanobelts by Ga catalysts

    SciTech Connect

    Xie Xing; Shao Zhibin; Yang Qianhui; Shen Xiaoshuang; Zhu Wei; Hong Xun; Wang Guanzhong

    2012-07-15

    We report the morphology control of one-dimensional (1D) SnO{sub 2} nanostructures by Ga catalysts using thermal evaporation method. Gallium (Ga), either from decomposition of GaN powder or from Ga metal, is adopted as a catalyst for the growth of long SnO{sub 2} nanowires and nanobelts. At similar experimental conditions, quantities of nanobelts are formed instead of nanowires when the temperature and reaction time are increased. Such approach enables us to synthesize various morphologies of SnO{sub 2} nanobelts with different side facets. Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time, which is attributed to the large amount of oxygen vacancies introduced in the nanobelts by the Ga catalysts. - Graphical abstract: Morphology control of one-dimensional SnO{sub 2} nanostructures are realized via a thermal evaporation method. Novel nanobelts along [0 0 1] direction having high energy side facets were fabricated for the first time. Highlights: Black-Right-Pointing-Pointer Morphology control of one-dimensional SnO{sub 2} nanostructures are realized by Ga catalysts using thermal evaporation method. Black-Right-Pointing-Pointer Oxygen vacancies influenced the growth directions in order to neutralize thermodynamic instability. Black-Right-Pointing-Pointer Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time.

  2. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

    PubMed

    Nuzaihan M N, M; Hashim, U; Md Arshad, M K; Kasjoo, S R; Rahman, S F A; Ruslinda, A R; Fathil, M F M; Adzhri, R; Shahimin, M M

    2016-09-15

    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.

  3. Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.

    PubMed

    Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-07-13

    We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization. PMID:27347816

  4. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    SciTech Connect

    Ma, Ying; An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong; Shang, Yanli; Wang, Dan; Zhao, Cong

    2015-07-15

    By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: The two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.

  5. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating

    NASA Astrophysics Data System (ADS)

    Pirota, K. R.; Béron, F.; Zanchet, D.; Rocha, T. C. R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M.

    2011-04-01

    We report on the structural and magnetic properties of crystalline bi-phase Co nanowires, electrodeposited into the pores of anodized alumina membranes, as a function of their length. Co nanowires present two different coexistent crystalline structures (fcc and hcp) that can be controlled by the time of pulsed electrodeposition. The fcc crystalline phase grows at the early stage and is present at the bottom of all the nanowires, strongly influencing their magnetic behavior. Both structural and magnetic characterizations indicate that the length of the fcc phase is constant at around 260-270 nm. X-ray diffraction measurements revealed a strong preferential orientation (texture) in the (1 0-1 0) direction for the hcp phase, which increases the nanowire length as well as crystalline grain size, degree of orientation, and volume fraction of oriented material. The first-order reversal curve (FORC) method was used to infer both qualitatively and quantitatively the complex magnetization reversal of the nanowires. Under the application of a magnetic field parallel to the wires, the magnetization reversal of each region is clearly distinguishable; the fcc phase creates a high coercive contribution without an interaction field, while the hcp phase presents a smaller coercivity and undergoes a strong antiparallel interaction field from neighboring wires.

  6. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm2-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors.

  7. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels.

    PubMed

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Náfrádi, Bálint; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm(2)-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors. PMID:26806213

  8. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels

    PubMed Central

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm2-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors. PMID:26806213

  9. Controlled growth of Si-based heterostructure nanowires and their structural and electrical properties.

    PubMed

    Qian, Guanghan; Rahman, Saadah Abdul; Goh, Boon Tong

    2015-12-01

    Ni-catalyzed Si-based heterostructure nanowires grown on crystal Si substrates by hot-wire chemical vapor deposition (HWCVD) were studied. The nanowires which included NiSi nanowires, NiSi/Si core-shell nanowires, and NiSi/SiC core-shell nanowires were grown by varying the filament temperature T f from 1150 to 1850 °C. At a T f of 1450 °C, the heterostructure nanowires were formed by crystalline NiSi and crystalline Si that were attributed to the core and shell of the nanowires, respectively. The morphology of the nanowires showed significant changes with the increase in the filament temperature to 1850 °C. Moreover, the effect of hydrogen heat transfer from the filament temperature demonstrated significant phase changes from NiSi to Ni2Si with increase in the filament temperature. The increased filament temperature also enhanced reactions in the gas phase thus generating more SiC clusters and consequently formed the NiSi/SiC heterostructure core-shell nanowires at T f of 1850 °C. This paper discusses the role of filament temperatures on the growth and constituted phase change of the nanowires as well as their electrical characteristics. PMID:26100555

  10. Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles.

    PubMed

    Chen, Huan; Wang, Hui; Zhang, Xiao-Hong; Lee, Chun-Sing; Lee, Shuit-Tong

    2010-03-10

    Silicon nanowires (SiNWs) having curved structures may have unique advantages in device fabrication. However, no methods are available to prepare curved SiNWs controllably. In this work, we report the preparation of three types of single-crystal SiNWs with various turning angles via metal-assisted chemical etching using (111)-oriented silicon wafers near room temperature. The zigzag SiNWs are single crystals and can be p- or n-doped using corresponding Si wafer as substrate. The controlled growth direction is attributed to the preferred movement of Ag nanoparticles along 001 and other directions in Si wafer. Our results demonstrate that metal-assisted chemical etching may be a viable approach to fabricate SiNWs with desired turning angles by utilizing the various crystalline directions in a Si wafer.

  11. Phonon Engineering of ZnO nanowires with controlled chemical doping

    NASA Astrophysics Data System (ADS)

    Bohorquez-Ballen, Jaime; Jayasekera, Thushari

    2013-03-01

    Using the first principles density functional theory (DFT) calculations, we have investigated electronic and dynamical properties of ZnO nanowires in [001] direction with different diameters in the presence of impurities such as Mg, Al, and Ga. As the impurity concentration is varied, electrical and thermal conductivities of nanowires change. In this way, nanowires can be engineered to reduce the thermal transport, such that their thermoelectric properties can be enhanced.

  12. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning

    NASA Astrophysics Data System (ADS)

    Basu, Nandita; Cross, Graham L. W.

    2015-12-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries.

  13. Control of switching between metastable superconducting states in δ-MoN nanowires

    PubMed Central

    Buh, Jože; Kabanov, Viktor; Baranov, Vladimir; Mrzel, Aleš; Kovič, Andrej; Mihailovic, Dragan

    2015-01-01

    The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in δ-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor. PMID:26687762

  14. Controlled ambipolar doping and gate voltage dependent carrier diffusion length in lead sulfide nanowires.

    PubMed

    Yang, Yiming; Li, Jiao; Wu, Hengkui; Oh, Eunsoon; Yu, Dong

    2012-11-14

    We report a simple, controlled doping method for achieving n-type, intrinsic, and p-type lead sulfide (PbS) nanowires (NWs) grown by chemical vapor deposition without introducing any impurities. A wide range of carrier concentrations is realized by adjusting the ratio between the Pb and S precursors. The field effect electron mobility of n-type PbS NWs is up to 660 cm(2)/(V s) at room temperature, in agreement with a long minority carrier diffusion length measured by scanning photocurrent microscopy (SPCM). Interestingly, we have observed a strong dependence of minority carrier diffusion length on gate voltage, which can be understood by considering a carrier concentration dependent recombination lifetime. The demonstrated ambipolar doping of high quality PbS NWs opens up exciting avenues for their applications in photodetectors and photovoltaics.

  15. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning.

    PubMed

    Basu, Nandita; Cross, Graham L W

    2015-12-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries. PMID:26559042

  16. Controlled nanostructuring of multiphase core-shell nanowires by a template-assisted electrodeposition approach

    NASA Astrophysics Data System (ADS)

    Shi, Dawei; Chen, Junyang; Riaz, Saira; Zhou, Wenping; Han, Xiufeng

    2012-08-01

    Multiphase core-shell nanowires have been fabricated by controlling the ion transport processes of the microfluids in the nanochannels of the template. Both forced convection and pulsed potential induced migration can be applied to tune the morphologies of the nanostructures obtained by manipulating the ion transport during electrodeposition. The morphology and content of the core-shell structure were studied by field emission scanning electron microscope (FESEM) analysis, transmission electron microscope (TEM) analysis and energy dispersive spectrometry (EDS), respectively. The magnetic properties were analyzed by vibrating sample magnetometer (VSM) analysis. A magnetically hard core and soft shell constitutes the multiphase composite nanostructure. The unique magnetic hysteresis curve indicates the decoupled magnetic reversal processes of the two components. Our work provides deeper insights into the formation mechanisms of a new core-shell nanostructure, which may have potential applications in novel spintronics devices.

  17. Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.

    PubMed

    Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M

    2009-07-01

    We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations. PMID:19537736

  18. Inherent control of growth, morphology, and defect formation in germanium nanowires.

    PubMed

    Biswas, Subhajit; Singha, Achintya; Morris, Michael A; Holmes, Justin D

    2012-11-14

    The use of bimetallic alloy seeds for growing one-dimensional nanostructures has recently gained momentum among researchers. The compositional flexibility of alloys provides the opportunity to manipulate the chemical environment, reaction kinetics, and thermodynamic behavior of nanowire growth, in both the eutectic and the subeutectic regimes. This Letter describes for the first time the role of Au(x)Ag(1-x) alloy nanoparticles in defining the growth characteristics and crystal quality of solid-seeded Ge nanowires via a supercritical fluid growth process. The enhanced diffusivity of Ge in the alloy seeds, compared to pure Ag seeds, and slow interparticle diffusion of the alloy nanoparticles allows the realization of high-aspect ratio nanowires with diameters below 10 nm, via a seeded bottom-up approach. Also detailed is the influence the alloyed seeds have on the crystalline features of nanowires synthesized from them, that is, planar defects. The distinctive stacking fault energies, formation enthalpies, and diffusion chemistries of the nanocrystals result in different magnitudes of {111} stacking faults in the seed particles and the subsequent growth of <112>-oriented nanowires with radial twins through a defect transfer mechanism, with the highest number twinned Ge nanowires obtained using Ag(0.75)Au(0.25) growth seeds. Employing alloy nanocrystals for intrinsically dictating the growth behavior and crystallinity of nanowires could open up the possibility of engineering nanowires with tunable structural and physical properties.

  19. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction.

    PubMed

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  20. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    NASA Astrophysics Data System (ADS)

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-12-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature.

  1. Controlling the directional emission of light by periodic arrays of heterostructured semiconductor nanowires.

    PubMed

    Diedenhofen, Silke L; Janssen, Olaf T A; Hocevar, Moïra; Pierret, Aurélie; Bakkers, Erik P A M; Urbach, H Paul; Rivas, Jaime Gómez

    2011-07-26

    We demonstrate experimentally the directional emission of light by InAsP segments embedded in InP nanowires. The nanowires are arranged in a periodic array, forming a 2D photonic crystal slab. The directionality of the emission is interpreted in terms of the preferential decay of the photoexcited nanowires and the InAsP segments into Bloch modes of the periodic structure. By simulating the emission of arrays of nanowires with the emitting segments located at different heights, we conclude that the position of this active region strongly influences the directionality and efficiency of the emission. Our results will help to improve the design of nanowire based LEDs and single photon sources.

  2. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  3. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    PubMed Central

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  4. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential

    SciTech Connect

    Liu, Bin; Chen, HaoMing; Liu, Chong; Andrews, Sean; Han, Chris; Yang, Peidong

    2013-03-13

    Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis.

  5. Development of palladium nanowires

    NASA Astrophysics Data System (ADS)

    Cheng, Chuanding

    Inherent limitations of traditional lithography have prompted the search for means of achieving self-assembly of nano-scale structures and networks for the next generation of electronic and photonic devices. The nanowire, the basic building block of a nanocircuit, has recently become the focus of intense research. Reports on nanowire synthesis and assembly have appeared in the scientific literature, which include Vapor-Liquid-Solid mechanism, template-based electrochemical fabrication, solvothermal or wet chemistry, and assembly by fluid alignment or microchannel networks. An ideal approach for practical application of nanowires would circumvent technical and economic constraints of templating. Here we report on the self-assembly of highly-ordered metallic nanowires directly from a palladium acetate solution under an applied alternating current (AC) electric field of relatively high intensity and frequency. DNA-templated nanowires are first presented here. DNA molecules were stretched and positioned by electric field, followed by metallization by palladium acetate solution. Palladium nanowire arrays have been found to grow directly between microelectrodes without any template, under an alternating electric field of relatively high intensity and frequency. The wires grew spontaneously along the direction of the electric field and have high uniformity and conductivity. Single 75 nm-diameter palladium nanowires have also been self-assembled from aqueous solution at predefined locations between 15 mum-gap electrodes built on a SiO2 substrate. Nanowire assembly was initiated by application an electric field, and it occurred only along the direction of field lines where the field is strongest. Related metals did not support single nanowire assembly under comparable conditions. Current-limiting circuits for controlled nanowire synthesis, electric field simulation, and growth mechanism were studied. The simple and straightforward approach to nanowire assembly outlined here

  6. Towards Postmodernist Television: INA's Audiovisual Magazine Programmes.

    ERIC Educational Resources Information Center

    Boyd-Bowman, Susan

    Over the last 10 years, French television's Institute of Audiovisual Communication (INA) has shifted from modernist to post-modernist practice in broadcasting in a series of innovative audiovisual magazine programs about communication, and in a series of longer "compilation" documentaries. The first of INA's audiovisual magazines, "Hieroglyphes,"…

  7. Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    SciTech Connect

    Liu, X.; Kumano, H.; Nakajima, H.; Odashima, S.; Asano, T.; Suemune, I.; Kuroda, T.

    2014-07-28

    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.

  8. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE PAGES

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silanemore » provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  9. Coherent control of a transmon qubit with a nanowire-based Josephson junction

    NASA Astrophysics Data System (ADS)

    Larsen, T. W.; Petersson, K. D.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M.

    2015-03-01

    Transmon qubits have taken great leaps towards realizing a quantum processor. Here we present measurements on a novel, gateable transmon. By tuning the electron density in a semiconducting nanowire Josephson junction we can control the qubit frequency from ~3 GHz to ~8 GHz. The transmon was embedded into an aluminum coplanar waveguide cavity for readout and qubit control. In the resonant regime we observe strong cavity-qubit coupling. In the dispersive regime we demonstrate coherent control on the Bloch sphere. The life- and coherence times were measured to T2* ~ 2T1 ~ 1 μ s. The coherence time was measured to almost 1 μs. Fast gate operations facilitate z-rotations as well as promising fast two-qubit operations in future multiple-qubit devices. These measurements open new possibilities for gateable superconducting qubits and promise a plausible system for Majorana hybrid devices. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  10. FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Alonso, J.; Khurshid, H.; Sankar, V.; Nemati, Z.; Phan, M. H.; Garayo, E.; García, J. A.; Srikanth, H.

    2015-05-01

    A detailed study of the magnetic properties and heating capacities of electrodeposited FeCo nanowires with varying lengths (2-40 μm) and diameters (100 and 300 nm) is reported. We find that specific absorption rate (SAR) increases rapidly with increasing wire length up to 10 μm, followed by a gradual increase for larger lengths. Magnetic and hyperthermia measurements have revealed the important effect of dipolar interactions between the nanowires on their magnetic and inductive heating responses. Both calorimetric and AC magnetometry methods consistently show that the physical movement contribution of the nanowires to the SAR is small, and that for applied fields exceeding the coercive field, the nanowires tend to align parallel to the field, thus enhancing the SAR. Maximum SAR values of ˜1500 W/g have been achieved for the largest wires at H = 300 Oe and f = 310 kHz.

  11. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  12. InaSAFE applications in disaster preparedness

    NASA Astrophysics Data System (ADS)

    Pranantyo, Ignatius Ryan; Fadmastuti, Mahardika; Chandra, Fredy

    2015-04-01

    Disaster preparedness activities aim to reduce the impact of disasters by being better prepared to respond when a disaster occurs. In order to better anticipate requirements during a disaster, contingency planning activities can be undertaken prior to a disaster based on a realistic disaster scenario. InaSAFE is a tool that can inform this process. InaSAFE is a free and open source software that estimates the impact to people and infrastructure from potential hazard scenarios. By using InaSAFE, disaster managers can develop scenarios of disaster impacts (people and infrastructures affected) to inform their contingency plan and emergency response operation plan. While InaSAFE provides the software framework exposure data and hazard data are needed as inputs to run this software. Then InaSAFE can be used to forecast the impact of the hazard scenario to the exposure data. InaSAFE outputs include estimates of the number of people, buildings and roads are affected, list of minimum needs (rice and clean water), and response checklist. InaSAFE is developed by Indonesia's National Disaster Management Agency (BNPB) and the Australian Government, through the Australia-Indonesia Facility for Disaster Reduction (AIFDR), in partnership with the World Bank - Global Facility for Disaster Reduction and Recovery (GFDRR). This software has been used in many parts of Indonesia, including Padang, Maumere, Jakarta, and Slamet Mountain for emergency response and contingency planning.

  13. Performance optimization of p-n homojunction nanowire-based piezoelectric nanogenerators through control of doping concentration

    SciTech Connect

    Liu, Guocheng Ban, Dayan; Abdel-Rahman, Eihab

    2015-09-07

    This paper demonstrates a series of flexible transparent ZnO p-n homojunction nanowire-based piezoelectric nanogenerators (NGs) with different p-doping concentrations. The lithium-doped segments are grown directly and consecutively on top of intrinsic nanowires (n-type). When characterized under cyclic compressive strains, the overall NG performance is enhanced by up to eleven-fold if the doping concentration is properly controlled. This improvement is attributable to reduction in the mobile charge screening effect and optimization of the NGs' internal electrical characteristics. Experimental results also show that an interfacial MoO{sub 3} barrier layer, at an optimized thickness of 5–10 nm, reduces leakage current and substantially improves piezoelectric NG performance.

  14. Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy.

    PubMed

    Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei

    2016-01-01

    The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called "phase mechanism" described by the Zakharov-L'vov-Starobinets "S-theory" and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the "S-theory", which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect. PMID:27113392

  15. Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei

    2016-04-01

    The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called “phase mechanism” described by the Zakharov-L’vov-Starobinets “S-theory” and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the “S-theory”, which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect.

  16. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour–liquid–solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255–1000 nm and diameters of 50–80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  17. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  18. Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy

    PubMed Central

    Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei

    2016-01-01

    The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called “phase mechanism” described by the Zakharov-L’vov-Starobinets “S-theory” and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the “S-theory”, which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect. PMID:27113392

  19. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films

    NASA Astrophysics Data System (ADS)

    Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.

    2012-03-01

    This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For

  20. Nonequilibrium microstructures for Ag-Ni nanowires.

    PubMed

    Rai, Rajesh K; Srivastava, Chandan

    2015-04-01

    This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

  1. Controllable synthesis of branched ZnO/Si nanowire arrays with hierarchical structure

    PubMed Central

    2014-01-01

    A rational approach for creating branched ZnO/Si nanowire arrays with hierarchical structure was developed based on a combination of three simple and cost-effective synthesis pathways. The crucial procedure included growth of crystalline Si nanowire arrays as backbones by chemical etching of Si substrates, deposition of ZnO thin film as a seed layer by magnetron sputtering, and fabrication of ZnO nanowire arrays as branches by hydrothermal growth. The successful synthesis of ZnO/Si heterogeneous nanostructures was confirmed by morphologic, structural, and optical characterizations. The roles of key experimental parameters, such as the etchant solution, the substrate direction, and the seed layer on the hierarchical nanostructure formation, were systematically investigated. It was demonstrated that an etchant solution with an appropriate redox potential of the oxidant was crucial for a moderate etching speed to achieve a well-aligned Si nanowire array with solid and round surface. Meanwhile, the presence of gravity gradient was a key issue for the growth of branched ZnO nanowire arrays. The substrate should be placed vertically or facedown in contrast to the solution surface during the hydrothermal growth. Otherwise, only the condensation of the ZnO nanoparticles took place in a form of film on the substrate surface. The seed layer played another important role in the growth of ZnO nanowire arrays, as it provided nucleation sites and determined the growing direction and density of the nanowire arrays for reducing the thermodynamic barrier. The results of this study might provide insight on the synthesis of hierarchical three-dimensional nanostructure materials and offer an approach for the development of complex devices and advanced applications. PMID:25024688

  2. Interactions between semiconductor nanowires and living cells.

    PubMed

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  3. Fluxon Controlled Resistance Switching in Centimeter-Long Superconducting Galium-Indium Eutectic Nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; Bischof, Jesse; Liu, Xin; Hutasoit, Jimmy; Fitzgibbons, Thomas; Wang, Lin; Cai, Zhonghou; Chen, Si; Hayes, John; Sazio, Pier; Liu, Chaoxing; Jain, Jainendra; Badding, John; Chan, Moses

    2014-03-01

    We observe unexpected hysteretic behavior in centimeter long quasi 1D nanowires of Ga-In eutectic in transport measurements in the presence of a magnetic field. In particular, in some parts of the phase diagram, the system can exist in one of two stable states with different resistances. We propose that the nonzero resistance occurs when a spontaneously nucleated Ga droplet along the length of the nanowire traps a superconducting fluxon and, thereby, triggers phase slips in a nearby Ga droplet. The Ga-In nanowires thus provide a platform wherein the resistance can be switched on and off by the addition of a single fluxon. The presence of pure Ga droplets in the Ga-In nanowire was confirmed by X-ray flourescence studies conducted in Advanced Photon Source. The long length of the nanowire increases the probability of a wire containing two nearby droplets. This work is supported by the Penn State Materials Research Science and Engineering Center, funded by the National Science Foundation (DMR 0820404) and by the Energy Frontier Research Center (DE-0001057), DOE.

