Sample records for include arbitrary mesh

  1. Arbitrary-Order Conservative and Consistent Remapping and a Theory of Linear Maps: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, Paul A.; Devendran, Dharshi; Johansen, Hans

    2016-04-01

    The focus on this series of articles is on the generation of accurate, conservative, consistent, and (optionally) monotone linear offline maps. This paper is the second in the series. It extends on the first part by describing four examples of 2D linear maps that can be constructed in accordance with the theory of the earlier work. The focus is again on spherical geometry, although these techniques can be readily extended to arbitrary manifolds. The four maps include conservative, consistent, and (optionally) monotone linear maps (i) between two finite-volume meshes, (ii) from finite-volume to finite-element meshes using a projection-type approach, (iii)more » from finite-volume to finite-element meshes using volumetric integration, and (iv) between two finite-element meshes. Arbitrary order of accuracy is supported for each of the described nonmonotone maps.« less

  2. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  3. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Kenamond, Mack; Bement, Matthew; Shashkov, Mikhail

    2014-07-01

    We present a new discretization for 2D arbitrary Lagrangian-Eulerian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, total energy conserving and symmetry preserving. In the first part of the paper, we describe the discretization of the basic Lagrangian hydrodynamics equations in axisymmetric 2D rz geometry on general polygonal meshes. It exactly preserves planar, cylindrical and spherical symmetry of the flow on meshes aligned with the flow. In particular, spherical symmetry is preserved on polar equiangular meshes. The discretization conserves total energy exactly up to machine round-off on any mesh. It has a consistent definition of kinetic energy in the zone that is exact for a velocity field with constant magnitude. The method for discretization of the Lagrangian equations is based on ideas presented in [2,3,7], where the authors use a special procedure to distribute zonal mass to corners of the zone (subzonal masses). The momentum equation is discretized in its “Cartesian” form with a special definition of “planar” masses (area-weighted). The principal contributions of this part of the paper are as follows: a definition of “planar” subzonal mass for nodes on the z axis (r=0) that does not require a special procedure for movement of these nodes; proof of conservation of the total energy; formulated for general polygonal meshes. We present numerical examples that demonstrate the robustness of the new method for Lagrangian equations on a variety of grids and test problems including polygonal meshes. In particular, we demonstrate the importance of conservation of total energy for correctly modeling shock waves. In the second part of the paper we describe the remapping stage of the arbitrary Lagrangian-Eulerian algorithm. The general idea is based on the following papers [25-28], where it was described for Cartesian coordinates. We describe a distribution-based algorithm for the definition of remapped subzonal densities and a local constrained-optimization-based approach for each zone to find the subzonal mass fluxes. In this paper we give a systematic and complete description of the algorithm for the axisymmetric case and provide justification for our approach. The ALE algorithm conserves total energy on arbitrary meshes and preserves symmetry when remapping from one equiangular polar mesh to another. The principal contributions of this part of the paper are the extension of this algorithm to general polygonal meshes and 2D rz geometry with requirement of symmetry preservation on special meshes. We present numerical examples that demonstrate the robustness of the new ALE method on a variety of grids and test problems including polygonal meshes and some realistic experiments. We confirm the importance of conservation of total energy for correctly modeling shock waves.

  4. Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitrary Polyhedral Mesh

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2012-01-01

    This paper summarizes procedures of generating the arbitrary polyhedral mesh as well as presents sample results from its application to the numerical solution of a single-element LDI combustor using a preliminary version of the new OpenNCC.

  5. Numerical analysis method for linear induction machines.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1972-01-01

    A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.

  6. Improved ALE mesh velocities for complex flows

    DOE PAGES

    Bakosi, Jozsef; Waltz, Jacob I.; Morgan, Nathaniel Ray

    2017-05-31

    A key choice in the development of arbitrary Lagrangian-Eulerian solution algorithms is how to move the computational mesh. The most common approaches are smoothing and relaxation techniques, or to compute a mesh velocity field that produces smooth mesh displacements. We present a method in which the mesh velocity is specified by the irrotational component of the fluid velocity as computed from a Helmholtz decomposition, and excess compression of mesh cells is treated through a noniterative, local spring-force model. This approach allows distinct and separate control over rotational and translational modes. In conclusion, the utility of the new mesh motion algorithmmore » is demonstrated on a number of 3D test problems, including problems that involve both shocks and significant amounts of vorticity.« less

  7. Conservative DEC Discretization of Incompressible Navier-Stokes Equations on Arbitrary Surface Simplicial Meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh; Hirani, Anil; Samtaney, Ravi

    2017-11-01

    A conservative discretization of incompressible Navier-Stokes equations over surfaces is developed using discrete exterior calculus (DEC). The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of signed diagonal Hodge star operators, while using the circumcentric dual defined on arbitrary meshes, is shown to produce correct solutions even when many non-Delaunay triangles pairs exist. This allows the DEC discretization to admit arbitrary surface simplicial meshes, in contrast to the previously held notion that DEC was limited only to Delaunay meshes. The discretization scheme is presented along with several numerical test cases demonstrating its numerical convergence and conservation properties. Recent developments regarding the extension to conservative higher order methods are also presented. KAUST Baseline Research Funds of R. Samtaney.

  8. Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Kus; Pavel Solin; David Andrs

    2014-11-01

    In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.

  9. Three-dimensional unstructured grid refinement and optimization using edge-swapping

    NASA Technical Reports Server (NTRS)

    Gandhi, Amar; Barth, Timothy

    1993-01-01

    This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.

  10. TAS: A Transonic Aircraft/Store flow field prediction code

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1983-01-01

    A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.

  11. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolbow, John; Zhang, Ziyu; Spencer, Benjamin

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside ofmore » the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.« less

  12. A mixed volume grid approach for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Jorgenson, Philip C. E.

    1996-01-01

    An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.

  13. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  14. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  15. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as amore » volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.« less

  16. Computational Systems for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Soni, Bharat; Haupt, Tomasz; Koomullil, Roy; Luke, Edward; Thompson, David

    2002-01-01

    In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.

  17. Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA

    NASA Astrophysics Data System (ADS)

    Pope, David

    Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.

  18. Enriching Triangle Mesh Animations with Physically Based Simulation.

    PubMed

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  19. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  20. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  1. Lattice Cleaving: A Multimaterial Tetrahedral Meshing Algorithm with Guarantees

    PubMed Central

    Bronson, Jonathan; Levine, Joshua A.; Whitaker, Ross

    2014-01-01

    We introduce a new algorithm for generating tetrahedral meshes that conform to physical boundaries in volumetric domains consisting of multiple materials. The proposed method allows for an arbitrary number of materials, produces high-quality tetrahedral meshes with upper and lower bounds on dihedral angles, and guarantees geometric fidelity. Moreover, the method is combinatoric so its implementation enables rapid mesh construction. These meshes are structured in a way that also allows grading, to reduce element counts in regions of homogeneity. Additionally, we provide proofs showing that both element quality and geometric fidelity are bounded using this approach. PMID:24356365

  2. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  3. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeratunga, S K

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can bemore » easily shared between these two code frameworks and concludes with a set of recommendations for its development.« less

  4. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation

    DOE PAGES

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2017-01-27

    A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fractionmore » or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.« less

  5. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  6. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  7. Mesh Oriented datABase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautges, Timothy J.

    MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handlesmore » rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a t’anslator between mesh formats, using readers and writers included with MOAB.« less

  8. Diffuse interface simulation of bubble rising process: a comparison of adaptive mesh refinement and arbitrary lagrange-euler methods

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan

    2018-06-01

    Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.

  9. Resistive-force theory for mesh-like superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2018-03-01

    A common realization of superhydrophobic surfaces makes use of a mesh-like geometry, where pockets of air are trapped in a periodic array of holes in a no-slip solid substrate. We consider the small-solid-fraction limit where the ribs of the mesh are narrow. In this limit, we obtain a simple leading-order approximation for the slip-length tensor of an arbitrary mesh geometry. This approximation scales as the solid-fraction logarithm, as anticipated by Ybert et al. [Phys. Fluids 19, 123601 (2007), 10.1063/1.2815730]; in the special case of a square mesh it agrees with the analytical results obtained by Davis and Lauga [Phys. Fluids 21, 113101 (2009), 10.1063/1.3250947].

  10. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation

    NASA Astrophysics Data System (ADS)

    Käser, Martin; Dumbser, Michael; de la Puente, Josep; Igel, Heiner

    2007-01-01

    We present a new numerical method to solve the heterogeneous anelastic, seismic wave equations with arbitrary high order accuracy in space and time on 3-D unstructured tetrahedral meshes. Using the velocity-stress formulation provides a linear hyperbolic system of equations with source terms that is completed by additional equations for the anelastic functions including the strain history of the material. These additional equations result from the rheological model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. The proposed method combines the Discontinuous Galerkin (DG) finite element (FE) method with the ADER approach using Arbitrary high order DERivatives for flux calculations. The DG approach, in contrast to classical FE methods, uses a piecewise polynomial approximation of the numerical solution which allows for discontinuities at element interfaces. Therefore, the well-established theory of numerical fluxes across element interfaces obtained by the solution of Riemann problems can be applied as in the finite volume framework. The main idea of the ADER time integration approach is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy-Kovalewski procedure which makes extensive use of the governing PDE. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically and the method is a one-step scheme advancing the solution for one time step without intermediate stages. To this end, we introduce a new unrolled recursive algorithm for efficiently computing the Cauchy-Kovalewski procedure by making use of the sparsity of the system matrices. The numerical convergence analysis demonstrates that the new schemes provide very high order accuracy even on unstructured tetrahedral meshes while computational cost and storage space for a desired accuracy can be reduced when applying higher degree approximation polynomials. In addition, we investigate the increase in computing time, when the number of relaxation mechanisms due to the generalized Maxwell body are increased. An application to a well-acknowledged test case and comparisons with analytic and reference solutions, obtained by different well-established numerical methods, confirm the performance of the proposed method. Therefore, the development of the highly accurate ADER-DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry.

  11. Unstructured and adaptive mesh generation for high Reynolds number viscous flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1991-01-01

    A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.

  12. Overset meshing coupled with hybridizable discontinuous Galerkin finite elements

    DOE PAGES

    Kauffman, Justin A.; Sheldon, Jason P.; Miller, Scott T.

    2017-03-01

    We introduce the use of hybridizable discontinuous Galerkin (HDG) finite element methods on overlapping (overset) meshes. Overset mesh methods are advantageous for solving problems on complex geometrical domains. We also combine geometric flexibility of overset methods with the advantages of HDG methods: arbitrarily high-order accuracy, reduced size of the global discrete problem, and the ability to solve elliptic, parabolic, and/or hyperbolic problems with a unified form of discretization. This approach to developing the ‘overset HDG’ method is to couple the global solution from one mesh to the local solution on the overset mesh. We present numerical examples for steady convection–diffusionmore » and static elasticity problems. The examples demonstrate optimal order convergence in all primal fields for an arbitrary amount of overlap of the underlying meshes.« less

  13. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2015-02-24

    We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less

  14. Jali - Unstructured Mesh Infrastructure for Multi-Physics Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Rao V; Berndt, Markus; Coon, Ethan

    2017-04-13

    Jali is a parallel unstructured mesh infrastructure library designed for use by multi-physics simulations. It supports 2D and 3D arbitrary polyhedral meshes distributed over hundreds to thousands of nodes. Jali can read write Exodus II meshes along with fields and sets on the mesh and support for other formats is partially implemented or is (https://github.com/MeshToolkit/MSTK), an open source general purpose unstructured mesh infrastructure library from Los Alamos National Laboratory. While it has been made to work with other mesh frameworks such as MOAB and STKmesh in the past, support for maintaining the interface to these frameworks has been suspended formore » now. Jali supports distributed as well as on-node parallelism. Support of on-node parallelism is through direct use of the the mesh in multi-threaded constructs or through the use of "tiles" which are submeshes or sub-partitions of a partition destined for a compute node.« less

  15. A Finite Element Method for Simulation of Compressible Cavitating Flows

    NASA Astrophysics Data System (ADS)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  16. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  17. Multiresolution Distance Volumes for Progressive Surface Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, D E; Bertram, M; Duchaineau, M A

    2002-04-18

    We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less

  18. Minimizing finite-volume discretization errors on polyhedral meshes

    NASA Astrophysics Data System (ADS)

    Mouly, Quentin; Evrard, Fabien; van Wachem, Berend; Denner, Fabian

    2017-11-01

    Tetrahedral meshes are widely used in CFD to simulate flows in and around complex geometries, as automatic generation tools now allow tetrahedral meshes to represent arbitrary domains in a relatively accessible manner. Polyhedral meshes, however, are an increasingly popular alternative. While tetrahedron have at most four neighbours, the higher number of neighbours per polyhedral cell leads to a more accurate evaluation of gradients, essential for the numerical resolution of PDEs. The use of polyhedral meshes, nonetheless, introduces discretization errors for finite-volume methods: skewness and non-orthogonality, which occur with all sorts of unstructured meshes, as well as errors due to non-planar faces, specific to polygonal faces with more than three vertices. Indeed, polyhedral mesh generation algorithms cannot, in general, guarantee to produce meshes free of non-planar faces. The presented work focuses on the quantification and optimization of discretization errors on polyhedral meshes in the context of finite-volume methods. A quasi-Newton method is employed to optimize the relevant mesh quality measures. Various meshes are optimized and CFD results of cases with known solutions are presented to assess the improvements the optimization approach can provide.

  19. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions

    NASA Astrophysics Data System (ADS)

    Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.

    2011-02-01

    The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.

  20. A coupled ALE-AMR method for shock hydrodynamics

    DOE PAGES

    Waltz, J.; Bakosi, J.

    2018-03-05

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  1. A coupled ALE-AMR method for shock hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J.; Bakosi, J.

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  2. Tempest: Mesoscale test case suite results and the effect of order-of-accuracy on pressure gradient force errors

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2014-12-01

    Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.

  3. Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, N D; Kaiser, T B; Anderson, R W

    2009-09-28

    ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.

  4. MOAB : a mesh-oriented database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautges, Timothy James; Ernst, Corey; Stimpson, Clint

    A finite element mesh is used to decompose a continuous domain into a discretized representation. The finite element method solves PDEs on this mesh by modeling complex functions as a set of simple basis functions with coefficients at mesh vertices and prescribed continuity between elements. The mesh is one of the fundamental types of data linking the various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the representation of mesh data and operations on those data play a very important role in FEA-based simulations. MOAB is a component for representing and evaluating mesh data. MOAB can storemore » structured and unstructured mesh, consisting of elements in the finite element 'zoo'. The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms is a powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers included with MOAB, or as a translator between mesh formats, using readers and writers included with MOAB. The remainder of this report is organized as follows. Section 2, 'Getting Started', provides a few simple examples of using MOAB to perform simple tasks on a mesh. Section 3 discusses the MOAB data model in more detail, including some aspects of the implementation. Section 4 summarizes the MOAB function API. Section 5 describes some of the tools included with MOAB, and the implementation of mesh readers/writers for MOAB. Section 6 contains a brief description of MOAB's relation to the TSTT mesh interface. Section 7 gives a conclusion and future plans for MOAB development. Section 8 gives references cited in this report. A reference description of the full MOAB API is contained in Section 9.« less

  5. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)

    2003-01-01

    The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.

  6. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  7. Extension of the Time-Spectral Approach to Overset Solvers for Arbitrary Motion

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas H.

    2012-01-01

    Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turbomachinery, and flapping wing configurations. Standard practice involves solving the unsteady flow equations forward in time until the initial transient exits the domain and a statistically stationary flow is achieved. It is often required to simulate through several periods to remove the initial transient making unsteady design optimization prohibitively expensive for most realistic problems. An effort to reduce the computational cost of these calculations led to the development of the Harmonic Balance method [1, 2] which capitalizes on the periodic nature of the solution. The approach exploits the fact that forced temporally periodic flow, while varying in the time domain, is invariant in the frequency domain. Expanding the temporal variation at each spatial node into a Fourier series transforms the unsteady governing equations into a steady set of equations in integer harmonics that can be tackled with the acceleration techniques afforded to steady-state flow solvers. Other similar approaches, such as the Nonlinear Frequency Domain [3,4,5], Reduced Frequency [6] and Time-Spectral [7, 8, 9] methods, were developed shortly thereafter. Additionally, adjoint-based optimization techniques can be applied [10, 11] as well as frequency-adaptive methods [12, 13, 14] to provide even more flexibility to the method. The Fourier temporal basis functions imply spectral convergence as the number of harmonic modes, and correspondingly number of time samples, N, is increased. Some elect to solve the equations in the frequency domain directly, while others choose to transform the equations back into the time domain to simplify the process of adding this capability to existing solvers, but each harnesses the underlying steady solution in the frequency domain. These temporal projection methods will herein be collectively referred to as Time-Spectral methods. Time-Spectral methods have demonstrated marked success in reducing the computational costs associated with simulating periodic forced flows, but have yet to be fully applied to overset or Cartesian solvers for arbitrary motion with dynamic hole-cutting. Overset and Cartesian grid methodologies are versatile techniques capable of handling complex geometry configurations in practical engineering applications, and the combination of the Time-Spectral approach with this general capability potentially provides an enabling new design and analysis tool. In an arbitrary moving-body scenario for these approaches, a Lagrangian body moves through a fixed Eulerian mesh and mesh points in the Eulerian mesh interior to the solid body are removed (cut or blanked), leaving a hole in the Eulerian mesh. During the dynamic motion some gridpoints in the domain are blanked and do not have a complete set of time-samples preventing a direct implementation of the Time-Spectral method. Murman[6] demonstrated the Time-Spectral approach for a Cartesian solver with a rigid domain motion, wherein the hole cutting remains constant. Similarly, Custer et al. [15, 16] used the NASA overset OVERFLOW solver and limited the amount of relative motion to ensure static hole-cutting and interpolation. Recently, Mavriplis and Mundis[17] demonstrated a qualitative method for applying the Time-Spectral approach to an unstructured overset solver for arbitrary motion. The goal of the current work is to develop a robust and general method for handling arbitrary motion with the Time-Spectral approach within an overset or Cartesian mesh method, while still approaching the spectral convergence rate of the original Time-Spectral approach. The viscous OVERFLOW solver will be augmented with the new Time-Spectral algorithm and the capability of the method for benchmark problems in rotorcraft and turbomachinery will be demonstrated. This abstract begins with a brief synopsis of the Time-Spectral approach for overset grids and provides details of e current approach to allow for arbitrary motion. Model problem results in one and two dimensions are included to demonstrate the viability of the method and the convergence properties. Section IV briefly outlines the implementation into the OVERFLOW solver, and the abstract closes with a description of the benchmark test cases which will be included in the final paper.

  8. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  9. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  10. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  11. Higher-Order Advection-Based Remap of Magnetic Fields in an Arbitrary Lagrangian-Eulerian Code

    NASA Astrophysics Data System (ADS)

    Cornille, Brian; White, Dan

    2017-10-01

    We will present methods formulated for the Eulerian advection stage of an arbitrary Lagrangian-Eulerian code for the new addition of magnetohydrodynamic (MHD) effects. The various physical fields are advanced in time using a Lagrangian formulation of the system. When this Lagrangian motion produces substantial distortion of the mesh, it can be difficult or impossible to progress the simulation forward. This is overcome by relaxation of the mesh while the physical fields are frozen. The code has already successfully been extended to include evolution of magnetic field diffusion during the Lagrangian motion stage. This magnetic field is discretized using an H(div) compatible finite element basis. The advantage of this basis is that the divergence-free constraint of magnetic fields is maintained exactly during the Lagrangian motion evolution. Our goal is to preserve this property during Eulerian advection as well. We will demonstrate this property and the importance of MHD effects in several numerical experiments. In pulsed-power experiments magnetic fields may be imposed or spontaneously generated. When these magnetic fields are present, the evolution of the experiment may differ from a comparable configuration without magnetic fields. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by DOE CSGF under Grant Number DE-FG02-97ER25308.

  12. Texturing of continuous LOD meshes with the hierarchical texture atlas

    NASA Astrophysics Data System (ADS)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  13. A finite element formulation for scattering from electrically large 2-dimensional structures

    NASA Technical Reports Server (NTRS)

    Ross, Daniel C.; Volakis, John L.

    1992-01-01

    A finite element formulation is given using the scattered field approach with a fictitious material absorber to truncate the mesh. The formulation includes the use of arbitrary approximation functions so that more accurate results can be achieved without any modification to the software. Additionally, non-polynomial approximation functions can be used, including complex approximation functions. The banded system that results is solved with an efficient sparse/banded iterative scheme and as a consequence, large structures can be analyzed. Results are given for simple cases to verify the formulation and also for large, complex geometries.

  14. A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes

    NASA Astrophysics Data System (ADS)

    Lundquist, Tomas; Malan, Arnaud; Nordström, Jan

    2018-06-01

    We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.

  15. Emerging trend prediction in biomedical literature.

    PubMed

    Moerchen, Fabian; Fradkin, Dmitriy; Dejori, Mathaeus; Wachmann, Bernd

    2008-11-06

    We present a study on how to predict new emerging trends in the biomedical domain based on textual data. We thereby propose a way of anticipating the transformation of arbitrary information into ground truth knowledge by predicting the inclusion of new terms into the MeSH ontology. We also discuss the preparation of a dataset for the evaluation of emerging trend prediction algorithms that is based on PubMed abstracts and related MeSH terms. The results suggest that early prediction of emerging trends is possible.

  16. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  17. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.

    1990-01-01

    An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.

  18. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    NASA Astrophysics Data System (ADS)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  19. Numerical modeling of pulsed laser-material interaction and of laser plume dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qiang; Shi, Yina

    2015-03-10

    We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. A new second order accurate diffusion solver has been implemented for the thermal conduction and radiation transport on distorted mesh. The results of numerical simulation of pulsed laser ablation are presented. The influences of different processes, such as time evolution of the surfacemore » temperature, interspecies interactions (elastic collisions, recombination-dissociation reaction), interaction with an ambient gas are examined. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.« less

  20. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less

  1. Speed-up of the volumetric method of moments for the approximate RCS of large arbitrary-shaped dielectric targets

    NASA Astrophysics Data System (ADS)

    Moreno, Javier; Somolinos, Álvaro; Romero, Gustavo; González, Iván; Cátedra, Felipe

    2017-08-01

    A method for the rigorous computation of the electromagnetic scattering of large dielectric volumes is presented. One goal is to simplify the analysis of large dielectric targets with translational symmetries taken advantage of their Toeplitz symmetry. Then, the matrix-fill stage of the Method of Moments is efficiently obtained because the number of coupling terms to compute is reduced. The Multilevel Fast Multipole Method is applied to solve the problem. Structured meshes are obtained efficiently to approximate the dielectric volumes. The regular mesh grid is achieved by using parallelepipeds whose centres have been identified as internal to the target. The ray casting algorithm is used to classify the parallelepiped centres. It may become a bottleneck when too many points are evaluated in volumes defined by parametric surfaces, so a hierarchical algorithm is proposed to minimize the number of evaluations. Measurements and analytical results are included for validation purposes.

  2. Recent developments in multidimensional transport methods for the APOLLO 2 lattice code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zmijarevic, I.; Sanchez, R.

    1995-12-31

    A usual method of preparation of homogenized cross sections for reactor coarse-mesh calculations is based on two-dimensional multigroup transport treatment of an assembly together with an appropriate leakage model and reaction-rate-preserving homogenization technique. The actual generation of assembly spectrum codes based on collision probability methods is capable of treating complex geometries (i.e., irregular meshes of arbitrary shape), thus avoiding the modeling error that was introduced in codes with traditional tracking routines. The power and architecture of current computers allow the treatment of spatial domains comprising several mutually interacting assemblies using fine multigroup structure and retaining all geometric details of interest.more » Increasing safety requirements demand detailed two- and three-dimensional calculations for very heterogeneous problems such as control rod positioning, broken Pyrex rods, irregular compacting of mixed- oxide (MOX) pellets at an MOX-UO{sub 2} interface, and many others. An effort has been made to include accurate multi- dimensional transport methods in the APOLLO 2 lattice code. These include extension to three-dimensional axially symmetric geometries of the general-geometry collision probability module TDT and the development of new two- and three-dimensional characteristics methods for regular Cartesian meshes. In this paper we discuss the main features of recently developed multidimensional methods that are currently being tested.« less

  3. Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials

    NASA Astrophysics Data System (ADS)

    Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi

    2015-02-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.

  4. Computing Gravitational Fields of Finite-Sized Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2005-01-01

    A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.

  5. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1991-01-01

    An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.

  6. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  7. Gas flow calculation method of a ramjet engine

    NASA Astrophysics Data System (ADS)

    Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir

    2017-11-01

    At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.

  8. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason

    2008-12-01

    The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.

  9. Three new models for evaluation of standard involute spur gear mesh stiffness

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

    2018-02-01

    Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

  10. High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.

    A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts. The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6° and 25° with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder.

  11. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  12. An electrostatic Particle-In-Cell code on multi-block structured meshes

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; Vernon, Louis J.; Moulton, J. David

    2017-12-01

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.

  13. An electrostatic Particle-In-Cell code on multi-block structured meshes

    DOE PAGES

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; ...

    2017-09-14

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less

  14. An electrostatic Particle-In-Cell code on multi-block structured meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca

    We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less

  15. Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin-Lafleche, A.; Smith, M. A.; Lee, C.

    2013-07-01

    A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)

  16. Matrix multiplication on the Intel Touchstone Delta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huss-Lederman, S.; Jacobson, E.M.; Tsao, A.

    1993-12-31

    Matrix multiplication is a key primitive in block matrix algorithms such as those found in LAPACK. We present results from our study of matrix multiplication algorithms on the Intel Touchstone Delta, a distributed memory message-passing architecture with a two-dimensional mesh topology. We obtain an implementation that uses communication primitives highly suited to the Delta and exploits the single node assembly-coded matrix multiplication. Our algorithm is completely general, able to deal with arbitrary mesh aspect ratios and matrix dimensions, and has achieved parallel efficiency of 86% with overall peak performance in excess of 8 Gflops on 256 nodes for an 8800more » {times} 8800 matrix. We describe our algorithm design and implementation, and present performance results that demonstrate scalability and robust behavior over varying mesh topologies.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebay, S.

    This work is devoted to the description of an efficient unstructured mesh generation method entirely based on the Delaunay triangulation. The distinctive characteristic of the proposed method is that point positions and connections are computed simultaneously. This result is achieved by taking advantage of the sequential way in which the Bowyer-Watson algorithm computes the Delaunay triangulation. Two methods are proposed which have great geometrical flexibility, in that they allow us to treat domains of arbitrary shape and topology and to generate arbitrarily nonuniform meshes. The methods are computationally efficient and are applicable both in two and three dimensions. 11 refs.,more » 20 figs., 1 tab.« less

  18. Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Lesoinne, Michel

    1993-01-01

    Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.

  19. Design and simulation of origami structures with smooth folds

    PubMed Central

    Peraza Hernandez, E. A.; Lagoudas, D. C.

    2017-01-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh. PMID:28484322

  20. Design and simulation of origami structures with smooth folds.

    PubMed

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  1. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  2. Hexahedral mesh generation via the dual arrangement of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.A.; Tautges, T.J.

    1997-12-31

    Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatiblemore » hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.« less

  3. Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations

    DOE PAGES

    Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra

    2018-05-29

    Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less

  4. Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra

    Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less

  5. Analysis of Slope Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2005-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.

  6. A regularized vortex-particle mesh method for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  7. Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.

    2010-07-01

    We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.

  8. Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes

    NASA Astrophysics Data System (ADS)

    Amsallem, David; Tezaur, Radek; Farhat, Charbel

    2016-12-01

    A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.

  9. Gradient Calculation Methods on Arbitrary Polyhedral Unstructured Meshes for Cell-Centered CFD Solvers

    NASA Technical Reports Server (NTRS)

    Sozer, Emre; Brehm, Christoph; Kiris, Cetin C.

    2014-01-01

    A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties

  10. Two-dimensional mesh embedding for Galerkin B-spline methods

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Moser, Robert D.

    1995-01-01

    A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.

  11. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less

  12. AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Christopher J.; Stone, James M.; Gammie, Charles F.

    2016-08-01

    We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.

  13. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1992-01-01

    In this paper we describe an approach for dealing with arbitrary complex, two dimensional geometries, the so-called cartesian boundary method. Conceptually, the cartesian boundary method is quite simple. Solid bodies blank out areas of a background, cartesian mesh, and the resultant cut cells are singled out for special attention. However, there are several obstacles that must be overcome in order to achieve a practical scheme. We present a general strategy that overcomes these obstacles, together with some details of our successful conversion of an adaptive mesh algorithm from a body-fitted code to a cartesian boundary code.