  4. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    SciTech Connect

    Lazić, S. Chernysheva, E.; Meulen, H. P. van der; Calleja Pardo, J. M.; Gačević, Ž.; Calleja, E.

    2015-09-15

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  5. Unusual Rh nanocrystal morphology control by hetero-epitaxially growing Rh on Au@Pt nanowires with numerous vertical twinning boundaries

    NASA Astrophysics Data System (ADS)

    An, Hyohyun; Khi, Nguyen Tien; Yoon, Jisun; Lee, Hyunkyung; Baik, Hionsuck; Sohn, Jeong-Hun; Lee, Kwangyeol

    2015-04-01

    Simultaneously growing multiple nanocrystallites in a crowded space can cause a shortage of precursors, and this can lead to a vertical growth of nanocrystallites on a given substrate. The presence of surfactant-surfactant interactions among adjacent nanocrystals can also place a unique structural constraint on the growing nanocrystallites, resulting in novel nanocrystal facet control. Herein, we report the growth of Rh on Au@Pt nanowires with multiple twinning boundaries, which are found along the entire nanowire length. The Au@Pt nanowires exhibit numerous bead-like structures, resulting from the preferred Pt deposition on the twinning boundaries, which can serve as nucleation sites for Rh. The heteroepitaxial growth of Rh on the Au@Pt nanowires results in unusual crystal growth behaviours. First, novel morphologies of Rh nanorods, nanoplates, and tangled manes are obtained temperature-dependently, which are not obtained in the absence of the Au@Pt nanowire substrate. Secondly, the thickness of vertically grown nanorods and nanoplates is tightly controlled. We also report the structure-catalytic activity relationship on the catalytic hydrogenation of phthalimides by the new Rh nanostructures.Simultaneously growing multiple nanocrystallites in a crowded space can cause a shortage of precursors, and this can lead to a vertical growth of nanocrystallites on a given substrate. The presence of surfactant-surfactant interactions among adjacent nanocrystals can also place a unique structural constraint on the growing nanocrystallites, resulting in novel nanocrystal facet control. Herein, we report the growth of Rh on Au@Pt nanowires with multiple twinning boundaries, which are found along the entire nanowire length. The Au@Pt nanowires exhibit numerous bead-like structures, resulting from the preferred Pt deposition on the twinning boundaries, which can serve as nucleation sites for Rh. The heteroepitaxial growth of Rh on the Au@Pt nanowires results in unusual crystal

  6. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials. PMID:27223050

  7. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  8. Single-fluxon controlled resistance switching in centimeter-long superconducting gallium-indium eutectic nanowires.

    PubMed

    Zhao, Weiwei; Bischof, Jesse L; Hutasoit, Jimmy; Liu, Xin; Fitzgibbons, Thomas C; Hayes, John R; Sazio, Pier J A; Liu, Chaoxing; Jain, Jainendra K; Badding, John V; Chan, M H W

    2015-01-14

    The ability to manipulate a single quantum object, such as a single electron or a single spin, to induce a change in a macroscopic observable lies at the heart of nanodevices of the future. We report an experiment wherein a single superconducting flux quantum, or a fluxon, can be exploited to switch the resistance of a nanowire between two discrete values. The experimental geometry consists of centimeter-long nanowires of superconducting Ga-In eutectic, with spontaneously formed Ga nanodroplets along the length of the nanowire. The nonzero resistance occurs when a Ga nanodroplet traps one or more superconducting fluxons, thereby driving a Josephson weak-link created by a second nearby Ga nanodroplet normal. The fluxons can be inserted or flipped by careful manipulation of the magnetic field or temperature to produce one of many metastable states of the system. PMID:25426926

  9. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  10. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    SciTech Connect

    Liu, Yichao; Yuan, Jun; Yin, Ge; Ma, Yungui; He, Sailing

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  11. Microwave-controlled ultrafast synthesis of uniform silver nanocubes and nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Fan, Jun-Bing; Cui, Jing; Liu, Jin-Hua; Xu, Xiao-Bo; Zhu, Ming-Qiang

    2011-01-01

    Synthesis of well-defined silver nanostructure in terms of size and shape has been strongly motivated by the requirements to their size- and shape-dependent optical properties which achieve their practical applications ranging from biosensing to catalysis and optics. In this Letter, an ultrafast synthetic process for the well-defined Ag nanocubes and nanowires have been developed, which simply involve the microwave-mediated polyol reduction of silver nitrate in ethylene glycol by adding different amount sodium sulfide (Na2S) into the solution. The possible growth and evolution process of the Ag nanocubes and nanowires involves the microwave ultrafast nucleation and growth followed by oxidative etching of Ag nanocrystals.

  12. Reduced Joule heating in nanowires

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2011-03-01

    The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Green's function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of Joule heating, due to heat loss at the nanowire surface that is important at nanoscopic dimensions, even when the thermal conductivity of the environment is relatively low. In addition, we find that the maximum temperature in the nanowire scales weakly with length, in contrast to the bulk system. A simple criterion is presented to assess the importance of these effects. The results have implications for the experimental measurements of nanowire thermal properties, for thermoelectric applications, and for controlling thermal effects in nanowire electronic devices.

  13. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors.

    PubMed

    Vitiello, Miriam S; Coquillat, Dominique; Viti, Leonardo; Ercolani, Daniele; Teppe, Frederic; Pitanti, Alessandro; Beltram, Fabio; Sorba, Lucia; Knap, Wojciech; Tredicucci, Alessandro

    2012-01-11

    The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source-drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 × 10(-9) W/(Hz)(1/2) at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipixel arrays, make these devices highly competitive as a future solution for terahertz detection. PMID:22149118

  14. Controlled axial and radial Te-doping of GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Salehzadeh, O.; Kavanagh, K. L.; Watkins, S. P.

    2012-09-01

    Tellurium (Te)-doping of Au-catalyzed GaAs nanowires (NWs) grown by metalorganic vapor phase epitaxy (MOVPE) via the vapor-liquid-solid (VLS) mechanism is presented. Electrical measurements were performed inside a scanning electron microscope by contacting a tungsten nanoprobe to the Au end of individual NWs grown on a heavily n-type GaAs substrate. Rectifying current-voltage (I-V) characteristics are observed due to the formation of a junction at the Au nanoparticle (NP)/NW interface. The electron concentration ne and contact barrier heights, φ0b, were determined from the analyses of these characteristics. As expected, φ0b increased (from 0.63 ± 0.03 eV to 0.71 ± 0.02 eV) with decreasing Te-precursor flow rate, corresponding to a decrease in ne from (9 ± 1) × 1017 cm-3 to (1.5 ± 0.5) × 1017 cm-3. Meanwhile, undoped NWs had space-charge-limited characteristics. There was a large influence of the residual gallium (Ga) in the NP, on barrier properties, controlled by the group V precursor flow (on or off) during the cooling of the NW sample at the end of the growth process. With the group V flow off during cooling, a decrease in φ0b from 0.79 ± 0.04 eV to 0.63 ± 0.03 eV is observed consistent with a higher Ga alloy concentration in the NP, confirmed by energy dispersive spectroscopy measurements. We also demonstrate the fabrication of core/shell, undoped/Te-doped, GaAs NWs with very high Te doping (˜1019 cm-3).

  15. Electrochemically Grown Single Nanowire Sensors

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-01-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  16. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  17. Orientation, alignment, and polytype control in epitaxial growth of SiC nanowires for electronics application in harsh environments

    NASA Astrophysics Data System (ADS)

    Koshka, Yaroslav; Thirumalai, Rooban Venkatesh K. G.; Krishnan, Bharat K.; Levin, Igor; Merrett, J. Neil; Davydov, Albert V.

    2013-09-01

    SiC nanowires (NWs) are attractive building blocks for the next generation electronic devices since silicon carbide is a wide bandgap semiconductor with high electrical breakdown strength, radiation resistance, mechanical strength, thermal conductivity, chemical stability and biocompatibility. Epitaxial growth using metal-catalyst-based vapor-liquid-solid mechanism was employed for SiC NW growth in this work. 4H-SiC substrates having different crystallographic orientations were used in order to control NW alignment and polytype. A new technique based on vapor-phase delivery of the metal catalyst was developed to facilitate control of the NW density. Both 4H and 3C polytypes with a strong stacking disorder were obtained. The 4H and 3C NWs had different orientations with respect to the substrate. 4H NWs grew perpendicular to the c-plane of the substrate. The stacking faults (SFs) in these nanowires were perpendicular to the [0001] nanowire axes. All 3C NWs grew at 20° with respect to the substrate c-plane, and their projections on the c-plane corresponded to one of the six equivalent ⟨101-0⟩ crystallographic directions. All six orientations were obtained simultaneously when growing NWs on the (0001) substrate surface, while only one or two NW orientations were observed when growing NWs on any particular crystallographic plane parallel to the c-axis of the substrate. Growth on {101-0} surfaces resulted in only one NW orientation, thereby producing well-aligned NW arrays. Preliminary measurements of the NW electrical conductivity are reported utilizing two-terminal device geometry.

  18. Insights into semiconductor nanowire conductivity using electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, C.; Salehzadeh, O.; Poole, P. J.; Watkins, S. P.; Kavanagh, K. L.

    2012-10-01

    Copper (Cu) and iron (Fe) electrical contacts to gallium arsenide (GaAs) and indium arsenide (InAs) nanowires (NWs) have been fabricated via electrodeposition. For undoped or low carbon-doped (1017/cm-3), p-type GaAs NWs, Cu or Fe nucleate and grow only on the gold catalyst at the NW tip, avoiding the sidewalls. Metal growth is limited by the Au contact resistance due to thick sidewall depletion layers. For InAs NWs and heavier-doped, core-shell (undoped core-C-doped shell) GaAs NWs, metal nucleation and growth occurs on the sidewalls as well as on the gold catalyst limited now by the ion electrolyte diffusivity.

  19. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    SciTech Connect

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Yu, Linwei E-mail: linwei.yu@polytechnique.edu

    2015-10-19

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  20. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Misra, Soumyadeep; Yu, Linwei; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-10-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  1. Vertical III-V nanowire device integration on Si(100).

    PubMed

    Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike

    2014-01-01

    We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

  2. Resolving ambiguities in nanowire field-effect transistor characterization.

    PubMed

    Heedt, Sebastian; Otto, Isabel; Sladek, Kamil; Hardtdegen, Hilde; Schubert, Jürgen; Demarina, Natalia; Lüth, Hans; Grützmacher, Detlev; Schäpers, Thomas

    2015-11-21

    We have modeled InAs nanowires using finite element methods considering the actual device geometry, the semiconducting nature of the channel and surface states, providing a comprehensive picture of charge distribution and gate action. The effective electrostatic gate width and screening effects are taken into account. A pivotal aspect is that the gate coupling to the nanowire is compromised by the concurrent coupling of the gate electrode to the surface/interface states, which provide the vast majority of carriers for undoped nanowires. In conjunction with field-effect transistor (FET) measurements using two gates with distinctly dissimilar couplings, the study reveals the density of surface states that gives rise to a shallow quantum well at the surface. Both gates yield identical results for the electron concentration and mobility only at the actual surface state density. Our method remedies the flaws of conventional FET analysis and provides a straightforward alternative to intricate Hall effect measurements on nanowires. PMID:26482127

  3. Semiconducting nanowire field effect transistor for nanoelectronics and nanomechanics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Mandar

    2013-02-01

    Semiconducting nanowire transistors offer an interesting avenue to make fundamentally new device architecture for future switching devices. I will our work to develop a simple fabrication technique for lateral nanowire wrap-gate devices with high capacitive coupling and field-effect mobility using InAs nanowires and also discuss electrical characterization of these devices. Our process uses e-beam lithography with a single resist-spinning step and does not require chemical etching. We measure significantly larger mobility and good sub-threshold characteristics [1]. I will also discuss the applications of using suspended nanowire transistors in studying mechanics and thermal properties of nanostructures as they can be useful in studying a wide variety of physics at the nanoscale. This work is supported by Government of India and partially supported by IBM India.

  4. Controlled synthesis of cadmium carbonate nanowires, nanoribbons, nanorings and sphere like architectures via hydrothermal method

    SciTech Connect

    Ashoka, S.; Nagaraju, G.; Thipperudraiah, K.V.; Chandrappa, G.T.

    2010-11-15

    Crystalline nanowires, nanoribbons, nanorings and sphere like architectures of cadmium carbonate have been synthesized with the spontaneous self-assembly of nanocrystals in aqueous solution under hydrothermal condition. The powder X-ray diffraction (PXRD) patterns of these materials exhibit phase pure hexagonal structure. The perfect circular nanorings with radius 375-437 nm, as a new member of nanostructured cadmium carbonate family are being reported for the first time. The width of the cadmium carbonate nanowires/nanoribbons and nanorings, respectively are found to be in the range 11-30 and 26-50 nm as observed by transmission electron microscope (TEM). The effect of temperature and concentration of urea on the cadmium carbonate morphology is discussed. The plausible growth mechanism for the formation of nanorings is also proposed.

  5. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    SciTech Connect

    Hollingsworth, Jennifer A.; Palaniappan, Kumaranand; Laocharoensuk, Rawiwan; Smith, Nickolaus A.; Dickerson, Robert M.; Casson, Joanna L.; Baldwin, Jon K.

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth rates as a

  6. Increased InAs quantum dot size and density using bismuth as a surfactant

    SciTech Connect

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Yu, E. T.; Bank, S. R.; Jung, D.; Lee, M. L.

    2014-12-22

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  7. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  8. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  9. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties

    PubMed Central

    Park, Won Il; Zheng, Gengfeng; Jiang, Xiaocheng; Tian, Bozhi; Lieber, Charles M.

    2009-01-01

    We report the nanocluster-catalyzed growth of ultra-long and highly-uniform single-crystalline silicon nanowires (SiNWs) with millimeter-scale lengths and aspect ratios up to ca. 100,000. The average SiNW growth rate using disilane (Si2H6) at 400 °C was 31 µm/min, while the growth rate determined for silane (SiH4) reactant under similar growth conditions was 130 times lower. Transmission electron microscopy studies of millimeter-long SiNWs with diameters of 20–80 nm show that the nanowires grow preferentially along the <110> direction independent of diameter. In addition, ultra-long SiNWs were used as building blocks to fabricate one-dimensional arrays of field-effect transistors (FETs) consisting of ca. 100 independent devices per nanowire. Significantly, electrical transport measurements demonstrated that the millimeter-long SiNWs had uniform electrical properties along the entire length of wires, and each device can behave as a reliable FET with an on-state current, threshold voltage, and transconductance values (average ± 1 standard deviation) of 1.8 ± 0.3 µA, 6.0 ± 1.1 V, 210 ± 60 nS, respectively. Electronically-uniform millimeter-long SiNWs were also functionalized with monoclonal antibody receptors, and used to demonstrate multiplexed detection of cancer marker proteins with a single nanowire. The synthesis of structurally- and electronically-uniform ultra-long SiNWs may open up new opportunities for integrated nanoelectronics, and could serve as unique building blocks linking integrated structures from the nanometer through millimeter length scales. PMID:18710294

  10. Conductivity control of as-grown branched indium tin oxide nanowire networks.

    PubMed

    Laforge, J M; Cocker, T L; Beaudry, A L; Cui, K; Tucker, R T; Taschuk, M T; Hegmann, F A; Brett, M J

    2014-01-24

    Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s(-1), achieving a maximum of ~ 10 (Ω cm)(-1). Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ~ 3000 (Ω cm)(-1), comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.

  11. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    NASA Astrophysics Data System (ADS)

    Goldstein, Anna Patrice

    The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO 2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn 2+, CO2+, or Ni2+. When Co3O 4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed

  12. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    NASA Astrophysics Data System (ADS)

    Goldstein, Anna Patrice

    The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO 2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn 2+, CO2+, or Ni2+. When Co3O 4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed

  13. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy.

    PubMed

    Schuster, Fabian; Hetzl, Martin; Weiszer, Saskia; Garrido, Jose A; de la Mata, María; Magen, Cesar; Arbiol, Jordi; Stutzmann, Martin

    2015-03-11

    In this work the position-controlled growth of GaN nanowires (NWs) on diamond by means of molecular beam epitaxy is investigated. In terms of growth, diamond can be seen as a model substrate, providing information of systematic relevance also for other substrates. Thin Ti masks are structured by electron beam lithography which allows the fabrication of perfectly homogeneous GaN NW arrays with different diameters and distances. While the wurtzite NWs are found to be Ga-polar, N-polar nucleation leads to the formation of tripod structures with a zinc-blende core which can be efficiently suppressed above a substrate temperature of 870 °C. A variation of the III/V flux ratio reveals that both axial and radial growth rates are N-limited despite the globally N-rich growth conditions, which is explained by the different diffusion behavior of Ga and N atoms. Furthermore, it is shown that the hole arrangement has no effect on the selectivity but can be used to force a transition from nanowire to nanotube growth by employing a highly competitive growth regime.

  14. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules.

    PubMed

    Adam, Tijjani; Hashim, U

    2015-05-15

    The study demonstrates the development of a liquid-based gate-control silicon nanowire biosensor for detection of specific single-stranded DNA (ssDNA) molecules. The sensor was fabricated using conventional photolithography coupled with an inductively coupled plasma dry etching process. Prior to the application of DNA to the device, its linear response to pH was confirmed by serial dilution from pH 2 to pH 14. Then, the sensor surface was silanized and directly aminated with (3-aminopropyl) triethoxysilane to create a molecular binding chemistry for biofunctionalization. The resulting Si‒O‒Si‒ components were functionalized with receptor ssDNA, which interacted with the targeted ssDNA to create a field across the silicon nanowire and increase the current. The sensor shows selectivity for the target ssDNA in a linear range from target ssDNA concentrations of 100 pM to 25 nM. With its excellent detection capabilities, this sensor platform is promising for detection of specific biomarkers and other targeted proteins. PMID:25453738

  15. Electrically Injected UV-Visible Nanowire Lasers

    SciTech Connect

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  16. III-V nanowire growth mechanism: V/III ratio and temperature effects.

    PubMed

    Dayeh, Shadi A; Yu, Edward T; Wang, Deli

    2007-08-01

    We have studied the dependence of Au-assisted InAs nanowire (NW) growth on InAs(111)B substrates as a function of substrate temperature and input V/III precursor ratio using organometallic vapor-phase epitaxy. Temperature-dependent growth was observed within certain temperature windows that are highly dependent on input V/III ratios. This dependence was found to be a direct consequence of the drop in NW nucleation and growth rate with increasing V/III ratio at a constant growth temperature due to depletion of indium at the NW growth sites. The growth rate was found to be determined by the local V/III ratio, which is dependent on the input precursor flow rates, growth temperature, and substrate decomposition. These studies advance understanding of the key processes involved in III-V NW growth, support the general validity of the vapor-liquid-solid growth mechanism for III-V NWs, and improve rational control over their growth morphology. PMID:17608541

  17. Importance of cations and anions from control agents in the synthesis of silver nanowires by polyol method

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Zhang, Zhejuan; Sun, Zhuo; Cai, Bin; Cai, Wenjun

    2016-06-01

    The important influence of cations and anions, such as Fe3+, Cu2+, H+, Na+, K+, Cl-, SO4 2- and NO3 - from control agents on the growth of silver nanowires (AgNWs) by polyol method are seriously studied. The products with silver nanostructures are characterized by field emission scanning electron microscopy, ultraviolet-visible spectroscopy and X-ray diffraction. The effect of slow release of Ag+, low value of solubility product constant due to anions and decrease in surface oxidation etching effect due to cations on silver nanostructures are discussed. The results demonstrate that strong oxidative activeness of cation makes a greater contribution to high purity of AgNWs, especially with the aid of Cl-. This work provides a simple, efficient and controllable method for high-yield production of long AgNWs.