  14. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iaroshenko, Oleksandr; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  15. Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Farmer, James; Martinelli, Luigi; Saunders, David

    1996-01-01

    This work describes the implementation of optimization techniques based on control theory for complex aircraft configurations. Here control theory is employed to derive the adjoint differential equations, the solution of which allows for a drastic reduction in computational costs over previous design methods (13, 12, 43, 38). In our earlier studies (19, 20, 22, 23, 39, 25, 40, 41, 42) it was shown that this method could be used to devise effective optimization procedures for airfoils, wings and wing-bodies subject to either analytic or arbitrary meshes. Design formulations for both potential flows and flows governed by the Euler equations have been demonstrated, showing that such methods can be devised for various governing equations (39, 25). In our most recent works (40, 42) the method was extended to treat wing-body configurations with a large number of mesh points, verifying that significant computational savings can be gained for practical design problems. In this paper the method is extended for the Euler equations to treat complete aircraft configurations via a new multiblock implementation. New elements include a multiblock-multigrid flow solver, a multiblock-multigrid adjoint solver, and a multiblock mesh perturbation scheme. Two design examples are presented in which the new method is used for the wing redesign of a transonic business jet.

  16. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  17. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco

    Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less

  18. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes

    DOE PAGES

    Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco

    2017-11-21

    Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less

  19. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.

  20. Field Model: An Object-Oriented Data Model for Fields

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2001-01-01

    We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).

  1. Parallel grid library for rapid and flexible simulation development

    NASA Astrophysics Data System (ADS)

    Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.

    2013-04-01

    We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.

  2. Interference Analysis for Highly Directional 60 GHz Mesh Networks: The Case for Rethinking Medium Access Control

    DTIC Science & Technology

    2010-11-24

    Helmken, “Performance analysis of coherent DS - CDMA systems in a Nakagami fading channel with arbitrary parameters,” Vehicular Technology, IEEE...Transactions on, vol. 46, no. 2, pp. 289–297, may 1997. [26] M. Sunay and P. McLane, “Calculating error probabilities for DS - CDMA systems: when not to use

  3. Translation and integration of numerical atomic orbitals in linear molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinäsmäki, Sami, E-mail: sami.heinasmaki@gmail.com

    2014-02-14

    We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.

  4. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  5. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGES

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  6. A 3D finite element ALE method using an approximate Riemann solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, V. P.; Morgan, N. R.

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  7. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Xu, Kun; Shyy, Wei

    2016-07-01

    This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.

  8. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    PubMed

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  9. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    NASA Astrophysics Data System (ADS)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  10. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  11. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less

  12. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less

  13. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu

    2011-12-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less

  14. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).

  15. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    A flexible efficient computer code is being developed to simulate electrophoretic separation phenomena, in either a cylindrical or a rectangular geometry. The code will computer the evolution in time of the concentrations of an arbitrary number of chemical species, and of the temperature, pH distribution, conductivity, electric field, and fluid motion. Use of nonuniform meshes and fast accurate implicit time-stepping will yield accurate answers at economical cost.

  16. Adaptive Meshing of Ship Air-Wake Flowfields

    DTIC Science & Technology

    2014-10-21

    performs cut- cell operations at geometry boundaries. A second-order spatial finite-volume scheme has been incorporated with explicit first order...The cells intersected by the geometry are handled using the “cut- cell ” approach, which is basically creating arbitrary polyhedral elements with...appropriate surface boundary conditions. Any cells completely outside the computational domain are tagged external and not solved in the flow solution

  17. Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis,Michael J.

    2006-01-01

    Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.

  18. GRAPE- TWO-DIMENSIONAL GRIDS ABOUT AIRFOILS AND OTHER SHAPES BY THE USE OF POISSON'S EQUATION

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.

  19. 3D hierarchical interface-enriched finite element method: Implementation and applications

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Ahmadian, Hossein

    2015-10-01

    A hierarchical interface-enriched finite element method (HIFEM) is proposed for the mesh-independent treatment of 3D problems with intricate morphologies. The HIFEM implements a recursive algorithm for creating enrichment functions that capture gradient discontinuities in nonconforming finite elements cut by arbitrary number and configuration of materials interfaces. The method enables the mesh-independent simulation of multiphase problems with materials interfaces that are in close proximity or contact while providing a straightforward general approach for evaluating the enrichments. In this manuscript, we present a detailed discussion on the implementation issues and required computational geometry considerations associated with the HIFEM approximation of thermal and mechanical responses of 3D problems. A convergence study is provided to investigate the accuracy and convergence rate of the HIFEM and compare them with standard FEM benchmark solutions. We will also demonstrate the application of this mesh-independent method for simulating the thermal and mechanical responses of two composite materials systems with complex microstructures.

  20. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 3: Advanced Fan Section Grid Generator Final Report and Computer Program User's Manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1991-01-01

    A procedure is studied for generating three-dimensional grids for advanced turbofan engine fan section geometries. The procedure constructs a discrete mesh about engine sections containing the fan stage, an arbitrary number of axisymmetric radial flow splitters, a booster stage, and a bifurcated core/bypass flow duct with guide vanes. The mesh is an h-type grid system, the points being distributed with a transfinite interpolation scheme with axial and radial spacing being user specified. Elliptic smoothing of the grid in the meridional plane is a post-process option. The grid generation scheme is consistent with aerodynamic analyses utilizing the average-passage equation system developed by Dr. John Adamczyk of NASA Lewis. This flow solution scheme requires a series of blade specific grids each having a common axisymmetric mesh, but varying in the circumferential direction according to the geometry of the specific blade row.

  1. DNA rendering of polyhedral meshes at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benson, Erik; Mohammed, Abdulmelik; Gardell, Johan; Masich, Sergej; Czeizler, Eugen; Orponen, Pekka; Högberg, Björn

    2015-07-01

    It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.

  2. DNA rendering of polyhedral meshes at the nanoscale.

    PubMed

    Benson, Erik; Mohammed, Abdulmelik; Gardell, Johan; Masich, Sergej; Czeizler, Eugen; Orponen, Pekka; Högberg, Björn

    2015-07-23

    It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.

  3. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    PubMed

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  4. A Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2012-11-01

    A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a variant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polynomial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares method. The stencils used in the reconstruction involve only the von Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The developed RDG method is used to compute a variety of flow problems onmore » arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG method (DG(P2)) in terms of both computing costs and storage requirements.« less

  5. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  6. A computational method for sharp interface advection.

    PubMed

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-11-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.

  7. Recent advances in high-order WENO finite volume methods for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael

    2013-10-01

    We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.

  8. A fully consistent and conservative vertically adaptive coordinate system for SLIM 3D v0.4 with an application to the thermocline oscillations of Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Delandmeter, Philippe; Lambrechts, Jonathan; Legat, Vincent; Vallaeys, Valentin; Naithani, Jaya; Thiery, Wim; Remacle, Jean-François; Deleersnijder, Eric

    2018-03-01

    The discontinuous Galerkin (DG) finite element method is well suited for the modelling, with a relatively small number of elements, of three-dimensional flows exhibiting strong velocity or density gradients. Its performance can be highly enhanced by having recourse to r-adaptivity. Here, a vertical adaptive mesh method is developed for DG finite elements. This method, originally designed for finite difference schemes, is based on the vertical diffusion of the mesh nodes, with the diffusivity controlled by the density jumps at the mesh element interfaces. The mesh vertical movement is determined by means of a conservative arbitrary Lagrangian-Eulerian (ALE) formulation. Though conservativity is naturally achieved, tracer consistency is obtained by a suitable construction of the mesh vertical velocity field, which is defined in such a way that it is fully compatible with the tracer and continuity equations at a discrete level. The vertically adaptive mesh approach is implemented in the three-dimensional version of the geophysical and environmental flow Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM 3D; www.climate.be/slim). Idealised benchmarks, aimed at simulating the oscillations of a sharp thermocline, are dealt with. Then, the relevance of the vertical adaptivity technique is assessed by simulating thermocline oscillations of Lake Tanganyika. The results are compared to measured vertical profiles of temperature, showing similar stratification and outcropping events.

  9. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühnlein, Christian, E-mail: christian.kuehnlein@ecmwf.int; Smolarkiewicz, Piotr K., E-mail: piotr.smolarkiewicz@ecmwf.int

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—the latter being essential for flux-formmore » schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.« less

  10. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  11. A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nivarti, Girish V., E-mail: g.nivarti@alumni.ubc.ca; Salehi, M. Mahdi; Bushe, W. Kendal

    2015-01-15

    Highlights: •An algorithm for partitioning computational meshes is proposed. •The Morton order space-filling curve is modified to achieve improved locality. •A spatial locality metric is defined to compare results with existing approaches. •Results indicate improved performance of the algorithm in complex geometries. -- Abstract: A space-filling curve (SFC) is a proximity preserving linear mapping of any multi-dimensional space and is widely used as a clustering tool. Equi-sized partitioning of an SFC ignores the loss in clustering quality that occurs due to inaccuracies in the mapping. Often, this results in poor locality within partitions, especially for the conceptually simple, Morton ordermore » curves. We present a heuristic that improves partition locality in arbitrary geometries by slicing a Morton order curve at points where spatial locality is sacrificed. In addition, we develop algorithms that evenly distribute points to the extent possible while maintaining spatial locality. A metric is defined to estimate relative inter-partition contact as an indicator of communication in parallel computing architectures. Domain partitioning tests have been conducted on geometries relevant to turbulent reactive flow simulations. The results obtained highlight the performance of our method as an unsupervised and computationally inexpensive domain partitioning tool.« less

  12. The ADER-DG method for seismic wave propagation and earthquake rupture dynamics

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Gabriel, Alice; Ampuero, Jean-Paul; de la Puente, Josep; Käser, Martin

    2013-04-01

    We will present the Arbitrary high-order DERivatives Discontinuous Galerkin (ADER-DG) method for solving the combined elastodynamic wave propagation and dynamic rupture problem. The ADER-DG method enables high-order accuracy in space and time while being implemented on unstructured tetrahedral meshes. A tetrahedral element discretization provides rapid and automatized mesh generation as well as geometrical flexibility. Features as mesh coarsening and local time stepping schemes can be applied to reduce computational efforts without introducing numerical artifacts. The method is well suited for parallelization and large scale high-performance computing since only directly neighboring elements exchange information via numerical fluxes. The concept of fluxes is a key ingredient of the numerical scheme as it governs the numerical dispersion and diffusion properties and allows to accommodate for boundary conditions, empirical friction laws of dynamic rupture processes, or the combination of different element types and non-conforming mesh transitions. After introducing fault dynamics into the ADER-DG framework, we will demonstrate its specific advantages in benchmarking test scenarios provided by the SCEC/USGS Spontaneous Rupture Code Verification Exercise. An important result of the benchmark is that the ADER-DG method avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping, filtering or other modifications of the produced synthetic seismograms. To demonstrate the capabilities of the proposed scheme we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes branching and curved fault segments. Furthermore, topography is respected in the discretized model to capture the surface waves correctly. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies.

  13. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1982-01-01

    A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

  14. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated that the adaptive mesh refinement can be particularly efficient in resolving complex shapes. The implemented inversion scheme was able to resolve a hemisphere object with sufficient resolution starting from a coarse discretization and refining mesh adaptively in a fully automatic process. The code is able to harness the computational power of modern distributed platforms and is shown to work with models consisting of millions of degrees of freedom. Significant computational savings were achieved by using locally refined decoupled meshes.

  15. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal and polyhedral meshes (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Shashkov, Mikhail

    2011-01-11

    We construct a new mimetic tensor artificial viscosity on general polygonal and polyhedral meshes. The tensor artificial viscosity is based on a mimetic discretization of coordinate invariant operators, divergence of a tensor and gradient of a vector. The focus of this paper is on the symmetric form, div ({mu},{var_epsilon}(u)), of the tensor artificial viscosity where {var_epsilon}(u) is the symmetrized gradient of u and {mu}, is a tensor. The mimetic discretizations of this operator is derived for the case of a full tensor coefficient {mu}, that may reflect a shock direction. We demonstrate performance of the new viscosity for the Nohmore » implosion, Sedov explosion and Saltzman piston problems in both Cartesian and axisymmetric coordinate systems.« less

  16. Monogamy Relations of Measurement-Induced Disturbance

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Fei; Wei, Yun-Xia; Ma, Hong-Yang

    2017-06-01

    The standard monogamy imposes severe limitations to sharing quantum correlations in multipartite quantum systems, which is a star topology and is established by Coffman, Kundu and Wootters. In this work, we discuss some monogamy relations beyond it, and focus on the measurement-induced disturbance (MID) which quantifies the multipartite quantum correlation. We prove exactly that MID obeys the property of discarding quantum systems never increases in an arbitrary quantum state. Moreover, we define a new kind of sharper monogamy relation which shows that the sum of all bipartite MID can not exceed the amount of total MID. This restriction is similarly called a mesh monogamy. We numerically study how MID is distributed in a 4-qubit mixed state, and which relation exists between the mesh monogamy of MID and the level of obeying the standard monogamy.

  17. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  18. EMPHASIS/Nevada UTDEM user guide. Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) ismore » a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.« less

  19. A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's

    NASA Astrophysics Data System (ADS)

    Burgarelli, Denise; Kischinhevsky, Mauricio; Biezuner, Rodney Josue

    2006-11-01

    A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in feature that allows replacement of a group of cells in any region of interest for another one with arbitrary refinement, and with only local changes occurring in the data structure. The data structure is also specially designed to minimize the number of operations needed in the AMR. Implementation of the new scheme allows flexibility in the levels of refinement of adjacent regions. Moreover, storage requirements and computational cost compare competitively with mesh refinement schemes based on hierarchical trees. Low storage is achieved for only the children nodes are stored when a refinement takes place. These nodes become part of a graph structure, thus motivating the denomination autonomous leaves graph (ALG) for the new scheme. Neighbors can then be reached without accessing their parent nodes. Additionally, linear-system solvers based on the minimization of functionals can be easily employed. ALG was not conceived with any particular problem or geometry in mind and can thus be applied to the study of several phenomena. Some test problems are used to illustrate the effectiveness of the technique.

  20. Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization

    PubMed Central

    Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang

    2015-01-01

    Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020

  1. A computational method for sharp interface advection

    PubMed Central

    Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619

  2. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

    NASA Astrophysics Data System (ADS)

    Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

    2017-12-01

    Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which makes the process of building a geophysical Earth model from a geological model much simpler. In this presentation we will explore the issues that arise when working with realistic Earth models and when synthesizing geophysical electromagnetic data for them. We briefly consider meshfree methods as a possible means of alleviating some of these issues.

  3. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    NASA Astrophysics Data System (ADS)

    Al-Marouf, M.; Samtaney, R.

    2017-05-01

    We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  4. Digital relief generation from 3D models

    NASA Astrophysics Data System (ADS)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  5. Efficient low-bit-rate adaptive mesh-based motion compensation technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hanan A.; Bayoumi, Magdy A.

    2001-08-01

    This paper proposes a two-stage global motion estimation method using a novel quadtree block-based motion estimation technique and an active mesh model. In the first stage, motion parameters are estimated by fitting block-based motion vectors computed using a new efficient quadtree technique, that divides a frame into equilateral triangle blocks using the quad-tree structure. Arbitrary partition shapes are achieved by allowing 4-to-1, 3-to-1 and 2-1 merge/combine of sibling blocks having the same motion vector . In the second stage, the mesh is constructed using an adaptive triangulation procedure that places more triangles over areas with high motion content, these areas are estimated during the first stage. finally the motion compensation is achieved by using a novel algorithm that is carried by both the encoder and the decoder to determine the optimal triangulation of the resultant partitions followed by affine mapping at the encoder. Computer simulation results show that the proposed method gives better performance that the conventional ones in terms of the peak signal-to-noise ration (PSNR) and the compression ratio (CR).

  6. Surface tension models for a multi-material ALE code with AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wangyi; Koniges, Alice; Gott, Kevin

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  7. Surface tension models for a multi-material ALE code with AMR

    DOE PAGES

    Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...

    2017-06-01

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  8. MAGNA (Materially and Geometrically Nonlinear Analysis). Part II. Preprocessor Manual.

    DTIC Science & Technology

    1982-12-01

    AGRID can accept a virtually arbitrary collection of point coor- dinates which lie on a surface of interest, and generate a regular grid of mesh points...in the form of a collection of such patches to be translated into an assemblage of biquadratic surface elements (see Subsection 2.1, Figure 2.2...using IMPRESS can be converted for use with the present preprocessor by means of the IMPRINT translator. IMPRINT is a collection of conversion routines

  9. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  10. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky

    2018-06-01

    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian-Lagrangian approach. This enables us to refine the computational mesh in the vicinity of the droplet parcels and accurately resolve the coupling between the two phases.

  11. The anatomy of floating shock fitting. [shock waves computation for flow field

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1975-01-01

    The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.

  12. The Application of COMSOL Multiphysics Package on the Modelling of Complex 3-D Lithospheric Electrical Resistivity Structures - A Case Study from the Proterozoic Orogenic belt within the North China Craton

    NASA Astrophysics Data System (ADS)

    Guo, L.; Yin, Y.; Deng, M.; Guo, L.; Yan, J.

    2017-12-01

    At present, most magnetotelluric (MT) forward modelling and inversion codes are based on finite difference method. But its structured mesh gridding cannot be well adapted for the conditions with arbitrary topography or complex tectonic structures. By contrast, the finite element method is more accurate in calculating complex and irregular 3-D region and has lower requirement of function smoothness. However, the complexity of mesh gridding and limitation of computer capacity has been affecting its application. COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics full-coupling simulation software. It achieves highly accurate numerical simulations with high computational performance and outstanding multi-field bi-directional coupling analysis capability. In addition, its AC/DC and RF module can be used to easily calculate the electromagnetic responses of complex geological structures. Using the adaptive unstructured grid, the calculation is much faster. In order to improve the discretization technique of computing area, we use the combination of Matlab and COMSOL Multiphysics to establish a general procedure for calculating the MT responses for arbitrary resistivity models. The calculated responses include the surface electric and magnetic field components, impedance components, magnetic transfer functions and phase tensors. Then, the reliability of this procedure is certificated by 1-D, 2-D and 3-D and anisotropic forward modeling tests. Finally, we establish the 3-D lithospheric resistivity model for the Proterozoic Wutai-Hengshan Mts. within the North China Craton by fitting the real MT data collected there. The reliability of the model is also verified by induced vectors and phase tensors. Our model shows more details and better resolution, compared with the previously published 3-D model based on the finite difference method. In conclusion, COMSOL Multiphysics package is suitable for modeling the 3-D lithospheric resistivity structures under complex tectonic deformation backgrounds, which could be a good complement to the existing finite-difference inversion algorithms.

  13. A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias

    2018-04-01

    A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.

  14. Quinoa - Adaptive Computational Fluid Dynamics, 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, Jozsef; Gonzalez, Francisco; Rogers, Brandon

    Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter,more » an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh, (http://www.geuz.org/gmsh), Netgen, (http://sourceforge.net/apps/mediawiki/netgen-mesher), ExodusII, (http://sourceforge.net/projects/exodusii), HyperMesh, (http://www.altairhyperworks.com/product/HyperMesh).« less

  15. Identifying Blocks Formed by Curbed Fractures Using Exact Arithmetic

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Xia, L.; Yu, Q.; Zhang, X.

    2015-12-01

    Identifying blocks formed by fractures is important in rock engineering. Most studies assume the fractures to be perfect planar whereas curved fractures are rarely considered. However, large fractures observed in the field are often curved. This paper presents a new method for identifying rock blocks formed by both curved and planar fractures based on the element-block-assembling approach. The curved and planar fractures are represented as triangle meshes and planar discs, respectively. In the beginning of the identification method, the intersection segments between different triangle meshes are calculated and the intersected triangles are re-meshed to construct a piecewise linear complex (PLC). Then, the modeling domain is divided into tetrahedral subdomains under the constraint of the PLC and these subdomains are further decomposed into element blocks by extended planar fractures. Finally, the element blocks are combined and the subdomains are assembled to form complex blocks. The combination of two subdomains is skipped if and only if the common facet lies on a curved fracture. In this study, the exact arithmetic is used to handle the computational errors, which may threat the robustness of the block identification program when the degenerated cases are encountered. Specifically, a real number is represented as the ratio between two integers and the basic arithmetic such as addition, subtraction, multiplication and division between different real numbers can be performed exactly if an arbitrary precision integer package is used. In this way, the exact construction of blocks can be achieved without introducing computational errors. Several analytical examples are given in this paper and the results show effectiveness of this method in handling arbitrary shaped blocks. Moreover, there is no limitation on the number of blocks in a block system. The results also show (suggest) that the degenerated cases can be handled without affecting the robustness of the identification program.

  16. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  17. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  18. Research on bulbous bow optimization based on the improved PSO algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng-long; Zhang, Bao-ji; Tezdogan, Tahsin; Xu, Le-ping; Lai, Yu-yang

    2017-08-01

    In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.

  19. Numerical integration of discontinuous functions: moment fitting and smart octree

    NASA Astrophysics Data System (ADS)

    Hubrich, Simeon; Di Stolfo, Paolo; Kudela, László; Kollmannsberger, Stefan; Rank, Ernst; Schröder, Andreas; Düster, Alexander

    2017-11-01

    A fast and simple grid generation can be achieved by non-standard discretization methods where the mesh does not conform to the boundary or the internal interfaces of the problem. However, this simplification leads to discontinuous integrands for intersected elements and, therefore, standard quadrature rules do not perform well anymore. Consequently, special methods are required for the numerical integration. To this end, we present two approaches to obtain quadrature rules for arbitrary domains. The first approach is based on an extension of the moment fitting method combined with an optimization strategy for the position and weights of the quadrature points. In the second approach, we apply the smart octree, which generates curved sub-cells for the integration mesh. To demonstrate the performance of the proposed methods, we consider several numerical examples, showing that the methods lead to efficient quadrature rules, resulting in less integration points and in high accuracy.

  20. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  1. A Cartesian grid approach with hierarchical refinement for compressible flows

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1994-01-01

    Many numerical studies of flows that involve complex geometries are limited by the difficulties in generating suitable grids. We present a Cartesian boundary scheme for two-dimensional, compressible flows that is unfettered by the need to generate a computational grid and so it may be used, routinely, even for the most awkward of geometries. In essence, an arbitrary-shaped body is allowed to blank out some region of a background Cartesian mesh and the resultant cut-cells are singled out for special treatment. This is done within a finite-volume framework and so, in principle, any explicit flux-based integration scheme can take advantage of this method for enforcing solid boundary conditions. For best effect, the present Cartesian boundary scheme has been combined with a sophisticated, local mesh refinement scheme, and a number of examples are shown in order to demonstrate the efficacy of the combined algorithm for simulations of shock interaction phenomena.

  2. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    NASA Astrophysics Data System (ADS)

    Gyrya, V.; Lipnikov, K.

    2017-11-01

    We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.

  3. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGES

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  4. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE PAGES

    Gyrya, V.; Lipnikov, K.

    2017-07-18

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  5. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyrya, V.; Lipnikov, K.

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  6. A Reconstructed Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2010-09-01

    A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier–Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier–Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need tomore » judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi–Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier–Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier–Stokes equations.« less

  7. A Reconstructed Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2010-01-01

    A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need tomore » judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi-Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier-Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier-Stokes equations.« less

  8. A Numerical Investigation of Two-Different Drosophila Forward Flight Modes

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi; Erzincanli, Belkis

    2016-11-01

    The parallel large-scale unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian (ALE) formulation has been applied in order to investigate the near wake structure of Drosophila in forward flight. DISTENE MeshGems-Hexa algorithm based on the octree method is used to generate the all hexahedral mesh for the wing-body combination. The mesh deformation algorithm is based on the indirect radial basis function (RBF) method at each time level while avoiding remeshing in order to enhance numerical robustness. The large-scale numerical simulations are carried out for a flapping Drosophila in forward flight. In the first case, the wing tip-path plane is tilted forward to generate forward force. In the second case, paddling wing motion is used to generate the forward fore. The λ2-criterion proposed by Jeong and Hussain (1995) is used for investigating the time variation of the Eulerian coherent structures in the near wake. The present simulations reveal highly detailed near wake topology for a hovering Drosophila. This is very useful in terms of understanding physics in biological flights which can provide a very useful tool for designing bio-inspired MAVs.

  9. An Energy- and Charge-conserving, Implicit, Electrostatic Particle-in-Cell Algorithm in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2012-03-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, fully implicit particle-in-cell algorithm in one dimension [1], which is able to use timesteps comparable to the dynamical timescale of interest. Here, we generalize the method to employ non-uniform meshes via a curvilinear map. The key enabling technology is a hybrid particle pusher [2], with particle positions updated in logical space and particle velocities updated in physical space. The self-adaptive, charge-conserving particle mover of Ref. [1] is extended to the non-uniform mesh case. The fully implicit implementation, using a Jacobian-free Newton-Krylov iterative solver, remains exactly charge- and energy-conserving. The extension of the formulation to multiple dimensions will be discussed. We present numerical experiments of 1D electrostatic, long-timescale ion-acoustic wave and ion-acoustic shock wave simulations, demonstrating that charge and energy are conserved to round-off for arbitrary mesh non-uniformity, and that the total momentum remains well conserved.[4pt] [1] Chen, Chac'on, Barnes, J. Comput. Phys. 230 (2011). [0pt] [2] Camporeale and Delzanno, Bull. Am. Phys. Soc. 56(6) (2011); Wang, et al., J. Plasma Physics, 61 (1999).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.

    Real-time terrain rendering for interactive visualization remains a demanding task. We present a novel algorithm with several advantages over previous methods: our method is unusually stingy with polygons yet achieves real-time performance and is scalable to arbitrary regions and resolutions. The method provides a continuous terrain mesh of specified triangle count having provably minimum error in restricted but reasonably general classes of permissible meshes and error metrics. Our method provides an elegant solution to guaranteeing certain elusive types of consistency in scenes produced by multiple scene generators which share a common finest-resolution database but which otherwise operate entirely independently. Thismore » consistency is achieved by exploiting the freedom of choice of error metric allowed by the algorithm to provide, for example, multiple exact lines-of-sight in real-time. Our methods rely on an off-line pre-processing phase to construct a multi-scale data structure consisting of triangular terrain approximations enhanced ({open_quotes}thickened{close_quotes}) with world-space error information. In real time, this error data is efficiently transformed into screen-space where it is used to guide a greedy top-down triangle subdivision algorithm which produces the desired minimal error continuous terrain mesh. Our algorithm has been implemented and it operates at real-time rates.« less

  11. Momentum Advection on a Staggered Mesh

    NASA Astrophysics Data System (ADS)

    Benson, David J.

    1992-05-01

    Eulerian and ALE (arbitrary Lagrangian-Eulerian) hydrodynamics programs usually split a timestep into two parts. The first part is a Lagrangian step, which calculates the incremental motion of the material. The second part is referred to as the Eulerian step, the advection step, or the remap step, and it accounts for the transport of material between cells. In most finite difference and finite element formulations, all the solution variables except the velocities are cell-centered while the velocities are edge- or vertex-centered. As a result, the advection algorithm for the momentum is, by necessity, different than the algorithm used for the other variables. This paper reviews three momentum advection methods and proposes a new one. One method, pioneered in YAQUI, creates a new staggered mesh, while the other two, used in SALE and SHALE, are cell-centered. The new method is cell-centered and its relationship to the other methods is discussed. Both pure advection and strong shock calculations are presented to substantiate the mathematical analysis. From the standpoint of numerical accuracy, both the staggered mesh and the cell-centered algorithms can give good results, while the computational costs are highly dependent on the overall architecture of a code.

  12. Hyperviscosity for unstructured ALE meshes

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.; Ulitsky, Mark S.; Miller, Douglas S.

    2013-01-01

    An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian-Eulerian simulations. Changes to the Eulerian model (dubbed 'hyperviscosity') are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier-Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.

  13. A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows

    DOE PAGES

    Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; ...

    2015-03-11

    High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linearmore » reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.« less

  14. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics

    NASA Astrophysics Data System (ADS)

    Velechovský, J.; Kuchařík, M.; Liska, R.; Shashkov, M.; Váchal, P.

    2013-12-01

    We present a new flux-corrected approach for remapping of velocity in the framework of staggered arbitrary Lagrangian-Eulerian methods. The main focus of the paper is the definition and preservation of coordinate invariant local bounds for velocity vector and development of momentum remapping method such that the radial symmetry of the radially symmetric flows is preserved when remapping from one equiangular polar mesh to another. The properties of this new method are demonstrated on a set of selected numerical cyclic remapping tests and a full hydrodynamic example.

  15. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  16. Developing a Learning Algorithm-Generated Empirical Relaxer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  17. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  18. Complex Geometric Models of Diffusion and Relaxation in Healthy and Damaged White Matter

    PubMed Central

    Farrell, Jonathan A.D.; Smith, Seth A.; Reich, Daniel S.; Calabresi, Peter A.; van Zijl, Peter C.M.

    2010-01-01

    Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular microenvironment and have not considered important anatomic details. With the advent of higher-order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging (HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility of simulations of diffusion in complex geometries. Our framework is quantitative, does not require specialized hardware, is easily implemented with little programming experience, and is freely available as open-source software. Models may include compartments with different diffusivities, permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary (e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-derived contrasts. PMID:19739233

  19. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  20. Percept User Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnes, Brian; Kennon, Stephen Ray

    2017-05-01

    This document is the main user guide for the Sierra/Percept capabilities including the mesh_adapt and mesh_transfer tools. Basic capabilities for uniform mesh refinement (UMR) and mesh transfers are discussed. Examples are used to provide illustration. Future versions of this manual will include more advanced features such as geometry and mesh smoothing. Additionally, all the options for the mesh_adapt code will be described in detail. Capabilities for local adaptivity in the context of offline adaptivity will also be included. This page intentionally left blank.

  1. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    NASA Astrophysics Data System (ADS)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  2. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    DOE PAGES

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; ...

    2016-04-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as wellmore » as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.« less

  3. Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness

    PubMed Central

    Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.

    2014-01-01

    Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060

  4. An efficicient data structure for three-dimensional vertex based finite volume method

    NASA Astrophysics Data System (ADS)

    Akkurt, Semih; Sahin, Mehmet

    2017-11-01

    A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.

  5. Meshing complex macro-scale objects into self-assembling bricks

    PubMed Central

    Hacohen, Adar; Hanniel, Iddo; Nikulshin, Yasha; Wolfus, Shuki; Abu-Horowitz, Almogit; Bachelet, Ido

    2015-01-01

    Self-assembly provides an information-economical route to the fabrication of objects at virtually all scales. However, there is no known algorithm to program self-assembly in macro-scale, solid, complex 3D objects. Here such an algorithm is described, which is inspired by the molecular assembly of DNA, and based on bricks designed by tetrahedral meshing of arbitrary objects. Assembly rules are encoded by topographic cues imprinted on brick faces while attraction between bricks is provided by embedded magnets. The bricks can then be mixed in a container and agitated, leading to properly assembled objects at high yields and zero errors. The system and its assembly dynamics were characterized by video and audio analysis, enabling the precise time- and space-resolved characterization of its performance and accuracy. Improved designs inspired by our system could lead to successful implementation of self-assembly at the macro-scale, allowing rapid, on-demand fabrication of objects without the need for assembly lines. PMID:26226488

  6. Parallel implementation of a Lagrangian-based model on an adaptive mesh in C++: Application to sea-ice

    NASA Astrophysics Data System (ADS)

    Samaké, Abdoulaye; Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar

    2017-12-01

    We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the Elasto-Brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.

  7. A Reconstructed Discontinuous Galerkin Method for the Compressible Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luquing Luo; Robert Nourgaliev

    2009-06-01

    A reconstruction-based discontinuous Galerkin (DG) method is presented for the solution of the compressible Euler equations on arbitrary grids. By taking advantage of handily available and yet invaluable information, namely the derivatives, in the context of the discontinuous Galerkin methods, a solution polynomial of one degree higher is reconstructed using a least-squares method. The stencils used in the reconstruction involve only the van Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The resulting DG method can be regarded as an improvement of a recovery-based DG method in the sense that it shares the samemore » nice features as the recovery-based DG method, such as high accuracy and efficiency, and yet overcomes some of its shortcomings such as a lack of flexibility, compactness, and robustness. The developed DG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate the accuracy and efficiency of the method. The numerical results indicate that this reconstructed DG method is able to obtain a third-order accurate solution at a slightly higher cost than its second-order DG method and provide an increase in performance over the third order DG method in terms of computing time and storage requirement.« less

  8. Unsteady density-current equations for highly curved terrain

    NASA Technical Reports Server (NTRS)

    Sivakumaran, N. S.; Dressler, R. F.

    1989-01-01

    New nonlinear partial differential equations containing terrain curvature and its rate of change are derived that describe the flow of an atmospheric density current. Unlike the classical hydraulic-type equations for density currents, the new equations are valid for two-dimensional, gradually varied flow over highly curved terrain, hence suitable for computing unsteady (or steady) flows over arbitrary mountain/valley profiles. The model assumes the atmosphere above the density current exerts a known arbitrary variable pressure upon the unknown interface. Later this is specialized to the varying hydrostatic pressure of the atmosphere above. The new equations yield the variable velocity distribution, the interface position, and the pressure distribution that contains a centrifugal component, often significantly larger than its hydrostatic component. These partial differential equations are hyperbolic, and the characteristic equations and characteristic directions are derived. Using these to form a characteristic mesh, a hypothetical unsteady curved-flow problem is calculated, not based upon observed data, merely as an example to illustrate the simplicity of their application to unsteady flows over mountains.

  9. Modelling the oscillations of the thermocline in a lake by means of a fully consistent and conservative 3D finite-element model with a vertically adaptive mesh

    NASA Astrophysics Data System (ADS)

    Delandmeter, Philippe; Lambrechts, Jonathan; Vallaeys, Valentin; Naithani, Jaya; Remacle, Jean-François; Legat, Vincent; Deleersnijder, Eric

    2017-04-01

    Vertical discretisation is crucial in the modelling of lake thermocline oscillations. For finite element methods, a simple way to increase the resolution close to the oscillating thermocline is to use vertical adaptive coordinates. With an Arbitrary Lagrangian-Eulerian (ALE) formulation, the mesh can be adapted to increase the resolution in regions with strong shear or stratification. In such an application, consistency and conservativity must be strictly enforced. SLIM 3D, a discontinuous-Galerkin finite element model for shallow-water flows (www.climate.be/slim, e.g. Kärnä et al., 2013, Delandmeter et al., 2015), was designed to be strictly consistent and conservative in its discrete formulation. In this context, special care must be paid to the coupling of the external and internal modes of the model and the moving mesh algorithm. In this framework, the mesh can be adapted arbitrarily in the vertical direction. Two moving mesh algorithms were implemented: the first one computes an a-priori optimal mesh; the second one diffuses vertically the mesh (Burchard et al., 2004, Hofmeister et al., 2010). The criteria used to define the optimal mesh and the diffusion function are related to a suitable measure of shear and stratification. We will present in detail the design of the model and how the consistency and conservativity is obtained. Then we will apply it to both idealised benchmarks and the wind-forced thermocline oscillations in Lake Tanganyika (Naithani et al. 2002). References Tuomas Kärnä, Vincent Legat and Eric Deleersnijder. A baroclinic discontinuous Galerkin finite element model for coastal flows, Ocean Modelling, 61:1-20, 2013. Philippe Delandmeter, Stephen E Lewis, Jonathan Lambrechts, Eric Deleersnijder, Vincent Legat and Eric Wolanski. The transport and fate of riverine fine sediment exported to a semi-open system. Estuarine, Coastal and Shelf Science, 167:336-346, 2015. Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids in one-dimensional numerical ocean models. Ocean Modelling, 6:51-81, 2004. Richard Hofmeister, Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids for 3d numerical ocean models. Ocean Modelling, 33:70-86, 2010. Jaya Naithani, Eric Deleersnijder and Pierre-Denis Plisnier. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters, 29(23), doi:10.1029/2002GL015843, 2002.

  10. Acoustic performance of a Herschel Quincke tube modified with an interconnecting pipe

    NASA Astrophysics Data System (ADS)

    Desantes, J. M.; Torregrosa, A. J.; Climent, H.; Moya, D.

    2005-06-01

    The classical two-duct Herschel-Quincke tube is modified by means of an additional pipe connecting both paths. A transfer matrix is obtained for a mesh system with five arbitrary branches and then particularized to the proposed scheme. Experimental attenuation measurements were performed on several prototypes, and the results compared favourably with predictions from the previous theoretical development. Finally, transmission loss contour plots were used to study the influence of the connecting pipe on the resonance frequencies. The results confirm the nontrivial character of the influence observed, and simple relationships are obtained for the general trends.

  11. N-MODY: a code for collisionless N-body simulations in modified Newtonian dynamics.

    NASA Astrophysics Data System (ADS)

    Londrillo, P.; Nipoti, C.

    We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  12. Integrated Hydrogeological Model of the General Separations Area, Vol. 2, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FLACH, GREGORYK.

    1999-04-01

    The 15 mi2 General Separations Area (GSA) contains more than 35 RCRA and CERCLA waste units, and is the focus of numerous ongoing and anticipated contaminant migration and remedial alternatives studies. To meet the analysis needs of GSA remediation programs, a groundwater flow model of the area based on the FACT code was developed. The model is consistent with detailed characterization and monitoring data through 1996. Model preprocessing has been automated so that future updates and modifications can be performed quickly and efficiently. Most remedial action scenarios can be explicitly simulated, including vertical recirculation wells, vertical barriers, surface caps, pumpingmore » wells at arbitrary locations, specified drawdown within well casings (instead of flowrate), and wetland impacts of remedial actions. The model has a fine scale vertical mesh and heterogeneous conductivity field, and includes the vadose zone. Therefore, the model is well suited to support subsequent contaminant transport simulations. the model can provide a common framework for analyzing groundwater flow, contaminant migration, and remedial alternatives across Environmental Restoration programs within the GSA.« less

  13. C2x: A tool for visualisation and input preparation for CASTEP and other electronic structure codes

    NASA Astrophysics Data System (ADS)

    Rutter, M. J.

    2018-04-01

    The c2x code fills two distinct roles. Its first role is in acting as a converter between the binary format .check files from the widely-used CASTEP [1] electronic structure code and various visualisation programs. Its second role is to manipulate and analyse the input and output files from a variety of electronic structure codes, including CASTEP, ONETEP and VASP, as well as the widely-used 'Gaussian cube' file format. Analysis includes symmetry analysis, and manipulation arbitrary cell transformations. It continues to be under development, with growing functionality, and is written in a form which would make it easy to extend it to working directly with files from other electronic structure codes. Data which c2x is capable of extracting from CASTEP's binary checkpoint files include charge densities, spin densities, wavefunctions, relaxed atomic positions, forces, the Fermi level, the total energy, and symmetry operations. It can recreate .cell input files from checkpoint files. Volumetric data can be output in formats useable by many common visualisation programs, and c2x will itself calculate integrals, expand data into supercells, and interpolate data via combinations of Fourier and trilinear interpolation. It can extract data along arbitrary lines (such as lines between atoms) as 1D output. C2x is able to convert between several common formats for describing molecules and crystals, including the .cell format of CASTEP. It can construct supercells, reduce cells to their primitive form, and add specified k-point meshes. It uses the spglib library [2] to report symmetry information, which it can add to .cell files. C2x is a command-line utility, so is readily included in scripts. It is available under the GPL and can be obtained from http://www.c2x.org.uk. It is believed to be the only open-source code which can read CASTEP's .check files, so it will have utility in other projects.

  14. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.

    PubMed

    Lacey, Steven D; Kirsch, Dylan J; Li, Yiju; Morgenstern, Joseph T; Zarket, Brady C; Yao, Yonggang; Dai, Jiaqi; Garcia, Laurence Q; Liu, Boyang; Gao, Tingting; Xu, Shaomao; Raghavan, Srinivasa R; Connell, John W; Lin, Yi; Hu, Liangbing

    2018-03-01

    A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL -1 ) can be readily achieved. The shear-thinning behavior of the aqueous hGO ink enables extrusion-based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4-25 nm through-holes on hGO sheets), microscale (tens of micrometer-sized pores introduced by lyophilization), and macroscale (<500 µm square pores of the mesh design), which are advantageous for high-performance energy storage devices that rely on interfacial reactions to promote full active-site utilization. To elucidate the benefit of (nano)porosity and structurally conscious designs, the additive-free architectures are demonstrated as the first 3D printed lithium-oxygen (Li-O 2 ) cathodes and characterized alongside 3D printed GO-based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation and correction of laser-scanned point clouds

    NASA Astrophysics Data System (ADS)

    Teutsch, Christian; Isenberg, Tobias; Trostmann, Erik; Weber, Michael; Berndt, Dirk; Strothotte, Thomas

    2005-01-01

    The digitalization of real-world objects is of great importance in various application domains. E.g. in industrial processes quality assurance is very important. Geometric properties of workpieces have to be measured. Traditionally, this is done with gauges which is somewhat subjective and time-consuming. We developed a robust optical laser scanner for the digitalization of arbitrary objects, primary, industrial workpieces. As measuring principle we use triangulation with structured lighting and a multi-axis locomotor system. Measurements on the generated data leads to incorrect results if the contained error is too high. Therefore, processes for geometric inspection under non-laboratory conditions are needed that are robust in permanent use and provide high accuracy as well as high operation speed. The many existing methods for polygonal mesh optimization produce very esthetic 3D models but often require user interaction and are limited in processing speed and/or accuracy. Furthermore, operations on optimized meshes consider the entire model and pay only little attention to individual measurements. However, many measurements contribute to parts or single scans with possibly strong differences between neighboring scans being lost during mesh construction. Also, most algorithms consider unsorted point clouds although the scanned data is structured through device properties and measuring principles. We use this underlying structure to achieve high processing speeds and extract intrinsic system parameters and use them for fast pre-processing.

  16. Development of 3D electromagnetic modeling tools for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region between the target and the outer mesh termination boundary (ATB). This boundary is placed in conformity with the target's outer surface, thus resulting in additional reduction of the unknown count.

  17. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

    PubMed

    Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

    2016-01-01

    Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh complications.

  18. SIERRA Multimechanics Module: Aria User Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less

  20. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  1. FY08 LDRD Final Report A New Method for Wave Propagation in Elastic Media LDRD Project Tracking Code: 05-ERD-079

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, A

    The LDRD project 'A New Method for Wave Propagation in Elastic Media' developed several improvements to the traditional finite difference technique for seismic wave propagation, including a summation-by-parts discretization which is provably stable for arbitrary heterogeneous materials, an accurate treatment of non-planar topography, local mesh refinement, and stable outflow boundary conditions. This project also implemented these techniques in a parallel open source computer code called WPP, and participated in several seismic modeling efforts to simulate ground motion due to earthquakes in Northern California. This research has been documented in six individual publications which are summarized in this report. Of thesemore » publications, four are published refereed journal articles, one is an accepted refereed journal article which has not yet been published, and one is a non-refereed software manual. The report concludes with a discussion of future research directions and exit plan.« less

  2. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  3. Maxis-A rezoning and remapping code in two dimensional cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Lin, Zhiwei; Jiang, Shaoen; Zhang, Lu; Kuang, Longyu; Li, Hang

    2018-06-01

    This paper presents the new version of our code Maxis (Lin et al., 2011). Maxis is a local rezoning and remapping code in two dimensional cylindrical geometry, which can be employed to address the grid distortion problem of unstructured meshes. The new version of Maxis is mostly programmed in the C language which considerably improves its computational efficiency with respect to the former Matlab version. A new algorithm for determining the intersection of two arbitrary convex polygons is also incorporated into the new version. Some additional linking functions are further provided in the new version for the purpose of combining Maxis and MULTI2D.

  4. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase

    NASA Astrophysics Data System (ADS)

    Kiryushkin, A. E.; Minkov, L. L.

    2017-10-01

    Solid rocket motor (SRM) internal ballistics problems are related to the problems with moving boundaries. The algorithm able to solve similar problems in axisymmetric formulation on Cartesian mesh with an arbitrary order of accuracy is considered in this paper. The base of this algorithm is the ghost point extrapolation using inverse Lax-Wendroff procedure. Level set method is used as an implicit representation of the domain boundary. As an example, the internal ballistics problem for SRM with umbrella type grain was solved during the main firing phase. In addition, flow parameters distribution in the combustion chamber was obtained for different time moments.

  5. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  6. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzini, Gianmarco

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  7. Dirichlet boundary conditions for arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-Coordinate Independent method

    NASA Astrophysics Data System (ADS)

    Hill, Peter; Shanahan, Brendan; Dudson, Ben

    2017-04-01

    We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.

  8. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  9. Numerical simulation of tunneling through arbitrary potential barriers applied on MIM and MIIM rectenna diodes

    NASA Astrophysics Data System (ADS)

    Abdolkader, Tarek M.; Shaker, Ahmed; Alahmadi, A. N. M.

    2018-07-01

    With the continuous miniaturization of electronic devices, quantum-mechanical effects such as tunneling become more effective in many device applications. In this paper, a numerical simulation tool is developed under a MATLAB environment to calculate the tunneling probability and current through an arbitrary potential barrier comparing three different numerical techniques: the finite difference method, transfer matrix method, and transmission line method. For benchmarking, the tool is applied to many case studies such as the rectangular single barrier, rectangular double barrier, and continuous bell-shaped potential barrier, each compared to analytical solutions and giving the dependence of the error on the number of mesh points. In addition, a thorough study of the J ‑ V characteristics of MIM and MIIM diodes, used as rectifiers for rectenna solar cells, is presented and simulations are compared to experimental results showing satisfactory agreement. On the undergraduate level, the tool provides a deeper insight for students to compare numerical techniques used to solve various tunneling problems and helps students to choose a suitable technique for a certain application.

  10. Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2006-01-01

    A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design variables such as the free stream parameters and the planform shape of an isolated wing. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Factors under consideration include the computation of mesh sensitivities that provide a reliable approximation of the objective function gradient, as well as the computation of surface shape sensitivities based on a direct-CAD interface. We present detailed gradient verification studies and then focus on a shape optimization problem for an Apollo-like reentry vehicle. The goal of the optimization is to enhance the lift-to-drag ratio of the capsule by modifying the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design.

  11. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  12. Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation.

    PubMed

    Dione, Ibrahima; Deteix, Jean; Briffard, Thomas; Chamberland, Eric; Doyon, Nicolas

    2016-01-01

    In neural structures with complex geometries, numerical resolution of the Poisson-Nernst-Planck (PNP) equations is necessary to accurately model electrodiffusion. This formalism allows one to describe ionic concentrations and the electric field (even away from the membrane) with arbitrary spatial and temporal resolution which is impossible to achieve with models relying on cable theory. However, solving the PNP equations on complex geometries involves handling intricate numerical difficulties related either to the spatial discretization, temporal discretization or the resolution of the linearized systems, often requiring large computational resources which have limited the use of this approach. In the present paper, we investigate the best ways to use the finite elements method (FEM) to solve the PNP equations on domains with discontinuous properties (such as occur at the membrane-cytoplasm interface). 1) Using a simple 2D geometry to allow comparison with analytical solution, we show that mesh adaptation is a very (if not the most) efficient way to obtain accurate solutions while limiting the computational efforts, 2) We use mesh adaptation in a 3D model of a node of Ranvier to reveal details of the solution which are nearly impossible to resolve with other modelling techniques. For instance, we exhibit a non linear distribution of the electric potential within the membrane due to the non uniform width of the myelin and investigate its impact on the spatial profile of the electric field in the Debye layer.

  13. Grid generation in three dimensions by Poisson equations with control of cell size and skewness at boundary surfaces

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1983-01-01

    An algorithm for generating computational grids about arbitrary three-dimensional bodies is developed. The elliptic partial differential equation (PDE) approach developed by Steger and Sorenson and used in the NASA computer program GRAPE is extended from two to three dimensions. Forcing functions which are found automatically by the algorithm give the user the ability to control mesh cell size and skewness at boundary surfaces. This algorithm, as is typical of PDE grid generators, gives smooth grid lines and spacing in the interior of the grid. The method is applied to a rectilinear wind-tunnel case and to two body shapes in spherical coordinates.

  14. A Weak Galerkin Method for the Reissner–Mindlin Plate in Primary Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    We developed a new finite element method for the Reissner–Mindlin equations in its primary form by using the weak Galerkin approach. Like other weak Galerkin finite element methods, this one is highly flexible and robust by allowing the use of discontinuous approximating functions on arbitrary shape of polygons and, at the same time, is parameter independent on its stability and convergence. Furthermore, error estimates of optimal order in mesh size h are established for the corresponding weak Galerkin approximations. Numerical experiments are conducted for verifying the convergence theory, as well as suggesting some superconvergence and a uniform convergence of themore » method with respect to the plate thickness.« less

  15. A Weak Galerkin Method for the Reissner–Mindlin Plate in Primary Form

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-10-04

    We developed a new finite element method for the Reissner–Mindlin equations in its primary form by using the weak Galerkin approach. Like other weak Galerkin finite element methods, this one is highly flexible and robust by allowing the use of discontinuous approximating functions on arbitrary shape of polygons and, at the same time, is parameter independent on its stability and convergence. Furthermore, error estimates of optimal order in mesh size h are established for the corresponding weak Galerkin approximations. Numerical experiments are conducted for verifying the convergence theory, as well as suggesting some superconvergence and a uniform convergence of themore » method with respect to the plate thickness.« less

  16. Free stream capturing in fluid conservation law for moving coordinates in three dimensions

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.

  17. An Enriched Shell Element for Delamination Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark

    2015-01-01

    A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.

  18. ms 2: A molecular simulation tool for thermodynamic properties, release 3.0

    NASA Astrophysics Data System (ADS)

    Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran

    2017-12-01

    A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.

  19. High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek

    2018-04-01

    This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.

  20. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  1. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  2. Method of modifying a volume mesh using sheet insertion

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2006-08-29

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.

  3. The 3-D unstructured mesh generation using local transformations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: 3D combinatorial edge swapping; 3D incremental triangulation via local transformations; a new approach to multigrid for unstructured meshes; surface mesh generation using local transforms; volume triangulations; viscous mesh generation; and future directions.

  4. New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data

    PubMed Central

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2013-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469

  5. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  6. Analysis and design of numerical schemes for gas dynamics 1: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum diminishing (LED) principle that maxima should not increase and minima should not decrease. This principle can be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to the total variation diminishing (TVD) principle for one-dimensional problems. A new formulation of symmetric limited positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary high order of accuracy in regions where the solution contains no extrema, and which can also be implemented on multi-dimensional unstructured meshes. Systems of equations lead to waves traveling with distinct speeds and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive fluxes are examined, together with modification of the scalar diffusion through the addition of pressure differences to the momentum equations to produce full upwinding in supersonic flow. This convective upwind and split pressure (CUSP) scheme exhibits very rapid convergence in multigrid calculations of transonic flow, and provides excellent shock resolution at very high Mach numbers.

  7. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Technical Reports Server (NTRS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1994-01-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  8. A resistive mesh phantom for assessing the performance of EIT systems.

    PubMed

    Gagnon, Hervé; Cousineau, Martin; Adler, Andy; Hartinger, Alzbeta E

    2010-09-01

    Assessing the performance of electrical impedance tomography (EIT) systems usually requires a phantom for validation, calibration, or comparison purposes. This paper describes a resistive mesh phantom to assess the performance of EIT systems while taking into account cabling stray effects similar to in vivo conditions. This phantom is built with 340 precision resistors on a printed circuit board representing a 2-D circular homogeneous medium. It also integrates equivalent electrical models of the Ag/AgCl electrode impedances. The parameters of the electrode models were fitted from impedance curves measured with an impedance analyzer. The technique used to build the phantom is general and applicable to phantoms of arbitrary shape and conductivity distribution. We describe three performance indicators that can be measured with our phantom for every measurement of an EIT data frame: SNR, accuracy, and modeling accuracy. These performance indicators were evaluated on our EIT system under different frame rates and applied current intensities. The performance indicators are dependent on frame rate, operating frequency, applied current intensity, measurement strategy, and intermodulation distortion when performing simultaneous measurements at several frequencies. These parameter values should, therefore, always be specified when reporting performance indicators to better appreciate their significance.

  9. A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Taiji, Makoto; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro

    1996-09-01

    We have developed a parallel, pipelined special-purpose computer for N-body simulations, MD-GRAPE (for "GRAvity PipE"). In gravitational N- body simulations, almost all computing time is spent on the calculation of interactions between particles. GRAPE is specialized hardware to calculate these interactions. It is used with a general-purpose front-end computer that performs all calculations other than the force calculation. MD-GRAPE is the first parallel GRAPE that can calculate an arbitrary central force. A force different from a pure 1/r potential is necessary for N-body simulations with periodic boundary conditions using the Ewald or particle-particle/particle-mesh (P^3^M) method. MD-GRAPE accelerates the calculation of particle-particle force for these algorithms. An MD- GRAPE board has four MD chips and its peak performance is 4.2 GFLOPS. On an MD-GRAPE board, a cosmological N-body simulation takes 6O0(N/10^6^)^3/2^ s per step for the Ewald method, where N is the number of particles, and would take 24O(N/10^6^) s per step for the P^3^M method, in a uniform distribution of particles.

  10. Accuracy of medical subject heading indexing of dental survival analyses.

    PubMed

    Layton, Danielle M; Clarke, Michael

    2014-01-01

    To assess the Medical Subject Headings (MeSH) indexing of articles that employed time-to-event analyses to report outcomes of dental treatment in patients. Articles published in 2008 in 50 dental journals with the highest impact factors were hand searched to identify articles reporting dental treatment outcomes over time in human subjects with time-to-event statistics (included, n = 95), without time-to-event statistics (active controls, n = 91), and all other articles (passive controls, n = 6,769). The search was systematic (kappa 0.92 for screening, 0.86 for eligibility). Outcome-, statistic- and time-related MeSH were identified, and differences in allocation between groups were analyzed with chi-square and Fischer exact statistics. The most frequently allocated MeSH for included and active control articles were "dental restoration failure" (77% and 52%, respectively) and "treatment outcome" (54% and 48%, respectively). Outcome MeSH was similar between these groups (86% and 77%, respectively) and significantly greater than passive controls (10%, P < .001). Significantly more statistical MeSH were allocated to the included articles than to the active or passive controls (67%, 15%, and 1%, respectively, P < .001). Sixty-nine included articles specifically used Kaplan-Meier or life table analyses, but only 42% (n = 29) were indexed as such. Significantly more time-related MeSH were allocated to the included than the active controls (92% and 79%, respectively, P = .02), or to the passive controls (22%, P < .001). MeSH allocation within MEDLINE to time-to-event dental articles was inaccurate and inconsistent. Statistical MeSH were omitted from 30% of the included articles and incorrectly allocated to 15% of active controls. Such errors adversely impact search accuracy.

  11. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation

    PubMed Central

    Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick

    2016-01-01

    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations’ outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798

  12. Optimal expression evaluation for data parallel architectures

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    A data parallel machine represents an array or other composite data structure by allocating one processor (at least conceptually) per data item. A pointwise operation can be performed between two such arrays in unit time, provided their corresponding elements are allocated in the same processors. If the arrays are not aligned in this fashion, the cost of moving one or both of them is part of the cost of the operation. The choice of where to perform the operation then affects this cost. If an expression with several operands is to be evaluated, there may be many choices of where to perform the intermediate operations. An efficient algorithm is given to find the minimum-cost way to evaluate an expression, for several different data parallel architectures. This algorithm applies to any architecture in which the metric describing the cost of moving an array is robust. This encompasses most of the common data parallel communication architectures, including meshes of arbitrary dimension and hypercubes. Remarks are made on several variations of the problem, some of which are solved and some of which remain open.

  13. New software developments for quality mesh generation and optimization from biomedical imaging data.

    PubMed

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  15. Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP

    NASA Technical Reports Server (NTRS)

    Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.

  16. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  17. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  18. Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Gregory Herbert; Chen, Ken Shuang

    2004-06-01

    This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less

  19. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  20. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  1. Recent work on material interface reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosso, S.J.; Swartz, B.K.

    1997-12-31

    For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interfacemore » was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.« less

  2. MHD Simulation of the HIT-SI Experiment

    NASA Astrophysics Data System (ADS)

    Marklin, George

    2003-10-01

    The Helicity Injected Torus (HIT) experiment at the University of Washington has been reconfigured into a high beta spheromak with steady state AC current drive [1]. Helicity is injected by two half torus Reversed Field Pinches (RFP's) connected to the ends of the cylindrically symmetric flux conserver, rotated by 90 degrees from each other. The RFP's are driven with sinusoidally varying voltage and flux. Each side has its voltage and flux in phase, but is 90 degrees out of phase from the other side. The helicity injection rate, which is proportional to the voltage times the flux, goes like sin(wt)^2 on one side and cos(wt)^2 on the other, making the total injection rate constant in time. The complex multiply connected 3-dimensional geometry of this device make it difficult to simulate with existing codes that typically use a structured mesh. This poster will describe a new 3D MHD simulation code and a new 3D Taylor state code which both use an unstructured finite element mesh. The mesh is generated from a CAD-like description of an arbitrary arrangement of 3D geometrical objects. Taylor states in the HIT-SI geometry will be shown for different combinations of fluxes in the two injectors. MHD simulation results will be shown starting from a Taylor state with uniform density and temperature and continuing through several cycles of time dependent helicity injection. Field line tracing plots will show the quality of the flux surfaces at various stages in the injection cycle. [1] T. R. Jarboe, Fusion Technology, vol. 36, p. 85, 1999

  3. Transrectal Mesh Erosion Requiring Bowel Resection.

    PubMed

    Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence of pelvic floor descent. Her intestinal transit was reestablished, and she was satisfied with the treatment. None of the studies that represent the specific female population submitted to laparoscopic promontofixation with transrectal mesh erosion describe the need for more than one intervention or digestive resection [9-12]. Physicians dealing with patients submitted to pelvic reconstructive surgeries with mesh placement should be aware of transrectal and other nonvaginal erosions of mesh, even being rare events. Moreover, they should perform an active search for unusual gynecologic and anorectal signs and symptoms. Most importantly, patients undergoing mesh repair procedures must be warned of the risks of the surgery, including the possibility of several subsequent interventions. Copyright © 2017 AAGL. Published by Elsevier Inc. All rights reserved.