  18. Nanostructued core-shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Li, Xifei; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2015-03-01

    Core-shell structure of Sn nanowires encapsulated in amorphous carbon nanotubes (Sn@CNTs) with controlled thickness of CNT shells was in situ prepared via chemical vapor deposition (CVD) method. The thickness of CNT shells was accurately controlled from 4 to 99 nm by using different growth time, flow rate of hydrocarbon gas (C2H4) and synthesis temperature. The microstructure and composition of the coaxial Sn@CNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) techniques. Moreover, the Sn@CNTs were studied as anode materials for Li-ion batteries and showed excellent cycle performance. The capacity was affected by the thickness of outer CNT shells: thick CNT shells contributed to a better retention while thin CNT shells led to a higher capacity. The thin CNT shell of 6 nm presented the highest capacity around 630 mAh g-1.

  19. Simple intrinsic defects in InAs :

    SciTech Connect

    Schultz, Peter Andrew

    2013-03-01

    This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

  20. An Interview with Ina May Gaskin.

    ERIC Educational Resources Information Center

    Leue, Mary; Mercogliano, Betsy

    1995-01-01

    Ina May Gaskin, a traditional midwife and founder of The Farm Midwifery Center in Summertown, Tennessee, discusses how she first became involved in midwifery, where she learned her skills, the status of midwifery, and her future plans. Ms. Gaskin has been instrumental in the revolution of birth practices worldwide. (LP)

  1. Current–Voltage Characterization of Individual As-Grown Nanowires Using a Scanning Tunneling Microscope

    PubMed Central

    2013-01-01

    Utilizing semiconductor nanowires for (opto)electronics requires exact knowledge of their current–voltage properties. We report accurate on-top imaging and I–V characterization of individual as-grown nanowires, using a subnanometer resolution scanning tunneling microscope with no need for additional microscopy tools, thus allowing versatile application. We form Ohmic contacts to InP and InAs nanowires without any sample processing, followed by quantitative measurements of diameter dependent I–V properties with a very small spread in measured values compared to standard techniques. PMID:24059470

  2. Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate

    SciTech Connect

    Anufriev, Roman; Chauvin, Nicolas Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles

    2014-05-05

    We report on the evidence of a strain-induced piezoelectric field in wurtzite InAs/InP quantum rod nanowires. This electric field, caused by the lattice mismatch between InAs and InP, results in the quantum confined Stark effect and, as a consequence, affects the optical properties of the nanowire heterostructure. It is shown that the piezoelectric field can be screened by photogenerated carriers or removed by increasing temperature. Moreover, a dependence of the piezoelectric field on the quantum rod diameter is observed in agreement with simulations of wurtzite InAs/InP quantum rod nanowire heterostructures.

  3. Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; Van Harlingen, D. J.; Mohseni, P. K.; Jung, K.; Li, X.

    2013-03-01

    We report on transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and chemical potential. The ZBA can oscillate in width with either the magnetic field or chemical potential; it can even split and re-form. We discuss how our results relate to recent predictions of hybridizing Majorana fermions in semiconducting nanowires, while considering more mundane explanations.

  4. Spin effects in InAs self-assembled quantum dots.

    PubMed

    Dos Santos, Ednilson C; Gobato, Yara Galvão; Brasil, Maria Jsp; Taylor, David A; Henini, Mohamed

    2011-01-01

    We have studied the polarized resolved photoluminescence in an n-type resonant tunneling diode (RTD) of GaAs/AlGaAs which incorporates a layer of InAs self-assembled quantum dots (QDs) in the center of a GaAs quantum well (QW). We have observed that the QD circular polarization degree depends on applied voltage and light intensity. Our results are explained in terms of the tunneling of minority carriers into the QW, carrier capture by InAs QDs and bias-controlled density of holes in the QW. PMID:21711647

  5. Spatially controlled growth of highly crystalline ZnO nanowires by an inkjet-printing catalyst-free method

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Khachadorian, Sevak; Zamani, Reza R.; Franke, Alexander; Hoffmann, Axel; Wagner, Markus R.; Santana, Guillermo

    2016-02-01

    High-density arrays of uniform ZnO nanowires with a high-crystal quality have been synthesized by a catalyst-free vapor-transport method. First, a thin ZnO film was deposited on a Si substrate as nucleation layer for the ZnO nanowires. Second, spatially selective and mask-less growth of ZnO nanowires was achieved using inkjet-printed patterned islands as the nucleation sites on a SiO2/Si substrate. Raman scattering and low temperature photoluminescence measurements were applied to characterize the structural and optical properties of the ZnO nanowires. The results reveal negligible amounts of strain and defects in the mask-less ZnO nanowires as compared to the ones grown on the ZnO thin film, which underlines the potential of the inkjet-printing approach for the growth of high-crystal quality ZnO nanowires.

  6. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  7. Controlled vapor-liquid-solid growth of indium, gallium, and tinoxide nanowires via chemical vapor transport

    SciTech Connect

    Johnson, M.C.; Aloni, S.; McCready, D.E.; Bourret-Courchesne, E.D.

    2006-03-31

    We utilized a vapor-liquid-solid growth technique tosynthesize indium oxide, gallium oxide, and tin oxide nanowires usingchemical vapor transport with gold nanoparticles as the catalyst. Usingidentical growth parameters, we were able to synthesize single crystalnanowires typically 40-100 nm diameter and more than 10-100 m long. Theproducts were characterized by means of X-ray diffraction (XRD), scanningelectron microscopy (SEM), and high-resolution transmission electronmicroscopy (HRTEM). All the wires were grown under the same growthconditions with growth rates inversely proportional to the source metalvapor pressure. Initial experiments show that different transparent oxidenanowires can be grown simultaneously on a single substrate withpotential application for multicomponent gas sensors.

  8. Controlled synthesis of Mn₂O₃ nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material.

    PubMed

    Hassan, M Shamshi; Amna, Touseef; Pandeya, Dipendra Raj; Hamza, A M; Bing, Yang You; Kim, Hyun-Chel; Khil, Myung-Seob

    2012-07-01

    Mn₂O₃ nanowires with diameter ~70 nm were synthesized by a simple hydrothermal method using Mn(II) nitrate as precursor. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy techniques were employed to study structural features and chemical composition of the synthesized nanowires. A biological evaluation of the antimicrobial activity and cytotoxicity of Mn₂O₃ nanowires was carried out using Escherichia coli and mouse myoblast C₂C₁₂ cells as model organism and cell lines, respectively. The antibacterial activity and the acting mechanism of Mn₂O₃ nanowires were investigated by using growth inhibition studies and analyzing the morphology of the bacterial cells following the treatment with nanowires. These results suggest that the pH is critical factor affecting the morphology and production of the Mn₂O₃ nanowires. Method developed in the present study provided optimum production of Mn₂O₃ nanowires at pH ~ 9. The Mn₂O₃ nanowires showed significant antibacterial activity against the E. coli strain, and the lowest concentration of Mn₂O₃ nanowires solution inhibiting the growth of E. coli was found to be 12.5 μg/ml. TEM analysis demonstrated that the exposure of the selected microbial strains to the nanowires led to disruption of the cell membranes and leakage of the internal contents. Furthermore, the cytotoxicity results showed that the inhibition of C₂C₁₂ increases with the increase in concentration of Mn₂O₃ nanowires. Our results for the first time highlight the cytotoxic and bactericidal potential of Mn₂O₃ nanowires which can be utilized for various biomedical applications.

  9. One-dimensional behavior and high thermoelectric power factor in thin indium arsenide nanowires

    SciTech Connect

    Mensch, P.; Karg, S. Schmidt, V.; Gotsmann, B.; Schmid, H.; Riel, H.

    2015-03-02

    Electrical conductivity and Seebeck coefficient of quasi-one-dimensional indium arsenide (InAs) nanowires with 20 nm diameter are investigated. The carrier concentration of the passivated nanowires was modulated by a gate electrode. A thermoelectric power factor of 1.7 × 10{sup −3} W/m K{sup 2} was measured at room temperature. This value is at least as high as in bulk-InAs and exceeds by far typical values of thicker InAs nanowires with three-dimensional properties. The interpretation of the experimental results in terms of power-factor enhancement by one-dimensionality is supported by model calculations using the Boltzmann transport formalism.

  10. Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors.

    PubMed

    Yang, Dachi; Carpena-Núñez, Jennifer; Fonseca, Luis F; Biaggi-Labiosa, Azlin; Hunter, Gary W

    2014-01-20

    For hydrogen sensors built with pure Pd nanowires, the instabilities causing baseline drifting and temperature-driven sensing behavior are limiting factors when working within a wide temperature range. To enhance the material stability, we have developed superlattice-structured palladium and copper nanowires (PdCu NWs) with random-gapped, screw-threaded, and spiral shapes achieved by wet-chemical approaches. The microstructure of the PdCu NWs reveals novel superlattices composed of lattice groups structured by four-atomic layers of alternating Pd and Cu. Sensors built with these modified NWs show significantly reduced baseline drifting and lower critical temperature (259.4 K and 261 K depending on the PdCu structure) for the reverse sensing behavior than those with pure Pd NWs (287 K). Moreover, the response and recovery times of the PdCu NWs sensor were of ~9 and ~7 times faster than for Pd NWs sensors, respectively.

  11. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  12. Synthesis and characterization of cadmium telluride nanowire

    NASA Astrophysics Data System (ADS)

    Kum, Maxwell C.; Yoo, Bong Young; Rheem, Young Woo; Bozhilov, Krassimir N.; Chen, Wilfred; Mulchandani, Ashok; Myung, Nosang V.

    2008-08-01

    CdTe nanowires with controlled composition were cathodically electrodeposited using track-etched polycarbonate membrane as scaffolds and their material and electrical properties were systematically investigated. As-deposited CdTe nanowires show nanocrystalline cubic phase structures with grain sizes of up to 60 nm. The dark-field images of nanowires reveal that the crystallinity of nanowires was greatly improved from nanocrystalline to a few single crystals within nanowires upon annealing at 200 °C for 6 h in a reducing environment (5% H2+95% N2). For electrical characterization, a single CdTe nanowire was assembled across microfabricated gold electrodes using the drop-casting method. In addition to an increase in grain size, the electrical resistivity of an annealed single nanowire (a few 105 Ω cm) was one order of magnitude greater than in an as-deposited nanowire, indicating that crystallinity of nanowires improved and defects within nanowires were reduced during annealing. By controlling the dopants levels (e.g. Te content of nanowires), the resistivity of nanowires was varied from 104 to 100 Ω cm. Current-voltage (I-V) characteristics of nanowires indicated the presence of Schottky barriers at both ends of the Au/CdTe interface. Temperature-dependent I-V measurements show that the electron transport mode was determined by a thermally activated component at T>-50 °C and a temperature-independent component below -50 °C. Under optical illumination, the single CdTe nanowire exhibited enhanced conductance.

  13. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.

    PubMed

    Hou, Jared J; Han, Ning; Wang, Fengyun; Xiu, Fei; Yip, Senpo; Hui, Alvin T; Hung, TakFu; Ho, Johnny C

    2012-04-24

    InAs nanowires have been extensively studied for high-speed and high-frequency electronics due to the low effective electron mass and corresponding high carrier mobility. However, further applications still suffer from the significant leakage current in InAs nanowire devices arising from the small electronic band gap. Here, we demonstrate the successful synthesis of ternary InGaAs nanowires in order to tackle this leakage issue utilizing the larger band gap material but at the same time not sacrificing the high electron mobility. In this work, we adapt a two-step growth method on amorphous SiO(2)/Si substrates which significantly reduces the kinked morphology and surface coating along the nanowires. The grown nanowires exhibit excellent crystallinity and uniform stoichiometric composition along the entire length of the nanowires. More importantly, the electrical properties of those nanowires are found to be remarkably impressive with I(ON)/I(OFF) ratio >10(5), field-effect mobility of ∼2700 cm(2)/(V·s), and ON current density of ∼0.9 mA/μm. These nanowires are then employed in the contact printing and achieve large-scale assembly of nanowire parallel arrays which further illustrate the potential for utilizing these high-performance nanowires on substrates for the fabrication of future integrated circuits.

  14. Controlled manipulation and in situ mechanical measurement of single co nanowire with a laser-induced cavitation bubble.

    PubMed

    Huang, Xiaohu; Quinto-Su, Pedro A; Gonzalez-Avila, S Roberto; Wu, Tom; Ohl, Claus-Dieter

    2010-10-13

    The flow induced by a single laser-induced cavitation bubble is used to manipulate individual Co nanowires. The short-lived (<20 μs) bubble with a maximum size of 45 μm is created in an aqueous solution with a laser pulse. Translation, rotation, and radial motion of the nanowire can be selectively achieved by varying the initial distance and orientation of the bubble with respect to the nanowire. Depending on the initial distance, the nanowire can be either pushed away or pulled toward the laser focus. No translation is observed for a distance further than approximately 60 μm, while at closer distance, the nanowire can be bent as a result of the fast flow induced during the bubble collapse. Studying the dynamics of the shape recovery allows an estimation of the Young's modulus of the nanowire. The low measured Young's modulus (in a range from 9.6 to 13.0 GPa) of the Co nanowire is attributed to a softening effect due to structural defects and surface oxidation layer. Our study suggests that this bubble-based technique allows selectively transporting, orienting, and probing individual nanowires and may be exploited for constructing functional nanodevices.

  15. Shape-controlled narrow-gap SnTe nanostructures: From nanocubes to nanorods and nanowires

    SciTech Connect

    Guo, Shaojun; Andrew F. Fidler; He, Kai; Su, Dong; Chen, Gen; Lin, Qianglu; Pietryga, Jeffrey M.; Klimov, Victor I.

    2015-11-06

    In this study, the rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead to elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.

  16. Electrical Control of g-Factor in a Few-Hole Silicon Nanowire MOSFET.

    PubMed

    Voisin, B; Maurand, R; Barraud, S; Vinet, M; Jehl, X; Sanquer, M; Renard, J; De Franceschi, S

    2016-01-13

    Hole spins in silicon represent a promising yet barely explored direction for solid-state quantum computation, possibly combining long spin coherence, resulting from a reduced hyperfine interaction, and fast electrically driven qubit manipulation. Here we show that a silicon-nanowire field-effect transistor based on state-of-the-art silicon-on-insulator technology can be operated as a few-hole quantum dot. A detailed magnetotransport study of the first accessible hole reveals a g-factor with unexpectedly strong anisotropy and gate dependence. We infer that these two characteristics could enable an electrically driven g-tensor-modulation spin resonance with Rabi frequencies exceeding several hundred mega-Hertz. PMID:26599868

  17. Review on photonic properties of nanowires for photovoltaics.

    PubMed

    Mokkapati, S; Jagadish, C

    2016-07-25

    III-V semiconductor nanowires behave as optical antennae because of their shape anisotropy and high refractive index. The antennae like behavior modifies the absorption and emission properties of nanowires compared to planar materials. Nanowires absorb light more efficiently compared to an equivalent volume planar material, leading to higher short circuit current densities. The modified emission from the nanowires has the potential to increase the open circuit voltage from nanowire solar cells compared to planar solar cells. In order to achieve high efficiency nanowire solar cells it is essential to control the surface state density and doping in nanowires. We review the physics of nanowire solar cells and progress made in addressing the surface recombination and doping of nanowires, with emphasis on GaAs and InP materials.

  18. Review on photonic properties of nanowires for photovoltaics.

    PubMed

    Mokkapati, S; Jagadish, C

    2016-07-25

    III-V semiconductor nanowires behave as optical antennae because of their shape anisotropy and high refractive index. The antennae like behavior modifies the absorption and emission properties of nanowires compared to planar materials. Nanowires absorb light more efficiently compared to an equivalent volume planar material, leading to higher short circuit current densities. The modified emission from the nanowires has the potential to increase the open circuit voltage from nanowire solar cells compared to planar solar cells. In order to achieve high efficiency nanowire solar cells it is essential to control the surface state density and doping in nanowires. We review the physics of nanowire solar cells and progress made in addressing the surface recombination and doping of nanowires, with emphasis on GaAs and InP materials. PMID:27464182

  19. III-Nitride Nanowire Lasers

    SciTech Connect

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit

  20. III-nitride nanowire lasers

    NASA Astrophysics Data System (ADS)

    Wright, Jeremy Benjamin

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key figure of merit that allows for nanowire lasing is the relatively high optical confinement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve single-mode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode operation. The first method involves reducing the diameter of individual nanowires to the cut-off condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter efficiency. Advances in nanowire fabrication, specifically a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip

  1. Electron beam induced current in InSb-InAs nanowire type-III heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Shik, A.; Pitanti, A.; Tredicucci, A.; Ercolani, D.; Sorba, L.; Beltram, F.; Ruda, H. E.

    2012-08-01

    InSb-InAs nanowire heterostructure diodes investigated by electron beam induced current (EBIC) demonstrate an unusual spatial profile where the sign of the EBIC signal changes in the vicinity of the heterointerface. A qualitative explanation confirmed by theoretical calculations is based on the specific band diagram of the structure representing a type-III heterojunction with an accumulation layer in InAs. The sign of the EBIC signal depends on the specific parameters of this layer. In the course of measurements, the diffusion length of holes in InAs and its temperature dependence are also determined.

  2. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    SciTech Connect

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.

  3. Lithographically patterned nanowire electrodeposition

    NASA Astrophysics Data System (ADS)

    Xiang, Chengxiang

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5 - 100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of theM1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 um sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowirenanowire junctions. The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from

  4. Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties

    SciTech Connect

    Das, Suprem R.; Mohammad, Asaduzzaman; Janes, David B.; Akatay, Cem; Khan, Mohammad Ryyan; Alam, Muhammad A.; Maeda, Kosuke; Deacon, Russell S.; Ishibashi, Koji; Chen, Yong P.; Sands, Timothy D.

    2014-08-28

    In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150 nm), large branches (average diameter of 100 nm), and small branches (average diameter of sub-10 nm to sub-20 nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420 °C in argon produced single crystalline structures along 〈311〉 directions for the branches and along 〈111〉 for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.

  5. Rate controlled metal assisted chemical etching to fabricate vertical and uniform Si nanowires

    NASA Astrophysics Data System (ADS)

    Song, Ari; Yun, Seokhun; Lokhande, Vaibhav; Ji, Taeksoo

    2016-03-01

    Mac(metal assisted chemical) etching is a simple, low-cost and anisotropic etching method to make Si NWs (silicon nanowires). In this method, smaller surface area is damaged compared to dry etching process, either. Mac etching uses a combination of an oxide removal acid (e.g. HF), an oxidant (e.g. H2O2) with a noble metal (e.g. Au, Ag, Pt, etc.) as the catalyst. Typically, the Si beneath the noble metal is etched faster than the Si without noble metal coverage by electron transfer mechanism at the noble metal /solution and the noble metal/Si interface. While Mac etching to build Si NWs, unwanted etching occurs in the bulk silicon layer resulting from excess hole diffusion caused by the increase in hole concentration at the nearby metal layers. In this study, we explored the ratio of oxidant to oxide removal acid in the Mac etching solution that is most effective in etching the Si underneath the noble metal layer suppressing the unwanted etching. At the optimized ratio, Si NWs were fabricated at a faster rate with good uniformity.

  6. Shape-controlled narrow-gap SnTe nanostructures: From nanocubes to nanorods and nanowires

    DOE PAGES

    Guo, Shaojun; Andrew F. Fidler; He, Kai; Su, Dong; Chen, Gen; Lin, Qianglu; Pietryga, Jeffrey M.; Klimov, Victor I.

    2015-11-06

    In this study, the rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead tomore » elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.« less

  7. Nanoscale manipulation of Ge nanowires by ion hammering

    SciTech Connect

    Picraux, Samuel T; Romano, Lucia; Rudawski, Nicholas G; Holzworth, Monta R; Jones, Kevin S; Choi, S G

    2009-01-01

    Nanowires generated considerable interest as nanoscale interconnects and as active components of both electronic and electromechanical devices. However, in many cases, manipulation and modification of nanowires are required to realize their full potential. It is essential, for instance, to control the orientation and positioning of nanowires in some specific applications. This work demonstrates a simple method to reversibly control the shape and the orientation of Ge nanowires by using ion beams. Initially, crystalline nanowires were partially amorphized by 30 keY Ga+-implantation. After amorphization, viscous flow and plastic deformation occurred due to the ion hammering effect, causing the nanowires to bend toward the beam direction. The bending was reversed multiple times by ion-implanting the opposite side of the nanowires, resulting in straightening of the nanowires and subsequent bending in the opposite direction. This ion hammering effect demonstrates the detailed manipulation of nanoscale structures is possible through the use of ion irradiation.