  4. Using the Schur Complement to Reduce Runtime in KULL's Magnetic Diffusion Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, T A; Kolev, T V

    2010-12-15

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the fullmore » system. Significant improvements in the solution time are observed for several test problems.« less

  5. Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, T A; Kolev, T V

    2010-12-17

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the fullmore » system. Significant improvements in the solution time are observed for several test problems.« less

  6. Update on Development of Mesh Generation Algorithms in MeshKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKitmore » are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.« less

  7. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design

    PubMed Central

    Rastegarpour, Ali; Cheung, Michael; Vardhan, Madhurima; Ibrahim, Mohamed M; Butler, Charles E; Levinson, Howard

    2016-01-01

    Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years. PMID:27054138

  8. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  9. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  10. ESCHER: An interactive mesh-generating editor for preparing finite-element input

    NASA Technical Reports Server (NTRS)

    Oakes, W. R., Jr.

    1984-01-01

    ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.

  11. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    NASA Astrophysics Data System (ADS)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  12. Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery

    NASA Astrophysics Data System (ADS)

    Zimkowski, Michael M.

    About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and biocompatibility to function as suitable ventral hernia repair mesh, while offering a reduction in surgical operating time and improving mesh placement characteristics. Future work will include ball-burst tests similar to ASTM D3787-07, direct surgeon feedback studies, and a 30 day chronic porcine model to evaluate the SMP surgical mesh in a realistic hernia repair environment, using laparoscopic techniques for typical ventral hernia repair.

  13. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.

  14. Hexahedral finite element mesh coarsening using pillowing technique

    DOEpatents

    Staten, Matthew L [Pittsburgh, PA; Woodbury, Adam C [Provo, UT; Benzley, Steven E [Provo, UT; Shepherd, Jason F [Edgewood, NM

    2012-06-05

    A techniques for coarsening a hexahedral mesh is described. The technique includes identifying a coarsening region within a hexahedral mesh to be coarsened. A boundary sheet of hexahedral elements is inserted into the hexahedral mesh around the coarsening region. A column of hexahedral elements is identified within the boundary sheet. The column of hexahedral elements is collapsed to create an extraction sheet of hexahedral elements contained within the coarsening region. Then, the extraction sheet of hexahedral elements is extracted to coarsen the hexahedral mesh.

  15. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  16. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    NASA Astrophysics Data System (ADS)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength conversion under the same RWA algorithm.

  17. An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids

    NASA Astrophysics Data System (ADS)

    Re, B.; Dobrzynski, C.; Guardone, A.

    2017-07-01

    A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.

  18. Hybrid seine for full fish community collections

    USGS Publications Warehouse

    McKenna, James E.; Waldt, Emily M.; Abbett, Ross; David, Anthony; Snyder, James

    2013-01-01

    Seines are simple and effective fish collection gears, but the net mesh size influences how well the catch represents the fish communities. We designed and tested a hybrid seine with a dual-mesh bag (1/4″ and 1/8″) and compared the fish assemblage collected by each mesh. The fine-mesh net retained three times as many fish and collected more species (as many as eight), including representatives of several rare species, than did the coarser mesh. The dual-mesh bag permitted us to compare both sizes and species retained by each layer and to develop species-specific abundance correction factors, which allowed comparison of catches with the coarse-mesh seine used for earlier collections. The results indicate that a hybrid seine with coarse-mesh wings and a fine-mesh bag would enhance future studies of fish communities, especially when small-bodied fishes or early life stages are the research focus.

  19. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms.

    PubMed

    Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott

    2010-04-01

    An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.

  20. A critical review of biologic mesh use in ventral hernia repairs under contaminated conditions.

    PubMed

    Primus, F E; Harris, H W

    2013-02-01

    We used an evidence-based approach to determine whether the promotions and claims of superiority of biologic mesh over synthetic mesh use in ventral hernia repairs (VHRs) under contaminated conditions were sound and valid. We searched the Medline database to specifically identify review articles relating to biologic mesh and VHR and critically reviewed these studies using an evidence-based approach. For the past 45 years, four clinical reviews and one systematic review have included biologic meshes as part of a larger discussion on available prosthetics for VHR. All reviews supported biologic mesh use, especially in the setting of contaminated fields. Yet, the primary literature included in these reviews and served as the basis for these conclusions consisted entirely of case series and case reports, which have the lowest level of evidence in determining scientific validity. Furthermore, the FDA has neither cleared nor approved this particular use. The cumulative data regarding biologic mesh use in VHRs under contaminated conditions does not support the claim that it is better than synthetic mesh used under the same conditions. The highly promoted and at least moderately utilized practice of placing biologic mesh in contamination is being done outside of the original intended use, and a re-evaluation of or possible moratorium on biologic mesh use in hernia surgery is seriously warranted. Alternatively, an industry-sponsored national registry of patients in whom ventral hernia repairs involved biologic mesh would substantively add to our understanding regarding how these intriguing biomaterials are being used and their overall clinical efficacy.

  1. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    NASA Technical Reports Server (NTRS)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  2. [Skeleton extractions and applications].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at leastmore » two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.« less

  3. Method of generating a surface mesh

    DOEpatents

    Shepherd, Jason F [Albuquerque, NM; Benzley, Steven [Provo, UT; Grover, Benjamin T [Tracy, CA

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  4. An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.

    1993-01-01

    We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.

  5. Jet simulations and gamma-ray burst afterglow jet breaks

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.; Meliani, Z.; Wijers, R. A. M. J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstances, the radio jet break may be postponed significantly. Using high-accuracy adaptive mesh fluid simulations in one dimension, coupled to a detailed synchrotron radiation code, we demonstrate that this is true even for the standard fireball model and hard-edged jets. We confirm these effects with a simulation in two dimensions. The frequency dependence of the jet break is a result of the angle dependence of the emission, the changing optical depth in the self-absorbed regime and the shape of the synchrotron spectrum in general. In the optically thin case the conventional analysis systematically overestimates the jet break time, leading to inferred opening angles that are underestimated by a factor of ˜1.3 and explosion energies that are underestimated by a factor of ˜1.7, for explosions in a homogeneous environment. The methods presented in this paper can be applied to adaptive mesh simulations of arbitrary relativistic fluid flows. All analysis presented here makes the usual assumption of an on-axis observer.

  6. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  7. GPU based contouring method on grid DEM data

    NASA Astrophysics Data System (ADS)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  8. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt; Manic, Milos

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  9. A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn

    2014-01-01

    The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less

  10. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE PAGES

    Derr, Kurt; Manic, Milos

    2015-06-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  11. Efficacy of Prophylactic Mesh in End-Colostomy Construction: A Systematic Review and Meta-analysis of Randomized Controlled Trials.

    PubMed

    Wang, Shuanhu; Wang, Wenbin; Zhu, Bing; Song, Guolei; Jiang, Congqiao

    2016-10-01

    Parastomal hernia is a very common complication after colostomy, especially end-colostomy. It is unclear whether prophylactic placement of mesh at the time of stoma formation could prevent parastomal hernia formation after surgery for rectal cancer. A systematic review and meta-analysis were conducted to evaluate the efficacy of prophylactic mesh in end-colostomy construction. PubMed, Embase, and the Cochrane Library were searched, covering records entered from their inception to September 2015. Randomized controlled trials (RCTs) comparing stoma with mesh to stoma without mesh after surgery for rectal cancer were included. The primary outcome was the incidence of parastomal hernia. Pooled risk ratios (RR) with 95 % confidence intervals (CI) were obtained using random effects models. Six RCTs containing 309 patients were included. Parastomal hernia occurred in 24.4 % (38 of 156) of patients with mesh and 50.3 % (77 of 153) of patients without mesh. Meta-analysis showed a lower incidence of parastomal hernia (RR, 0.42; 95 % CI 0.22-0.82) and reoperation related to parastomal hernia (RR, 0.23; 95 % CI 0.06-0.89) in patients with mesh. Stoma-related morbidity was similar between mesh group and non-mesh group (RR, 0.65; 95 % CI 0.33-1.30). Prophylactic placement of a mesh at the time of a stoma formation seems to be associated with a significant reduction in the incidence of parastomal hernia and reoperation related to parastomal hernia after surgery for rectal cancer, but not the rate of stoma-related morbidity. However, the results should be interpreted with caution because of the heterogeneity among the studies.

  12. Spur, helical, and spiral bevel transmission life modeling

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, Kelly L.; Coe, Harold H.; Coy, John J.

    1994-01-01

    A computer program, TLIFE, which estimates the life, dynamic capacity, and reliability of aircraft transmissions, is presented. The program enables comparisons of transmission service life at the design stage for optimization. A variety of transmissions may be analyzed including: spur, helical, and spiral bevel reductions as well as series combinations of these reductions. The basic spur and helical reductions include: single mesh, compound, and parallel path plus revert star and planetary gear trains. A variety of straddle and overhung bearing configurations on the gear shafts are possible as is the use of a ring gear for the output. The spiral bevel reductions include single and dual input drives with arbitrary shaft angles. The program is written in FORTRAN 77 and has been executed both in the personal computer DOS environment and on UNIX workstations. The analysis may be performed in either the SI metric or the English inch system of units. The reliability and life analysis is based on the two-parameter Weibull distribution lives of the component gears and bearings. The program output file describes the overall transmission and each constituent transmission, its components, and their locations, capacities, and loads. Primary output is the dynamic capacity and 90-percent reliability and mean lives of the unit transmissions and the overall system which can be used to estimate service overhaul frequency requirements. Two examples are presented to illustrate the information available for single element and series transmissions.

  13. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  14. Underworld: What we set out to do, How far did we get, What did we Learn ? (Invited)

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.

    2013-12-01

    Underworld was conceived as a tool for modelling 3D lithospheric deformation coupled with the underlying / surrounding mantle flow. The challenges involved were to find a method capable of representing the complicated, non-linear, history dependent rheology of the near surface as well as being able to model mantle convection, and, simultaneously, to be able to solve the numerical system efficiently. Underworld is a hybrid particle / mesh code reminiscent of the particle-in-cell techniques from the early 1960s. The Underworld team (*) was not the first to use this approach, nor the last, but the team does have considerable experience and much has been learned along the way. The use of a finite element method as the underlying "cell" in which the Lagrangian particles are embedded considerably reduces errors associated with mapping material properties to the cells. The particles are treated as moving quadrature points in computing the stiffness matrix integrals. The decoupling of deformation markers from computation points allows the use of structured meshes, efficient parallel decompositions, and simple-to-code geometric multigrid solution methods. For a 3D code such efficiencies are very important. The elegance of the method is that it can be completely described in a couple of sentences. However, there are some limitations: it is not obvious how to retain this elegance for unstructured or adaptive meshes, arbitrary element types are not sufficiently well integrated by the simple quadrature approach, and swarms of particles representing volumes are usually an inefficient representation of surfaces. This will be discussed ! (*) Although not formally constituted, my co-conspirators in this exercise are listed as the Underworld team and I will reveal their true identities on the day.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyrya, Vitaliy; Mourad, Hashem Mohamed

    We present a family of C1-continuous high-order Virtual Element Methods for Poisson-Kirchho plate bending problem. The convergence of the methods is tested on a variety of meshes including rectangular, quadrilateral, and meshes obtained by edge removal (i.e. highly irregular meshes). The convergence rates are presented for all of these tests.

  16. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  17. Committee Opinion no. 513: vaginal placement of synthetic mesh for pelvic organ prolapse.

    PubMed

    2011-12-01

    Since 2004, use of synthetic mesh has increased in vaginal surgery for the treatment of pelvic organ prolapse. However, concerns exist about the safety and efficacy of transvaginally placed mesh. Based on the currently available limited data, although many patients undergoing mesh-augmented vaginal repairs heal well without problems, there seems to be a small but significant group of patients who experience permanent and life-altering sequelae, including pain and dyspareunia, from the use of vaginal mesh. The American College of Obstetricians and Gynecologists and the American Urogynecologic Society provide background information on the use of vaginally placed mesh for the treatment of pelvic organ prolapse and offer recommendations for practice.

  18. Vaginal placement of synthetic mesh for pelvic organ prolapse.

    PubMed

    2012-01-01

    Since 2004, use of synthetic mesh has increased in vaginal surgery for the treatment of pelvic organ prolapse. However, concerns exist about the safety and efficacy of transvaginally placed mesh. Based on the currently available limited data, although many patients undergoing mesh-augmented vaginal repairs heal well without problems, there seems to be a small but significant group of patients who experience permanent and life-altering sequelae, including pain and dyspareunia, from the use of vaginal mesh. The American College of Obstetricians and Gynecologists and the American Urogynecologic Society provide background information on the use of vaginally placed mesh for the treatment of pelvic organ prolapse and offer recommendations for practice.

  19. Verification of transport equations in a general purpose commercial CFD code.

    NASA Astrophysics Data System (ADS)

    Melot, Matthieu; Nennemann, Bernd; Deschênes, Claire

    2016-11-01

    In this paper, the Verification and Validation methodology is presented. This method aims to increase the reliability and the trust that can be placed into complex CFD simulations. The first step of this methodology, the code verification is presented in greater details. The CFD transport equations in steady state, transient and Arbitrary Eulerian Lagrangian (ALE, used for transient moving mesh) formulations in Ansys CFX are verified. It is shown that the expected spatial and temporal order of convergence are achieved for the steady state and the transient formulations. Unfortunately this is not completely the case for the ALE formulation. As for a lot of other commercial and in-house CFD codes, the temporal convergence of the velocity is limited to a first order where a second order would have been expected.

  20. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    NASA Astrophysics Data System (ADS)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  1. On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference

    NASA Astrophysics Data System (ADS)

    Hu, Zixi; Yao, Zhewei; Li, Jinglai

    2017-03-01

    Many scientific and engineering problems require to perform Bayesian inference for unknowns of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. To this end, a family of dimensional independent MCMC algorithms, known as the preconditioned Crank-Nicolson (pCN) methods, were proposed to sample the infinite dimensional parameters. In this work we develop an adaptive version of the pCN algorithm, where the covariance operator of the proposal distribution is adjusted based on sampling history to improve the simulation efficiency. We show that the proposed algorithm satisfies an important ergodicity condition under some mild assumptions. Finally we provide numerical examples to demonstrate the performance of the proposed method.

  2. A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal translation operators.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C

    2010-02-01

    A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.

  3. A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal translation operators

    PubMed Central

    Hesford, Andrew J.; Astheimer, Jeffrey P.; Greengard, Leslie F.; Waag, Robert C.

    2010-01-01

    A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method. PMID:20136208

  4. A novel approach to mesh revision after sacrocolpopexy.

    PubMed

    Dawson, Melissa L; Rebecca, Rinko; Shah, Nima M; Whitmore, Kristene E

    2016-01-01

    Pelvic organ prolapse (POP) is the herniation of pelvic organs to or beyond the vaginal walls. POP affects 50% of parous women; of those women, 11% will need surgery based on bothersome symptoms. Transvaginal mesh has been used for vaginal augmentation since the 1990s. Complications from mesh use are now more prominent, and include chronic pelvic pain, dyspareunia, vaginal mesh erosion, and urinary and defecatory dysfunction. Presently, there is no consensus regarding treatment of these complications. Reported herein are two cases of women with defecatory dysfunction and pain after sacrocolpopexy who underwent mesh revision procedures performed with both urogynecologic and colorectal surgery.

  5. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  6. Mesh-Sequenced Realizations for Evaluation of Subgrid-Scale Models for Turbulent Combustion (Short Term Innovative Research Program)

    DTIC Science & Technology

    2018-02-15

    conservation equations. The closure problem hinges on the evaluation of the filtered chemical production rates. In MRA/MSR, simultaneous large-eddy...simulations of a reactive flow are performed at different mesh resolution levels. The solutions at each coarser mesh level are constrained by the filtered ...include the replacement of chemical production rates with those filtered from the underlying fine mesh and the construction of ‘exact’ forms for

  7. The numerical simulation study of hemodynamics of the new dense-mesh stent

    NASA Astrophysics Data System (ADS)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  8. Assessment of adhesion formation after laparoscopic intraperitoneal implantation of Dynamesh IPOM mesh

    PubMed Central

    Jałyński, Marek; Piskorz, Łukasz; Brocki, Marian

    2013-01-01

    Introduction Formation of adhesions after laparoscopic hernia repair using the intra-peritoneal onlay mesh (IPOM) procedure can lead to intestinal obstruction or mesh erosion into intestinal lumen. The aims of this study included: measurement of adhesion formation with Dynamesh IPOM after laparoscopic intraperitoneal implantation, and assessment of the occurrence of isolated adhesions at the fastening sites of slowly absorbable sutures. Material and methods Twelve healthy pigs underwent laparoscopic implantation of 2 Dynamesh IPOM mesh fragments each, one was fastened with PDSII, and the other with Maxon sutures. An assessment of adhesion formation was carried out after 6 weeks and included an evaluation of surface area, hardness according to the Zhulke scale, and index values. The occurrence of isolated adhesions at slowly absorbable suture fixation points was also analyzed. Results Adhesions were noted in 83.3% of Dynamesh IPOM meshes. Adhesions covered on average 37.7% of the mesh surface with mean hardness 1.46 and index value 78.8. In groups fixed with PDS in comparison to Maxon sutures adhesions covered mean 31.6% vs. 42.5% (p = 0.62) of the mesh surface, mean hardness was 1.67 vs.1.25 (p = 0.34) and index 85.42 vs. 72.02 (p = 0.95). Conclusions The Dynamesh IPOM mesh, in spite of its anti-adhesive layer of PVDF, does not prevent the formation of adhesions. Adhesion hardness, surface area, and index values of the Dynamesh IPOM mesh are close to the mean values of these parameters for other commercially available 2-layer meshes. Slowly absorbable sutures used for fastening did not increase the risk of adhesion formation. PMID:23847671

  9. Preliminary report of a sutureless onlay technique for incisional hernia repair using fibrin glue alone for mesh fixation.

    PubMed

    Stoikes, Nathaniel; Webb, David; Powell, Ben; Voeller, Guy

    2013-11-01

    The Rives repair for ventral/incisional (V/I) hernias involves sublay mesh placement requiring retrorectus dissection and transfascial stitches. Chevrel described a repair by onlaying mesh after a unique primary fascial closure. Although Chevrel fixated mesh to the anterior fascia with sutures, he used fibrin glue for fascial closure reinforcement. We describe an onlay technique with mesh fixated to the anterior fascia solely with fibrin glue without suture fixation. From January 2010 to January 2012, 50 patients underwent a V/I hernia onlay technique with fibrin glue mesh fixation. Records were reviewed for technical details, demographics, mesh characteristics, and postoperative outcomes. Primary fascial closure with interrupted permanent suture was done with or without myofascial advancement flaps. Onlay polypropylene mesh was placed providing 8 cm of overlap. Fibrin glue was applied over the prosthesis and subcutaneous drains were placed. Mean age was 62.4 years. Mean body mass index was 30.1 kg/m(2). Average mesh size was 14.5 cm × 19.1 cm. Mean operative time was 144.4 minutes (range, 38 to 316 minutes). Mean discharge was postoperative Day 2.9 (range, 0 to 15 days). Morbidity included eight seromas, one hematoma, and three wound infections. Seventeen patients required components separation. Mean follow-up was 19.5 months with no recurrences. This is the first series describing fibrin glue alone for mesh fixation for V/I hernia repair. It allows for immediate prosthesis fixation to the anterior fascia. Early results are promising. Potential advantages include less operative time, less technical difficulty, and less long-term pain. A prospective trial is needed to evaluate this approach.

  10. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  11. Quadrilateral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  12. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  13. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; Shephard, M. S.; Zhang, F.

    2016-05-01

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  14. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.

    PubMed

    Longest, P Worth; Vinchurkar, Samir

    2007-04-01

    A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.

  15. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  16. Vaginal Approaches Using Synthetic Mesh to Treat Pelvic Organ Prolapse.

    PubMed

    Moon, Jei Won; Chae, Hee Dong

    2016-02-01

    Pelvic organ prolapse (POP) is a very common condition in elderly women. In women with POP, a sacrocolpopexy or a vaginal hysterectomy with anterior and posterior colporrhaphy has long been considered as the gold standard of treatment. However, in recent decades, the tendency to use a vaginal approach with mesh for POP surgery has been increasing. A vaginal approach using mesh has many advantages, such as its being less invasive than an abdominal approach and easier to do than a laparoscopic approach and its having a lower recurrence rate than a traditional approach. However, the advantages of a vaginal approach with mesh for POP surgery must be weighed against the disadvantages. Specific complications that have been reported when using mesh in POP procedures are mesh erosion, dyspareunia, hematomas, urinary incontinence and so on, and evidence supporting the use of transvaginal surgery with mesh is still lacking. Hence, surgeons should understand the details of the surgical pelvic anatomy, the various surgical techniques for POP surgery, including using mesh, and the possible side effects of using mesh.

  17. Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor & Anal Canal for Finite Element Analysis

    PubMed Central

    Noakes, Kimberley F.; Bissett, Ian P.; Pullan, Andrew J.; Cheng, Leo K.

    2014-01-01

    Three anatomically realistic meshes, suitable for finite element analysis, of the pelvic floor and anal canal regions have been developed to provide a framework with which to examine the mechanics, via finite element analysis of normal function within the pelvic floor. Two cadaver-based meshes were produced using the Visible Human Project (male and female) cryosection data sets, and a third mesh was produced based on MR image data from a live subject. The Visible Man (VM) mesh included 10 different pelvic structures while the Visible Woman and MRI meshes contained 14 and 13 structures respectively. Each image set was digitized and then finite element meshes were created using an iterative fitting procedure with smoothing constraints calculated from ‘L’-curves. These weights produced accurate geometric meshes of each pelvic structure with average Root Mean Square (RMS) fitting errors of less than 1.15 mm. The Visible Human cadaveric data provided high resolution images, however, the cadaveric meshes lacked the normal dynamic form of living tissue and suffered from artifacts related to postmortem changes. The lower resolution MRI mesh was able to accurately portray structure of the living subject and paves the way for dynamic, functional modeling. PMID:18317929

  18. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE PAGES

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; ...

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  19. Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.

    PubMed

    Melrose, D B; Mushtaq, A

    2010-11-01

    The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.

  20. Tensile behaviors of three-dimensionally free-formable titanium mesh plates for bone graft applications

    NASA Astrophysics Data System (ADS)

    He, Jianmei

    2017-11-01

    Present metal artificial bones for bone grafts have the problems like too heavy and excessive elastic modulus compared with natural bones. In this study, three-dimensionally (3D) free-formable titanium mesh plates for bone graft applications was introduced to improve these problems. Fundamental mesh shapes and patterns were designed under different base shapes and design parameters through three dimensional CAD tools from higher flexibility and strength points of view. Based on the designed mesh shape and patterns, sample specimens of titanium mesh plates with different base shapes and design variables were manufactured through laser processing. Tensile properties of the sample titanium mesh plates like volume density, tensile elastic modulus were experimentally and analytically evaluated. Experimental results showed that such titanium mesh plates had much higher flexibility and their mechanical properties could be controlled to close to the natural bones. More details on the mechanical properties of titanium mesh plates including compression, bending, torsion and durability will be carried out in future study.

  1. An Agent Based Collaborative Simplification of 3D Mesh Model

    NASA Astrophysics Data System (ADS)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  2. Secondary Emission Calorimeter Sensor Development

    NASA Astrophysics Data System (ADS)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is estimated to be <15 ns. With fine mesh sampling only (no thick absorbers) the resolution is ~25 MeV at 1 GeV.

  3. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGES

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  4. A preclinical evaluation of polypropylene/polylacticacid hybrid meshes for fascial defect repair using a rat abdominal hernia model

    PubMed Central

    Le Teuff, Isabelle; Huberlant, Stephanie; Carteron, Patrick; Letouzey, Vincent; de Tayrac, Renaud

    2017-01-01

    Objectives Synthetic mesh surgery for both abdominal and urogenital hernia repair is often unsatisfactory in the long-term due to postoperative complications. We hypothesized that a semi-degradable mesh hybrid may provide more appropriate biocompatibility with comparable mechanical properties. The aim was to compare its in vivo biocompatibility with a commercial polypropylene (PP) mesh. Methods 72 rats were randomly allocated to either our new composite mesh (monofilament PP mesh knitted with polylactic-acid-fibers (PLA)) or to a commercially available PP mesh that was used as a control. 15, 90, and 180 days after implantation into the rat abdomen mesh tissue complexes were analysed for erosion, contraction, foreign body reaction, tissue integration and biomechanical properties. Results No differences were seen in regard to clinical parameters including erosion, contraction or infection rates between the two groups. Biomechanical properties including breaking load, stiffness and deformation did not show any significant differences between the different materials at any timepoint. Macrophage staining did not reveal any significant differences between the two groups or between timepoints either. In regard to collagen I there was significantly less collagen I in the PP group compared to the PP/ PLA group at day 180. Collagen III did not show any significant differences at any timepoint between the two groups. Conclusion A PP/PLA hybrid mesh, leaving a low amount of PP after PLA degradation seems to have comparable biomechanical properties like PP at 180 days due to enhanced collagen production without significant differences in erosion, contraction, herniation or infection rates. PMID:28598983

  5. The integration of a mesh reflector to a 15-foot box truss structure. Task 3: Box truss analysis and technology development

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Thiemet, W. F.; Morosow, G.

    1987-01-01

    To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.

  6. Method for generating a mesh representation of a region characterized by a trunk and a branch thereon

    DOEpatents

    Shepherd, Jason [Albuquerque, NM; Mitchell, Scott A [Albuquerque, NM; Jankovich, Steven R [Anaheim, CA; Benzley, Steven E [Provo, UT

    2007-05-15

    The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.

  7. Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks.

    PubMed

    Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R

    2011-12-01

    This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (<6 in.), Prolene Soft, or Physiomesh, but the tensile strengths were reduced for Bard Mesh, C-QUR, ProLite, and C-QUR Lite (>6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.

  8. A Proximal Straining Mesh Location Is Associated With De Novo Stress Urinary Incontinence After Transobturator Mesh Procedures.

    PubMed

    Huang, Wen-Chen; Yang, Jenn-Ming

    2017-03-01

    The purpose of this study was to explore the association between mesh location and de novo stress urinary incontinence (SUI) after transvaginal mesh procedures. We retrospectively analyzed a database of women who had received transvaginal mesh procedures for stage III or greater cystocele according to the Pelvic Organ Prolapse Quantification system. Only data for women who neither reported SUI preoperatively nor had received concomitant anti-incontinence surgery were included for analyses. The mesh location was investigated by sonography via the percentage of the urethra covered by mesh, defined as the number calculated by dividing the portion of the urethral length covered by mesh (the distance from the bladder neck to the point of the urethra, which was indicated by an imaginary line at the level of the lower [caudal] mesh end and perpendicular to the urethra) by the total urethral length (the distance from the bladder neck to the external urethral meatus) in the sagittal plane. The resting, straining, coughing, and squeezing mesh locations of women who did (n = 29) and did not (n = 54) report SUI at the 12-month follow-up were compared. At the 12-month follow-up, women who reported SUI had a significantly smaller straining percentage of the urethra covered by mesh (mean ± SD, 28.5% ± 9.6%) compared with continent women (35.2% ± 15.8%), indicating a more proximal straining mesh location. Sonography is useful in investigating the location of the transvaginal mesh. De novo SUI after transvaginal mesh procedures is associated with a more proximal straining mesh location. © 2017 by the American Institute of Ultrasound in Medicine.

  9. Meta-analysis of Prolene Hernia System mesh versus Lichtenstein mesh in open inguinal hernia repair.

    PubMed

    Sanjay, Pandanaboyana; Watt, David G; Ogston, Simon A; Alijani, Afshin; Windsor, John A

    2012-10-01

    This study was designed to systematically analyse all published randomized clinical trials comparing the Prolene Hernia System (PHS) mesh and Lichtenstein mesh for open inguinal hernia repair. A literature search was performed using the Cochrane Colorectal Cancer Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials in the Cochrane Library, MEDLINE, Embase and Science Citation Index Expanded. Randomized trials comparing the Lichtenstein Mesh repair (LMR) with the Prolene Hernia System were included. Statistical analysis was performed using Review Manager Version 5.1 software. The primary outcome measures were hernia recurrence and chronic pain after operation. Secondary outcome measures included surgical time, peri-operative complications, time to return to work, early and long-term postoperative complications. Six randomized clinical trials were identified as suitable, containing 1313 patients. There was no statistical difference between the two types of repair in operation time, time to return to work, incidence of chronic groin pain, hernia recurrence or long-term complications. The PHS group had a higher rate of peri-operative complications, compared to Lichtenstein mesh repair (risk ratio (RR) 0.71, 95% confidence interval 0.55-0.93, P=0.01). The use of PHS mesh was associated with an increased risk of peri-operative complications compared to LMR. Both mesh repair techniques have comparable short- and long-term outcomes. Copyright © 2012 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  10. Warthog: Coupling Status Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Shane W. D.; Reardon, Bradley T.

    The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthogmore » is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a stand-alone BISON run. Future work involves improving the user interface (UI), likely through integration with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench. Furthermore, automating the input creation would ease the user experience. The next priority is to continue coupling the work with other codes in the SHARP package. Efforts on other projects include work to couple the Nek5000 thermo-hydraulics code to MOOSE, but this is in the preliminary stages.« less

  11. Flow Model Study for Section 227 Demonstration Project in Allegan County, Michigan. National Shoreline Erosion Control Development and Demonstration Program

    DTIC Science & Technology

    2007-09-01

    is necessary to convert the solids to a 3-D computational mesh. The user must decide how many layers of mesh elements are required for each material ...together to define the geology gives the user more control over the material contacts. Secondly, the tool to convert directly to a 3-D mesh from the...included in the model. Rocks, cracks , fissures, and plant material can affect the flow character- istics, but cannot be included in a model on this scale

  12. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  13. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  14. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly usefulmore » tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.« less

  15. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

    NASA Astrophysics Data System (ADS)

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.

    2017-06-01

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  16. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E

    2017-06-21

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  17. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  18. Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2014-01-01

    Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.

  19. A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake

    NASA Astrophysics Data System (ADS)

    Bercea, Gheorghe-Teodor; McRae, Andrew T. T.; Ham, David A.; Mitchell, Lawrence; Rathgeber, Florian; Nardi, Luigi; Luporini, Fabio; Kelly, Paul H. J.

    2016-10-01

    We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10-20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.

  20. Immediate effects of the initial FDA notification on the use of surgical mesh for pelvic organ prolapse surgery in medicare beneficiaries.

    PubMed

    Reynolds, W Stuart; Gold, Karen P; Ni, Shenghua; Kaufman, Melissa R; Dmochowski, Roger R; Penson, David F

    2013-04-01

    Prompted by increased reports of complications with the use of mesh for pelvic organ prolapse (POP) surgery, the FDA issued an initial public health notification (PHN) in 2008. We proposed to determine if the numbers of POP cases augmented with surgical mesh performed in U.S. Medicare beneficiaries changed relative to this PHN. Using administrative healthcare claims for beneficiaries enrolled in the U.S. Medicare program from 2008 to 2009, we identified women who underwent POP surgery with and without surgical mesh by procedural and diagnosis coding. In addition to comparing cases with and without mesh, we also calculated rates (number of cases per 100,000 female beneficiaries) and compared these relative to the timing of the PHN. We identified 104,185 POP procedures, of which 27,839 (26.7%) included mesh material and 76,346 (73.3%) did not. Between the last three quarters of 2008 and the first three of 2009, the rates of mesh cases increased (40.3-42.1, P < 0.001) and those without mesh decreased (115.5-111.4, P < 0.001). Inpatient procedures decreased and outpatient procedures increased for both those with and without mesh augmentation. For inpatient procedures, the relative use of biologic graft and synthetic mesh material did not vary over the study period. A substantial number of Medicare beneficiaries underwent mesh POP procedures in 2008-2009. However, despite the PHN cautioning about potential mesh complications, the numbers of mesh cases continued to rise in the immediate period after the PHN. Copyright © 2012 Wiley Periodicals, Inc.

  1. Bone-anchored sling using the Mini Quick Anchor Plus and polypropylene mesh to treat post-radical prostatectomy incontinence: early experience.

    PubMed

    Suzuki, Yasutomo; Saito, Yuka; Ogushi, Satoko; Kimura, Go; Kondo, Yukihiro

    2012-10-01

    Herein we describe our experience with a bone-anchored sling using a suture anchor and polypropylene mesh for the treatment of post-radical prostatectomy urinary incontinence. Eight patients with urinary incontinence as a result of intrinsic sphincter deficiency after radical prostatectomy were included in the analysis. The procedure involved piercing the pubic bone with a bone drill, inserting the suture anchor and fixing a soft or rigid polypropylene mesh to press firmly on the bulbar urethra. Urinary incontinence was significantly improved according to changes in the daily number of pads used at 1, 3 and 6 months postoperatively in comparison with preoperatively. However, no meaningful improvement at 6 months postoperatively was seen with the soft mesh. Complications included perineal pain in four cases, but pain control was achieved using non-steroidal anti-inflammatory drugs. The bone-anchored sling with a suture anchor and polypropylene mesh appears to be safe and effective for the treatment of post-radical prostatectomy urinary incontinence. Soft mesh appears inappropriate as material for the bone-anchored sling because of the progressive likelihood of worsened urinary incontinence. © 2012 The Japanese Urological Association.

  2. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  3. Applications of information and communications technologies to public health: A scoping review using the MeSH term: "public health informatics".

    PubMed

    Bhattarai, Arjun Kumar; Zarrin, Aein; Lee, Joon

    2017-01-01

    To investigate the public health domains, key informatics concepts, and information and communications technologies (ICTs) applied in articles that are tagged with the MeSH term "public health informatics" and primarily focus on applying ICTs to public health. The MeSH term "public health informatics" was searched on MEDLINE-PubMed. The results of the search were then screened in two steps in order to only include articles about applying ICTs to public health problems. First, articles were screened based on their titles and abstracts. Second, a full-text review was conducted to ensure the relevance of the included articles. All articles were charted based on public health domain, information technology, article type, and informatics concept. 515 articles were included. Communicable disease monitoring (N=235), public health policy and research (N=201), and public health awareness (N=85) constituted the majority of the articles. Inconsistent results were found regarding the validity of syndromic surveillance and the effectiveness of PHI integration within the healthcare systems. PHI articles with an ICT focus cover a wide range of themes. Collectively, the included articles emphasized the need for further research in interoperability, data quality, appropriate data sources, accessible health information, and communication. The limitations of the study include:1) only one database was searched; 2) by using MeSH tags as a selection criterion, PHI articles without the "public health informatics" MeSH term were excluded. Due to the multi-disciplinary nature of PHI, MeSH identifiers were not assigned consistently. Current MeSH-tagged articles indicate that a comprehensive approach is required to integrate PHI into the healthcare system.

  4. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  5. Programming of the complex logarithm function in the solution of the cracked anisotropic plate loaded by a point force

    NASA Astrophysics Data System (ADS)

    Zaal, K. J. J. M.

    1991-06-01

    In programming solutions of complex function theory, the complex logarithm function is replaced by the complex logarithmic function, introducing a discontinuity along the branch cut into the programmed solution which was not present in the mathematical solution. Recently, Liaw and Kamel presented their solution of the infinite anisotropic centrally cracked plate loaded by an arbitrary point force, which they used as Green's function in a boundary element method intended to evaluate the stress intensity factor at the tip of a crack originating from an elliptical home. Their solution may be used as Green's function of many more numerical methods involving anisotropic elasticity. In programming applications of Liaw and Kamel's solution, the standard definition of the logarithmic function with the branch cut at the nonpositive real axis cannot provide a reliable computation of the displacement field for Liaw and Kamel's solution. Either the branch cut should be redefined outside the domain of the logarithmic function, after proving that the domain is limited to a part of the plane, or the logarithmic function should be defined on its Riemann surface. A two dimensional line fractal can provide the link between all mesh points on the plane essential to evaluate the logarithm function on its Riemann surface. As an example, a two dimensional line fractal is defined for a mesh once used by Erdogan and Arin.

  6. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  7. A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Yidong Xia; Robert Nourgaliev

    2011-05-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison.more » Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.« less

  8. Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers

    NASA Astrophysics Data System (ADS)

    Tao, Y. B.; Liu, Y. W.; Gao, F.; Chen, X. Y.; He, Y. L.

    2009-09-01

    An anisotropic porous media model for mesh regenerator used in pulse tube refrigerator (PTR) is established. Formulas for permeability and Forchheimer coefficient are derived which include the effects of regenerator configuration and geometric parameters, oscillating flow, operating frequency, cryogenic temperature. Then, the fluid flow and heat transfer performances of mesh regenerator are numerically investigated under different mesh geometric parameters and material properties. The results indicate that the cooling power of the PTR increases with the increases of specific heat capacity and density of the regenerator mesh material, and decreases with the increases of penetration depth and thermal conductivity ratio ( a). The cooling power at a = 0.1 is 0.5-2.0 W higher than that at a = 1. Optimizing the filling scale of different mesh configurations (such as 75% #200 twill and 25% #250 twill) and adopting multi segments regenerator with stainless steel meshes at the cold end can enhance the regenerator's efficiency and achieve better heat transfer performance.

  9. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    PubMed

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P < 0.001). The quality of assignment of the existing pharmacy-specific MeSH terms to articles indexed in pharmacy journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.

  11. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh.

    PubMed

    Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon

    2015-03-11

    For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.

  12. Effects of mesenchymal stem cell and fibroblast coating on immunogenic potential of prosthetic meshes in vitro.

    PubMed

    Gao, Yue; Krpata, David M; Criss, Cory N; Liu, Lijia; Posielski, Natasza; Rosen, Michael J; Novitsky, Yuri W

    2014-08-01

    The aim of this study was to reveal the effect of fibroblast or mesenchymal stem cell (MSC) coating on the mesh-induced production of IL-1β, IL-6, and VEGF by macrophages. Four commonly used surgical meshes were tested in this study, including Parietex, SoftMesh, TIGR, and Strattice. One-square-centimeter pieces of each mesh were placed on top of a monolayer of human fibroblasts or rat MSCs. The coating status was monitored with a light microscope. The human promonocytic cell line U937 was induced to differentiate into macrophages (MΦ). Three weeks later, meshes were transferred to new 24-well plates and cocultured with the MΦs for 72 h. Culture medium was collected and analyzed for IL-1β, IL-6, and VEGF production using standard ELISA essays. Parallel mesh samples were fixed with paraformaldehyde or glutaraldehyde for histology or transmission electronic microscopy (TEM) analyses, respectively. Uncoated meshes induced increased production of all three cytokines compared with macrophages cultured alone. HF coating further increased the production of both IL-6 and VEGF but reduced IL-1β production. Except for the SoftMesh group, MSC coating significantly blunted release of all cytokines to levels even lower than with MΦs cultured alone. MΦs tended to deteriorate in the presence of MSCs. Both histology and TEM revealed intimate interactions between cell-coated meshes and MΦs. Cytokine response to fibroblast coating varied, while MSC coating blunted the immunogenic effect of both synthetic and biologic meshes in vitro. Cell coating appears to affect mesh biocompatibility and may become a key process in mesh evolution.

  13. Transvaginal mesh in the media following the 2011 US food and drug administration public health notification update.

    PubMed

    Koo, Kevin; Gormley, E Ann

    2017-02-01

    Prompted by patients' changing perceptions of transvaginal mesh, this study examines how mesh has been reported in the news following the 2011 US Food and Drug Administration (FDA) updated notification about the use of mesh in the treatment of pelvic organ prolapse. Two national newspaper databases were queried for articles discussing transvaginal mesh published within 3 years of the FDA announcement. Content analysis included headline subjects, mesh-related complications, quoted sources, and the FDA recommendations. To determine whether more widely read sources publish higher quality reporting, a subgroup analysis was conducted based on newspaper circulation. Ninety-five articles met inclusion criteria. Mesh-related litigation was the most common headline subject (36 articles, 38%), and 54% of all articles referenced legal action. Fifty-seven articles (60%) cited at least one mesh-related complication. Only 18 articles (19%) quoted surgeons who use transvaginal mesh. For the FDA update, 40% of articles that first reported the announcement accurately specified that it applies to mesh for prolapse, not incontinence. This ambiguity persisted: half of all articles cited the warning, but only 23% distinguished between prolapse and incontinence. Higher newspaper circulation did not significantly improve the quality of reporting about the content or context of the FDA's recommendations. Despite frequent media coverage of transvaginal mesh and its complications since 2011, very few news sources that cited the FDA warning distinguished between prolapse and incontinence. Given prevalent reporting of mesh-related litigation, the findings raise concern about how patients perceive the safety and efficacy of transvaginal mesh, regardless of indication. Neurourol. Urodynam. 36:329-332, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. The continuing challenge of parastomal hernia: failure of a novel polypropylene mesh repair.

    PubMed Central

    Morris-Stiff, G.; Hughes, L. E.

    1998-01-01

    In an attempt to reduce the high recurrence rate after repair of parastomal hernia, a technique was devised in which non-absorbable mesh was used to provide a permanent closure of the gap between the emerging bowel and abdominal wall. Seven patients were treated during the period 1990-1992. Five-year follow-up has given disappointing results, with recurrent hernia in 29% of cases and serious complications, including obstruction and dense adhesions to the intra-abdominal mesh, in 57% and a mesh-related abscess in 15% of cases. This study highlights a dual problem--failure of a carefully sutured mesh to maintain an occlusive position, and complications of the mesh itself. The poor results obtained with this technique together with the disappointing results with other methods described in the literature confirms that parastomal hernia presents a continuing challenge. Images Figure 1 Figure 2 PMID:9682640

  15. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  16. Visualization of AMR data with multi-level dual-mesh interpolation.

    PubMed

    Moran, Patrick J; Ellsworth, David

    2011-12-01

    We present a new technique for providing interpolation within cell-centered Adaptive Mesh Refinement (AMR) data that achieves C(0) continuity throughout the 3D domain. Our technique improves on earlier work in that it does not require that adjacent patches differ by at most one refinement level. Our approach takes the dual of each mesh patch and generates "stitching cells" on the fly to fill the gaps between dual meshes. We demonstrate applications of our technique with data from Enzo, an AMR cosmological structure formation simulation code. We show ray-cast visualizations that include contributions from particle data (dark matter and stars, also output by Enzo) and gridded hydrodynamic data. We also show results from isosurface studies, including surfaces in regions where adjacent patches differ by more than one refinement level. © 2011 IEEE

  17. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.

    2003-01-01

    The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.

  18. Gastroenterology-Urology Devices; Manual Gastroenterology-Urology Surgical Instruments and Accessories. Final rule; technical amendment.

    PubMed

    2017-03-01

    The Food and Drug Administration (FDA) is amending the identification of manual gastroenterology-urology surgical instruments and accessories to reflect that the device does not include specialized surgical instrumentation for use with urogyencologic surgical mesh specifically intended for use as an aid in the insertion, placement, fixation, or anchoring of surgical mesh during urogynecologic procedures ("specialized surgical instrumentation for use with urogynecologic surgical mesh"). These amendments are being made to reflect changes made in the recently issued final reclassification order for specialized surgical instrumentation for use with urogynecologic surgical mesh.

  19. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  20. Summation rules for a fully nonlocal energy-based quasicontinuum method

    NASA Astrophysics Data System (ADS)

    Amelang, J. S.; Venturini, G. N.; Kochmann, D. M.

    2015-09-01

    The quasicontinuum (QC) method coarse-grains crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. A crucial cornerstone of all QC techniques, summation or quadrature rules efficiently approximate the thermodynamic quantities of interest. Here, we investigate summation rules for a fully nonlocal, energy-based QC method to approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of all atoms in the crystal lattice. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. We review traditional summation rules and discuss their strengths and weaknesses with a focus on energy approximation errors and spurious force artifacts. Moreover, we introduce summation rules which produce no residual or spurious force artifacts in centrosymmetric crystals in the large-element limit under arbitrary affine deformations in two dimensions (and marginal force artifacts in three dimensions), while allowing us to seamlessly bridge to full atomistics. Through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions, we compare the accuracy of the new scheme to various previous ones. Our results confirm that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors. Our numerical benchmark examples include the calculation of elastic constants from completely random QC meshes and the inhomogeneous deformation of aggressively coarse-grained crystals containing nano-voids. In the elastic regime, we directly compare QC results to those of full atomistics to assess global and local errors in complex QC simulations. Going beyond elasticity, we illustrate the performance of the energy-based QC method with the new second-order summation rule by the help of nanoindentation examples with automatic mesh adaptation. Overall, our findings provide guidelines for the selection of summation rules for the fully nonlocal energy-based QC method.

  1. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.

  2. Synthetic vaginal mesh for pelvic organ prolapse.

    PubMed

    Iglesia, Cheryl B

    2011-10-01

    The purpose of this review is to summarize recently published comparative trials on synthetic vaginal mesh versus traditional native tissue repairs for pelvic organ prolapse. Although studies suggest benefit from the use of synthetic vaginal mesh for anterior compartment prolapse, data are limited on the use of mesh for posterior and apical prolapse when compared with native tissue repair. The benefits of a more durable repair must be weighed against risks such as the development of de-novo stress incontinence, visceral injury, dyspareunia, pelvic pain and mesh contraction, exposure and extrusion requiring reoperation. Furthermore, the success rates of native tissue repairs are higher than previously considered using updated validated composite outcomes that incorporate both subjective relief of bulge and objective cure defined as prolapse above the hymenal ring. Surgeons placing synthetic mesh for pelvic organ prolapse should counsel patients regarding the potential benefits, risks, and alternatives including native tissue repairs. Level 1 evidence suggests anterior synthetic mesh may be superior to anterior repair. Expert opinion suggests potential benefit of vaginal mesh for recurrences, hysteropexy, and advanced prolapse in patients with medical co-morbidities precluding invasive open and endoscopic sacrocolpopexies; however, comparative clinical trials with long-term data are needed. (C) 2011 Lippincott Williams & Wilkins, Inc.

  3. Accelerating Large Data Analysis By Exploiting Regularities

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Ellsworth, David

    2003-01-01

    We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.

  4. An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Han, Jianqiang; Tang, Huazhong

    2007-01-01

    This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud-shock interaction problem.

  5. On the application of hybrid meshes in hydraulic machinery CFD simulations

    NASA Astrophysics Data System (ADS)

    Schlipf, M.; Tismer, A.; Riedelbauch, S.

    2016-11-01

    The application of two different hybrid mesh types for the simulation of a Francis runner for automated optimization processes without user input is investigated. Those mesh types are applied to simplified test cases such as flow around NACA airfoils to identify the special mesh resolution effects with reduced complexity, like rotating cascade flows, as they occur in a turbomachine runner channel. The analysis includes the application of those different meshes on the geometries by keeping defined quality criteria and exploring the influences on the simulation results. All results are compared with reference values gained by simulations with blockstructured hexahedron meshes and the same numerical scheme. This avoids additional inaccuracies caused by further numerical and experimental measurement methods. The results show that a simulation with hybrid meshes built up by a blockstructured domain with hexahedrons around the blade in combination with a tetrahedral far field in the channel is sufficient to get results which are almost as accurate as the results gained by the reference simulation. Furthermore this method is robust enough for automated processes without user input and enables comparable meshes in size, distribution and quality for different similar geometries as occurring in optimization processes.

  6. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  7. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  8. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  9. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  10. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  11. Onlay with Adhesive Use Compared with Sublay Mesh Placement in Ventral Hernia Repair: Was Chevrel Right? An Americas Hernia Society Quality Collaborative Analysis.

    PubMed

    Haskins, Ivy N; Voeller, Guy R; Stoikes, Nathaniel F; Webb, David L; Chandler, Robert G; Phillips, Sharon; Poulose, Benjamin K; Rosen, Michael J

    2017-05-01

    The use of mesh during ventral hernia repair (VHR) is a well-accepted concept. However, the ideal location of mesh placement remains strongly debated. Although VHR with onlay mesh placement has historically been associated with a high rate of wound events, this surgical approach is technically less challenging than VHR with sublay mesh placement. The purpose of this study was to compare 30-day wound events after onlay mesh placement with adhesive fixation vs those after sublay mesh placement using the Americas Hernia Society Quality Collaborative database. All patients undergoing elective, open VHR with synthetic mesh placement from January 2013 through January 2016 were identified within the Americas Hernia Society Quality Collaborative. Only patients with clean wounds were included. Patients were divided into 2 groups: onlay mesh placement with the use of adhesive and sublay mesh placement. The association of mesh location with 30-day wound events was investigated using a matched analysis. A total of 1,854 patients met inclusion criteria; 1,761 (95.0%) underwent sublay mesh placement and 93 (5.0%) underwent onlay mesh placement with the use of adhesive. A 2:1 sublay to onlay matched analysis was performed based on factors previously shown to influence wound events after VHR. After matching, both groups had a lower mean Ventral Hernia Working Group grade and fewer associated comorbidities. There was no statistically significant difference between the sublay and onlay groups with respect to 30-day surgical site infections (2.9% vs 5.5%; p = 0.30), surgical site occurrences (15.2% vs 7.7%; p = 0.08), or surgical site occurrences requiring procedural intervention (8.2% vs 5.5%; p = 0.42). Ventral hernia repair with onlay mesh placement is a safe alternative to VHR with sublay mesh placement in low-risk patients. Additional studies are needed to determine the long-term mesh outcomes and recurrence rates in both of these groups. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Impact of the 2011 FDA transvaginal mesh safety update on AUGS members' use of synthetic mesh and biologic grafts in pelvic reconstructive surgery.

    PubMed

    Clemons, Jeffrey L; Weinstein, Milena; Guess, Marsha K; Alperin, Marianna; Moalli, Pamela; Gregory, William Thomas; Lukacz, Emily S; Sung, Vivian W; Chen, Bertha H; Bradley, Catherine S

    2013-01-01

    To describe the frequency of use and recent change in use of synthetic mesh and biologic grafts in pelvic organ prolapse (POP) and stress urinary incontinence surgery by American Urogynecology Society (AUGS) members. An electronic survey of AUGS members was conducted between December 2011 and January 2012. Frequency of graft use in POP (overall and by transvaginal and transabdominal approaches) and stress urinary incontinence surgery was queried relative to the timing of the 2011 Food and Drug Administration (FDA) safety update. Rates of materials' use before and after the statement were compared using Wilcoxon signed rank test. Fifty-three percent (507/962) of AUGS members responded and were included in analysis; 79% were urogynecologists. Before the FDA warning, in POP surgery, most (90%) used synthetic mesh and fewer (34%) used biologic grafts; 99% used synthetic mesh slings. After the FDA statement, respondents reported an overall decrease in the percent of POP cases in which they used synthetic mesh (P < 0.001) but no change in biologic graft use for POP (P = 0.37) or synthetic mesh sling use (P = 0.10). Specifically, transvaginal mesh use decreased: 40% reported decreased use and 12% stopped use. However, transvaginal mesh was still used by 61% of respondents in at least some cases. No change (62%) or increased use (12%) of mesh was reported for transabdominal POP procedures. Synthetic mesh use in transvaginal POP surgery decreased after the 2011 FDA safety update, but synthetic mesh use for transabdominal POP repair and sling procedures and overall biologic graft use in POP surgery did not decrease.

  13. Defining patients' knowledge and perceptions of vaginal mesh surgery.

    PubMed

    Brown, Lindsay K; Fenner, Dee E; Berger, Mitchell B; Delancey, John O L; Morgan, Daniel M; Patel, Divya A; Schimpf, Megan O

    2013-01-01

    Given recent government investigations and media coverage of the controversy regarding mesh surgery, we sought to define patients' knowledge and perceptions of vaginal mesh surgery. An anonymous survey was distributed to a convenience sample of new patients at urogynecology and female urology clinics at a single medical center during April to June 2012. The survey assessed patients' demographics, information sources, and beliefs and concerns regarding mesh surgery. The Fisher's exact test was used to identify predictors of patients' beliefs regarding mesh. Logistic and linear regressions were used to identify predictors of aversion to surgery and higher concern regarding future surgery. One hundred sixty-four women completed the survey; 62.2% (102/164) indicated knowledge of mesh surgery for prolapse and/or incontinence and were included in subsequent analyses. The mean ± SD age was 58.0 ± 12.5 years, and 24.5% reported prior mesh surgery. The most common information source was television commercials (57.8%); only 23.5% of the women reported receiving information from a medical professional. Participants indicated the following regarding vaginal mesh: class-action lawsuit in progress (55/102 [54.0%]), causes pain (47/102 [47.1%]), possibility of rejection (35/102 [34.3%]), can cause bleeding and become exposed vaginally (30/102 [29.4%]), and should be removed owing to recall (28/102 [27.5%]). Of these women, 22.1% (19/86) indicated they would not consider mesh surgery. On multivariable logistic regression, level of concern, information from friends/family, and knowledge of class-action lawsuit predicted aversion to mesh surgery. Nearly two thirds of new patients had knowledge of vaginal mesh surgery. We identified considerable misinformation and aversion to future mesh surgery among these women.

  14. Lower reoperation rate for recurrence after mesh versus sutured elective repair in small umbilical and epigastric hernias. A nationwide register study.

    PubMed

    Christoffersen, M W; Helgstrand, F; Rosenberg, J; Kehlet, H; Bisgaard, T

    2013-11-01

    Repair for a small (≤ 2 cm) umbilical and epigastric hernia is a minor surgical procedure. The most common surgical repair techniques are a sutured repair or a repair with mesh reinforcement. However, the optimal repair technique with regard to risk of reoperation for recurrence is not well documented. The aim of the present study was in a nationwide setup to investigate the reoperation rate for recurrence after small open umbilical and epigastric hernia repairs using either sutured or mesh repair. This was a prospective cohort study based on intraoperative registrations from the Danish Ventral Hernia Database (DVHD) of patients undergoing elective open mesh and sutured repair for small (≤ 2 cm) umbilical and epigastric hernias. Patients were included during a 4-year study period. A complete follow-up was obtained by combining intraoperative data from the DVHD with data from the Danish National Patient Register. The cumulative reoperation rates were obtained using cumulative incidence plot and compared with the log rank test. In total, 4,786 small (≤ 2 cm) elective open umbilical and epigastric hernia repairs were included. Age was median 48 years (range 18-95 years). Follow-up was 21 months (range 0-47 months). The cumulated reoperation rates for recurrence were 2.2 % for mesh reinforcement and 5.6 % for sutured repair (P = 0.001). The overall cumulated reoperation rate for sutured and mesh repairs was 4.8 %. In conclusion, reoperation rate for recurrence for small umbilical and epigastric hernias was significantly lower after mesh repair compared with sutured repair. Mesh reinforcement should be routine in even small umbilical or epigastric hernias to lower the risk of reoperation for recurrence avoid recurrence.

  15. The exact fundamental solution for the Benes tracking problem

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  16. Computational performance of Free Mesh Method applied to continuum mechanics problems

    PubMed Central

    YAGAWA, Genki

    2011-01-01

    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753

  17. Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation

    PubMed Central

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2012-01-01

    Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing “bad” triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method. PMID:23144522

  18. Modelling atmospheric flows with adaptive moving meshes

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas

    2012-04-01

    An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.

  19. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms.

    PubMed

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity--a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  20. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  1. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  2. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Li, G., E-mail: gli@clemson.edu

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as amore » function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.« less

  3. Numerical solution of the Navier-Stokes equations for blunt nosed bodies in supersonic flows

    NASA Technical Reports Server (NTRS)

    Warsi, Z. U. A.; Devarayalu, K.; Thompson, J. F.

    1978-01-01

    A time dependent, two dimensional Navier-Stokes code employing the method of body fitted coordinate technique was developed for supersonic flows past blunt bodies of arbitrary shapes. The bow shock ahead of the body is obtained as part of the solution, viz., by shock capturing. A first attempt at mesh refinement in the shock region was made by using the forcing function in the coordinate generating equations as a linear function of the density gradients. The technique displaces a few lines from the neighboring region into the shock region. Numerical calculations for Mach numbers 2 and 4.6 and Reynolds numbers from 320 to 10,000 were performed for a circular cylinder with and without a fairing. Results of Mach number 4.6 and Reynolds number 10,000 for an isothermal wall temperature of 556 K are presented in detail.

  4. Computational Study of the Richtmyer-Meshkov Instability with a Complex Initial Condition

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Reilly, David; Greenough, Jeffrey; Ranjan, Devesh

    2014-11-01

    Results are presented for a computational study of the Richtmyer-Meshkov instability with a complex initial condition. This study covers experiments which will be conducted at the newly-built inclined shock tube facility at the Georgia Institute of Technology. The complex initial condition employed consists of an underlying inclined interface perturbation with a broadband spectrum of modes superimposed. A three-dimensional staggered mesh arbitrary Lagrange Eulerian (ALE) hydrodynamics code developed at Lawerence Livermore National Laboratory called ARES was used to obtain both qualitative and quantitative results. Qualitative results are discussed using time series of density plots from which mixing width may be extracted. Quantitative results are also discussed using vorticity fields, circulation components, and energy spectra. The inclined interface case is compared to the complex interface case in order to study the effect of initial conditions on shocked, variable-density flows.

  5. Parallel Solver for H(div) Problems Using Hybridization and AMG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chak S.; Vassilevski, Panayot S.

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examinedmore » through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.« less

  6. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT).