  8. Photocatalytic Properties of Porous Silicon Nanowires.

    PubMed

    Qu, Yongquan; Zhong, Xing; Li, Yujing; Liao, Lei; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Porous silicon nanowires are synthesized through metal assisted wet-chemical etch of highly-doped silicon wafer. The resulted porous silicon nanowires exhibit a large surface area of 337 m(2)·g(-1) and a wide spectrum absorption across the entire ultraviolet, visible and near infrared regime. We further demonstrate that platinum nanoparticles can be loaded onto the surface of the porous silicon nanowires with controlled density. These combined advancements make the porous silicon nanowires an interesting material for photocatalytic applications. We show that the porous silicon nanowires and platinum nanoparticle loaded porous silicon nanowires can be used as effective photocatalysts for photocatalytic degradation of organic dyes and toxic pollutants under visible irradiation, and thus are of significant interest for organic waste treatment and environmental remediation.

  9. Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity

    NASA Astrophysics Data System (ADS)

    Arefpour, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    While a variety of template-based strategies have been developed in the fabrication of nanowires (NWs), a uniform pore filling across the template still poses a major challenge. Here, we present a large area controlled pore filling strategy in the reproducible fabrication of various magnetic and metallic NW arrays, embedded inside anodic aluminum oxide templates. Using a diffusive pulsed electrodeposition (DPED) technique, this versatile strategy relies on the optimized filling of branched nanopores at the bottom of templates with Cu. Serving the Cu filled nanopores as appropriate nucleation sites, the DPED is followed by a uniform and homogeneous deposition of magnetic (Ni and Fe) and metallic (Cu and Zn) NWs at a current density of 50 mA cm-2 for an optimal thickness of alumina barrier layer (˜18 nm). Our strategy provides large area uniformity (exceeding 400 μm2) in the fabrication of 16 μm long free-standing NW arrays. Using hysteresis loop measurements and scanning electron microscopy images, the electrodeposition efficiency (EE) and pore filling percentage (F p) are evaluated, leading to maximum EE and F p values of 91% and 95% for Ni and Zn, respectively. Moreover, the resulting NW arrays are found to be highly crystalline. Accordingly, the DPED technique is capable of cheaply and efficiently controlling NW growth over a large area, providing a tool for various nanoscale applications including biomedical devices, electronics, photonics, magnetic storage medium and nanomagnet computing.

  10. Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity

    NASA Astrophysics Data System (ADS)

    Arefpour, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    While a variety of template-based strategies have been developed in the fabrication of nanowires (NWs), a uniform pore filling across the template still poses a major challenge. Here, we present a large area controlled pore filling strategy in the reproducible fabrication of various magnetic and metallic NW arrays, embedded inside anodic aluminum oxide templates. Using a diffusive pulsed electrodeposition (DPED) technique, this versatile strategy relies on the optimized filling of branched nanopores at the bottom of templates with Cu. Serving the Cu filled nanopores as appropriate nucleation sites, the DPED is followed by a uniform and homogeneous deposition of magnetic (Ni and Fe) and metallic (Cu and Zn) NWs at a current density of 50 mA cm‑2 for an optimal thickness of alumina barrier layer (∼18 nm). Our strategy provides large area uniformity (exceeding 400 μm2) in the fabrication of 16 μm long free-standing NW arrays. Using hysteresis loop measurements and scanning electron microscopy images, the electrodeposition efficiency (EE) and pore filling percentage (F p) are evaluated, leading to maximum EE and F p values of 91% and 95% for Ni and Zn, respectively. Moreover, the resulting NW arrays are found to be highly crystalline. Accordingly, the DPED technique is capable of cheaply and efficiently controlling NW growth over a large area, providing a tool for various nanoscale applications including biomedical devices, electronics, photonics, magnetic storage medium and nanomagnet computing.

  11. Electrochemically grown single-nanowire sensors

    NASA Astrophysics Data System (ADS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald M.; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-12-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  12. Using galvanostatic electroforming of Bi1–xSbx nanowires to control composition, crystallinity, and orientation

    DOE PAGES

    Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; Hekmaty, Michelle; Lensch-Falk, Jessica L.; Erickson, Kristopher; Pillars, Jamin; Yelton, W. Graham

    2014-12-03

    When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi1–xSbx nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl3 bath, the electroformed nanowire arrays were optimized to have nanocompositionalmore » uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi0.75 Sb0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi0.70Sb0.30.« less

  13. ZnO nanowire array growth on precisely controlled patterns of inkjet-printed zinc acetate at low-temperatures

    NASA Astrophysics Data System (ADS)

    Tsangarides, Constantinos P.; Ma, Hanbin; Nathan, Arokia

    2016-06-01

    ZnO nanowires have been fabricated through the hydrothermal method on inkjet-printed patterns of zinc acetate dihydrate. The silicon substrate used was heated accordingly during the printing period in order to maintain good spatial uniformity of the zinc acetate nanoparticles, responsible for the pattern morphology. Printing more than one pass of precursor ink leads to an increase in seed layer thickness that subsequently alters the density and dimensions of nanowires. It has been demonstrated that with the right inkjet-printing parameters and substrate temperature, ZnO nanowires can be effortlessly fabricated in accordance with the desired pattern variations under low temperature and mild conditions that ensures promising applications in optoelectronic devices.ZnO nanowires have been fabricated through the hydrothermal method on inkjet-printed patterns of zinc acetate dihydrate. The silicon substrate used was heated accordingly during the printing period in order to maintain good spatial uniformity of the zinc acetate nanoparticles, responsible for the pattern morphology. Printing more than one pass of precursor ink leads to an increase in seed layer thickness that subsequently alters the density and dimensions of nanowires. It has been demonstrated that with the right inkjet-printing parameters and substrate temperature, ZnO nanowires can be effortlessly fabricated in accordance with the desired pattern variations under low temperature and mild conditions that ensures promising applications in optoelectronic devices. Electronic supplementary information (ESI) available: Printing parameters in detail and extra figures. See DOI: 10.1039/c6nr02962k

  14. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    PubMed

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension.

  15. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    PubMed

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension. PMID:24245969

  16. Why self-catalyzed nanowires are most suitable for large-scale hierarchical integrated designs of nanowire nanoelectronics

    NASA Astrophysics Data System (ADS)

    Noor Mohammad, S.

    2011-10-01

    Nanowires are grown by a variety of mechanisms, including vapor-liquid-solid, vapor-quasiliquid-solid or vapor-quasisolid-solid, oxide-assisted growth, and self-catalytic growth (SCG) mechanisms. A critical analysis of the suitability of self-catalyzed nanowires, as compared to other nanowires, for next-generation technology development has been carried out. Basic causes of superiority of self-catalyzed (SCG) nanowires over other nanowires have been described. Polytypism in nanowires has been studied, and a model for polytypism has been proposed. The model predicts polytypism in good agreement with available experiments. This model, together with various evidences, demonstrates lower defects, dislocations, and stacking faults in SCG nanowires, as compared to those in other nanowires. Calculations of carrier mobility due to dislocation scattering, ionized impurity scattering, and acoustic phonon scattering explain the impact of defects, dislocations, and stacking faults on carrier transports in SCG and other nanowires. Analyses of growth mechanisms for nanowire growth directions indicate SCG nanowires to exhibit the most controlled growth directions. In-depth investigation uncovers the fundamental physics underlying the control of growth direction by the SCG mechanism. Self-organization of nanowires in large hierarchical arrays is crucial for ultra large-scale integration (ULSI). Unique features and advantages of self-organized SCG nanowires, unlike other nanowires, for this ULSI have been discussed. Investigations of nanowire dimension indicate self-catalyzed nanowires to have better control of dimension, higher stability, and higher probability, even for thinner structures. Theoretical calculations show that self-catalyzed nanowires, unlike catalyst-mediated nanowires, can have higher growth rate and lower growth temperature. Nanowire and nanotube characteristics have been found also to dictate the performance of nanoelectromechanical systems. Defects, such as

  17. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths.

    PubMed

    Susano, M; Proenca, M P; Moraes, S; Sousa, C T; Araújo, J P

    2016-08-19

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.

  18. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths.

    PubMed

    Susano, M; Proenca, M P; Moraes, S; Sousa, C T; Araújo, J P

    2016-08-19

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties. PMID:27378738

  19. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths

    NASA Astrophysics Data System (ADS)

    Susano, M.; Proenca, M. P.; Moraes, S.; Sousa, C. T.; Araújo, J. P.

    2016-08-01

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments’ length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.

  20. Large magnetic anisotropy enhancement in size controlled Ni nanowires electrodeposited into nanoporous alumina templates.

    PubMed

    Medina, J De La Torre; Hamoir, G; Velázquez-Galván, Y; Pouget, S; Okuno, H; Vila, L; Encinas, A; Piraux, L

    2016-04-01

    A large enhancement of the magnetic anisotropy of Ni nanowires (NWs) embedded in anodic aluminium oxide porous membranes is obtained as a result of an induced magnetoelastic (ME) anisotropy contribution. This unusual large anisotropy enhancement depends on the diameter of the NWs and exceeds the magnetostatic (MS) contribution. As a consequence, it leads to effective magnetic anisotropy energies as large as 1.4 × 10(6) erg cm(-3), which are of the same order of magnitude and comparable to the MS energies of harder magnetic materials like Co NWs. Specifically, from ferromagnetic resonance experiments, the magnetic anisotropy of the NWs has been observed to increase as its diameter is decreased, leading to values that are about four times larger than the corresponding value when only the MS anisotropy is present. Our results are consistent with the recently proposed growth mechanism of Ni NWs that proceeds via a poly-crystalline stage at the bottom followed by a single-crystalline stage with texture [110] parallel to the axis of the NWs. A strong correlation between reducing the diameter of the NWs with the decrease of the length of the poly-crystalline segment and the enhancement of the effective magnetic anisotropy has been shown. Magnetization curves obtained from alternating gradient magnetometry experiments show that the average ME anisotropy results from the competition between the magnetic anisotropies of both crystalline segments of the NWs. Understanding the influence of size and confinement effects on the magnetic properties of nanocomposites is of prime interest for the development of novel and agile devices. PMID:26906237

  1. Chlorine adsorption on the InAs (001) surface

    SciTech Connect

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.; Kulkova, S. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding with In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.

  2. Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors.

    PubMed

    Razavieh, Ali; Mohseni, Parsian Katal; Jung, Kyooho; Mehrotra, Saumitra; Das, Saptarshi; Suslov, Sergey; Li, Xiuling; Klimeck, Gerhard; Janes, David B; Appenzeller, Joerg

    2014-06-24

    The effect of diameter variation on electrical characteristics of long-channel InAs nanowire metal-oxide-semiconductor field-effect transistors is experimentally investigated. For a range of nanowire diameters, in which significant band gap changes are observed due to size quantization, the Schottky barrier heights between source/drain metal contacts and the semiconducting nanowire channel are extracted considering both thermionic emission and thermally assisted tunneling. Nanowires as small as 10 nm in diameter were used in device geometry in this context. Interestingly, while experimental and simulation data are consistent with a band gap increase for decreasing nanowire diameter, the experimentally determined Schottky barrier height is found to be around 110 meV irrespective of the nanowire diameter. These observations indicate that for nanowire devices the density of states at the direct conduction band minimum impacts the so-called branching point. Our findings are thus distinctly different from bulk-type results when metal contacts are formed on three-dimensional InAs crystals.

  3. Controlling the properties of electrodeposited ZnO nanowire arrays for light emitting diode, photodetector and gas sensor applications

    NASA Astrophysics Data System (ADS)

    Pauporté, T.; Lupan, Oleg; Viana, Bruno; Chow, Lee; Tchernycheva, Maria

    2014-03-01

    Electrochemical deposition (ECD) is a versatile technique for the preparation of ZnO nanowires (NWs) and nanorods (NRs) with high structural and optical quality. The bandgap of the ZnO NWs can be engineered by doping. Depending on the doping cation and concentration, the bandgap is increased or decreased in a controlled manner. The NW arrays have been grown on various substrates. The epitaxial growth on single-crystal conducting substrates has been demonstrated. By using p-type GaN layers, heterostructures have been fabricated with a high rectifying electrical behavior. They have been integrated in low-voltage LEDs emitting in the UV or in the visible region depending on the NW composition. For visible-blind UV-photodetector application, ZnO NW ensembles, electrochemically grown on F:SnO2, have been contacted on their top with a transparent graphene sheet. The photodetector had a responsivity larger than 104 A/W at 1V in the near-UV range. ECD ZnO NWs have also been isolated and electrically connected on their both ends by Al contacts. The obtained nanodevice, made of an individual NW, was shown to be a H2 gas sensor with a high selectivity and sensitivity. Moreover, it was shown that Cd-doping of ZnO NWs significantly improved the performance of the sensor.

  4. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]

  5. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With themore » core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  6. Controlled fabrication of DNA molecular templates for the deposition and electrical measurement of 1D metal nanowires

    NASA Astrophysics Data System (ADS)

    Barreda, Jorge; Hu, Longqian; Yu, Liuqi; Wang, Zhibin; Xia, Junfei; Guan, Jingjiao; Xiong, Peng; Guan's Group Team; Xiong's Group Team

    Stretched DNA nanowires (NWs) offer a convenient substrate for the fabrication and measurement of 1D metal NWs of width down to nm.So far the fabrication of the DNA templates has replied on somewhat random self-assembly processes. Here we demonstrate a process with high degree of control over the length, spacing, diameter , and orientation of the metal NWs: A one-step dewetting of a DNA solution on a PDMS stamp with an array of micropillars with well-defined pitch yields DNA NWs suspended across the micropillars along a chosen direction. The DNA NWs are then transferred via micro-contact printing onto a Si/SiO2/SiNx substrate with a lithographically fabricated trench defined by an opening in the SiNx layer and undercut in the SiO2 layer. The template with DNA NWs stretched across the trench is placed in a high-vacuum evaporator for metal deposition, resulting in a metal NW of width defined by the diameter of the DNA template (<10 nm) and length determined by the width of the trench. Quasi-four terminal I-V measurements are performed in situ with incremental metal deposition. Concomitant with a transition from strongly nonlinear IV to Ohmic behavior with increasing thickness, the NW resistance is observed to decrease exponentially.

  7. Remote-controlled eradication of astrogliosis in spinal cord injury via electromagnetically-induced dexamethasone release from "smart" nanowires.

    PubMed

    Gao, Wen; Borgens, Richard Ben

    2015-08-10

    We describe a system to deliver drugs to selected tissues continuously, if required, for weeks. Drugs can be released remotely inside the small animals using pre-implanted, novel vertically aligned electromagnetically-sensitive polypyrrole nanowires (PpyNWs). Approximately 1-2mm(2) dexamethasone (DEX) doped PpyNWs was lifted on a single drop of sterile water by surface tension, and deposited onto a spinal cord lesion in glial fibrillary acidic protein-luc transgenic mice (GFAP-luc mice). Overexpression of GFAP is an indicator of astrogliosis/neuroinflammation in CNS injury. The corticosteroid DEX, a powerful ameliorator of inflammation, was released from the polymer by external application of an electromagnetic field for 2h/day for a week. The GFAP signal, revealed by bioluminescent imaging in the living animal, was significantly reduced in treated animals. At 1week, GFAP was at the edge of detection, and in some experimental animals, completely eradicated. We conclude that the administration of drugs can be controlled locally and non-invasively, opening the door to many other known therapies, such as the cases that dexamethasone cannot be safely applied systemically in large concentrations. PMID:25979326

  8. New method for the controlled creation of sub-15 nm aluminum nanowires to probe the 1D superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Morgan-Wall, Tyler; Hughes, Hannah; Hartman, Nik; McQueen, Tyrell; Markovic, Nina

    2014-03-01

    We have developed a new method for the creation of sub-15 nm aluminum nanostructures using a sodium bicarbonate solution. Using PMMA masks patterned with e-beam lithography, we can controllably etch lithographically-produced nanostructures while measuring their resistances in-situ using a 4-probe measurement. This technique allows for precise control over the final resistance and thus can be used to create a wide variety of nanodevices. In particular, this technique allows for the creation of nanowires to probe the superconductor-insulator transition in 1D.

  9. Induced Superconductivity in Nanowires and Nanotubes

    NASA Astrophysics Data System (ADS)

    Kouwenhoven, Leo

    2007-03-01

    We study experimentally electron transport in 1 dimensional semiconductor nanowires (consisting of InAs and InP combinations) and carbon nanotubes. The wires are connected to superconducting source-drain contacts with gate electrodes in the substrate or on the surface. In the regime of weak coupling to the contacts we observe Coulomb blockade effects. We present level spectroscopy including a determination of the spin states. In the regime of strong coupling to the contacts interference effects are observed. In this regime and using superconducting contacts, we find supercurrents flowing through InAs-nanowires over micrometer length scales. The critical current is tunable by gate voltage, thus realizing so-called JOFETs (Josephson FETs) [1]. When we define quantum dots in between superconducting contacts the direction of the supercurrent is determined by the single electron spin state in the quantum dot [2,3]. 1. Yong-Joo Doh, Jorden A. van Dam, Aarnoud L. Roest, Erik P. A. M. Bakkers, Leo P. Kouwenhoven, and Silvano De Franceschi, Tunable supercurrent through semiconductor nanowires, Science 309, 272-275 (2005) 2. P. Jarillo-Herrero, J.A. van Dam and L.P. Kouwenhoven, Quantum supercurrent transistors in carbon nanotubes, Nature 439, 953-956 (2006) 3. Jorden A. Van Dam, Yuli V. Nazarov, Erik P.A.M. Bakkers, Silvano De Franceschi and Leo P. Kouwenhoven, Supercurrent reversal in quantum dots, Nature 442, 667-670 (2006)

  10. The Growth of Low Band-Gap InAs on (111)B GaAs Substrates

    NASA Technical Reports Server (NTRS)

    Weiser, R. E.; Guido, L. J.

    1995-01-01

    Growth on the (111)B orientation exhibits a number of advantageous properties as compared to the (100) during the early stages of strained-layer epitaxy. In accordance with a developing model of nucleation and growth, we have deposited thin (60 A - 2500 A), fully relaxed InAs films on (111)B GaAs substrates. Although thicker InAs films are subject to the formation of twin defects common to epitaxy on the (111)B orientation, appropriate control of the growth parameters can greatly minimize their density. Using this knowledge base, InAs films up to 2 microns in thickness with improved morphology and structural quality have been grown on (111)B GaAs substrates.

  11. The growth of low band-gap InAs on (111)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Welser, Roger E.; Guido, L. J.

    1996-01-01

    Growth on the (111)B orientation exhibits a number of advantageous properties as compared to the (100) during the early stages of strained-layer epitaxy. In accordance with a developing model of nucleation and growth, we have deposited thin (60 A - 2500 A), fully relaxed InAs films on (111)B GaAs substrates. Although thicker InAs films are subject to the formation of twin defects common to epitaxy on the (111)B orientation, appropriate control of the growth parameters can greatly minimize their density. Using this knowledge base, InAs films up to 2 microns in thickness with improved morphology and structural quality have been grown on (111)B GaAs substrates.

  12. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-08-01

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current–temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  13. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-08-01

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current-temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  14. Nanowire liquid pumps

    NASA Astrophysics Data System (ADS)

    Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju

    2013-04-01

    The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.

  15. Nanowire Optoelectronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan; Nabet, Bahram

    2015-12-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  16. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  17. Femtosecond upconverted photocurrent spectroscopy of InAs quantum nanostructures

    SciTech Connect

    Yamada, Yasuhiro; Tex, David M.; Kanemitsu, Yoshihiko; Kamiya, Itaru

    2015-07-06

    The carrier upconversion dynamics in InAs quantum nanostructures are studied for intermediate-band solar-cell applications via ultrafast photoluminescence and photocurrent (PC) spectroscopy based on femtosecond excitation correlation (FEC) techniques. Strong upconverted PC-FEC signals are observed under resonant excitation of quantum well islands (QWIs), which are a few monolayer-thick InAs quantum nanostructures. The PC-FEC signal typically decays within a few hundred picoseconds at room temperature, which corresponds to the carrier lifetime in QWIs. The photoexcited electron and hole lifetimes in InAs QWIs are evaluated as functions of temperature and laser fluence. Our results provide solid evidence for electron–hole–hole Auger process, dominating the carrier upconversion in InAs QWIs at room temperature.