    PubMed

    Glazener, Cathryn Ma; Breeman, Suzanne; Elders, Andrew; Hemming, Christine; Cooper, Kevin G; Freeman, Robert M; Smith, Anthony Rb; Reid, Fiona; Hagen, Suzanne; Montgomery, Isobel; Kilonzo, Mary; Boyers, Dwayne; McDonald, Alison; McPherson, Gladys; MacLennan, Graeme; Norrie, John

    2017-01-28

    The use of transvaginal mesh and biological graft material in prolapse surgery is controversial and has led to a number of enquiries into their safety and efficacy. Existing trials of these augmentations are individually too small to be conclusive. We aimed to compare the outcomes of prolapse repair involving either synthetic mesh inlays or biological grafts against standard repair in women. We did two pragmatic, parallel-group, multicentre, randomised controlled trials for our study (PROSPECT [PROlapse Surgery: Pragmatic Evaluation and randomised Controlled Trials]) in 35 centres (a mix of secondary and tertiary referral hospitals) in the UK. We recruited women undergoing primary transvaginal anterior or posterior compartment prolapse surgery by 65 gynaecological surgeons in these centres. We randomly assigned participants by a remote web-based randomisation system to one of the two trials: comparing standard (native tissue) repair alone with standard repair augmented with either synthetic mesh (the mesh trial) or biological graft (the graft trial). We assigned women (1:1:1 or 1:1) within three strata: assigned to one of the three treatment options, comparison of standard repair with mesh, and comparison of standard repair with graft. Participants, ward staff, and outcome assessors were masked to randomisation where possible; masking was obviously not possible for the surgeon. Follow-up was for 2 years after the surgery; the primary outcomes, measured at 1 year and 2 years, were participant-reported prolapse symptoms (i.e. the Pelvic Organ Prolapse Symptom Score [POP-SS]) and condition-specific (ie, prolapse-related) quality-of-life scores, analysed in the modified intention-to-treat population. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN60695184. Between Jan 8, 2010, and Aug 30, 2013, we randomly allocated 1352 women to treatment, of whom 1348 were included in the analysis. 865 women were included in the mesh trial (430 to standard repair alone, 435 to mesh augmentation) and 735 were included in the graft trial (367 to standard repair alone, 368 to graft augmentation). Because the analyses were carried out separately for each trial (mesh trial and graft trial) some women in the standard repair arm assigned to all treatment options were included in the standard repair group of both trials. 23 of these women did not receive any surgery (15 in the mesh trial, 13 in the graft trial; five were included in both trials) and were included in the baseline analyses only. Mean POP-SS at 1 year did not differ substantially between comparisons (standard 5·4 [SD 5·5] vs mesh 5·5 [5·1], mean difference 0·00, 95% CI -0·70 to 0·71; p=0·99; standard 5·5 [SD 5·6] vs graft 5·6 [5·6]; mean difference -0·15, -0·93 to 0·63; p=0·71). Mean prolapse-related quality-of-life scores also did not differ between groups at 1 year (standard 2·0 [SD 2·7] vs mesh 2·2 [2·7], mean difference 0·13, 95% CI -0·25 to 0·51; p=0·50; standard 2·2 [SD 2·8] vs graft 2·4 [2·9]; mean difference 0·13, -0·30 to 0·56; p=0·54). Mean POP-SS at 2 years were: standard 4·9 (SD 5·1) versus mesh 5·3 (5·1), mean difference 0·32, 95% CI -0·39 to 1·03; p=0·37; standard 4·9 (SD 5·1) versus graft 5·5 (5·7); mean difference 0·32, -0·48 to 1·12; p=0·43. Prolapse-related quality-of-life scores at 2 years were: standard 1·9 (SD 2·5) versus mesh 2·2 (2·6), mean difference 0·15, 95% CI -0·23 to 0·54; p=0·44; standard 2·0 (2·5) versus graft 2·2 (2·8); mean difference 0·10, -0·33 to 0·52; p=0·66. Serious adverse events such as infection, urinary retention, or dyspareunia or other pain, excluding mesh complications, occurred with similar frequency in the groups over 1 year (mesh trial: 31/430 [7%] with standard repair vs 34/435 [8%] with mesh, risk ratio [RR] 1·08, 95% CI 0·68 to 1·72; p=0·73; graft trial: 23/367 [6%] with standard repair vs 36/368 [10%] with graft, RR 1·57, 0·95 to 2·59; p=0·08). The cumulative number of women with a mesh complication over 2 years in women actually exposed to synthetic mesh was 51 (12%) of 434. Augmentation of a vaginal repair with mesh or graft material did not improve women's outcomes in terms of effectiveness, quality of life, adverse effects, or any other outcome in the short term, but more than one in ten women had a mesh complication. Therefore, follow-up is vital to identify any longer-term potential benefits and serious adverse effects of mesh or graft reinforcement in vaginal prolapse surgery. UK National Institute of Health Research. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.

  7. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence.

    PubMed

    Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2015-06-15

    Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using 'learning to rank'. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. The software is available upon request. © The Author 2015. Published by Oxford University Press.

  8. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence

    PubMed Central

    Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2015-01-01

    Motivation: Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. Methods: We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using ‘learning to rank’. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. Results: MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. Availability and implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn PMID:26072501

  9. Open and Laparo-Endoscopic Repair of Incarcerated Abdominal Wall Hernias by the Use of Biological and Biosynthetic Meshes.

    PubMed

    Fortelny, René H; Hofmann, Anna; May, Christopher; Köckerling, Ferdinand

    2016-01-01

    Although recently published guidelines recommend against the use of synthetic non-absorbable materials in cases of potentially contaminated or contaminated surgical fields due to the increased risk of infection (1, 2), the use of bio-prosthetic meshes for abdominal wall or ventral hernia repair is still controversially discussed in such cases. Bio-prosthetic meshes have been recommended due to less susceptibility for infection and the decreased risk of subsequent mesh explantation. The purpose of this review is to elucidate if there are any indications for the use of biological and biosynthetic meshes in incarcerated abdominal wall hernias based on the recently published literature. A literature search of the Medline database using the PubMed search engine, using the keywords returned 486 articles up to June 2015. The full text of 486 articles was assessed and 13 relevant papers were identified including 5 retrospective case cohort studies, 2 case-controlled studies, and 6 case series. The results of Franklin et al. (3-5) included the highest number of biological mesh repairs (Surgisis(®)) by laparoscopic IPOM in infected fields, which demonstrated a very low incidence of infection and recurrence (0.7 and 5.2%). Han et al. (6) reported in his retrospective study, the highest number of treated patients due to incarcerated hernias by open approach using acellular dermal matrix (ADM(®)) with very low rate of infection as well as recurrences (1.6 and 15.9%). Both studies achieved acceptable outcome in a follow-up of at least 3.5 years compared to the use of synthetic mesh in this high-risk population (7). Currently, there is a very limited evidence for the use of biological and biosynthetic meshes in strangulated hernias in either open or laparo-endoscopic repair. Finally, there is an urgent need to start with randomized controlled comparative trials as well as to support registries with data to achieve more knowledge for tailored indication for the use of biological meshes.

  10. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  11. Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds

    DTIC Science & Technology

    2012-02-29

    element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element

  12. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.

  13. A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra L.; Hall, Thomas M.; Gonzales, Lindsey M.; Hemez, François M.; Anton, Steven R.

    2015-01-01

    Numerical simulations, irrespective of the discipline or application, are often plagued by arbitrary numerical and modeling choices. Arbitrary choices can originate from kinematic assumptions, for example the use of 1D beam, 2D shell, or 3D continuum elements, mesh discretization choices, boundary condition models, and the representation of contact and friction in the simulation. This work takes a step toward understanding the effect of arbitrary choices and model-form assumptions on the accuracy of numerical predictions. The application is the simulation of the first four resonant frequencies of a one-story aluminum portal frame structure under free-free boundary conditions. The main challenge of the portal frame structure resides in modeling the joint connections, for which different modeling assumptions are available. To study this model-form uncertainty, and compare it to other types of uncertainty, two finite element models are developed using solid elements, and with differing representations of the beam-to-column and column-to-base plate connections: (i) contact stiffness coefficients or (ii) tied nodes. Test-analysis correlation is performed to compare the lower and upper bounds of numerical predictions obtained from parametric studies of the joint modeling strategies to the range of experimentally obtained natural frequencies. The approach proposed is, first, to characterize the experimental variability of the joints by varying the bolt torque, method of bolt tightening, and the sequence in which the bolts are tightened. The second step is to convert what is learned from these experimental studies to models that "envelope" the range of observed bolt behavior. We show that this approach, that combines small-scale experiments, sensitivity analysis studies, and bounding-case models, successfully produces lower and upper bounds of resonant frequency predictions that match those measured experimentally on the frame structure. (Approved for unlimited, public release, LA-UR-13-27561).

  14. Evidence-based outcomes for mesh-based surgery for pelvic organ prolapse.

    PubMed

    Mettu, Jayadev R; Colaco, Marc; Badlani, Gopal H

    2014-07-01

    In light of all the recent controversy regarding the use of synthetic mesh for pelvic organ prolapse, we did a retrospective review of the evidence-based outcomes and complications for its use. A total of 18 of the most recent studies in the last 5 years were selected. Studies selected were prospective randomized or quasi-randomized controlled trials that included surgical operations for pelvic organ prolapse for this review. Additionally, Cochrane review and meta-analysis of outcomes and complication were also analyzed. In terms of outcomes, the definition of successful surgery is currently being debated. Synthetic mesh provides superior anatomical and subjective cure rates compared with native tissue repair. Success rates varied greatly depending on the nature of prolapse and surgical approach. Furthermore, recurrence rates for mesh-based surgery are significantly lower than that for native tissue repair. The main unique complication of mesh is exposure and was reported in a mean of 11.4% of patients, with 6.8% of patients requiring surgical partial excision of mesh. Mesh significantly improves anatomical outcomes with sacrocolpopexy and vaginal repair. Mesh does create the unique complication which can be reduced with training and proper patient selection. Further development of better materials is vital rather than reverting to tissue-based repair. Ultimately, the decision to use mesh should be based upon a patient's personal goals and preferences after an informed conversation with her physician.

  15. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Murman, S. M.; Berger, M. J.

    2003-01-01

    This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.

  16. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  17. Self-locking telescoping manipulator arm

    NASA Technical Reports Server (NTRS)

    Nesmith, M. F. (Inventor)

    1985-01-01

    A telescoping manipulator arm and pivotable finger assembly are disclosed. The telescoping arm assembly includes a generally T-shaped arm having three outwardly extending fingers guided on grooved roller guides to compensate for environmental variations. The pivotable finger assembly includes four pivoting fingers. Arcuate teeth are formed on the ends of the fingers. A rack having teeth on four sides meshes with each one of the fingers. One surface of the rack includes teeth along its entire surface which mesh with teeth of one of the fingers. The teeth at the remote end of the rack engage teeth of a gear wheel. The wheel includes a worm which meshes with a worn drive shaft of the drive motor providing a ninety degree self-locking drive for locking the fingers in a desired position. A similar drive provides a self-locking drive for positioning the telescoping arm.

  18. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    NASA Astrophysics Data System (ADS)

    Náprstek, J.; Král, R.

    2016-09-01

    The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.

  19. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround- ing vacuum region are included within the computational domain. Our implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. We use this new capability to simulate perturbed, free-boundary non- axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear andmore » nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real- istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  20. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, N. M., E-mail: nferraro@pppl.gov; Lao, L. L.; Jardin, S. C.

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolutionmore » of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  1. Fluid-structure interaction analysis on the effect of vessel wall hypertrophy and stiffness on the blood flow in carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul

    2012-11-01

    The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).

  2. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    DOE PAGES

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; ...

    2016-05-20

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround- ing vacuum region are included within the computational domain. Our implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. We use this new capability to simulate perturbed, free-boundary non- axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear andmore » nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real- istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.« less

  3. Towards hybrid mesh generation for realistic design environments

    NASA Astrophysics Data System (ADS)

    McMorris, Harlan Tom

    Two different techniques that allow hybrid mesh generation to be easily used in the design environment are presented. The purpose of this research is to allow for hybrid meshes to be used during the design process where the geometry is being varied. The first technique, modular hybrid mesh generation, allows for the replacement of portions of a geometry with a new design shape. The mesh is maintained for the portions of that have not changed during the design process. A new mesh is generated for the new part of the geometry and this piece is added to the existing mesh. The new mesh must match the remaining portions of the geometry plus the element sizes must match exactly across the interfaces. The second technique, hybrid mesh movement, is used when the basic geometry remains the same with only small variations to portions of the geometry. These small variations include changing the cross-section of a wing, twisting a blade or changing the length of some portion of the geometry. The mesh for the original geometry is moved onto the new geometry one step at a time beginning with the curves of the surface, continuing with the surface mesh geometry and ending with the interior points of the mesh. The validity of the hybrid mesh is maintained by applying corrections to the motion of the points. Finally, the quality of the new hybrid mesh is improved to ensure that the new mesh maintains the quality of the original hybrid mesh. Applications of both design techniques are applied to typical example cases from the fields of turbomachinery, aerospace and offshore technology. The example test cases demonstrate the ability of the two techniques to reuse the majority of an existing hybrid mesh for typical design changes. Modular mesh generation is used to change the shape of piece of a seafloor pipeline geometry to a completely different configuration. The hybrid mesh movement technique is used to change the twist of a turbomachinery blade, the tip clearance of a rotor blade and to simulate the aeroelastic bending of a wing. Finally, the movement technique is applied to an offshore application where the solution for the original configuration is used as a starting point for solution for a new configuration. The application of both techniques show that the methods can be a powerful addition to the design environment and will facilitate a rapid turnaround when the design geometry changes.

  4. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation

    PubMed Central

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime

    2017-01-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022

  5. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    PubMed

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.

  6. DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.

  7. DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C., E-mail: duffell@berkeley.edu

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less

  8. Graded meshes in bio-thermal problems with transmission-line modeling method.

    PubMed

    Milan, Hugo F M; Carvalho, Carlos A T; Maia, Alex S C; Gebremedhin, Kifle G

    2014-10-01

    In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2012-01-01

    The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

  10. Method and Apparatus for Virtual Interactive Medical Imaging by Multiple Remotely-Located Users

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D. (Inventor); Twombly, Ian Alexander (Inventor); Senger, Steven O. (Inventor)

    2003-01-01

    A virtual interactive imaging system allows the displaying of high-resolution, three-dimensional images of medical data to a user and allows the user to manipulate the images, including rotation of images in any of various axes. The system includes a mesh component that generates a mesh to represent a surface of an anatomical object, based on a set of data of the object, such as from a CT or MRI scan or the like. The mesh is generated so as to avoid tears, or holes, in the mesh, providing very high-quality representations of topographical features of the object, particularly at high- resolution. The system further includes a virtual surgical cutting tool that enables the user to simulate the removal of a piece or layer of a displayed object, such as a piece of skin or bone, view the interior of the object, manipulate the removed piece, and reattach the removed piece if desired. The system further includes a virtual collaborative clinic component, which allows the users of multiple, remotely-located computer systems to collaboratively and simultaneously view and manipulate the high-resolution, three-dimensional images of the object in real-time.

  11. On applications of chimera grid schemes to store separation

    NASA Technical Reports Server (NTRS)

    Cougherty, F. C.; Benek, J. A.; Steger, J. L.

    1985-01-01

    A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.

  12. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    PubMed

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh nanoelectronics into rodent brains. First, we describe the design of ultraflexible mesh nanoelectronics with size features and mechanical properties similar to brain tissue and a novel syringe-injection methodology that allows the mesh nanoelectronics to be precisely delivered to targeted brain regions in a minimally invasive manner. Next, we discuss time-dependent histology studies showing seamless and stable integration of mesh nanoelectronics within brain tissue on at least one year scales without evidence of chronic immune response or glial scarring characteristic of conventional implants. Third, armed with facile input/output interfaces, we describe multiplexed single-unit recordings that demonstrate stable tracking of the same individual neurons and local neural circuits for at least 8 months, long-term monitoring and stimulation of the same groups of neurons, and following changes in individual neuron activity during brain aging. Moving forward, we foresee substantial opportunities for (1) continued development of mesh nanoelectronics through, for example, broadening nanodevice signal detection modalities and taking advantage of tissue-like properties for selective cell targeting and (2) exploiting the unique capabilities of mesh nanoelectronics for tackling critical scientific and medical challenges such as understanding and potentially ameliorating cell and circuit level changes associated with natural and pathological aging, as well as using mesh nanoelectronics as active tissue scaffolds for regenerative medicine and as neuroprosthetics for monitoring and treating neurological diseases.

  13. Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Li, Wu; Robinson, Jay

    2016-01-01

    This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.

  14. Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model.

    PubMed

    Darzi, Saeedeh; Urbankova, Iva; Su, Kai; White, Jacinta; Lo, Camden; Alexander, David; Werkmeister, Jerome A; Gargett, Caroline E; Deprest, Jan

    2016-07-15

    Pelvic Organ Prolapse (POP) is the herniation of pelvic organs into the vagina. Despite broad acceptance of mesh use in POP surgical repair, the complication rate is unacceptable. We hypothesized that collagen-containing polypropylene (PP) mesh types could modulate mesh-tissue integration and reduce long-term inflammation, thereby reducing mesh-associated complications. This study compared the long-term tissue response to an unmodified PP mesh and two collagen containing meshes in an ovine model which has similar pelvic anatomy and vaginal size to human. Three commercially available macroporous PP meshes, uncoated PP mesh (Avaulta Solo) (PP), the same textile PP mesh layered with a sheet of cross-linked porcine acellular matrix (Avaulta Plus) (PP-ACM) and a different yet also macroporous PP (Sofradim) mesh coated with solubilized atelocollagen (Ugytex) (PP-sCOL) were implanted in the ovine vagina and tissue explanted after 60 and 180days. The macrophage phenotype and response to implanted meshes, and vascularity were quantified by immunostaining and morphometry. We quantified changes in extracellular matrix composition biochemically and collagen organisation and percentage area around the interface of the mesh implants by Sirius Red birefringence and morphometry. PP-ACM induced a more sustained inflammatory response, indicated by similar CD45(+) leukocytes but reduced CD163(+) M2 macrophages at 60days (P<0.05). PP-sCOL increased Von Willebrand Factor (vWF)-immunoreactive vessel profiles after 60days. At the micro-molecular level, collagen birefringence quantification revealed significantly fewer mature collagen fibrils (red, thick fibrils) at the mesh-tissue interface than control tissue for all mesh types (P<0.001) but still significantly greater than the proportion of immature (green thin fibrils) at 60days (P<0.05). The proportion of mature collagen fibrils increased with time around the mesh filaments, particularly those containing collagen. The total collagen percent area at the mesh interface was greatest around the PP-ACM mesh at 60days (P<0.05). By 180days the total mature and immature collagen fibres at the interface of the mesh filaments resembled that of native tissue. In particular, these results suggest that both meshes containing collagen evoke different types of tissue responses at different times during the healing response yet both ultimately lead to physiological tissue formation approaching that of normal tissue. Pelvic organ prolapse (POP) is the descent of the pelvic organs to the vagina. POP affects more than 25% of all women and the lifetime risk of undergoing POP surgery is 19%. Although synthetic polypropylene (PP) meshes have improved the outcome of the surgical treatment for POP, there was an unacceptable rate of adverse events including mesh exposure and contracture. It is hypothesized that coating the PP meshes with collagen would provide a protective effect by preventing severe mesh adhesions to the wound, resulting in a better controlled initial inflammatory response, and diminished risk of exposure. In this study we assessed the effect of two collagen-containing PP meshes on the long-term vaginal tissue response using new techniques to quantify these tissue responses. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Short-term complications associated with the use of transvaginal mesh in pelvic floor reconstructive surgery: Results from a multi-institutional prospectively maintained dataset.

    PubMed

    Caveney, Maxx; Haddad, Devin; Matthews, Catherine; Badlani, Gopal; Mirzazadeh, Majid

    2017-11-01

    Vaginal reconstructive surgery can be performed with or without mesh. We sought to determine comparative rates of perioperative complications of native tissue versus vaginal mesh repairs for pelvic organ prolapse. Using the National Surgical Quality Improvement Program (NSQIP) database, we concatenated surgical data from vaginal procedures for prolapse repair, including anterior and posterior colporrhaphy, paravaginal defect repair, enterocele repair, and vaginal colpopexy using Current Procedural Terminology (CPT) coding. We stratified this data by the modifier associated with mesh usage at the time of the procedure. We then compared 30-day perioperative outcomes, postoperative complications (bleeding, infection, etc), and readmission rates between women with and without mesh-based repairs. We identified 10 657 vaginal reconstructive procedures without mesh and 959 mesh-based repairs from 2009 through 2013. Patients undergoing mesh repair were more likely to experience at least one complication than native tissue repair (9.28% vs 6.15%, P < 0.001), with the overall complication rate also being higher in the mesh group (11.37% vs 9.39%, P = 0.03). Procedures with mesh had a higher rate of perioperative bleeding requiring transfusion than native tissue repair (2.3% vs 0.49%, P < 0.001), and organ surgical site infection (SSI) (0.52% vs 0.17%, P = 0.02). There were no significant differences in rates of readmission, superficial, or deep SSIs, pneumonia, urinary tract infection, sepsis, or renal failure. The use of vaginal mesh for pelvic organ prolapse repair appears to result in a higher rate of perioperative complications than native tissue repair. Patients undergoing these procedures should be counselled preoperatively concerning these risks. © 2017 Wiley Periodicals, Inc.

  16. Health-related quality of life and outcomes after surgical treatment of complications from vaginally placed mesh.

    PubMed

    Hokenstad, Erik D; El-Nashar, Sherif A; Blandon, Roberta E; Occhino, John A; Trabuco, Emanuel C; Gebhart, John B; Klingele, Christopher J

    2015-01-01

    We aimed to report on health-related quality of life after surgical excision of vaginally placed mesh for treatment of pelvic organ prolapse and to identify predictors of successful surgical management. We identified patients who underwent surgery for treatment of complications from vaginally placed mesh from January 1, 2003, through December 31, 2011, and conducted a follow-up survey. Logistic regression models were used to identify predictors of successful treatment. We identified 114 patients who underwent surgery for mesh-related complications and 68 underwent mesh excision. Of the 68 patients, 44 (64.7%) completed the survey. Of the 44 responders, 41 returned their consent form and were included in the analysis. Only 22 (54%) patients reported a successful outcome after mesh excision. Of 29 (71%) sexually active patients, 23 had dyspareunia before mesh excision and only 3 patients reported resolution of dyspareunia after excision. We reported a multivariable model for predicting successful surgical outcome with an area under the curve for the receiver operator characteristic of 0.781. In this model, complete excision of mesh, new overactive bladder symptoms after mesh placement, and a body mass index higher than 30 kg/m were associated with successful patient-reported outcomes; adjusted odds ratios (95% confidence intervals) were 5.46 (1.10-41.59), 7.76 (1.18-89.55), and 8.41 (1.35-92.41), respectively. Only half of the patients who had surgery for vaginally placed mesh complications reported improvement after surgery, with modest improvement in dyspareunia. Patients who had complete mesh excision, new overactive bladder symptoms, and obesity were more likely to report improvement.

  17. Long-term follow-up of treatment for synthetic mesh complications.

    PubMed

    Hansen, Brooke L; Dunn, Guinn Ellen; Norton, Peggy; Hsu, Yvonne; Nygaard, Ingrid

    2014-01-01

    The objectives of this study are (1) to describe the presenting symptoms, findings, and treatment and (2) to describe the self-reported improvement and function at least 6 months after presentation in women presenting to 1 urogynecology division for complications associated with synthetic vaginal mesh. Women evaluated between 2006 and 2011 were identified by diagnostic codes. We abstracted information from the medical record and attempted to contact all women to complete a follow-up telephone survey questionnaire consisting of several validated instruments. A total of 111 women were evaluated for complications associated with synthetic vaginal mesh. The mean interval from index surgery was 2.4 years. Of these, 84% were referred from outside hospitals. Index surgeries included vaginal mesh kits/vaginally placed mesh (47%), midurethral mesh slings (37%), abdominally placed vaginal mesh (11%), and vaginal mesh kit with concomitantly placed mesh sling (5%). The most common complications were extrusion (65%), contraction (17%), and chronic pelvic pain (16%). A total of 98 women underwent some type of treatment (85 surgical) by urogynecologists, pelvic pain specialists, or physical therapists. Eighty-four (76%) provided follow-up information at mean interval since presentation of 2.3 years. At follow-up, the mean (SD) Pelvic Floor Distress Inventory score was 98 (67), the mean (SD) EQ-5D index score was 0.69 (0.23), and 22% reported vaginal discharge, 15% vaginal bleeding or spotting, and 45% sexual abstinence due to problems related to mesh. A total of 71% reported being overall better, whereas 29% were the same or worse. Two years after tertiary care level multidisciplinary treatment of vaginal mesh complications, many women still report symptoms that negatively impact their quality of life.

  18. Fog water collection effectiveness: Mesh intercomparisons

    USGS Publications Warehouse

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of < 1 m s–1 the coated stainless steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  19. SU-E-I-87: Automated Liver Segmentation Method for CBCT Dataset by Combining Sparse Shape Composition and Probabilistic Atlas Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dengwang; Liu, Li; Chen, Jinhu

    2014-06-01

    Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image withmore » the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%–95% for CBCT images. Conclusion: The experiment demonstrated that liver structures of CBCT with artifacts can be extracted accurately for following adaptive radiation therapy. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less

  20. The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, S. R.; Wilson, P. P. H.; Pawlowski, R. P.

    2013-07-01

    The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysicsmore » simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)« less

  1. A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method

    NASA Astrophysics Data System (ADS)

    Shen, Zhijun; Yan, Wei; Yuan, Guangwei

    2014-07-01

    This article presents a new cell-centered numerical method for compressible flows on arbitrary unstructured meshes. A multi-dimensional Riemann solver based on the HLLC method (denoted by HLLC-2D solver) is established. The work is an extension from the cell-centered Lagrangian scheme of Maire et al. [27] to the Eulerian framework. Similarly to the work in [27], a two-dimensional contact velocity defined on a grid node is introduced, and the motivation is to keep an edge flux consistency with the node velocity connected to the edge intrinsically. The main new feature of the algorithm is to relax the condition that the contact pressures must be same in the traditional HLLC solver. The discontinuous fluxes are constructed across each wave sampling direction rather than only along the contact wave direction. The two-dimensional contact velocity of the grid node is determined via enforcing conservation of mass, momentum and total energy, and thus the new method satisfies these conservation properties at nodes rather than on grid edges. Other good properties of the HLLC-2d solver, such as the positivity and the contact preserving, are described, and the two-dimensional high-order extension is constructed employing MUSCL type reconstruction procedure. Numerical results based on both quadrilateral and triangular grids are presented to demonstrate the robustness and the accuracy of this new solver, which shows it has better performance than the existing HLLC method.

  2. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    DOE PAGES

    Burton, Donald E.; Morgan, Nathaniel Ray; Charest, Marc Robert Joseph; ...

    2017-11-22

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian–Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense thatmore » it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. Particularly, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. Our paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.« less

  3. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    NASA Astrophysics Data System (ADS)

    Burton, D. E.; Morgan, N. R.; Charest, M. R. J.; Kenamond, M. A.; Fung, J.

    2018-02-01

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian-Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense that it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. In particular, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. The paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.

  4. A general higher-order remap algorithm for ALE calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiravalle, Vincent P

    2011-01-05

    A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problemsmore » were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.« less

  5. Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Hua

    2015-10-01

    Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.

  6. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, Donald E.; Morgan, Nathaniel Ray; Charest, Marc Robert Joseph

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian–Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense thatmore » it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. Particularly, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. Our paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.« less

  7. pyres: a Python wrapper for electrical resistivity modeling with R2

    NASA Astrophysics Data System (ADS)

    Befus, Kevin M.

    2018-04-01

    A Python package, pyres, was written to handle common as well as specialized input and output tasks for the R2 electrical resistivity (ER) modeling program. Input steps including handling field data, creating quadrilateral or triangular meshes, and data filtering allow repeatable and flexible ER modeling within a programming environment. pyres includes non-trivial routines and functions for locating and constraining specific known or separately-parameterized regions in both quadrilateral and triangular meshes. Three basic examples of how to run forward and inverse models with pyres are provided. The importance of testing mesh convergence and model sensitivity are also addressed with higher-level examples that show how pyres can facilitate future research-grade ER analyses.

  8. Histologic Inflammatory Response to Transvaginal Polypropylene Mesh: A Systematic Review.

    PubMed

    Thomas, Dominique; Demetres, Michelle; Anger, Jennifer T; Chughtai, Bilal

    2018-01-01

    To evaluate the inflammatory response following transvaginal implantation of polypropylene (PP) mesh. A comprehensive literature search was performed in the following databases from inception in April 2017: Ovid MEDLINE, Ovid EMBASE, and The Cochrane Library (Wiley). The studies retrieved were screened for eligibility against predefined inclusion and exclusion criteria. Twenty-three articles were included in this review. Following the implantation of PP mesh, there are immediate and local inflammatory responses. PP mesh elicits an inflammatory response that decreases over time; however, no studies documented a complete resolution. Further studies are needed to determine if there is a complete resolution of inflammation or if it persists. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Complex sacral abscess 8 years after abdominal sacral colpopexy.