  18. Chemical Sensing with Nanowires

    NASA Astrophysics Data System (ADS)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  19. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions. PMID:19206435

  20. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions.

  1. Macroscopic nanowire networks from hierarchically assembled mesostructures

    NASA Astrophysics Data System (ADS)

    Wang, Donghai

    Nanoscale building blocks, such as nanocrystals and one-dimensional (1D) nanostructures, have attracted tremendous attention due to their peculiar and fascinating properties. It is necessary to assemble the low dimensional nanoscale building blocks into macroscopic nanostructured architectures for potential applications in energy storage, separation, catalysis, computation, sensing, etc. This dissertation demonstrates synthesis, characterization and applications of macroscopic hierarchical metal or semiconductor (e.g., Pt, CdSe) nanowire networks. These nanowire networks were synthesized by electrodeposition within the pores of highly-ordered mesoporous silica template followed by removal of the silica template, resulting in robust nanowire networks with replicated mesopore structure. The nanowire diameter (3-10 nm) and network mesostructures (e.g. 2D, 3D and superstructures) are controlled by the pore size and the mesostructure of the silica template. As-synthesized metal nanowires self support to form networks with high electrochemical active surface area, which are further applied in enzymatic glucose sensing. Semiconductor CdSe nanowire networks show tunable optical properties dependent on nanowire diameter and have been demonstrated as a good electron acceptor in CdSe nanowire network/polymer photovoltaic devices. The dissertation also describes self-assembly behavior of composite mesostructures under physical confined environment. Novel mesostructures and mesostructured nanowire superstructures have been achieved by the confined assembly and the replication procedure mentioned above. Our approach provides an easy and efficient way to synthesize macroscopic hierarchical nanowire networks with well-controlled diameter and mesoscale arrangement, which will be of great interest for sensor, photovoltaic, and other applications.

  2. Self-catalysed InAs{sub 1-x}Sb{sub x} nanowires grown directly on bare Si substrates

    SciTech Connect

    Anyebe, E.A. Zhuang, Q.

    2014-12-15

    Highlights: • Self-catalysed InAs{sub 1-x}Sb{sub x} nanowires grown directly on bare Si substrates. • InAs{sub 1-x}Sb{sub x} nanowires directly grown on bare Si substrates without employing the commonly used nucleation nanowire stems which could be problematic in device applications. • Pre-deposited Indium droplets were employed to facilitate InAs{sub 1-x}Sb{sub x} nanowire nucleation and growth. • Unravels a promising route for the direct integration of InAs{sub 1-x}Sb{sub x} nanowires with the well-established Silicon platform. - Abstract: We report the self-catalysed growth of InAs{sub 1-x}Sb{sub x} nanowires directly on bare Si substrates. Vertically aligned and non-tapered InAs{sub 1-x}Sb{sub x} nanowires were realized via indium-assisted nucleation without using nanowire stems. The compositions of the InAs{sub 1-x}Sb{sub x} nanowires were determined by high resolution X-ray diffraction (HRXRD). It is observed that the geometry of the nanowires is modified by the Sb flux resulting in an almost doubling of the lateral dimension and a corresponding suppression in the axial growth of the InAs{sub 1-x}Sb{sub x} nanowires. This observation unravels a method to modify the geometry of InAs nanowire and open up a promising route for the direct integration of InAs{sub 1-x}Sb{sub x} nanowires with the well-established Si platform.

  3. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS

    NASA Astrophysics Data System (ADS)

    Lord, Alex M.; Maffeis, Thierry G.; Allen, Martin W.; Morgan, David; Davies, Philip R.; Jones, Daniel R.; Evans, Jonathan E.; Smith, Nathan A.; Wilks, Steve P.

    2014-11-01

    ZnO is a wide bandgap semiconductor that has many potential applications including solar cell electrodes, transparent thin film transistors and gas/biological sensors. Since the surfaces of ZnO materials have no amorphous or oxidised layers, they are very environmentally sensitive, making control of their semiconductor properties challenging. In particular, the electronic properties of ZnO nanostructures are dominated by surface effects while surface conduction layers have been observed in thin films and bulk crystals. Therefore, the ability to use the ZnO materials in a controlled way depends on the development of simple techniques to modulate their surface electronic properties. Here, we use monochromatic x-ray photoelectron spectroscopy (XPS) to investigate the use of different wet chemical treatments (EtOH, H2O2) to control the electronic properties of ZnO nanowires by modulating the surface depletion region. The valence band and core level XPS spectra are used to explore the relationship between the surface chemistry of the nanowires and the surface band bending.

  4. Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls

    NASA Astrophysics Data System (ADS)

    Sylvia, Somaia Sarwat

    The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium "cold" carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory. For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale. Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is

  5. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    PubMed

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix. PMID:27094822

  6. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    PubMed

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  7. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P. D.; Chung, Choong-Heui

    2016-04-01

    We report the growth of vertical <111>-oriented InAs x P1- x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1- x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  8. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    SciTech Connect

    Panciera, F.; Chou, Y. -C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M.

    2015-07-13

    Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. Furthermore, we demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

  9. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    DOE PAGES

    Panciera, F.; Chou, Y. -C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M.

    2015-07-13

    Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystalsmore » that are then incorporated into the nanowires by further growth. Furthermore, we demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.« less

  10. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    PubMed Central

    Panciera, F.; Chou, Y.-C.; Reuter, M.C.; Zakharov, D.; Stach, E.A.; Hofmann, S.; Ross, F.M.

    2016-01-01

    Nanowire growth by the vapor-liquid-solid process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid state lighting and single photon sources to thermoelectric devices. Here we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyze nanowire growth as a “mixing bowl”, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures. PMID:26168344

  11. Silicon nanowire circuits fabricated by AFM oxidation nanolithography.

    PubMed

    Martínez, Ramses V; Martínez, Javier; Garcia, Ricardo

    2010-06-18

    We report a top-down process for the fabrication of single-crystalline silicon nanowire circuits and devices. Local oxidation nanolithography is applied to define very narrow oxide masks on top of a silicon-on-insulator substrate. In a plasma etching, the nano-oxide mask generates a nanowire with a rectangular section. The nanowire width coincides with the lateral size of the mask. In this way, uniform and well-defined transistors with channel widths in the 10-20 nm range have been fabricated. The nanowires can be positioned with sub-100 nm lateral accuracy. The transistors exhibit an on/off current ratio of 10(5). The atomic force microscope nanolithography offers full control of the nanowire's shape from straight to circular or a combination of them. It also enables the integration of several nanowires within the same circuit. The nanowire transistors have been applied to detect immunological processes.

  12. Shape memory and pseudoelasticity in metal nanowires.

    PubMed

    Park, Harold S; Gall, Ken; Zimmerman, Jonathan A

    2005-12-16

    Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity. PMID:16384469

  13. Can antimonide-based nanowires form wurtzite crystal structure?

    PubMed

    Gorji Ghalamestani, Sepideh; Lehmann, Sebastian; Dick, Kimberly A

    2016-02-01

    The epitaxial growth of antimonide-based nanowires has become an attractive subject due to their interesting properties required for various applications such as long-wavelength IR detectors. The studies conducted on antimonide-based nanowires indicate that they preferentially crystallize in the zinc blende (ZB) crystal structure rather than wurtzite (WZ), which is common in other III-V nanowire materials. Also, with the addition of small amounts of antimony to arsenide- and phosphide-based nanowires grown under conditions otherwise leading to WZ structure, the crystal structure of the resulting ternary nanowires favors the ZB phase. Therefore, the formation of antimonide-based nanowires with the WZ phase presents fundamental challenges and is yet to be explored, but is particularly interesting for understanding the nanowire crystal phase in general. In this study, we examine the formation of Au-seeded InSb and GaSb nanowires under various growth conditions using metalorganic vapor phase epitaxy. We address the possibility of forming other phases than ZB such as WZ and 4H in binary nanowires and demonstrate the controlled formation of WZ InSb nanowires. We further discuss the fundamental aspects of WZ growth in Au-seeded antimonide-based nanowires. PMID:26763161

  14. Control of domain wall pinning by localised focused Ga {sup +} ion irradiation on Au capped NiFe nanowires

    SciTech Connect

    Burn, D. M. Atkinson, D.

    2014-10-28

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

  15. Control of Nanofilament Structure and Observations of Quantum Point Contact Behavior in Ni/NiO Nanowire Junctions

    NASA Astrophysics Data System (ADS)

    Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick

    Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.

  16. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    SciTech Connect

    Wu Hongyu; Jiao Qingze; Zhao Yun; Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji

    2010-02-15

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO{sub 4}, CoSO{sub 4}, Fe{sub 2}(SO{sub 4}){sub 3} and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  17. Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/sheath-TeO(2) nanowires.

    PubMed

    Vasileiadis, Thomas; Dracopoulos, Vassileios; Kollia, Mary; Yannopoulos, Spyros N

    2013-01-01

    One dimensional (1D) nanostructures of semiconducting oxides and elemental chalcogens culminate over the last decade in nanotechnology owing to their unique properties exploitable in several applications sectors. Whereas several synthetic strategies have been established for rational design of 1D materials using solution chemistry and high temperature evaporation methods, much less attention has been given to the laser-assisted growth of hybrid nanostructures. Here, we present a laser-assisted method for the controlled fabrication of Te nanotubes. A series of light-driven phase transition is employed to controllably transform Te nanotubes to core-Te/sheath-TeO(2) and/or even neat TeO(2) nanowires. This solid-state laser-processing of semiconducting materials apart from offering new opportunities for the fast and spatially controlled fabrication of anisotropic nanostructures, provides a means of simultaneous growing and integrating these nanostructures into an optoelectronic or photonic device.

  18. Growth and fabrication of proximity-coupled topological quantum wire circuits from thin InAs films

    NASA Astrophysics Data System (ADS)

    Kan, Carolyn; Xue, Chi; Bai, Yang; Eckstein, James

    The realization of topological states in strongly spin orbit coupled semiconductors proximity-coupled to conventional superconductors requires delicate materials engineering. Key areas for improvement include the crystalline quality of the semiconductor itself, but a high-quality interface between the semiconductor and superconductor is essential. Recent results have demonstrated the necessity of forming an in situ interface to eliminate the ``soft gap'' observed in earlier experiments. While much work has focused on vertically grown nanowires, we take a lithographic approach to fabricating quantum wires out of MBE-grown thin films, which allow for increased flexibility and scalability of device structures. Notably, our films are grown entirely in situ in linked MBE systems, vastly improving interface transmission and cleanliness. Aspects of growth architecture aimed toward increasing the InAs mobility, such as substrate choice and layer structure, are also discussed.

  19. Capacitance estimation for InAs Tunnel FETs by means of full-quantum k · p simulation

    NASA Astrophysics Data System (ADS)

    Gnani, E.; Baravelli, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.

    2015-06-01

    We report for the first time a quantum mechanical simulation study of gate capacitance components in aggressively scaled InAs Nanowire Tunnel Field-Effect Transistors. It will be shown that the gate-drain capacitance exhibits the same functional dependence over the whole Vgs range as the total gate capacitance, albeit with smaller values. However, as opposed to the previous capacitance estimations provided by semiclassical TCAD tools, we find that the gate capacitance exhibits a non-monotonic behavior vs. gate voltage, with plateaus and bumps related with energy quantization and subband formation determined by the device cross-sectional size, as well as with the position of channel-conduction subbands relative to the Fermi level in the drain contact. From this point of view, semiclassical TCAD tools seem to be inaccurate for capacitance estimation in aggressively-scaled TFET devices.

  20. Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm

    SciTech Connect

    Fu, Mengqi; Yang, Yingjun; Shi, Tuanwei; Zhang, Zhiyong; Xu, H. Q.; Chen, Qing; Pan, Dong; Zhao, Jianhua

    2014-10-06

    To suppress short channel effects, lower off-state leakage current and enhance gate coupling efficiency, InAs nanowires (NWs) with diameter smaller than 10 nm could be needed in field-effect transistors (FETs) as the channel length scales down to tens of nanometers to improve the performance and increase the integration. Here, we fabricate and study FETs based on ultrathin wurtzite-structured InAs NWs, with the smallest NW diameter being 7.2 nm. The FETs based on ultrathin NWs exhibit high I{sub on}/I{sub off} ratios of up to 2 × 10{sup 8}, small subthreshold swings of down to 120 mV/decade, and operate in enhancement-mode. The performance of the devices changes as a function of the diameter of the InAs NWs. The advantages and challenges of the FETs based on ultrathin NWs are discussed.

  1. Electrical breakdown of nanowires.

    PubMed

    Zhao, Jiong; Sun, Hongyu; Dai, Sheng; Wang, Yan; Zhu, Jing

    2011-11-01

    Instantaneous electrical breakdown measurements of GaN and Ag nanowires are performed by an in situ transmission electron microscopy method. Our results directly reveal the mechanism that typical thermally heated semiconductor nanowires break at the midpoint, while metallic nanowires breakdown near the two ends due to the stress induced by electromigration. The different breakdown mechanisms for the nanowires are caused by the different thermal and electrical properties of the materials.

  2. Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate.

    PubMed

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance.

  3. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate

    PubMed Central

    Liu, Jian-Wei; Wang, Jin-Long; Huang, Wei-Ran; Yu, Le; Ren, Xi-Feng; Wen, Wu-Cheng; Yu, Shu-Hong

    2012-01-01

    Assembly of nanowires into ordered macroscopic structures with new functionalities has been a recent focus. In this Letter, we report a new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. The present glass capillary with well-defined silver nanowire films inside can serve as a portable and reusable substrate for surface-enhanced Raman spectroscopy (SERS), which may provide a versatile and promising platform for detecting mixture pollutions. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary. Compared with the planar ordered Ag nanowire films by the Langmuir-Blodgett (LB) technique, the cambered nanowire films show better SERS performance. PMID:23248750

  4. Topological Phases in InAs_{1-x}Sb_{x}: From Novel Topological Semimetal to Majorana Wire.

    PubMed

    Winkler, Georg W; Wu, QuanSheng; Troyer, Matthias; Krogstrup, Peter; Soluyanov, Alexey A

    2016-08-12

    Superconductor proximitized one-dimensional semiconductor nanowires with strong spin-orbit interaction (SOI) are, at this time, the most promising candidates for the realization of topological quantum information processing. In current experiments the SOI originates predominantly from extrinsic fields, induced by finite size effects and applied gate voltages. The dependence of the topological transition in these devices on microscopic details makes scaling to a large number of devices difficult unless a material with dominant intrinsic bulk SOI is used. Here, we show that wires made of certain ordered alloys InAs_{1-x}Sb_{x} have spin splittings up to 20 times larger than those reached in pristine InSb wires. In particular, we show this for a stable ordered CuPt structure at x=0.5, which has an inverted band ordering and realizes a novel type of a topological semimetal with triple degeneracy points in the bulk spectrum that produce topological surface Fermi arcs. Experimentally achievable strains can either drive this compound into a topological insulator phase or restore the normal band ordering, making the CuPt-ordered InAs_{0.5}Sb_{0.5} a semiconductor with a large intrinsic linear in k bulk spin splitting.

  5. Topological Phases in InAs1 -xSbx: From Novel Topological Semimetal to Majorana Wire

    NASA Astrophysics Data System (ADS)

    Winkler, Georg W.; Wu, QuanSheng; Troyer, Matthias; Krogstrup, Peter; Soluyanov, Alexey A.

    2016-08-01

    Superconductor proximitized one-dimensional semiconductor nanowires with strong spin-orbit interaction (SOI) are, at this time, the most promising candidates for the realization of topological quantum information processing. In current experiments the SOI originates predominantly from extrinsic fields, induced by finite size effects and applied gate voltages. The dependence of the topological transition in these devices on microscopic details makes scaling to a large number of devices difficult unless a material with dominant intrinsic bulk SOI is used. Here, we show that wires made of certain ordered alloys InAs1 -xSbx have spin splittings up to 20 times larger than those reached in pristine InSb wires. In particular, we show this for a stable ordered CuPt structure at x =0.5 , which has an inverted band ordering and realizes a novel type of a topological semimetal with triple degeneracy points in the bulk spectrum that produce topological surface Fermi arcs. Experimentally achievable strains can either drive this compound into a topological insulator phase or restore the normal band ordering, making the CuPt-ordered InAs0.5Sb0.5 a semiconductor with a large intrinsic linear in k bulk spin splitting.

  6. Topological Phases in InAs_{1-x}Sb_{x}: From Novel Topological Semimetal to Majorana Wire.

    PubMed

    Winkler, Georg W; Wu, QuanSheng; Troyer, Matthias; Krogstrup, Peter; Soluyanov, Alexey A

    2016-08-12

    Superconductor proximitized one-dimensional semiconductor nanowires with strong spin-orbit interaction (SOI) are, at this time, the most promising candidates for the realization of topological quantum information processing. In current experiments the SOI originates predominantly from extrinsic fields, induced by finite size effects and applied gate voltages. The dependence of the topological transition in these devices on microscopic details makes scaling to a large number of devices difficult unless a material with dominant intrinsic bulk SOI is used. Here, we show that wires made of certain ordered alloys InAs_{1-x}Sb_{x} have spin splittings up to 20 times larger than those reached in pristine InSb wires. In particular, we show this for a stable ordered CuPt structure at x=0.5, which has an inverted band ordering and realizes a novel type of a topological semimetal with triple degeneracy points in the bulk spectrum that produce topological surface Fermi arcs. Experimentally achievable strains can either drive this compound into a topological insulator phase or restore the normal band ordering, making the CuPt-ordered InAs_{0.5}Sb_{0.5} a semiconductor with a large intrinsic linear in k bulk spin splitting. PMID:27563979

  7. Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si(111) for subsequent III-V nanowire growth

    SciTech Connect

    Paszuk, A.; Steidl, M.; Zhao, W.; Dobrich, A.; Kleinschmidt, P.; Brückner, S.; Supplie, O.; Hannappel, T.; Prost, W.

    2015-06-08

    Nanowire growth on heteroepitaxial GaP/Si(111) by metalorganic vapor phase epitaxy requires the [-1-1-1] face, i.e., GaP(111) material with B-type polarity. Low-energy electron diffraction (LEED) allows us to identify the polarity of GaP grown on Si(111), since (2×2) and (1×1) surface reconstructions are associated with GaP(111)A and GaP(111)B, respectively. In dependence on the pre-growth treatment of the Si(111) substrates, we were able to control the polarity of the GaP buffers. GaP films grown on the H-terminated Si(111) surface exhibited A-type polarity, while GaP grown on Si surfaces terminated with arsenic exhibited a (1×1) LEED pattern, indicating B-type polarity. We obtained vertical GaAs nanowire growth on heteroepitaxial GaP with (1×1) surface reconstruction only, in agreement with growth experiments on homoepitaxially grown GaP(111)

  8. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation.

    PubMed

    Liu, Zhicheng; Yin, Leijun; Ning, Hao; Yang, Zongyin; Tong, Limin; Ning, Cun-Zheng

    2013-10-01

    Multicolor lasing and dynamic color-tuning in a wide spectrum range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection, and multiband communication. By exploring nanoscale growth and manipulation, we have demonstrated the first active dynamical color control of multicolor lasing, continuously tunable between red and green colors separated by 107 nm in wavelength. This is achieved in a purposely engineered single CdSSe alloy nanowire with composition varied along the wire axis. By looping the wide-gap end of the alloy nanowire through nanoscale manipulation, two largely independent (only weakly coupled) laser cavities are formed respectively for the green and red color modes. Our approach simultaneously overcomes the two fundamental challenges for multicolor lasing in material growth and cavity design. Such multicolor lasing and continuous color tuning in a wide spectral range represents a new paradigm shift and would eventually enable color-by-design and white-color lasers for lighting, illumination, and many other applications.

  9. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  10. Electrical characterization of surface passivation in III-V nanowires

    NASA Astrophysics Data System (ADS)

    Holloway, Gregory; Lapierre, Ray; Baugh, Jonathan

    III-V nanowires are promising for implementing many useful technologies including optical sensing and quantum information processing. However, most native nanowires have a significant density of surface states, which cause electron accumulation at the surface and make the optoelectronic characteristics very sensitive to surface conditions and variable from device to device. To achieve optimum device performance it is imperative to decrease the density of these defects, since they are responsible for charge noise (e.g. random telegraph noise) and decreased carrier mobility. Here we report on experimental results from low temperature transport studies of a series of InAs nanowire field effect transistors, each fabricated with a different surface passivation technique. The different surface treatments include combinations of chemical passivation, growth of a thermal oxide, and deposition of a high-k dielectric to determine the optimum process for passivating the surface states. To better quantify the density of surface states, we also study the axial field magnetoconductance of short-channel nanowire transistors, and show how the results can be used to estimate the degree of surface band-bending.

  11. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires

    SciTech Connect

    Casadei, Alberto; Heiss, Martin; Colombo, Carlo; Ruelle, Thibaud; Fontcuberta i Morral, Anna; Krogstrup, Peter; Roehr, Jason A.; Upadhyay, Shivendra; Sorensen, Claus B.; Nygard, Jesper

    2013-01-07

    The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy have been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also show that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.

  12. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy

    SciTech Connect

    Cai, Y.; Wong, T. L.; Chan, S. K.; Sou, I. K.; Wang, N.; Su, D. S.

    2008-12-08

    Ultrathin ZnSe nanowires grown by Au-catalyzed molecular-beam epitaxy show an interesting growth behavior of diameter dependence of growth rates. The smaller the nanowire diameter, the faster is its growth rate. This growth behavior is totally different from that of the nanowires with diameters greater than 60 nm and cannot be interpreted by the classical theories of the vapor-liquid-solid mechanism. For the Au-catalyzed nanowire growth at low temperatures, we found that the surface and interface incorporation and diffusion of the source atoms at the nanowire tips controlled the growth of ultrathin ZnSe nanowires.

  13. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOEpatents

    Han, Jung; Su, Jie

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  14. Bacterial Nanowires: Is the Subsurface Hardwired?

    NASA Astrophysics Data System (ADS)

    Gorby, Y. A.; Davis, C. A.; Atekwana, E.

    2006-05-01

    Bacteria, ranging from oxygenic photosynthetic cyanobacteria to heterotrophic sulfate reducing bacteria, produce electrically-conductive appendages referred to as bacterial nanowires. Dissimilatory metal reducing bacteria, including Shewanella oneidensis and Geobacter sulfurreducens, produce electrically conductive nanowires in direct response to electron acceptor limitation and facilitate electron transfer to solid phase iron oxides. Nanowires produced by S. oneidensis strain MR-1, which served as our primary model organism, are functionalized by decaheme cytochromes MtrC and OmcA that are distributed along the length of the nanowires. Mutants deficient in MtrC and OmcA produce nanowires that were poorly conductive. These mutants also differ from wild type cells in their ability to reduce solid phase iron oxides, to produce electrical current in a mediator less microbial fuel cell, and to form complex biofilms at air liquid interfaces. Recent results obtained using direct cell counts and low frequency electrical measurements demonstrate that microbial growth correlated with real and imaginary electrical conductivity response in uncoated silica sand columns. Direct observation of packing material with environmental scanning electron microscopy (ESEM) revealed a fine network of extracellular structures that were morphologically similar to nanowires observed in metal reducing bacteria. No such structures were observed in control columns. We hypothesize that microbial nanowires may in part be responsible for the electrical response observed in the biostimulated columns.

  15. Ultrafine Metal-Organic Right Square Prism Shaped Nanowires.

    PubMed

    Otake, Ken-Ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-05-23

    We report the structural design and control of electronic states of a new series of ultrafine metal-organic right square prism-shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states.

  16. Ultrafine Metal-Organic Right Square Prism Shaped Nanowires.

    PubMed

    Otake, Ken-Ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-05-23

    We report the structural design and control of electronic states of a new series of ultrafine metal-organic right square prism-shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states. PMID:27080935

  17. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires

    PubMed Central

    Haas, Fabian; Wenz, Tobias; Zellekens, Patrick; Demarina, Nataliya; Rieger, Torsten; Lepsa, Mihail; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2016-01-01

    We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov–Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation. PMID:27091000

  18. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  19. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  20. Rotational maneuver of ferromagnetic nanowires for cell manipulation.

    PubMed

    Zhao, Yi; Zeng, Hansong

    2009-09-01

    1-D magnetic nanowires provide a powerful tool for investigating biological systems because such nanomaterials possess unique magnetic properties, which allow effective manipulation of cellular and subcellular objects. In this study, we report the rotational maneuver of ferromagnetic nanowires and their applications in cell manipulation. The rotational maneuver is studied under two different suspension conditions. The rotation of nanowires in the fluid is analyzed using Stokes flow assumption. Experimental results show that when the nanowires develop contacts with the bottom surfaces, the rotational maneuver under a modest external magnetic field can generate rapid lateral motion. The floating nanowires, on the other hand, do not exhibit substantial lateral displacements. Cell manipulation using skeletal myoblasts C2C12 shows that living cells can be manipulated efficiently on the bottom surface by the rotational maneuver of the attached nanowires. We also demonstrate the use of rotational maneuver of nanowires for creating 3-D nanowire clusters and multicellular clusters. This study is expected to add to the knowledge of nanowire-based cell manipulation and contribute to a full spectrum of control strategies for efficient use of nanowires for micro-total-analysis. It may also facilitate mechanobiological studies at cellular level, and provide useful insights for development of 3-D in vivo-like multicellular models for various applications in tissue engineering.

  1. Quantum Hall states in strained InAs heterostructures

    NASA Astrophysics Data System (ADS)

    Kanter, Jesse; Arese Lucini, Francesca; Duboy, Alexandra; Mishima, T. D.; Santos, M. B.; Shabani, Javad

    In a recent development it was realized that non-Abelian quasiparticles, parafermion zero-modes emerge at an interface between a superconductor and two dimensional electron system (2DES) in the quantum Hall regime.. Unlike widely used GaAs systems, surface level pinning in InAs could allow for fabrication of transparent contacts to superconductors. However, no fractional quantum Hall state has been observed in InAs quantum wells so far. Whether this is due to the type of disorder present in the quantum well is not clear. In this work, we study the transport and dingle mobility of 2DESs confined to strained InAs quantum wells as a function of electron density and spacer thickness to the surface. We compare our results to early observation of fractional quantum Hall states in GaAs. This material is based upon work supported by the NSF under Grant No. DMR-1207537.

  2. Spin transistor operation driven by the Rashba spin-orbit coupling in the gated nanowire

    SciTech Connect

    Wójcik, P.; Adamowski, J. Spisak, B. J.; Wołoszyn, M.

    2014-03-14

    A theoretical description has been proposed for the operation of the spin transistor in the gate-controlled InAs nanowire. The calculated current-voltage characteristics show that the electron current flowing from the source (spin injector) to the drain (spin detector) oscillates as a function of the gate voltage, which results from the precession of the electron spin caused by the Rashba spin-orbit interaction in the vicinity of the gate. We have studied the operation of the spin transistor under the following conditions: (A) the full spin polarization of electrons in the contacts, zero temperature, and the single conduction channel corresponding to the lowest-energy subband of the transverse motion and (B) the partial spin polarization of the electrons in the contacts, the room temperature, and the conduction via many transverse subbands taken into account. For case (A), the spin-polarized current can be switched on/off by the suitable tuning of the gate voltage, for case (B) the current also exhibits the pronounced oscillations but with no-zero minimal values. The computational results obtained for case (B) have been compared with the recent experimental data and a good agreement has been found.

  3. Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide.

    PubMed

    Zhou, Yibo; Yu, Gang; Chang, Fangfang; Hu, Bonian; Zhong, Chuan-Jian

    2012-12-13

    The exploitation of the unique electrical properties of nanowires requires an effective assembly of nanowires as functional materials on a signal transduction platform. This paper describes a new strategy to assemble gold-platinum alloy nanowires on microelectrode devices and demonstrates the sensing characteristics to hydrogen peroxide. The alloy nanowires have been controllably electrodeposited on microelectrodes by applying an alternating current. The composition, morphology and alloying structures of the nanowires were characterized, revealing a single-phase alloy characteristic, highly monodispersed morphology, and controllable bimetallic compositions. The alloy nanowires were shown to exhibit electrocatalytic response characteristics for the detection of hydrogen peroxide, exhibiting a high sensitivity, low detection limit, and fast response time. The nanowire's response mechanism to hydrogen peroxide is also discussed in terms of the synergistic activity of the bimetallic binding sites, which has important implications for a better design of functional nanowires as sensing materials for a wide range of applications.

  4. Nanoscale Size-Selective Deposition of Nanowires by Micrometer Scale Hydrophilic Patterns

    PubMed Central

    He, Yong; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; Zhuge, Fuwei; Rahong, Sakon; Li, Xiaomin; Kawai, Tomoji; Yanagida, Takeshi

    2014-01-01

    Controlling the post-growth assembly of nanowires is an important challenge in the development of functional bottom-up devices. Although various methods have been developed for the controlled assembly of nanowires, it is still a challenging issue to align selectively heterogeneous nanowires at desired spatial positions on the substrate. Here we report a size selective deposition and sequential alignment of nanowires by utilizing micrometer scale hydrophilic/hydrophobic patterned substrate. Nanowires dispersed within oil were preferentially deposited only at a water/oil interface onto the hydrophilic patterns. The diameter size of deposited nanowires was strongly limited by the width of hydrophilic patterns, exhibiting the nanoscale size selectivity of nanowires deposited onto micrometer scale hydrophilic patterns. Such size selectivity was due to the nanoscale height variation of a water layer formed onto the micrometer scale hydrophilic patterns. We successfully demonstrated the sequential alignment of different sized nanowires on the same substrate by applying this size selective phenomenon. PMID:25087699

  5. Large-scale synthesis of Ba{sub x}Sr{sub 1−x}TiO{sub 3} nanowires with controlled stoichiometry

    SciTech Connect

    Tang, Haixiong E-mail: hsodano@ufl.edu; Zhou, Zhi; Sodano, Henry A. E-mail: hsodano@ufl.edu

    2014-04-07

    This study demonstrates a highly efficient method for large-scale synthesis BaTiO{sub 3} nanowires (NWs) using a two-step hydrothermal reaction. This synthesis process provides a facile approach to the growth of BaTiO{sub 3} NWs with high yield and control over the stoichiometry of the Ba{sub x}Sr{sub 1−x}TiO{sub 3} solid solution. The ferroelectricity of the BaTiO{sub 3} NWs is directly characterized using atomic force microscopy with the piezoelectric strain coupling coefficient (d{sub 33}) reaching 31.1 pm/V. This work provide an avenue for high volume manufacturing of ferroelectric NWs, allowing both fundamental investigation of nanoscale ferroelectricity as well as their future application in the electrical devices.

  6. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  7. Free-Standing Vertical Gold Nanowires from Template Synthesis

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Joong

    2005-03-01

    Gold nanowires are electrochemically grown in a track-etched polycarbonate membrane inside a Teflon cell containing gold plating solution. Using this method we have grown gold nanowires with diameters in the range of 20 - 200 nm and lengths on the order of 1 - 10 um. By controlling the membrane-dissolving process, we can deposit randomly oriented nanowires with the length in the plane of a substrate, or we can leave the nanowires vertically free-standing with one end still attached to a conducting base. We are currently exploring the vertical configuration in order to study the physics of individual nanowires or groups of nanowires. Quantities of interest include the cantilever mechanical resonance frequencies and the mechanical quality factor.

  8. Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier

    SciTech Connect

    Hospodková, A. Oswald, J.; Pangrác, J.; Zíková, M.; Kubištová, J.; Kuldová, K.; Hulicius, E.; Komninou, Ph; Kioseoglou, J.

    2013-11-07

    The aim of this work is to offer new possibilities for quantum dot (QD) band structure engineering, which can be used for the design of QD structures for optoelectronic and single photon applications. Two types of QDs, InAs and GaAsSb, are combined in self assembled vertically correlated QD structures. The first QD layer is formed by InAs QDs and the second by vertically correlated GaAsSb QDs. Combined QD layers are separated by a triangular GaAsSb barrier. The structure can be prepared as type-I, with both electrons and holes confined in InAs QDs, exhibiting a strong photoluminescence, or type-II, with electrons confined in InAs QDs and holes in GaAsSb QDs. The presence of the thin triangular GaAsSb barrier enables the realization of different quantum level alignment between correlated InAs and GaAsSb QDs, which can be adjusted by structure parameters as type-I or type-II like for ground and excited states separately. The position of holes in this type of structure is influenced by the presence of the triangular barrier or by the size and composition of the GaAsSb QDs. The electron-hole wavefunction overlap and the photoluminescence intensity alike can also be controlled by structure engineering.

  9. Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography

    SciTech Connect

    Park, Joong- Mok; Nalwa, Kanwar Singh; Leung, Wai; Constant, Kristen; Chaudhary, Sumit; Ho, Kai-Ming

    2010-04-30

    Ordered and free-standing metallic nanowires were fabricated by e-beam deposition on patterned polymer templates made by interference lithography. The dimensions of the nanowires can be controlled through adjustment of deposition conditions and polymer templates. Grain size, polarized optical transmission and electrical resistivity were measured with ordered and free-standing nanowires.

  10. Fabrication and properties of silicon carbide nanowires

    NASA Astrophysics Data System (ADS)

    Shim, Hyun Woo

    2008-12-01

    (compressive) normal loads. Here, we show that the friction forces of SiC nanowires films is 5--12 that of macroscopic solids. For nanowires films, the maximum static frictional force varies linearly with, but is not proportional to, normal load; it increases linearly with interface area; and it is independent of loading speed. To summarize, the combined experimental and theoretical studies in this thesis demonstrated unique structures and surface properties of SiC nanowires, including: (1) Periodical twinning, surface faceting, and structure transition, [Shim & Huang, Appl. Phy. Lett. 90, 083106] (2) Twinning growth mechanism, [Shim, Zhang & Huang, J. Appl. Phys., submitted; Zhang, Shim, & Huang, Appl. Phys. Lett. 92, 261908] (3) Self-integration (nanowebs formation) during growth, [Shim & Huang, Nanotechnology 18, 335607] (4) Thermal stability and self-integration by annealing, [Shim, Kuppers & Huang, J. Nanosci. Nanotech. 8, 3999] and (5) Strong friction of nanowires film. [Shim, Kuppers & Huang, NATURE Nanotech., submitted] The collection of these results enhances the understanding of SiC nanowires growth, the better control of their microstructure and integration, and the application of ceramic nanowires as friction material at high temperature.

  11. The birth and early years of INA, the International Neurotoxicology Association.

    PubMed

    Costa, Lucio G

    2013-05-01

    The International Neurotoxicology Association (INA) is a scientific society whose members have interest and expertise in the discipline of neurotoxicology. The idea of forming INA was born in 1984, as a follow-up to a NATO-sponsored meeting on Toxicology of the Nervous System. INA held its first meeting in the Netherlands in 1987 and has had continuous meetings every other year since then. INA is registered as a scientific society in the Netherlands, and is an affiliated society of IUTOX. This paper presents a personal account of the events that led to the birth of INA, and of the first fifteen years of this association. PMID:23537897

  12. 20 CFR 668.130 - What obligation do we have to consult with the INA grantee community in developing rules...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the INA grantee community in developing rules, regulations, and standards of accountability for INA... Policies § 668.130 What obligation do we have to consult with the INA grantee community in developing rules, regulations, and standards of accountability for INA programs? We will consult with the Native...

  13. 20 CFR 668.700 - What process must an INA grantee use to plan its employment and training services?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... its Two Year Plan for Native American WIA services, the INA grantee must consult with: (1) Customers... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What process must an INA grantee use to plan... INA grantee use to plan its employment and training services? (a) An INA grantee may utilize...

  14. 20 CFR 668.700 - What process must an INA grantee use to plan its employment and training services?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... its Two Year Plan for Native American WIA services, the INA grantee must consult with: (1) Customers... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What process must an INA grantee use to plan... INA grantee use to plan its employment and training services? (a) An INA grantee may utilize...

  15. 20 CFR 668.700 - What process must an INA grantee use to plan its employment and training services?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... its Two Year Plan for Native American WIA services, the INA grantee must consult with: (1) Customers... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What process must an INA grantee use to plan... INA grantee use to plan its employment and training services? (a) An INA grantee may utilize...

  16. Novel microwave properties and "memory effect" in magnetic nanowire array

    NASA Astrophysics Data System (ADS)

    Kou, Xiaoming

    2011-12-01

    magnetic field pulses as high as a few hundred Oe without breaking down. In the proposed EMP detector, a magnetic field sensor is required to measure the surface field of the magnetic nanowire array. MgO based magnetic tunnel junction (MTJ) is one type of magnetic field sensors. We investigated the evolution of the magnetic transport properties as a function of short annealing time in MgO based MTJ junctions. It is found that the desired sensor behavior appears in samples annealed for 17 minutes. The result can be well fitted by using the superparamagnetism theory, suggesting the formation of superparamagnetic particles in the free layer during the high temperature annealing. The control of MTJ properties with annealing time is desirable in magnetic field sensor productions.

  17. Synthesis and Characterization of Nanowires

    SciTech Connect

    Musket, R.G.; Felter, T.; Quong, A.

    2000-03-01

    With the dimensions of components in microelectronic circuits shrinking, the phenomena associated with electronic conduction through wires and with device operation can be expected to change. For example, as the length of electrical conductors is reduced, ballistic transport will become the main mode of conduction. Sufficient reduction in the cross sectional area of conductors can lead to quantum confinement effects. Prior knowledge of the phenomena associated with decreasing size should help guide the designers of future, smaller devices in terms of geometry and materials. However, prior knowledge requires the availability of sufficiently small nanowires for experiments. To date, the smallest nanowires that have been fabricated and investigated had diameters of 8 nm. We propose to extend the investigation of these size-related phenomena by synthesizing, using a novel version of nuclear, or ion, track lithography and characterizing, physically and electrically, nanowires with diameters D of 1 to 5 nm and lengths L of 2 to 250 nm. Thus, by varying the dimensions of the nanowires, we will be able to determine experimentally when the ideas of macroscopic conductance break down and the conductance becomes dominated by quantum and ballistic effects. In our approach the nature of the small-diameter nanostructure formed can be controlled: Nanowires are formed when L/D is large, and quantum dots are formed when both L and D are small. Theoretical calculations will be performed to both guide and understand the experimental studies. We have examined several aspects of this challenging problem and generated some promising results, but the project was not extended for the second year as planned. Thus, we did not have sufficient resources to complete the proof of concept.

  18. Semiconductor nanowires and nanowire heterostructures: Fundamental transport phenomena and application in nanoelectronics

    NASA Astrophysics Data System (ADS)

    Xiang, Jie

    Semiconductor nanowires are emerging among the most promising family of materials to impact future electronics owing to the highly controlled growth, which has enabled predictable variation of structure and composition on multiple length scales. This thesis presents study on two critical scientific areas: understanding the potentially unique nature of 1D electrical transport in nanowires and corresponding enhancements in device performance. First, we describe using solid state reaction to transform single crystal silicon nanowires into metallic nickel silicide nanowires, which possess low resistivity and high current density. NiSi/Si nanowire heterostructures were also created with atomically sharp metal/semiconductor interface and shown to enable FETs with outstanding performance. Next we will focus on exploring the unique physics of 1D transport. Inspired by band structure engineering in planar 2D electron gas systems, we have designed and synthesized undoped Ge/Si core/shell nanowire heterostructures using the CVD method. Transport measurements on individual nanowire confirmed the formation of a hole gas and an absence of Schottky barrier at the metal contacts. Significantly, conductance quantization was observed at low temperature suggestive of ballistic transport through discrete 1D subbands. This 1D hole gas has created a new platform for studies in low-dimensional physics. Here we show studies of mesoscopic Josephson junctions using Ge/Si core/shell nanowires with superconducting contacts, which exhibit a dissipationless supercurrent. A systematic investigation of the multiple Andreev reflection phenomena as well as supercurrent quantization from quantum confinement effect in the narrow nanowire channel will be presented. Furthermore, we have utilized the 1D hole gas and incorporated high-kappa dielectrics using atomic layer deposition and metal top-gate to fabricate high performance Ge/Si nanowire FETs with scaled transconductance and on-current values 3

  19. Quantum Dots: Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics (Small 31/2016).

    PubMed

    Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang

    2016-08-01

    On page 4277, G. Li and co-workers aim to promote III-V compound semiconductors and devices for a broad range of applications with various technologies. The growth process of InAs quantum dots on GaAs (511)A substrates is systematically studied. By carefully controlling the competition between growth thermal-dynamics and kinetics, InAs quantum dots with high size uniformity are prepared, which are highly desirable for the fabrication of high-efficiency solar cells. PMID:27510365

  20. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Mulazimoglu, Emre; Emrah Unalan, Husnu; Turan, Rasit

    2014-02-01

    In this study, copper oxide (CuO) thin film/silicon (Si) nanowire heterojunctions have been fabricated and their optoelectronic performances have been investigated. Vertically aligned n-type Si nanowires have been fabricated using metal-assisted etching (MAE) technique. CuO thin films were synthesized by the sol-gel method and deposited onto the nanowires through spin-coating. Fabricated nanowire heterojunction devices exhibited excellent diode behaviour compared to the planar heterojunction control device. The rectification ratios were found to be 105 and 101 for nanowire and planar heterojunctions, respectively. The improved electrical properties and photosensitivity of the nanowire heterojunction diode was observed, which was related to the three-dimensional nature of the interface between the Si nanowires and the CuO film. Results obtained in this work reveal the potential of Si nanowire-based heterojunctions for various optoelectronic devices.