    PubMed

    Collins, Sarah A; Tulikangas, Paul K; LaSala, Christine A; Lind, Lawrence R

    2011-08-01

    Sacral colpopexy is an effective, durable repair for women with apical vaginal or uterovaginal prolapse. There are few reports of serious complications diagnosed in the remote postoperative period. A 74-year-old woman presented 8 years after undergoing posthysterectomy abdominal sacral colpopexy using polypropylene mesh. Posterior vaginal mesh erosion had been diagnosed several months before presentation. She suffered severe infectious complications including an infected thrombus in the inferior vena cava, sacral osteomyelitis, and a complex abscess with presacral and epidural components. Surgical exploration revealed an abscess cavity surrounding the mesh. Although minor complications commonly occur after sacral colpopexy using abdominal mesh, serious and rare postoperative infectious complications may occur years postoperatively.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    OWEN,STEVEN J.

    A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.

  11. Quadrilateral/hexahedral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  12. Use of a novel silk mesh for ventral midline hernioplasty in a mare.

    PubMed

    Haupt, Jennifer; García-López, José M; Chope, Kate

    2015-03-13

    Ventral midline hernia formation following abdominal surgery in horses is an uncommon complication; however, it can have serious consequences leading to increased morbidity and mortality. Currently, mesh hernioplasty is the treatment of choice for large ventral midline hernias in horses to allow potential return to normal function. Complications following mesh hernioplasty using polypropylene or polyester mesh in horses can be serious and similar to complications seen in human patients, including persistent incisional drainage, mesh infection, hernia recurrence, intra-abdominal adhesions, mesh or body wall failure, recurrent abdominal pain (colic), and peritonitis. This report describes the use of a novel bioresorbable silk mesh for repair of a large ventral midline incisional hernia in a mature, 600-kg horse. To our knowledge, this is the first report of its kind in the literature. A 9-year-old, 600-kg Warmblood mare presented with a ventral midline hernia following emergency exploratory celiotomy 20 months prior. The mare was anesthetized and a hernioplasty was performed using a novel bioresorbable silk mesh (SERI(®) Surgical Scaffold; Allergan Medical, Boston, MA). No complications were encountered either intra- or postoperatively. The mare was discharged from the hospital at 3 days postoperatively in an abdominal support bandage. At 8 and 20 weeks postoperatively, ultrasonographic assessment showed evidence of tissue ingrowth within and around the mesh. The mare was able to be bred 2 years in a row, carrying both foals to full gestation with no complications. Following both foalings, the abdomen has maintained a normal contour with no evidence of hernia recurrence. Ventral abdominal hernias can be repaired in horses using a bioresorbable silk mesh, which provides adequate biomechanical strength while allowing for fibrous tissue ingrowth. The use of a bioresorbable silk mesh for the repair of ventral hernias can be considered as a realistic option as it potentially provides significant benefits over traditional non-resorbable mesh.

  13. Preliminary Study of Hiatal Hernia Repair Using Polyglycolic Acid: Trimethylene Carbonate Mesh

    PubMed Central

    Singh, Tejinder P.; Dunnican, Ward J.; Binetti, Brian R.

    2012-01-01

    Background: Repairing large hiatal hernias using mesh has been shown to reduce recurrence. Drawbacks to mesh include added time to place and secure the prosthesis as well as complications such as esophageal erosion. We used a laparoscopic technique for repair of hiatal hernias (HH) >5cm, incorporating primary crural repair with onlay fixation of a synthetic polyglycolicacid:trimethylene carbonate (PGA:TMC) absorbable tissue reinforcement. The purpose of this report is to present short-term follow-up data. Methods: Patients with hiatal hernia types I-III and defects >5cm were included. Primary closure of the hernia defect was performed using interrupted nonpledgeted sutures, followed by PGA:TMC mesh onlay fixed with absorbable tacks. A fundoplication was then performed. Evaluation of patients was carried out at routine follow-up visits. Outcomes measured were symptoms of gastroesophageal reflux disease (GERD), or other symptoms suspicious for recurrence. Patients exhibiting these complaints underwent further evaluation including radiographic imaging and endoscopy. Results: Follow-up data were analyzed on 11 patients. Two patients were male; 9 were female. The mean age was 60 years. The mean length of follow-up was 13 months. There were no complications related to the mesh. One patient suffered from respiratory failure, one from gas bloat syndrome, and another had a superficial port-site infection. One patient developed a recurrent hiatal hernia. Conclusions: In this small series, laparoscopic repair of hiatal hernias >5cm with onlay fixation of PGA:TMC tissue reinforcement has short-term outcomes with a reasonably low recurrence rate. However, due to the preliminary and nonrandomized nature of the data, no strong comparison can be made with other types of mesh repairs. Additional data collection is warranted. PMID:22906331

  14. Clinical effectiveness and cost-effectiveness of surgical options for the management of anterior and/or posterior vaginal wall prolapse: two randomised controlled trials within a comprehensive cohort study - results from the PROSPECT Study.

    PubMed

    Glazener, Cathryn; Breeman, Suzanne; Elders, Andrew; Hemming, Christine; Cooper, Kevin; Freeman, Robert; Smith, Anthony; Hagen, Suzanne; Montgomery, Isobel; Kilonzo, Mary; Boyers, Dwayne; McDonald, Alison; McPherson, Gladys; MacLennan, Graeme; Norrie, John

    2016-12-01

    The use of mesh in prolapse surgery is controversial, leading to a number of enquiries into its safety and efficacy. To compare synthetic non-absorbable mesh inlay, biological graft and mesh kit with a standard repair in terms of clinical effectiveness, adverse effects, quality of life (QoL), costs and cost-effectiveness. Two randomised controlled trials within a comprehensive cohort (CC) study. Allocation was by a remote web-based randomisation system in a 1 :1 : 1 ratio (Primary trial) or 1 : 1 : 2 ratio (Secondary trial), and was minimised on age, type of prolapse repair planned, need for a concomitant continence procedure, need for a concomitant upper vaginal prolapse procedure and surgeon. Participants and outcome assessors were blinded to randomisation; participants were unblinded if they requested the information. Surgeons were not blinded to allocated procedure. Thirty-five UK hospitals. Primary study : 2474 women in the analysis (including 1348 randomised) having primary anterior or posterior prolapse surgery. Secondary study : 398 in the analysis (including 154 randomised) having repeat anterior or posterior prolapse surgery. CC3 : 215 women having either uterine or vault prolapse repair. Anterior or posterior repair alone, or with mesh inlay, biological graft or mesh kit. Prolapse symptoms [Pelvic Organ Prolapse Symptom Score (POP-SS)]; prolapse-specific QoL; cost-effectiveness [incremental cost per quality-adjusted life-year (QALY)]. Primary trials : adjusting for baseline and minimisation covariates, mean POP-SS was similar for each comparison {standard 5.4 [standard deviation (SD) 5.5] vs. mesh 5.5 (SD 5.1), mean difference (MD) 0.00, 95% confidence interval (CI) -0.70 to 0.71; standard 5.5 (SD 5.6) vs. graft 5.6 (SD 5.6), MD -0.15, 95% CI -0.93 to 0.63}. Serious non-mesh adverse effects rates were similar between the groups in year 1 [standard 7.2% vs. mesh 7.8%, risk ratio (RR) 1.08, 95% CI 0.68 to 1.72; standard 6.3% vs. graft 9.8%, RR 1.57, 95% CI 0.95 to 2.59]. There were no statistically significant differences between groups in any other outcome measure. The cumulative mesh complication rates over 2 years were 2 of 430 (0.5%) for standard repair (trial 1), 46 of 435 (10.6%) for mesh inlay and 2 of 368 (0.5%) for biological graft. The CC findings were comparable. Incremental costs were £363 (95% CI -£32 to £758) and £565 (95% CI £180 to £950) for mesh and graft vs. standard, respectively. Incremental QALYs were 0.071 (95% CI -0.004 to 0.145) and 0.039 (95% CI -0.041 to 0.120) for mesh and graft vs. standard, respectively. A Markov decision model extrapolating trial results over 5 years showed standard repair had the highest probability of cost-effectiveness, but results were surrounded by considerable uncertainty. Secondary trials : there were no statistically significant differences between the randomised groups in any outcome measure, but the sample size was too small to be conclusive. The cumulative mesh complication rates over 2 years were 7 of 52 (13.5%) for mesh inlay and 4 of 46 (8.7%) for mesh kit, with no mesh exposures for standard repair. In women who were having primary repairs, there was evidence of no benefit from the use of mesh inlay or biological graft compared with standard repair in terms of efficacy, QoL or adverse effects (other than mesh complications) in the short term. The Secondary trials were too small to provide conclusive results. Women in the Primary trials included some with a previous repair in another compartment. Follow-up is vital to identify any long-term potential benefits and serious adverse effects. Long-term follow-up to at least 6 years after surgery is ongoing to identify recurrence rates, need for further prolapse surgery, adverse effects and cost-effectiveness. Current Controlled Trials ISRCTN60695184. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 20, No. 95. See the NIHR Journals Library website for further project information.

  15. Manga Vectorization and Manipulation with Procedural Simple Screentone.

    PubMed

    Yao, Chih-Yuan; Hung, Shih-Hsuan; Li, Guo-Wei; Chen, I-Yu; Adhitya, Reza; Lai, Yu-Chi

    2017-02-01

    Manga are a popular artistic form around the world, and artists use simple line drawing and screentone to create all kinds of interesting productions. Vectorization is helpful to digitally reproduce these elements for proper content and intention delivery on electronic devices. Therefore, this study aims at transforming scanned Manga to a vector representation for interactive manipulation and real-time rendering with arbitrary resolution. Our system first decomposes the patch into rough Manga elements including possible borders and shading regions using adaptive binarization and screentone detector. We classify detected screentone into simple and complex patterns: our system extracts simple screentone properties for refining screentone borders, estimating lighting, compensating missing strokes inside screentone regions, and later resolution independently rendering with our procedural shaders. Our system treats the others as complex screentone areas and vectorizes them with our proposed line tracer which aims at locating boundaries of all shading regions and polishing all shading borders with the curve-based Gaussian refiner. A user can lay down simple scribbles to cluster Manga elements intuitively for the formation of semantic components, and our system vectorizes these components into shading meshes along with embedded Bézier curves as a unified foundation for consistent manipulation including pattern manipulation, deformation, and lighting addition. Our system can real-time and resolution independently render the shading regions with our procedural shaders and drawing borders with the curve-based shader. For Manga manipulation, the proposed vector representation can be not only magnified without artifacts but also deformed easily to generate interesting results.

  16. Parallel performance optimizations on unstructured mesh-based simulations

    DOE PAGES

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; ...

    2015-06-01

    This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches.more » We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less

  17. Gas reservoir and a method to supply gas to plasma tubes

    DOEpatents

    Stautner, Ernst Wolfgang; Michael, Joseph Darryl

    2017-01-31

    A reservoir for storing and supplying a portion of a reservoir gas into a gas-filled tube is presented. The reservoir includes a first vessel having a thermally conductive surface, a meshed vessel having a lid, and placed inside the first vessel to form a cavity between the meshed vessel and the first vessel, at least one tray placed inside the meshed vessel to divide an inner space of the meshed vessel into a plurality of compartments, a sorbent material placed inside the plurality of compartments in the meshed vessel, a temperature control device positioned such that a first portion of the temperature control device is in physical contact with at least a portion of the thermally conductive surface, and a change in the temperature of the temperature control device changes the temperature of the sorbent material, wherein the reservoir gas is retained by the sorbent material at the storage temperature.

  18. Reasons for and Against Use of Non-absorbable, Synthetic Mesh During Pelvic Organ Prolapse Repair, According to the Prolapsed Compartment.

    PubMed

    Kontogiannis, Stavros; Goulimi, Evangelia; Giannitsas, Konstantinos

    2017-01-01

    Awareness and reporting of mesh-related complications of pelvic organ prolapse repairs have increased in recent years. As a result, deciding whether to use a mesh or not has become a difficult task for urogynecologists. Our aim was to summarize reasons for and against the use of mesh in prolapse repair based on a review of relevant literature. Scopus and PubMed databases were searched for papers reporting on the efficacy and safety of native tissue versus non-absorbable, synthetic mesh prolapse repairs. Randomized controlled trials, systematic reviews, and meta-analyses were included. Evidence is presented for each vaginal compartment separately. In the anterior compartment, mesh repairs seem to offer clearly superior efficacy and durability of results compared to native tissue repairs, but with an equally clear increase in complication rates. In the isolated posterior compartment prolapse, high-quality evidence is sparse. As far as the apical compartment is concerned, sacrocolpopexy is the most efficacious, yet the most invasive procedure. Data on the comparison of transvaginal mesh versus native tissue repairs of the apical compartment are somewhat ambiguous. Given the inevitable coexistence of advantages and disadvantages of mesh use in each of the prolapsed vaginal compartments, an individualized treatment decision, based on weighing risks against benefits for each patient, seems to be the most rational approach.

  19. DeepMeSH: deep semantic representation for improving large-scale MeSH indexing.

    PubMed

    Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-06-15

    Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the 'learning to rank' framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. The software is available upon request. zhusf@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  20. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2017-12-01

    In order to extend the unified gas kinetic scheme (UGKS) to solve radiative transfer equations in a complex geometry, a multidimensional asymptotic preserving implicit method on unstructured mesh is constructed in this paper. With an implicit formulation, the CFL condition for the determination of the time step in UGKS can be much relaxed, and a large time step is used in simulations. Differently from previous direction-by-direction UGKS on orthogonal structured mesh, on unstructured mesh the interface flux transport takes into account multi-dimensional effect, where gradients of radiation intensity and material temperature in both normal and tangential directions of a cell interface are included in the flux evaluation. The multiple scale nature makes the UGKS be able to capture the solutions in both optically thin and thick regions seamlessly. In the optically thick region the condition of cell size being less than photon's mean free path is fully removed, and the UGKS recovers a solver for diffusion equation in such a limit on unstructured mesh. For a distorted quadrilateral mesh, the UGKS goes to a nine-point scheme for the diffusion equation, and it naturally reduces to the standard five-point scheme for a orthogonal quadrilateral mesh. Numerical computations covering a wide range of transport regimes on unstructured and distorted quadrilateral meshes will be presented to validate the current approach.

  1. Mapping of medical acronyms and initialisms to Medical Subject Headings (MeSH) across selected systems

    PubMed Central

    Shultz, Mary

    2006-01-01

    Introduction: Given the common use of acronyms and initialisms in the health sciences, searchers may be entering these abbreviated terms rather than full phrases when searching online systems. The purpose of this study is to evaluate how various MEDLINE Medical Subject Headings (MeSH) interfaces map acronyms and initialisms to the MeSH vocabulary. Methods: The interfaces used in this study were: the PubMed MeSH database, the PubMed Automatic Term Mapping feature, the NLM Gateway Term Finder, and Ovid MEDLINE. Acronyms and initialisms were randomly selected from 2 print sources. The test data set included 415 randomly selected acronyms and initialisms whose related meanings were found to be MeSH terms. Each acronym and initialism was entered into each MEDLINE MeSH interface to determine if it mapped to the corresponding MeSH term. Separately, 46 commonly used acronyms and initialisms were tested. Results: While performance differed widely, the success rates were low across all interfaces for the randomly selected terms. The common acronyms and initialisms tested at higher success rates across the interfaces, but the differences between the interfaces remained. Conclusion: Online interfaces do not always map medical acronyms and initialisms to their corresponding MeSH phrases. This may lead to inaccurate results and missed information if acronyms and initialisms are used in search strategies. PMID:17082832

  2. Minimizing donor-site morbidity following bilateral pedicled TRAM breast reconstruction with the double mesh fold over technique.

    PubMed

    Bharti, Gaurav; Groves, Leslie; Sanger, Claire; Thompson, James; David, Lisa; Marks, Malcolm

    2013-05-01

    Transverse rectus abdominus muscle flaps (TRAM) can result in significant abdominal wall donor-site morbidity. We present our experience with bilateral pedicle TRAM breast reconstruction using a double-layered polypropylene mesh fold over technique to repair the rectus fascia. A retrospective study was performed that included patients with bilateral pedicle TRAM breast reconstruction and abdominal reconstruction using a double-layered polypropylene mesh fold over technique. Thirty-five patients met the study criteria with a mean age of 49 years old and mean follow-up of 7.4 years. There were no instances of abdominal hernia and only 2 cases (5.7%) of abdominal bulge. Other abdominal complications included partial umbilical necrosis (14.3%), seroma (11.4%), partial wound dehiscence (8.6%), abdominal weakness (5.7%), abdominal laxity (2.9%), and hematoma (2.9%). The TRAM flap is a reliable option for bilateral autologous breast reconstruction. Using the double mesh repair of the abdominal wall can reduce instances of an abdominal bulge and hernia.

  3. Multicenter, Prospective, Longitudinal Study of the Recurrence, Surgical Site Infection, and Quality of Life After Contaminated Ventral Hernia Repair Using Biosynthetic Absorbable Mesh

    PubMed Central

    Rosen, Michael J.; Bauer, Joel J.; Harmaty, Marco; Carbonell, Alfredo M.; Cobb, William S.; Matthews, Brent; Goldblatt, Matthew I.; Selzer, Don J.; Poulose, Benjamin K.; Hansson, Bibi M. E.; Rosman, Camiel; Chao, James J.; Jacobsen, Garth R.

    2017-01-01

    Objective: The aim of the study was to evaluate biosynthetic absorbable mesh in single-staged contaminated (Centers for Disease Control class II and III) ventral hernia (CVH) repair over 24 months. Background: CVH has an increased risk of postoperative infection. CVH repair with synthetic or biologic meshes has reported chronic biomaterial infections and high hernia recurrence rates. Methods: Patients with a contaminated or clean-contaminated operative field and a hernia defect at least 9 cm2 had a biosynthetic mesh (open, sublay, retrorectus, or intraperitoneal) repair with fascial closure (n = 104). Endpoints included overall Kaplan-Meier estimates for hernia recurrence and postoperative wound infection rates at 24 months, and the EQ-5D and Short Form 12 Health Survey (SF-12). Analyses were conducted on the intent-to-treat population, and health outcome measures evaluated using paired t tests. Results: Patients had a mean age of 58 years, body mass index of 28 kg/m2, 77% had contaminated wounds, and 84% completed 24-months follow-up. Concomitant procedures included fistula takedown (n = 24) or removal of infected previously placed mesh (n = 29). Hernia recurrence rate was 17% (n = 16). At the time of CVH repair, intraperitoneal placement of the biosynthetic mesh significantly increased the risk of recurrences (P ≤ 0.04). Surgical site infections (19/104) led to higher risk of recurrence (P < 0.01). Mean 24-month EQ-5D (index and visual analogue) and SF-12 physical component and mental scores improved from baseline (P < 0.05). Conclusions: In this prospective longitudinal study, biosynthetic absorbable mesh showed efficacy in terms of long-term recurrence and quality of life for CVH repair patients and offers an alternative to biologic and permanent synthetic meshes in these complex situations. PMID:28009747

  4. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm.

    PubMed

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2011-02-01

    To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations (alpha, beta, gamma) were estimated with accuracies of 0.6 mm and 2 degrees, respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. This work describes a novel, accurate, fast, and completely automatic method to localize radio-opaque applicators of arbitrary shape from measured 2D x-ray projections. The results demonstrate approximately 1 mm accuracy while compared against the measured applicator projections. No lateral film is needed. By localizing the applicator internal structure as well as radioactive sources, the effect of intra-applicator and interapplicator attenuation can be included in the resultant dose calculations. Further validation tests using clinically acquired tandem and colpostats images will be performed for the accurate and robust applicator/sources localization in ICB patients.

  5. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, heremore » specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate, fast, and completely automatic method to localize radio-opaque applicators of arbitrary shape from measured 2D x-ray projections. The results demonstrate {approx}1 mm accuracy while compared against the measured applicator projections. No lateral film is needed. By localizing the applicator internal structure as well as radioactive sources, the effect of intra-applicator and interapplicator attenuation can be included in the resultant dose calculations. Further validation tests using clinically acquired tandem and colpostats images will be performed for the accurate and robust applicator/sources localization in ICB patients.« less

  6. A belgian multicenter prospective observational cohort study shows safe and efficient use of a composite mesh with incorporated oxidized regenerated cellulose in laparoscopic ventral hernia repair.

    PubMed

    Berrevoet, F; Tollens, T; Berwouts, L; Bertrand, C; Muysoms, F; De Gols, J; Meir, E; De Backer, A

    2014-01-01

    A variety of anti-adhesive composite mesh products have become available to use inside the peritoneal cavity. However, reimbursement of these meshes by the Belgian Governemental Health Agency (RIZIV/INAMI) can only be obtained after conducting a prospective study with at least one year of clinical follow-up. This -Belgian multicentric cohort study evaluated the experience with the use of Proceed®-mesh in laparoscopic ventral hernia repair. During a 25 month period 210 adult patients underwent a laparoscopic primary or incisional hernia repair using an intra-abdominal placement of Proceed®-mesh. According to RIZIV/INAMI criteria recurrence rate after 1 year was the primary objective, while postoperative morbidity, including seroma formation, wound and mesh infections, quality of life and recurrences after 2 years were evaluated as secondary endpoints (NCT00572962). In total 97 primary ventral and 103 incisional hernias were repaired, of which 28 (13%) were recurrent. There were no conversions to open repair, no enterotomies, no mesh infections and no mortality. One year cumulative follow-up showed 10 recurrences (n = 192, 5.2%) and chronic discomfort or pain in 4.7% of the patients. Quality of life could not be analyzed due to incomplete data set. More than 5 years after introduction of this mesh to the market, this prospective multicentric study documents a favorable experience with the Proceed mesh in laparoscopic ventral hernia repair. However, it remains to be discussed whether reimbursement of these meshes in Belgium should be limited to the current strict criteria and therefore can only be obtained after at least 3-4 years of clinical data gathering and necessary follow-up. Copyright© Acta Chirurgica Belgica.

  7. Challenging the Myth: Transvaginal Mesh is Not Associated with Carcinogenesis.

    PubMed

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Thomas, Dominique; Eilber, Karyn S; Clemens, J Quentin; Anger, Jennifer T

    2017-10-01

    We sought to determine if there was a potential link between synthetic polypropylene mesh implantation for transvaginal pelvic organ prolapse and stress urinary incontinence, and carcinogenesis using statewide administrative data. Women who underwent transvaginal surgery for pelvic organ prolapse or stress urinary incontinence with mesh between January 2008 and December 2009 in New York State were identified using ICD-9-CM procedure codes and CPT-4 codes. Patients in the mesh cohort were individually matched to 2 control cohorts based on comorbidities and procedure date. Carcinogenesis was determined before and after matching at 1, 2 and 3 years, and during the entire followup time. A total of 2,229 patients who underwent mesh based pelvic organ prolapse surgery and 10,401 who underwent sling surgery for stress urinary incontinence between January 2008 and December 2009 were included in the study. Mean followup was 6 years (range 5 to 7). Exact matching between the mesh and control cohorts resulted in 1,870 pairs for pelvic organ prolapse mesh and cholecystectomy (1:2), 1,278 pairs for pelvic organ prolapse mesh and hysterectomy (1:1), 7,986 pairs for sling and cholecystectomy (1:1) and 3,810 pairs for sling and hysterectomy (1:1). Transvaginal mesh implantation was not associated with an increased risk of a cancer diagnosis (pelvic/local cancers or any cancer) at 1 year and during the entire followup of up to 7 years. Transvaginal surgery with implantation of mesh was not associated with the development of malignancy at a mean followup of 6 years. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800 °C

    NASA Astrophysics Data System (ADS)

    Garcia-Fresnillo, L.; Shemet, V.; Chyrkin, A.; de Haart, L. G. J.; Quadakkers, W. J.

    2014-12-01

    In the present study the long-term behaviour of two ferritic steels, Crofer 22 APU and Crofer 22H, in contact with a Ni-mesh during exposure in simulated anode gas, Ar-4%H2-2%H2O, at 700 and 800 °C for exposure times up to 3000 h was investigated. Ni diffusion from the Ni-mesh into the steel resulted in the formation of an austenitic zone whereas diffusion of iron and chromium from the steel into the Ni-mesh resulted in the formation of chromia base oxides in the Ni-mesh. Depending on the chemical composition of the steel, the temperature and the exposure time, interdiffusion processes between ferritic steel and Ni-mesh also resulted in σ-phase formation at the austenite-ferrite interface and in Laves-phase dissolution in the austenitic zone. The extent and morphology of the σ-phase formation are discussed on the basis of thermodynamic considerations, including reaction paths in the ternary alloy system Fe-Ni-Cr.

  9. Importance of mesh overlap on hernia recurrence after open umbilical hernia repair with bilayer prosthesis.

    PubMed

    Porrero, Jose L; Cano-Valderrama, Oscar; Castillo, María J; Marcos, Alberto; Tejerina, Gabriel; Cendrero, Manuel; Porrero, Belén; Alonso, María T; Torres, Antonio J

    2018-02-02

    importance of mesh overlap on recurrence after open umbilical hernia repair has been poorly studied. a retrospective cohort study was performed with patients who underwent open umbilical hernia repair with bilayer prosthesis between 2004 and 2015. 1538 patients were included. Fifty patients (3.3%) had a mesh overlap lower than 1 cm. After a mean follow-up of 4.1 years 53 patients (3.5%) developed a recurrence. Recurrence was associated with a mesh overlap smaller than 1 cm (10.2% vs. 3.3%, p = 0.010, OR = 3.3). In the logistic regression model an overlap smaller than 1 cm was not statistically associated with recurrence (OR = 2.5, p = 0.123). Female gender, postoperative complications and prosthesis size were associated with hernia recurrence. mesh overlap seems to be an important factor for hernia recurrence. A mesh overlap of at least 1 cm should be used until more studies are performed about this issue. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Textile properties of synthetic prolapse mesh in response to uniaxial loading.

    PubMed

    Barone, William R; Moalli, Pamela A; Abramowitch, Steven D

    2016-09-01

    Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups, with values decreasing by as much as 87% (P < .05). On loading to 10 N of force, nearly all mesh products that were tested were found to have porosities that approached 0% and 0 pores with diameters >1 mm. In this study, it was shown that the pore size of current prolapse meshes dramatically decreases in response to mechanical loading. These findings suggest that prolapse meshes, which are more likely to experience tensile forces in vivo relative to hernia repair meshes, have pores that are unfavorable for tissue integration after surgical tensioning and/or loading in urogynecologic surgeries. Such decreases in pore geometry support the hypothesis that regional increases in the concentration of mesh leads to an enhanced local foreign body response. Although pore deformation in transvaginal meshes requires further characterization, the findings presented here provide a mechanical understanding that can be used to recognize potential areas of concern for complex mesh geometries. Understanding mesh mechanics in response to surgical and in vivo loading conditions may provide improved design criteria for mesh and a refinement of surgical techniques, ultimately leading to better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Financial implications of ventral hernia repair: a hospital cost analysis.

    PubMed

    Reynolds, Drew; Davenport, Daniel L; Korosec, Ryan L; Roth, J Scott

    2013-01-01

    Complicated ventral hernias are often referred to tertiary care centers. Hospital costs associated with these repairs include direct costs (mesh materials, supplies, and nonsurgeon labor costs) and indirect costs (facility fees, equipment depreciation, and unallocated labor). Operative supplies represent a significant component of direct costs, especially in an era of proprietary synthetic meshes and biologic grafts. We aim to evaluate the cost-effectiveness of complex abdominal wall hernia repair at a tertiary care referral facility. Cost data on all consecutive open ventral hernia repairs (CPT codes 49560, 49561, 49565, and 49566) performed between 1 July 2008 and 31 May 2011 were analyzed. Cases were analyzed based upon hospital status (inpatient vs. outpatient) and whether the hernia repair was a primary or secondary procedure. We examined median net revenue, direct costs, contribution margin, indirect costs, and net profit/loss. Among primary hernia repairs, cost data were further analyzed based upon mesh utilization (no mesh, synthetic, or biologic). Four-hundred and fifteen patients underwent ventral hernia repair (353 inpatients and 62 outpatients); 173 inpatients underwent ventral hernia repair as the primary procedure; 180 inpatients underwent hernia repair as a secondary procedure. Median net revenue ($17,310 vs. 10,360, p < 0.001) and net losses (3,430 vs. 1,700, p < 0.025) were significantly greater for those who underwent hernia repair as a secondary procedure. Among inpatients undergoing ventral hernia repair as the primary procedure, 46 were repaired without mesh; 79 were repaired with synthetic mesh and 48 with biologic mesh. Median direct costs for cases performed without mesh were $5,432; median direct costs for those using synthetic and biologic mesh were $7,590 and 16,970, respectively (p < .01). Median net losses for repairs without mesh were $500. Median net profit of $60 was observed for synthetic mesh-based repairs. The median contribution margin for cases utilizing biologic mesh was -$4,560, and the median net financial loss was $8,370. Outpatient ventral hernia repairs, with and without synthetic mesh, resulted in median net losses of $1,560 and 230, respectively. Ventral hernia repair is associated with overall financial losses. Inpatient synthetic mesh repairs are essentially budget neutral. Outpatient and inpatient repairs without mesh result in net financial losses. Inpatient biologic mesh repairs result in a negative contribution margin and striking net financial losses. Cost-effective strategies for managing ventral hernias in a tertiary care environment need to be developed in light of the financial implications of this patient population.