  1. From nanodiamond to nanowires.

    SciTech Connect

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  2. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  3. Additional compound semiconductor nanowires for photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  4. Phonon Trapping in Pearl-Necklace-Shaped Silicon Nanowires.

    PubMed

    Miao, Chunyang; Tai, Guoan; Zhou, Jianxin; Guo, Wanlin

    2015-12-22

    A pearl-necklace-shaped silicon nanowire, in contrast to a smooth nanowire, presents a much lower thermal conductivity due to the phonon trapping effect. By precisely controlling the pearl size and density, this reduction can be more than 70% for the structures designed in the study, which provides a unique approach for designing high-performance nanoscale thermoelectric devices. PMID:26577864

  5. Phonon Trapping in Pearl-Necklace-Shaped Silicon Nanowires.

    PubMed

    Miao, Chunyang; Tai, Guoan; Zhou, Jianxin; Guo, Wanlin

    2015-12-22

    A pearl-necklace-shaped silicon nanowire, in contrast to a smooth nanowire, presents a much lower thermal conductivity due to the phonon trapping effect. By precisely controlling the pearl size and density, this reduction can be more than 70% for the structures designed in the study, which provides a unique approach for designing high-performance nanoscale thermoelectric devices.

  6. Carrier gas effects on aluminum-catalyzed nanowire growth

    NASA Astrophysics Data System (ADS)

    Ke, Yue; Hainey, Mel, Jr.; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M.; Redwing, Joan M.

    2016-04-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor-solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor-solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH4 adsorption thereby reducing vapor-solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures.

  7. Elastic properties of nanowires

    NASA Astrophysics Data System (ADS)

    da Fonseca, Alexandre F.; Malta, C. P.; Galva~O, Douglas S.

    2006-05-01

    We present a model to study Young's modulus and Poisson's ratio of the composite material of amorphous nanowires. It is an extension of the model derived by two of us [da Fonseca and Galva~o, Phys. Rev. Lett. 92, 175502 (2004)] to study the elastic properties of amorphous nanosprings. The model is based on twisting and tensioning a straight nanowire and we propose an experimental setup to obtain the elastic parameters of the nanowire. We used the Kirchhoff rod model to obtain the expressions for the elastic constants of the nanowire.

  8. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  9. Large-scale organic nanowire lithography and electronics.

    PubMed

    Min, Sung-Yong; Kim, Tae-Sik; Kim, Beom Joon; Cho, Himchan; Noh, Yong-Young; Yang, Hoichang; Cho, Jeong Ho; Lee, Tae-Woo

    2013-01-01

    Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and their orientations and dimensions is a significant challenge for practical electronics applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in a precisely, individually controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve a maximum field-effect mobility up to 9.7 cm(2) V(-1) s(-1) with extremely low contact resistance (<5.53 Ω cm), even in nano-channel transistors based on single-stranded semiconducting nanowires. We also demonstrate complementary inverter circuit arrays comprising well-aligned p-type and n-type organic semiconducting nanowires. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a simple, reliable method of fabricating large-area and flexible nano-electronics.

  10. Spin polarization of carriers in resonant tunneling devices containing InAs self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Nobrega, J. Araújo e.; Gordo, V. Orsi; Galeti, H. V. A.; Gobato, Y. Galvão; Brasil, M. J. S. P.; Taylor, D.; Orlita, M.; Henini, M.

    2015-12-01

    In this work, we have investigated transport and optical properties of n-i-n resonant tunneling diodes (RTDs) containing a layer of InAs self-assembled quantum dots (QDs) grown on a (311)B oriented GaAs substrate. Polarization-resolved photoluminescence (PL) and magneto-transport measurements were performed under applied voltage and magnetic fields up to 15 T at 2 K under linearly polarized laser excitation. It was observed that the QD circular polarization degree depends strongly on the applied voltage. Its voltage dependence is explained by the formation of excitonic complexes such as positively (X+) and negatively (X-) charged excitons in the QDs. Our results demonstrate an effective electrical control of an ensemble of InAs QD properties by tuning the applied voltage across a RTD device into the resonant tunneling condition.

  11. Structural characterization of nanowires and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Becker, Catherine Rose

    Nanowires, which have diameter less than a few hundred nanometers and high aspect ratios, may have the same properties as their corresponding bulk materials, or may exhibit unique properties due to their confined dimensions and increased surface to volume ratios. They are a popular field of technological investigation in applications that depend on the transport of charge carriers, because of expectations that microcircuit miniaturization will lead to the next boom in the electronics industry. In this work, the high spatial resolution afforded by transmission electron microscopy (TEM) is used to study nanowires formed by electrochemical deposition into porous alumina templates. The goal is to determine the effect of the synthesis and subsequent processing on the microstructure and crystallinity of the wires. A thorough understanding of the microstructural features of a material is vital for optimizing its performance in a desired application. Two material systems were studied in this work. The first is bismuth telluride (Bi 2Te3), which is used in thermoelectric applications. The second is metallic copper, the electrochemical deposition of which is of interest for interconnects in semiconductor devices. The first part of this work utilized TEM to obtain a thorough characterization of the microstructural features of individual Bi2Te3 nanowires following release from the templates. As deposited, the nanowires are fine grained and exhibit significant lattice strain. Annealing increases the grain size and dislocations are created to accommodate the lattice strain. The degree of these microstructural changes depends on the thermal treatment. However, no differences were seen in the nanowire microstructure as a function of the synthetic parameters. The second part of this work utilized a modified dark field TEM technique in order to obtain a spatially resolved, semi-quantitative understanding of the evolution of preferred orientation as a function of the electrochemical

  12. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min

    2015-08-01

    TiO2 nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO2 nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO2 nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO2 nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO2 NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm-2, an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved.

  13. Controlled synthesis of Ni/CuOx/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching

    PubMed Central

    Park, Kyuhyun; Lee, Jang-Sik

    2016-01-01

    We demonstrate synthesis of Ni/CuOx/Ni nanowires (NWs) by electrochemical deposition on anodized aluminum oxide (AAO) membranes. AAO with pore diameter of ~70 nm and pore length of ~50 μm was used as the template for synthesis of NWs. After deposition of Au as the seed layer, NWs with a structure of Ni/CuOx/Ni were grown with a length of ~12 μm. The lengths of 1st Ni, CuOx, and 2nd Ni were ~4.5 μm, ~3 μm, and ~4.5 μm, respectively. The Ni/CuOx/Ni device exhibits bipolar resistive switching behavior with self-compliance characteristics. Due to the spatial restriction of the current path in NW the Ni/CuOx/Ni NW devices are thought to exhibit self-compliance behaviour. Ni/CuOx/Ni NWs showed bipolar resistive changes possibly due to conducting filaments that are induced by oxygen vacancies. The reliability of the devices was confirmed by data retention measurement. The NW-based resistive switching memory has applications in highly scalable memory devices and neuromorphic devices. PMID:26975330

  14. Fabrication of single-crystal Si nanowires by ultrahigh vacuum magnetron sputtering.

    NASA Astrophysics Data System (ADS)

    Knepper, J. W.; Zhao, X. W.; Yang, F. Y.

    2006-03-01

    Semiconductor nanowires have attracted great interests due to the intriguing fundamental science and technological application they provide. Many semiconductor materials have been made into single crystal nanowires with superior crystal quality and high mobility. Among them, silicon is particularly interesting because silicon is the foundation of modern electronic technology. A majority of the nanowire synthesis used laser-assisted catalyst growth or chemical vapor deposition. Here we reported a different approach to the fabrication of semiconductor nanowires using ultrahigh vacuum magnetron sputtering. Using thin Au layers as catalyst via vopor-liquid-solid mechanism, single crystal Si nanowires have been grown on Si substrates at a temperature of ˜700 C. Electron microscopy revealed that most Si nanowires grew epitaxially on Si(111) surfaces. Si nanowires are perpendicular to the Si(111) surface with a Si/Au alloy sphere on the top of the nanowires. The growth of Si nanowires on Si wafers with other orientations and amorphous silicon oxide layers was also observed, but with much less probability. The diameter of the Si nanowires is about 200 nm using Au layers as catalyst. The nanowire diameter can be controlled to smaller size by patterning the Au layers into small dots to reduce the catalyst size. Si nanowires fabricated by ultrahigh vacuum sputter at a base pressure of 10̂-10 torr are high purity and can be easily doped to desirable carrier concentration.

  15. Nanocrystalline nanowires: I. Structure.

    PubMed

    Allen, Philip B

    2007-01-01

    Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called "nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNWs by translation and rotation.

  16. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  17. InAs/GaSb core–shell nanowires grown on Si substrates by metal–organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Luo, Shuai; Ji, Haiming; Xu, H. Q.; Yang, Tao

    2016-07-01

    We report the growth of InAs/GaSb core–shell heterostructure nanowires with smooth sidewalls on Si substrates using metal–organic chemical vapor deposition with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core. The results obtained here show that the InAs/GaSb core–shell nanowires grown using the Si platform have strong potential in the fabrication of future nanometer-scale devices and in the study of fundamental quantum physics.

  18. InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Luo, Shuai; Ji, Haiming; Xu, H. Q.; Yang, Tao

    2016-07-01

    We report the growth of InAs/GaSb core-shell heterostructure nanowires with smooth sidewalls on Si substrates using metal-organic chemical vapor deposition with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core. The results obtained here show that the InAs/GaSb core-shell nanowires grown using the Si platform have strong potential in the fabrication of future nanometer-scale devices and in the study of fundamental quantum physics.

  19. Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Garnett, Erik C.; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

    2011-08-01

    The nanowire geometry provides potential advantages over planar wafer-based or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead, they reduce the quantity and quality of material necessary to approach those limits, allowing for substantial cost reductions. Additionally, nanowires provide opportunities to fabricate complex single-crystalline semiconductor devices directly on low-cost substrates and electrodes such as aluminum foil, stainless steel, and conductive glass, addressing another major cost in current photovoltaic technology. This review describes nanowire solar cell synthesis and fabrication, important characterization techniques unique to nanowire systems, and advantages of the nanowire geometry.

  20. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  1. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  2. Silicon nanowires: Growth, transport and device physics

    NASA Astrophysics Data System (ADS)

    Garnett, Erik Christian

    2009-11-01

    Silicon is the second most abundant element in the earth's crust and has been the backbone of the information technology revolution. It is the most well-studied material in all of solid-state chemistry and physics and has been used to make a variety of devices including transistors, resonators, and solar cells. Nanowires could provide advantages over bulk silicon; however, there are many fundamental challenges that must be overcome in order to use them in high-performance, reproducible devices. The first chapter of this dissertation gives an introduction to nanoscience with an emphasis on the working principles of the nanowire devices that are discussed later and the problems that face nanowire implementation. Chapter two demonstrates that platinum nanoparticles can be substituted for gold as the nanowire growth catalyst without sacrificing crystalline quality, epitaxial growth or electrical properties. Replacing gold with a clean-room compatible material such as platinum is important to allow for nanowire integration into microfabricated devices. Chapter three focuses on making horizontal surround-gate field effect transistors for capacitance-voltage measurements. These devices are used to extract the dopant profile and density of interface states from individual nanowires, showing results consistent with planar control samples and simulations. The results are encouraging because they suggest low surface recombination velocities (similar to bulk planar wafers) should be possible as long as the nanowire surface is smooth and well-faceted. Chapter four demonstrates two low-cost, scalable methods for fabricating silicon nanowire photovoltaics. Because of the rough surface induced by the electroless etching process and the poor junction quality from the nanocrystalline chemical vapor deposition film, the efficiency of cells made with the first approach is relatively low at about 0.5%. The second approach, using an assembly of silica beads, deep reactive ion etching

  3. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    SciTech Connect

    Valisheva, N. A. Tereshchenko, O. E.; Prosvirin, I. P.; Kalinkin, A. V.; Goljashov, V. A.; Levtzova, T. A.; Bukhtiyarov, V. I.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine and elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.

  4. Templated Synthesis of Uniform Perovskite Nanowire Arrays.

    PubMed

    Ashley, Michael J; O'Brien, Matthew N; Hedderick, Konrad R; Mason, Jarad A; Ross, Michael B; Mirkin, Chad A

    2016-08-17

    While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates. PMID:27501464

  5. Using galvanostatic electroforming of Bi1–xSbx nanowires to control composition, crystallinity, and orientation

    SciTech Connect

    Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; Hekmaty, Michelle; Lensch-Falk, Jessica L.; Erickson, Kristopher; Pillars, Jamin; Yelton, W. Graham

    2014-12-03

    When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi1–xSbx nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl3 bath, the electroformed nanowire arrays were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi0.75 Sb0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi0.70Sb0.30.

  6. Designing Quantum Matter with Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Markovic, Nina

    Superconducting nanowires are an experimental realization of a model quantum system that features collective degrees of freedom and exhibits a host of non-equilibrium and non-local phenomena. The nature of the quantum states in nanowires is particularly sensitive to size and shape quantization, coupling with the environment and proximity effects. I will demonstrate how we can utilize these features to tailor the quantum states in nanowires in desirable ways. Specifically for this purpose, we have developed a unique nanoprinting method for fabrication of ultranarrow nanowires with unprecedented control over their physical texture and their transport properties. I will show how short nanowires exhibit a tunable vortex-in-a-box blockade phenomenon, and how tunable interfaces with graphene and topological insulators lead to unusual properties. Finally, I will discuss the bigger picture for how the texture of the superconducting wavefunction can be precisely controlled by the size, shape, magnetic field and tunable interfaces with materials that exhibit unconventional order, spin texture or topological properties. This work is supported by NSF DMR-1507782.

  7. InAs growth and development of defect microstructure on GaAs

    NASA Astrophysics Data System (ADS)

    Khandekar, A. A.; Suryanarayanan, G.; Babcock, S. E.; Kuech, T. F.

    2005-02-01

    Epitaxially deposited thin films of InAs on semi-insulating GaAs substrates are commonly used for high-speed electronic devices. Large (7%) lattice mismatch between InAs and GaAs leads to Stranski-Krastanov growth mode with formation of 3D islands. The effect of growth temperature in MOVPE deposition, on InAs crystal microstructure was studied. The origin of multiple tilting of the InAs crystal lattice observed for the high temperature growths was investigated in detail. The microstructure of uncoalesced InAs islands was determined using X-ray diffraction rocking curve scans and backscattered electron Kikuchi pattern crystal orientation imaging. Misoriented grains are formed within uncoalesced InAs islands at an early stage during the growth.

  8. Mesoporous metal and semiconductor nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Hongmei

    Nanowires and nanotubes are central elements in nanoscience and nanotechnology for applications such as nanoelectronic devices, chemical sensors, and high-density data storage. Among various synthesis methods, the template assisted electrodeposition is particularly attractive because it provides an efficient route to fabricate arrays of nanomatenals of desired composition, size, and aspect ratio. Advanced applications need morphological control. Mesoporous materials with uniform and arranged pores with pore diameters between 2 and 50 nm have attracted much attention due to their unique structures and applications. This dissertation presents the fabrication, structure, and property investigation of magnetic, superconducting metal, and semiconductor nanostructures. We will report three-dimensional (3D) macroporous magnetic and superconducting metal films using opal templates, 2D hexagonal and 3D cubic metal nanowire thin films with tunable 3-10 nm wire diameters using mesoporous silica as templates, mesoporous cobalt and nickel films with hexagonal and lamellar structures direct templated by lyotropic liquid crystal phases. Compared with bulk and dense films, the porous magnetic films show higher coercivities. The cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning the mesostructure and dimension of the nanowires. We will present a novel method, confined-assembly-template assisted (CATA) electrodeposition, by combination of nanoconfinement, supramolecular templating and electrodeposition technique to prepare mesoporous metal and semiconductor nanowires and nanotubes. Mesoporous palladium and cobalt nanowires are obtained by electrodeposition of hexagonal liquid crystal in porous membranes, mesoporous platinum and nickel nanotubes with controlled length are obtained by electrodeposition of lamellar liquid crystal, mesoporous zinc oxide nanowires are obtained by electrodeposition of interfacial SDS surfactant

  9. [Advances in the application research of bacterial ice nucleation active (ina) genes].

    PubMed

    Tang, Chao-Rong; Sun, Fu-Zai; Zhao, Ting-Chang

    2002-07-01

    For recent years, the research has been focused on the ina gene application in the field of biological ice nucleation. This paper reviewed the application of ina genes in bacterial cell surface display, construction of reporter gene systems, killing insect pests through induced freezing, sensitive detection of pathogenic bacteria contaminating foods, breeding of cold resistant varieties. A brief introduction of the ina gene application in killing insect pests in China was also made in this review. PMID:12385233

  10. 22 CFR 40.68 - Aliens subject to INA 222(g).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... new nonimmigrant visa unless the alien complies with the requirements in 22 CFR 41.101 (b) or (c... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Aliens subject to INA 222(g). 40.68 Section 40... § 40.68 Aliens subject to INA 222(g). An alien who, under the provisions of INA 222(g), has voided...

  11. 22 CFR 40.68 - Aliens subject to INA 222(g).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... new nonimmigrant visa unless the alien complies with the requirements in 22 CFR 41.101 (b) or (c... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Aliens subject to INA 222(g). 40.68 Section 40... § 40.68 Aliens subject to INA 222(g). An alien who, under the provisions of INA 222(g), has voided...

  12. 22 CFR 40.68 - Aliens subject to INA 222(g).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... new nonimmigrant visa unless the alien complies with the requirements in 22 CFR 41.101 (b) or (c... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Aliens subject to INA 222(g). 40.68 Section 40... § 40.68 Aliens subject to INA 222(g). An alien who, under the provisions of INA 222(g), has voided...

  13. Nanowire spintronics for storage class memories and logic.

    PubMed

    Hrkac, G; Dean, J; Allwood, D A

    2011-08-13

    Patterned magnetic nanowires are extremely well suited for data storage and logic devices. They offer non-volatile storage, fast switching times, efficient operation and a bistable magnetic configuration that are convenient for representing digital information. Key to this is the high level of control that is possible over the position and behaviour of domain walls (DWs) in magnetic nanowires. Magnetic random access memory based on the propagation of DWs in nanowires has been released commercially, while more dynamic shift register memory and logic circuits have been demonstrated. Here, we discuss the present standing of this technology as well as reviewing some of the basic DW effects that have been observed and the underlying physics of DW motion. We also discuss the future direction of magnetic nanowire technology to look at possible developments, hurdles to overcome and what nanowire devices may appear in the future, both in classical information technology and beyond into quantum computation and biology.

  14. Radial growth of plasmon coupled gold nanowires on colloidal templates.

    PubMed

    Farrokhtakin, Elmira; Rodríguez-Fernández, Denis; Mattoli, Virgilio; Solís, Diego M; Taboada, José M; Obelleiro, Fernando; Grzelczak, Marek; Liz-Marzán, Luis M

    2015-07-01

    The library of plasmonic nanosystems keeps expanding with novel structures with the potential to provide new solutions to old problems in science and technology. We report the synthesis of a novel plasmonic system based on the growth of gold nanowires radially branching from the surface of silica particles. The nanowires length could be controlled by tuning the molar ratio between metal salt and surface-grafted seeds. Electron microscopy characterization revealed that the obtained one-dimensional nanoparticles are polycrystalline but uniformly distributed on the spherical template. The length of the nanowires in turn determines the optical response of the metallodielectric particles, so that longer wires display red-shifted longitudinal plasmon bands. Accurate theoretical modeling of these complex objects revealed that the densely organized nanowires display intrinsically coupled plasmon modes that can be selectively decoupled upon detachment of the nanowires from the surface of the colloidal silica template. PMID:25554084

  15. Domain wall oscillations induced by spin torque in magnetic nanowires

    SciTech Connect

    Sbiaa, R.; Chantrell, R. W.

    2015-02-07

    Using micromagnetic simulations, the effects of the non-adiabatic spin torque (β) and the geometry of nanowires on domain wall (DW) dynamics are investigated. For the case of in-plane anisotropy nanowire, it is observed that the type of DW and its dynamics depends on its dimension. For a fixed length, the critical switching current decreases almost exponentially with the width W, while the DW speed becomes faster for larger W. For the case of perpendicular anisotropy nanowire, it was observed that DW dynamics depends strongly on β. For small values of β, oscillations of DW around the center of nanowire were revealed even after the current is switched off. In addition to nanowire geometry and intrinsic material properties, β could provide a way to control DW dynamics.

  16. Radial growth of plasmon coupled gold nanowires on colloidal templates.

    PubMed

    Farrokhtakin, Elmira; Rodríguez-Fernández, Denis; Mattoli, Virgilio; Solís, Diego M; Taboada, José M; Obelleiro, Fernando; Grzelczak, Marek; Liz-Marzán, Luis M

    2015-07-01

    The library of plasmonic nanosystems keeps expanding with novel structures with the potential to provide new solutions to old problems in science and technology. We report the synthesis of a novel plasmonic system based on the growth of gold nanowires radially branching from the surface of silica particles. The nanowires length could be controlled by tuning the molar ratio between metal salt and surface-grafted seeds. Electron microscopy characterization revealed that the obtained one-dimensional nanoparticles are polycrystalline but uniformly distributed on the spherical template. The length of the nanowires in turn determines the optical response of the metallodielectric particles, so that longer wires display red-shifted longitudinal plasmon bands. Accurate theoretical modeling of these complex objects revealed that the densely organized nanowires display intrinsically coupled plasmon modes that can be selectively decoupled upon detachment of the nanowires from the surface of the colloidal silica template.

  17. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  18. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  19. Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2006-02-07

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  20. Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    He, Li-Zhong; Qin, Li-Rong; Zhao, Jian-Wei; Yin, Ying-Ying; Yang, Yu; Li, Guo-Qing

    2016-08-01

    Ordered Ni/Au multilayer nanowire arrays are successfully fabricated inside the nanochannels of anodic aluminum oxide template by pulse electrodeposition method. The thickness of the alternating layers is controlled to examine the magnetostatic interaction in Ni/Au multilayer nanowires. The magnetic easy axis parallel to the nanowires indicates that here the magnetostatic coupling along the wire axis dominates over the interactions perpendicular to the nanowires. However, the magnetostatic interaction between adjacent nanowires with larger magnetic layers is enhanced, leading to the existence of an optimum coercivity value. Project supported by the National Natural Science Foundation of China (Grant No. 11204246) and the Natural Science Foundation of CQCSTC (Grant No. cstc2014jcyjA50027).

  1. Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    He, Li-Zhong; Qin, Li-Rong; Zhao, Jian-Wei; Yin, Ying-Ying; Yang, Yu; Li, Guo-Qing

    2016-08-01

    Ordered Ni/Au multilayer nanowire arrays are successfully fabricated inside the nanochannels of anodic aluminum oxide template by pulse electrodeposition method. The thickness of the alternating layers is controlled to examine the magnetostatic interaction in Ni/Au multilayer nanowires. The magnetic easy axis parallel to the nanowires indicates that here the magnetostatic coupling along the wire axis dominates over the interactions perpendicular to the nanowires. However, the magnetostatic interaction between adjacent nanowires with larger magnetic layers is enhanced, leading to the existence of an optimum coercivity value. Project supported by the National Natural Science Foundation of China (Grant No. 11204246) and the Natural Science Foundation of CQCSTC (Grant No. cstc2014jcyjA50027).

  2. Nanoconstruction by welding individual metallic nanowires together using nanoscale solder

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Cullis, A. G.; Inkson, B. J.

    2010-07-01

    This work presents a new bottom-up nanowelding technique enabling building blocks to be assembled and welded together into complex 3D nanostructures using nanovolumes of metal solder. The building blocks of gold nanowires, (Co72Pt28/Pt)n multilayer nanowires, and nanosolder Sn99Au1 alloy nanowires were successfully fabricated by a template technique. Individual metallic nanowires were picked up and assembled together. Conductive nanocircuits were then welded together using similar or dissimilar nanosolder material. At the weld sites, nanoscale volumes of a chosen metal are deposited using nanosolder of a sacrificial nanowire, which ensures that the nanoobjects to be bonded retain their structural integrity. The whole nanowelding process is clean, controllable and reliable, and ensures both mechanically strong and electrically conductive contacts.

  3. Controlled Ti seed layer assisted growth and field emission properties of Pb(Zr0.52Ti0.48)O3 nanowire arrays.

    PubMed

    Datta, Anuja; Mukherjee, Devajyoti; Hordagoda, Mahesh; Witanachchi, Sarath; Mukherjee, Pritish; Kashid, Ranjit V; More, Mahendra A; Joag, Dilip S; Chavan, Padmakar G

    2013-07-10

    We report on the directed upright growth of ferroelectric (FE) Pb(Zr0.52Ti0.48)O3 (PZT) nanowire (NW) arrays with large aspect ratios of >60 using a Ti seed layer assisted hydrothermal process over large surface areas on ITO/glass substrates. In a two-step growth process, Ti seed layer of low surface roughness with a thickness of ~500 nm and grain size of ~100 nm was first deposited by radio frequency (RF) sputtering which was subsequently used as substrates for the growth of highly dense, single crystalline PZT NWs by controlled nucleation. The electron emission properties of the PZT NWs were investigated using the as-grown NWs as FE cathodes. A low turn-on field of ~3.4 V/μm was obtained from the NW arrays, which is impressively lower than that from other reported values. The results reported in this work give direction to the development of a facile growth technique for PZT NWs over large surfaces and also are of interest to the generation of high current electron beam from FE NW based cathodes for field emitter applications.

  4. Microbial nanowires for bioenergy applications.

    PubMed

    Malvankar, Nikhil S; Lovley, Derek R

    2014-06-01

    Microbial nanowires are electrically conductive filaments that facilitate long-range extracellular electron transfer. The model for electron transport along Shewanella oneidensis nanowires is electron hopping/tunneling between cytochromes adorning the filaments. Geobacter sulfurreducens nanowires are comprised of pili that have metal-like conductivity attributed to overlapping pi-pi orbitals of aromatic amino acids. The nanowires of Geobacter species have been implicated in direct interspecies electron transfer (DIET), which may be an important mode of syntrophy in the conversion of organic wastes to methane. Nanowire networks confer conductivity to Geobacter biofilms converting organic compounds to electricity in microbial fuel cells (MFCs) and increasing nanowire production is the only genetic manipulation shown to yield strains with improved current-producing capabilities. Introducing nanowires, or nanowire mimetics, might improve other bioenergy strategies that rely on extracellular electron exchange, such as microbial electrosynthesis. Similarities between microbial nanowires and synthetic conducting polymers suggest additional energy-related applications.

  5. Direct electrical transport measurement on a single thermoelectric nanowire embedded in an alumina template.

    PubMed

    Ben Khedim, Meriam; Cagnon, Laurent; Garagnon, Christophe; Serradeil, Valerie; Bourgault, Daniel

    2016-04-28

    Electrical conductivity is a key parameter to increase the performance of thermoelectric materials. However, the measurement of such performance remains complex for 1D structures, involving tedious processing. In this study, we present a non-destructive, rapid and easy approach for the characterization of electrical conductivity of Bi2Te3 based single nanowires. By controlling the nanowire overgrowth, each nanowire emerges in the form of a micrometric hemisphere constituting a unique contact zone for direct nanoprobing. As nanowires need no preliminary preparation and remain in their template during measurement, we avoid oxidation effects and time-consuming processing. Electrical transport results show a low nanowire resistivity for compact nanowires obtained at low overpotential. Such values are comparable to bulk materials and thin films. This method not only confirmed its reliability, but it could also be adopted for other semiconducting or metallic electrodeposited nanowires. PMID:27086560

  6. Structure and magnetic properties of Co/CoO core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Gandha, Kinjal; Elkins, Kevin; Poudyal, Narayan; Liu, J. Ping

    2015-03-01

    Cobalt nanowires with high coercivity have been synthesized via a solvothermal chemical process. A record high room-temperature coercivity value of 12.5 kOe has been measured in aligned Co nanowires with a diameter of about 15 nm and a mean length of 200 nm. When the surface of the Co nanowires were oxidized, exchange-bias (EB) was detected at low temperatures owing to the exchange coupling between the ferromagnetic (FM) Co core and the antiferromagnetic (AFM) CoO shell of the nanowires. EB fields of ~2.0 kOe were measured at 10 K, along the parallel direction of nanowires. Manipulation and control of the EB in the nanowires may lead to a better understanding of the EB effect and the applications of the nanowires in for future permanent magnets and recording media.

  7. Defect transfer from nanoparticles to nanowires.

    PubMed

    Barth, Sven; Boland, John J; Holmes, Justin D

    2011-04-13

    Metal-seeded growth of one-dimensional (1D) semiconductor nanostructures is still a very active field of research, despite the huge progress which has been made in understanding this fundamental phenomenon. Liquid growth promoters allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, and operating pressure. However the transfer of crystallographic information from a catalytic nanoparticle seed to a growing nanowire has not been described in the literature. Here we define the theoretical requirements for transferring defects from nanoparticle seeds to growing semiconductor nanowires and describe why Ag nanoparticles are ideal candidates for this purpose. We detail in this paper the influence of solid Ag growth seeds on the crystal quality of Ge nanowires, synthesized using a supercritical fluid growth process. Significantly, under certain reaction conditions {111} stacking faults in the Ag seeds can be directly transferred to a high percentage of <112>-oriented Ge nanowires, in the form of radial twins in the semiconductor crystals. Defect transfer from nanoparticles to nanowires could open up the possibility of engineering 1D nanostructures with new and tunable physical properties and morphologies.

  8. Preparation and characterization of electrodeposited cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.

    2014-10-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl2˙6H 2 O salt solution was used, which was buffered with H3BO3 and acidified by dilute H2SO4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  9. Preparation and characterization of electrodeposited cobalt nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M.; Ahmad, F. Abdullah, M. Z.

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  10. Semiconductor Nanowires: What's Next?

    SciTech Connect

    Yang, Peidong; Yan, Ruoxue; Fardy, Melissa

    2010-04-28

    In this perspective, we take a critical look at the research progress within the nanowire community for the past decade. We discuss issues on the discovery of fundamentally new phenomena versus performance benchmarking for many of the nanowire applications. We also notice that both the bottom-up and top-down approaches have played important roles in advancing our fundamental understanding of this new class of nanostructures. Finally we attempt to look into the future and offer our personal opinions on what the future trends will be in nanowire research.

  11. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  12. Tapered silicon nanowires for enhanced nanomechanical sensing

    NASA Astrophysics Data System (ADS)

    Malvar, O.; Gil-Santos, E.; Ruz, J. J.; Ramos, D.; Pini, V.; Fernandez-Regulez, M.; Calleja, M.; Tamayo, J.; San Paulo, A.

    2013-07-01

    We investigate the effect of controllably induced tapering on the resonant vibrations and sensing performance of silicon nanowires. Simple analytical expressions for the resonance frequencies of the first two flexural modes as a function of the tapering degree are presented. Experimental measurements of the resonance frequencies of singly clamped nanowires are compared with the theory. Our model is valid for any nanostructure with tapered geometry, and it predicts a reduction beyond two orders of magnitude of the mass detection limit for conical resonators as compared to uniform beams with the same length and diameter at the clamp.

  13. Cadmium Nanowire Formation Induced by Ion Irradiation

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Wang, Chong M.; Young, James S.; Boatner, Lynn A.; Lian, Jie; Wang, Lumin; Ewing, Rodney C.

    2005-07-04

    One-dimensional nanostructures, such as nanowires, of semiconductors and metals are of great technological interest due to their potential for many advanced technology applications. Utilization of these materials versus their bulk counterparts will not only allow for device miniaturisation, but also may improve device performance or create new functions. Here we report a novel method for the synthesis of crystalline Cd-nanowires without involving either templates or a “seeded” structure. Ion irradiation at low temperatures (≤ 295 K) has been used to induce material decomposition and phase segregation in a cadmium niobate pyrochlore (Cd2Nb2O7) wafer. During the formation and rupture of the gas-filled blisters in the material, soft metallic Cd is extruded/extracted as nanowires through pores in the exfoliated layer. The entire process may be readily controlled by changing the ion irradiation conditions (e.g., ion species, dose and energy) with minimal thermal constraints.

  14. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  15. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. PMID:27254592

  16. Superlattice nanowire pattern transfer (SNAP).

    PubMed

    Heath, James R

    2008-12-01

    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor-liquid-solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication

  17. Superlattice nanowire pattern transfer (SNAP).

    PubMed

    Heath, James R

    2008-12-01

    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor-liquid-solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication

  18. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-01

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  19. 20 CFR 668.510 - What services may INA grantees provide to the community at large under section 166?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... community-building activities described in the INA grantee's Two Year Plan. (b) INA grantees should develop their Two Year Plan in conjunction with, and in support of, strategic tribal planning and...

  20. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-01

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  1. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  2. Ultrathin Ca-PO4-CO3 solid-solution nanowires: a controllable synthesis and full-color emission by rare-earth doping.

    PubMed

    Hui, Junfeng; Yu, Qiyu; Long, Yong; Zhang, Zhicheng; Yang, Yong; Wang, Pengpeng; Xu, Biao; Wang, Xun

    2012-10-22

    It was found that calcium carbonate (CaCO(3)) and hydroxyapatite (Ca(10)(OH)(2)(PO(4))(6)), which are two crucial constituents of the most abundant minerals in nature and very important bioinorganic components in the tissues of mineralizing organisms, can form solid solutions in a wide range of PO(4)(3-)/CO(3)(2-) (P/C) ratios at low temperature when prepared as ultrathin nanowire structures. This is due to the special reactivity of ultrasmall nanocrystals, which can effectively lower the synthetic temperature and promote the formation of solid solutions. The as-prepared ultrathin nanowires with suitable P/C ratios presented strong blue luminescence due to the existence of abundant defects strengthened by CO(3)(2-). If used as the matrix, the as-prepared ultrathin nanowires demonstrated bright green or red luminescent properties when doped with Tb(3+) or Eu(3+) ions, and simultaneously retained their original morphologies. These three kinds of fluorescent nanowires could reproduce a full range of luminescence colors based on additive color mixtures of the three primary colors (red, green, and blue). In addition, under the same reaction system, ultrafine rare-earth-doped (Ce(3+), Tb(3+), Eu(3+)) nanowires (about 1 nm in diameter) were synthesized by using a one-step hydrothermal process, which further pushed the size of the Ca-PO(4)-CO(3) nanobuilding blocks to one unit cell region. These ultrafine nanowires displayed excellent film-forming properties and the ability to absorb UV radiation.

  3. A review on germanium nanowires.

    PubMed

    Pei, Li Z; Cai, Zheng Y

    2012-01-01

    Ge nanowires exhibit wide application potential in the fields of nanoscale devices due to their excellently optical and electrical properties. This article reviews the recent progress and patents of Ge nanowires. The recent progress and patents for the synthesis of Ge nanowires using chemical vapor deposition, laser ablation, thermal evaporation, template method and supercritical fluid-liquid-solid method are demonstrated. Amorphous germanium oxide layer and defects existing in Ge nanowires result in poor Ohmic contact between Ge nanowires and electrodes. Therefore, Ge nanowires should be passivated in order to deposit connecting electrodes before applied in nanoelectronic devices. The experimental progress and patents on the application of Ge nanowires as field effect transistors, lithium batteries, photoresistors, memory cell and fluid sensors are discussed. Finally, the future development of Ge nanowires for the synthesis and practical application is also discussed.

  4. Nanowire structures and electrical devices

    DOEpatents

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  5. 20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to subgroups on grounds prohibited by WIA section 188 and 29 CFR part 37, including tribal... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees...

  6. 20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... target services to subgroups on grounds prohibited by WIA section 188 and 29 CFR part 37, including... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... eligible population? (a) No, INA grantees cannot exclude segments of the eligible population. INA...

  7. 20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... target services to subgroups on grounds prohibited by WIA section 188 and 29 CFR part 37, including... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... eligible population? (a) No, INA grantees cannot exclude segments of the eligible population. INA...

  8. 20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... target services to subgroups on grounds prohibited by WIA section 188 and 29 CFR part 37, including... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... eligible population? (a) No, INA grantees cannot exclude segments of the eligible population. INA...

  9. 20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to subgroups on grounds prohibited by WIA section 188 and 29 CFR part 37, including tribal... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees...

  10. 20 CFR 668.620 - What performance measures are in place for the INA program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What performance measures are in place for the INA program? 668.620 Section 668.620 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION...? Indicators of performance measures and levels of performance in use for INA program will be those...

  11. 20 CFR 668.300 - Who is eligible to receive services under the INA program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Services to Customers § 668.300 Who is eligible to receive services under the INA program? (a) A person is eligible to receive services under the INA program if that person is: (1) An Indian, as determined by a... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Who is eligible to receive services under...

  12. InAs homoepitaxy and InAs/AlSb/GaSb resonant interband tunneling diodes on InAs substrate

    NASA Astrophysics Data System (ADS)

    Xiang, Wei; Wang, Guowei; Hao, Hongyue; Liao, Yongping; Han, Xi; Zhang, Lichun; Xu, Yingqiang; Ren, Zhengwei; Ni, Haiqiao; He, Zhenhong; Niu, Zhichuan

    2016-06-01

    In this paper, the optimal conditions for growth of homoepitaxial InAs layer on InAs (001) substrate by molecular beam epitaxy were investigated over wide growth temperatures and As/In flux ratios. The oxide remove process is important and both the As/In flux ratio and growth temperature is in narrow range for InAs homoepitaxy. The high quality homoepitaxy has an RMS surface roughness of 0.26 nm measured by atomic force microscopy. High quality lattice matched InAs/AlSb/GaSb/InAs/AlSb/InAs double barrier resonant interband tunneling diodes was grown on InAs (001) substrate on the optimal condition. It shows high peak-valley current ratios of 105 at 77 K and 15 at room temperature.

  13. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  14. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  15. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  16. Shape anisotropy in zero-magnetostrictive rapidly solidified amorphous nanowires

    NASA Astrophysics Data System (ADS)

    Rotărescu, C.; Atitoaie, A.; Stoleriu, L.; Óvári, T.-A.; Lupu, N.; Chiriac, H.

    2016-04-01

    The magnetic behavior of zero-magnetostrictive rapidly solidified amorphous nanowires has been investigated in order to understand their magnetic bistability. The study has been performed both experimentally - based on inductive hysteresis loop measurements - and theoretically, by means of micromagnetic simulations. Experimental hysteresis loops have shown that the amorphous nanowires display an axial magnetic bistability, characterized by a single-step magnetization reversal when the applied field reaches a critical value called switching field. The simulated loops allowed us to understand the effect of shape anisotropy on coercivity. The results are key for understanding and controlling the magnetization processes in these novel nanowires, with important application possibilities in new miniaturized sensing devices.

  17. Origin of second-harmonic generation from individual silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wiecha, Peter R.; Arbouet, Arnaud; Girard, Christian; Baron, Thierry; Paillard, Vincent

    2016-03-01

    We investigate second harmonic generation from individual silicon nanowires and study the influence of resonant optical modes on the far field nonlinear emission. We find that the polarization of the second harmonic has a size-dependent behavior and explain this phenomenon by considering different surface and bulk nonlinear susceptibility contributions. We show that the second harmonic generation has an entirely different origin, depending on the nanowire diameter and on whether the incident illumination is polarized parallel or perpendicular to the nanowire axis. The results open perspectives for further geometry-based studies on the origin and control of second harmonic generation in nanostructures of high-refractive index centrosymmetric dielectrics.

  18. 20 CFR 668.130 - What obligation do we have to consult with the INA grantee community in developing rules...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What obligation do we have to consult with the INA grantee community in developing rules, regulations, and standards of accountability for INA..., regulations, and standards of accountability for INA programs? We will consult with the Native...

  19. 20 CFR 668.130 - What obligation do we have to consult with the INA grantee community in developing rules...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What obligation do we have to consult with the INA grantee community in developing rules, regulations, and standards of accountability for INA... developing rules, regulations, and standards of accountability for INA programs? We will consult with...

  20. 20 CFR 668.130 - What obligation do we have to consult with the INA grantee community in developing rules...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What obligation do we have to consult with the INA grantee community in developing rules, regulations, and standards of accountability for INA... developing rules, regulations, and standards of accountability for INA programs? We will consult with...