  12. Development of a solution adaptive unstructured scheme for quasi-3D inviscid flows through advanced turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Usab, William J., Jr.; Jiang, Yi-Tsann

    1991-01-01

    The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.

  13. Postoperative Urinary Retention and Urinary Tract Infections Predict Midurethral Sling Mesh Complications.

    PubMed

    Punjani, Nahid; Winick-Ng, Jennifer; Welk, Blayne

    2017-01-01

    To determine if postoperative urinary retention and urinary tract infections (UTIs) were predictors of future mesh complications requiring surgical intervention after midurethral sling (MUS). Administrative data in Ontario, Canada, between 2002 and 2013 were used to identify all women who underwent a mesh-based MUS. The primary outcome was revision of the transvaginal mesh sling (including mesh removal/erosion/fistula, or urethrolysis). Two potential risk factors were analyzed: postoperative retention (within 30 days of procedure) and number of postoperative emergency room visits or hospital admissions for UTI symptoms. A total of 59,556 women had a MUS, of which 1598 (2.7%) required revision surgery. Of the 2025 women who presented to the emergency room or were admitted to hospital for postoperative retention, 212 (10.5%) required operative mesh revision. Of the 11,747 patients who had at least one postoperative UTI, 366 (3.1%) patients required operative mesh revision. In adjusted analysis, postoperative retention was significantly predictive of future reoperation (hazard ratio [HR] 3.46, 95% confidence interval [CI] 2.97-4.02), and this difference persisted when urethrolysis was excluded as a reason for sling revision (HR 3.08, 95% CI 2.62-3.63). Similarly, in adjusted analysis, each additional postoperative hospital visit for UTI symptoms increased the risk for surgical intervention for mesh complications (HR 1.74, 95% CI 1.61-1.87). Postoperative urinary retention and hospital presentation for UTI symptoms are associated with an increased risk of reoperation for MUS complications. These patients should be followed and investigated for mesh complications when appropriate. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  15. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque.

    PubMed

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A

    2017-02-01

    The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. Copyright © 2016. Published by Elsevier Inc.

  16. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque

    PubMed Central

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.

    2016-01-01

    BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical end-points of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extra-cellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. PMID:27615441

  17. Slices: A Scalable Partitioner for Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Ding, H. Q.; Ferraro, R. D.

    1995-01-01

    A parallel partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The element based partitioner can handle mixtures of different element types. All algorithms adopted in the partitioner are scalable, including a communication template for unpredictable incoming messages, as shown in actual timing measurements.

  18. A voxel-based finite element model for the prediction of bladder deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classicalmore » FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to manual contours and <0.02 cm difference in mean standard deviation of residual errors). The average equation solving time (without manual intervention) for the first two types of hexahedral meshes increased to 2.3 h and 2.6 h compared to the 1.1 h needed for the tetrahedral mesh, however, the low-resolution nonuniform hexahedral mesh dramatically decreased the equation solving time to 3 min without reducing accuracy. Conclusions: Voxel-based mesh generation allows fast, automatic, and robust creation of finite element bladder models directly from binary segmentation images without user intervention. Even the low-resolution voxel-based hexahedral mesh yields comparable accuracy in bladder shape prediction and more than 20 times faster in computational speed compared to the tetrahedral mesh. This approach makes it more feasible and accessible to apply FE method to model bladder deformation in adaptive radiotherapy.« less

  19. Flexible pile thermal barrier insulator

    NASA Technical Reports Server (NTRS)

    Anderson, G. E.; Fell, D. M.; Tesinsky, J. S. (Inventor)

    1978-01-01

    A flexible pile thermal barrier insulator included a plurality of upstanding pile yarns. A generally planar backing section supported the upstanding pile yarns. The backing section included a plurality of filler yarns forming a mesh in a first direction. A plurality of warp yarns were looped around said filler yarns and pile yarns in the backing section and formed a mesh in a second direction. A binder prevented separation of the yarns in the backing section.

  20. Definitive Surgical Treatment of Infected or Exposed Ventral Hernia Mesh

    PubMed Central

    Szczerba, Steven R.; Dumanian, Gregory A.

    2003-01-01

    Objective To discuss the difficulties in dealing with infected or exposed ventral hernia mesh, and to illustrate one solution using an autogenous abdominal wall reconstruction technique. Summary Background Data The definitive treatment for any infected prosthetic material in the body is removal and substitution. When ventral hernia mesh becomes exposed or infected, its removal requires a solution to prevent a subsequent hernia or evisceration. Methods Eleven patients with ventral hernia mesh that was exposed, nonincorporated, with chronic drainage, or associated with a spontaneous enterocutaneous fistula were referred by their initial surgeons after failed local wound care for definitive management. The patients were treated with radical en bloc excision of mesh and scarred fascia followed by immediate abdominal wall reconstruction using bilateral sliding rectus abdominis myofascial advancement flaps. Results Four of the 11 patients treated for infected mesh additionally required a bowel resection. Transverse defect size ranged from 8 to 18 cm (average 13 cm). Average procedure duration was 3 hours without bowel repair and 5 hours with bowel repair. Postoperative length of stay was 5 to 7 days without bowel repair and 7 to 9 days with bowel repair. Complications included hernia recurrence in one case and stitch abscesses in two cases. Follow-up ranges from 6 to 54 months (average 24 months). Conclusions Removal of infected mesh and autogenous flap reconstruction is a safe, reliable, and one-step surgical solution to the problem of infected abdominal wall mesh. PMID:12616130

  1. DeepMeSH: deep semantic representation for improving large-scale MeSH indexing

    PubMed Central

    Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Motivation: Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. Methods: We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the ‘learning to rank’ framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. Results: DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. Availability and Implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307646

  2. MESHMAKER (MM) V1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MORIDIS, GEORGE

    2016-05-02

    MeshMaker v1.5 is a code that describes the system geometry and discretizes the domain in problems of flow and transport through porous and fractured media that are simulated using the TOUGH+ [Moridis and Pruess, 2014] or TOUGH2 [Pruess et al., 1999; 2012] families of codes. It is a significantly modified and drastically enhanced version of an earlier simpler facility that was embedded in the TOUGH2 codes [Pruess et al., 1999; 2012], from which it could not be separated. The code (MeshMaker.f90) is a stand-alone product written in FORTRAN 95/2003, is written according to the tenets of Object-Oriented Programming, has amore » modular structure and can perform a number of mesh generation and processing operations. It can generate two-dimensional radially symmetric (r,z) meshes, and one-, two-, and three-dimensional rectilinear (Cartesian) grids in (x,y,z). The code generates the file MESH, which includes all the elements and connections that describe the discretized simulation domain and conforming to the requirements of the TOUGH+ and TOUGH2 codes. Multiple-porosity processing for simulation of flow in naturally fractured reservoirs can be invoked by means of a keyword MINC, which stands for Multiple INteracting Continua. The MINC process operates on the data of the primary (porous medium) mesh as provided on disk file MESH, and generates a secondary mesh containing fracture and matrix elements with identical data formats on file MINC.« less

  3. Code OK3 - An upgraded version of OK2 with beam wobbling function

    NASA Astrophysics Data System (ADS)

    Ogoyski, A. I.; Kawata, S.; Popov, P. H.

    2010-07-01

    For computer simulations on heavy ion beam (HIB) irradiation onto a target with an arbitrary shape and structure in heavy ion fusion (HIF), the code OK2 was developed and presented in Computer Physics Communications 161 (2004). Code OK3 is an upgrade of OK2 including an important capability of wobbling beam illumination. The wobbling beam introduces a unique possibility for a smooth mechanism of inertial fusion target implosion, so that sufficient fusion energy is released to construct a fusion reactor in future. New version program summaryProgram title: OK3 Catalogue identifier: ADST_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADST_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 221 517 No. of bytes in distributed program, including test data, etc.: 2 471 015 Distribution format: tar.gz Programming language: C++ Computer: PC (Pentium 4, 1 GHz or more recommended) Operating system: Windows or UNIX RAM: 2048 MBytes Classification: 19.7 Catalogue identifier of previous version: ADST_v2_0 Journal reference of previous version: Comput. Phys. Comm. 161 (2004) 143 Does the new version supersede the previous version?: Yes Nature of problem: In heavy ion fusion (HIF), ion cancer therapy, material processing, etc., a precise beam energy deposition is essentially important [1]. Codes OK1 and OK2 have been developed to simulate the heavy ion beam energy deposition in three-dimensional arbitrary shaped targets [2, 3]. Wobbling beam illumination is important to smooth the beam energy deposition nonuniformity in HIF, so that a uniform target implosion is realized and a sufficient fusion output energy is released. Solution method: OK3 code works on the base of OK1 and OK2 [2, 3]. The code simulates a multi-beam illumination on a target with arbitrary shape and structure, including beam wobbling function. Reasons for new version: The code OK3 is based on OK2 [3] and uses the same algorithm with some improvements, the most important one is the beam wobbling function. Summary of revisions:In the code OK3, beams are subdivided on many bunches. The displacement of each bunch center from the initial beam direction is calculated. Code OK3 allows the beamlet number to vary from bunch to bunch. That reduces the calculation error especially in case of very complicated mesh structure with big internal holes. The target temperature rises during the time of energy deposition. Some procedures are improved to perform faster. The energy conservation is checked up on each step of calculation process and corrected if necessary. New procedures included in OK3 Procedure BeamCenterRot( ) rotates the beam axis around the impinging direction of each beam. Procedure BeamletRot( ) rotates the beamlet axes that belong to each beam. Procedure Rotation( ) sets the coordinates of rotated beams and beamlets in chamber and pellet systems. Procedure BeamletOut( ) calculates the lost energy of ions that have not impinged on the target. Procedure TargetT( ) sets the temperature of the target layer of energy deposition during the irradiation process. Procedure ECL( ) checks up the energy conservation law at each step of the energy deposition process. Procedure ECLt( ) performs the final check up of the energy conservation law at the end of deposition process. Modified procedures in OK3 Procedure InitBeam( ): This procedure initializes the beam radius and coefficients A1, A2, A3, A4 and A5 for Gauss distributed beams [2]. It is enlarged in OK3 and can set beams with radii from 1 to 20 mm. Procedure kBunch( ) is modified to allow beamlet number variation from bunch to bunch during the deposition. Procedure ijkSp( ) and procedure Hole( ) are modified to perform faster. Procedure Espl( ) and procedure ChechE( ) are modified to increase the calculation accuracy. Procedure SD( ) calculates the total relative root-mean-square (RMS) deviation and the total relative peak-to-valley (PTV) deviation in energy deposition non-uniformity. This procedure is not included in code OK2 because of its limited applications (for spherical targets only). It is taken from code OK1 and modified to perform with code OK3. Running time: The execution time depends on the pellet mesh number and the number of beams in the simulated illumination as well as on the beam characteristics (beam radius on the pellet surface, beam subdivision, projectile particle energy and so on). In almost all of the practical running tests performed, the typical running time for one beam deposition is about 30 s on a PC with a CPU of Pentium 4, 2.4 GHz. References:A.I. Ogoyski, et al., Heavy ion beam irradiation non-uniformity in inertial fusion, Phys. Lett. A 315 (2003) 372-377. A.I. Ogoyski, et al., Code OK1 - Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Comput. Phys. Comm. 157 (2004) 160-172. A.I. Ogoyski, et al., Code OK2 - A simulation code of ion-beam illumination on an arbitrary shape and structure target, Comput. Phys. Comm. 161 (2004) 143-150.

  4. Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    NASA Astrophysics Data System (ADS)

    Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.

    2017-02-01

    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.

  5. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.

  6. Parallel Performance Optimizations on Unstructured Mesh-based Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas

    2015-01-01

    © The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cachemore » efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less

  7. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability

    PubMed Central

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-01-01

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching. PMID:27796291

  8. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability.

    PubMed

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-10-31

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.

  9. Large area nanoscale metal meshes for use as transparent conductive layers.

    PubMed

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-21

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.

  10. Response of a Bell–Bloom Magnetometer to a Magnetic Field of Arbitrary Direction

    PubMed Central

    Ding, Zhichao; Yuan, Jie; Long, Xingwu

    2018-01-01

    The Bell–Bloom magnetometer in response to a magnetic field of arbitrary direction is observed theoretically and experimentally. A theoretical model is built from a macroscopic view to simulate the magnetometer frequency response to an external magnetic field of arbitrary direction. Based on the simulation results, the magnetometer characteristics, including the signal phase and amplitude at resonance, the linewidth, and the magnetometer sensitivity, are analyzed, and the dependencies of these characteristics on the external magnetic field direction are obtained, which are verified by the experiment. PMID:29724059

  11. Full-thickness skin graft vs. synthetic mesh in the repair of giant incisional hernia: a randomized controlled multicenter study.

    PubMed

    Clay, L; Stark, B; Gunnarsson, U; Strigård, K

    2018-04-01

    Repair of large incisional hernias includes the implantation of a synthetic mesh, but this may lead to pain, stiffness, infection and enterocutaneous fistulae. Autologous full-thickness skin graft as on-lay reinforcement has been tested in eight high-risk patients in a proof-of-concept study, with satisfactory results. In this multicenter randomized study, the use of skin graft was compared to synthetic mesh in giant ventral hernia repair. Non-smoking patients with a ventral hernia > 10 cm wide were randomized to repair using an on-lay autologous full-thickness skin graft or a synthetic mesh. The primary endpoint was surgical site complications during the first 3 months. A secondary endpoint was patient comfort. Fifty-three patients were included. Clinical evaluation was performed at a 3-month follow-up appointment. There were fewer patients in the skin graft group reporting discomfort: 3 (13%) vs. 12 (43%) (p = 0.016). Skin graft patients had less pain and a better general improvement. No difference was seen regarding seroma; 13 (54%) vs. 13 (46%), or subcutaneous wound infection; 5 (20%) vs. 7 (25%). One recurrence appeared in each group. Three patients in the skin graft group and two in the synthetic mesh group were admitted to the intensive care unit. No difference was seen for the primary endpoint short-term surgical complication. Full-thickness skin graft appears to be a reliable material for ventral hernia repair producing no more complications than when using synthetic mesh. Patients repaired with a skin graft have less subjective abdominal wall symptoms.

  12. Smooth operator: The effects of different 3D mesh retriangulation protocols on the computation of Dirichlet normal energy.

    PubMed

    Spradley, Jackson P; Pampush, James D; Morse, Paul E; Kay, Richard F

    2017-05-01

    Dirichlet normal energy (DNE) is a metric of surface topography that has been used to evaluate the relationship between the surface complexity of primate cheek teeth and dietary categories. This study examines the effects of different 3D mesh retriangulation protocols on DNE. We examine how different protocols influence the DNE of a simple geometric shape-a hemisphere-to gain a more thorough understanding than can be achieved by investigating a complex biological surface such as a tooth crown. We calculate DNE on 3D surface meshes of hemispheres and on primate molars subjected to various retriangulation protocols, including smoothing algorithms, smoothing amounts, target face counts, and criteria for boundary face exclusion. Software used includes R, MorphoTester, Avizo, and MeshLab. DNE was calculated using the R package "molaR." In all cases, smoothing as performed in Avizo sharply decreases DNE initially, after which DNE becomes stable. Using a broader boundary exclusion criterion or performing additional smoothing (using "mesh fairing" methods) further decreases DNE. Increasing the mesh face count also results in increased DNE on tooth surfaces. Different retriangulation protocols yield different DNE values for the same surfaces, and should not be combined in meta-analyses. Increasing face count will capture surface microfeatures, but at the expense of computational speed. More aggressive smoothing is more likely to alter the essential geometry of the surface. A protocol is proposed that limits potential artifacts created during surface production while preserving pertinent features on the occlusal surface. © 2017 Wiley Periodicals, Inc.

  13. The complete digital workflow in fixed prosthodontics: a systematic review.

    PubMed

    Joda, Tim; Zarone, Fernando; Ferrari, Marco

    2017-09-19

    The continuous development in dental processing ensures new opportunities in the field of fixed prosthodontics in a complete virtual environment without any physical model situations. The aim was to compare fully digitalized workflows to conventional and/or mixed analog-digital workflows for the treatment with tooth-borne or implant-supported fixed reconstructions. A PICO strategy was executed using an electronic (MEDLINE, EMBASE, Google Scholar) plus manual search up to 2016-09-16 focusing on RCTs investigating complete digital workflows in fixed prosthodontics with regard to economics or esthetics or patient-centered outcomes with or without follow-up or survival/success rate analysis as well as complication assessment of at least 1 year under function. The search strategy was assembled from MeSH-Terms and unspecific free-text words: {(("Dental Prosthesis" [MeSH]) OR ("Crowns" [MeSH]) OR ("Dental Prosthesis, Implant-Supported" [MeSH])) OR ((crown) OR (fixed dental prosthesis) OR (fixed reconstruction) OR (dental bridge) OR (implant crown) OR (implant prosthesis) OR (implant restoration) OR (implant reconstruction))} AND {("Computer-Aided Design" [MeSH]) OR ((digital workflow) OR (digital technology) OR (computerized dentistry) OR (intraoral scan) OR (digital impression) OR (scanbody) OR (virtual design) OR (digital design) OR (cad/cam) OR (rapid prototyping) OR (monolithic) OR (full-contour))} AND {("Dental Technology" [MeSH) OR ((conventional workflow) OR (lost-wax-technique) OR (porcelain-fused-to-metal) OR (PFM) OR (implant impression) OR (hand-layering) OR (veneering) OR (framework))} AND {(("Study, Feasibility" [MeSH]) OR ("Survival" [MeSH]) OR ("Success" [MeSH]) OR ("Economics" [MeSH]) OR ("Costs, Cost Analysis" [MeSH]) OR ("Esthetics, Dental" [MeSH]) OR ("Patient Satisfaction" [MeSH])) OR ((feasibility) OR (efficiency) OR (patient-centered outcome))}. Assessment of risk of bias in selected studies was done at a 'trial level' including random sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting, and other bias using the Cochrane Collaboration tool. A judgment of risk of bias was assigned if one or more key domains had a high or unclear risk of bias. An official registration of the systematic review was not performed. The systematic search identified 67 titles, 32 abstracts thereof were screened, and subsequently, three full-texts included for data extraction. Analysed RCTs were heterogeneous without follow-up. One study demonstrated that fully digitally produced dental crowns revealed the feasibility of the process itself; however, the marginal precision was lower for lithium disilicate (LS2) restorations (113.8 μm) compared to conventional metal-ceramic (92.4 μm) and zirconium dioxide (ZrO2) crowns (68.5 μm) (p < 0.05). Another study showed that leucite-reinforced glass ceramic crowns were esthetically favoured by the patients (8/2 crowns) and clinicians (7/3 crowns) (p < 0.05). The third study investigated implant crowns. The complete digital workflow was more than twofold faster (75.3 min) in comparison to the mixed analog-digital workflow (156.6 min) (p < 0.05). No RCTs could be found investigating multi-unit fixed dental prostheses (FDP). The number of RCTs testing complete digital workflows in fixed prosthodontics is low. Scientifically proven recommendations for clinical routine cannot be given at this time. Research with high-quality trials seems to be slower than the industrial progress of available digital applications. Future research with well-designed RCTs including follow-up observation is compellingly necessary in the field of complete digital processing.

  14. Is vaginal mesh a stimulus of autoimmune disease?

    PubMed

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Eilber, Karyn S; Anger, Jennifer T; Clemens, J Quentin

    2017-05-01

    Polypropylene mesh has been used as a means of reinforcing weak tissues in women with pelvic organ prolapse and stress urinary incontinence. We sought to investigate a potential link between the development of systemic/autoimmune disorders and synthetic polypropylene mesh repairs. New York State Department of Health Statewide Planning and Research Cooperative System data were utilized to conduct this retrospective cohort study. Adult women undergoing surgery for pelvic organ prolapse with vaginally implanted mesh from January 2008 through December 2009 in inpatient and ambulatory surgery settings in New York State were identified. Two separate control cohorts were created to compare outcomes, including a screening colonoscopy cohort and a vaginal hysterectomy cohort for benign gynecologic conditions (without pelvic organ prolapse repair or sling). Patients in the mesh cohort were individually matched to the control cohorts based on demographics, comorbidities, and procedure date. The development of systemic/autoimmune disease was determined before and after matching for 1-year, 2-year, 3-year, and entire follow-up (up to 6 years until December 2014) and differences between groups were evaluated. A total of 2102 patients underwent mesh-based pelvic organ prolapse surgery from January 2008 through December 2009. In the control cohorts, 37,298 patients underwent colonoscopy and 7338 underwent vaginal hysterectomy. When patients were matched based on demographics, comorbidities, and procedure time, mesh-based surgery was not associated with an increased risk of developing autoimmune disease at any of the evaluated time periods. Mesh-based vaginal surgery was not associated with the development of systemic/autoimmune diseases. These data refute claims against mesh as a cause of systemic disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Feasibility study from a randomized controlled trial of standard closure of a stoma site vs biological mesh reinforcement.

    PubMed

    2016-09-01

    Hernia formation occurs at closed stoma sites in up to 30% of patients. The Reinforcement of Closure of Stoma Site (ROCSS) randomized controlled trial is evaluating whether placement of biological mesh during stoma closure safely reduces hernia rates compared with closure without mesh, without increasing surgical or wound complications. This paper aims to report recruitment, deliverability and safety from the internal feasibility study. A multicentre, patient and assessor blinded, randomized controlled trial, delivered through surgical trainee research networks. A 90-patient internal feasibility study assessed recruitment, randomization, deliverability and early (30 day) safety of the novel surgical technique (ClinicalTrials.gov registration number NCT02238964). The feasibility study recruited 90 patients from the 104 considered for entry (45 to mesh, 45 to no mesh). Seven of eight participating centres randomized patients within 30 days of opening. Overall, 41% of stomas were created for malignant disease and 73% were ileostomies. No mesh-specific complications occurred. Thirty-one postoperative adverse events were experienced by 31 patients, including surgical site infection (9%) and postoperative ileus (6%). One mesh was removed for re-access to the abdominal cavity, for reasons unrelated to the mesh. Independent review by the Data Monitoring and Ethics Committee of adverse event data by treatment allocation found no safety concerns. Multicentre randomization to this trial of biological mesh is feasible, with no early safety concerns. Progression to the full Phase III trial has continued. ROCSS shows that trainee research networks can efficiently develop and deliver complex interventional surgical trials. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  16. Method and structure for skewed block-cyclic distribution of lower-dimensional data arrays in higher-dimensional processor grids

    DOEpatents

    Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY

    2011-11-08

    A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.

  17. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling

    PubMed Central

    Gonzales, Matthew J.; Sturgeon, Gregory; Segars, W. Paul; McCulloch, Andrew D.

    2016-01-01

    Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric analysis. These include faster convergence rates as well as the ability to easily model rule-based anatomic features such as cardiac fiber directions. However, it is not possible to create closed complex objects with only regular nodes; these objects require the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes requires new constraints on the derivatives of adjacent elements to maintain continuity. We have developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain continuity. In this paper, we make use of this mapping to create cubic Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to the finite element equations to perform biomechanics simulations using these meshes. The new methods are validated using simple test models and applied to anatomically accurate ventricular meshes with valve annuli to simulate complete cardiac cycle simulations. PMID:27182096

  18. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    NASA Technical Reports Server (NTRS)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  19. First benchmark of the Unstructured Grid Adaptation Working Group

    NASA Technical Reports Server (NTRS)

    Ibanez, Daniel; Barral, Nicolas; Krakos, Joshua; Loseille, Adrien; Michal, Todd; Park, Mike

    2017-01-01

    Unstructured grid adaptation is a technology that holds the potential to improve the automation and accuracy of computational fluid dynamics and other computational disciplines. Difficulty producing the highly anisotropic elements necessary for simulation on complex curved geometries that satisfies a resolution request has limited this technology's widespread adoption. The Unstructured Grid Adaptation Working Group is an open gathering of researchers working on adapting simplicial meshes to conform to a metric field. Current members span a wide range of institutions including academia, industry, and national laboratories. The purpose of this group is to create a common basis for understanding and improving mesh adaptation. We present our first major contribution: a common set of benchmark cases, including input meshes and analytic metric specifications, that are publicly available to be used for evaluating any mesh adaptation code. We also present the results of several existing codes on these benchmark cases, to illustrate their utility in identifying key challenges common to all codes and important differences between available codes. Future directions are defined to expand this benchmark to mature the technology necessary to impact practical simulation workflows.

  20. Simulation of the Francis-99 Hydro Turbine During Steady and Transient Operation

    NASA Astrophysics Data System (ADS)

    Dewan, Yuvraj; Custer, Chad; Ivashchenko, Artem

    2017-01-01

    Numerical simulation of the Francis-99 hydroturbine with correlation to experimental measurements are presented. Steady operation of the hydroturbine is analyzed at three operating conditions: the best efficiency point (BEP), high load (HL), and part load (PL). It is shown that global quantities such as net head, discharge and efficiency are well predicted. Additionally, time-averaged velocity predictions compare well with PIV measurements obtained in the draft tube immediately downstream of the runner. Differences in vortex rope structure between operating points are discussed. Unsteady operation of the hydroturbine from BEP to HL and from BEP to PL are modeled. It is shown that simulation methods used to model the steady operation produce predictions that correlate well with experiment for transient operation. Time-domain unsteady simulation is used for both steady and unsteady operation. The full-fidelity geometry including all components is meshed using an unstructured polyhedral mesh with body-fitted prism layers. Guide vane rotation for transient operation is imposed using fully-conservative, computationally efficient mesh morphing. The commercial solver STAR-CCM+ is used for all portions of the analysis including meshing, solving and post-processing.

  1. The isolation of spatial patterning modes in a mathematical model of juxtacrine cell signalling.

    PubMed

    O'Dea, R D; King, J R

    2013-06-01

    Juxtacrine signalling mechanisms are known to be crucial in tissue and organ development, leading to spatial patterns in gene expression. We investigate the patterning behaviour of a discrete model of juxtacrine cell signalling due to Owen & Sherratt (1998, Mathematical modelling of juxtacrine cell signalling. Math. Biosci., 153, 125-150) in which ligand molecules, unoccupied receptors and bound ligand-receptor complexes are modelled. Feedback between the ligand and receptor production and the level of bound receptors is incorporated. By isolating two parameters associated with the feedback strength and employing numerical simulation, linear stability and bifurcation analysis, the pattern-forming behaviour of the model is analysed under regimes corresponding to lateral inhibition and induction. Linear analysis of this model fails to capture the patterning behaviour exhibited in numerical simulations. Via bifurcation analysis, we show that since the majority of periodic patterns fold subcritically from the homogeneous steady state, a wide variety of stable patterns exists at a given parameter set, providing an explanation for this failure. The dominant pattern is isolated via numerical simulation. Additionally, by sampling patterns of non-integer wavelength on a discrete mesh, we highlight a disparity between the continuous and discrete representations of signalling mechanisms: in the continuous case, patterns of arbitrary wavelength are possible, while sampling such patterns on a discrete mesh leads to longer wavelength harmonics being selected where the wavelength is rational; in the irrational case, the resulting aperiodic patterns exhibit 'local periodicity', being constructed from distorted stable shorter wavelength patterns. This feature is consistent with experimentally observed patterns, which typically display approximate short-range periodicity with defects.

  2. Coarse mesh and one-cell block inversion based diffusion synthetic acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Kang-Seog

    DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.

  3. Direction-aware Slope Limiter for 3D Cubic Grids with Adaptive Mesh Refinement

    DOE PAGES

    Velechovsky, Jan; Francois, Marianne M.; Masser, Thomas

    2018-06-07

    In the context of finite volume methods for hyperbolic systems of conservation laws, slope limiters are an effective way to suppress creation of unphysical local extrema and/or oscillations near discontinuities. We investigate properties of these limiters as applied to piecewise linear reconstructions of conservative fluid quantities in three-dimensional simulations. In particular, we are interested in linear reconstructions on Cartesian adaptively refined meshes, where a reconstructed fluid quantity at a face center depends on more than a single gradient component of the quantity. We design a new slope limiter, which combines the robustness of a minmod limiter with the accuracy ofmore » a van Leer limiter. The limiter is called Direction-Aware Limiter (DAL), because the combination is based on a principal flow direction. In particular, DAL is useful in situations where the Barth–Jespersen limiter for general meshes fails to maintain global linear functions, such as on cubic computational meshes with stencils including only faceneighboring cells. Here, we verify the new slope limiter on a suite of standard hydrodynamic test problems on Cartesian adaptively refined meshes. Lastly, we demonstrate reduced mesh imprinting; for radially symmetric problems such as the Sedov blast wave or the Noh implosion test cases, the results with DAL show better preservation of radial symmetry compared to the other standard methods on Cartesian meshes.« less

  4. Direction-aware Slope Limiter for 3D Cubic Grids with Adaptive Mesh Refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velechovsky, Jan; Francois, Marianne M.; Masser, Thomas

    In the context of finite volume methods for hyperbolic systems of conservation laws, slope limiters are an effective way to suppress creation of unphysical local extrema and/or oscillations near discontinuities. We investigate properties of these limiters as applied to piecewise linear reconstructions of conservative fluid quantities in three-dimensional simulations. In particular, we are interested in linear reconstructions on Cartesian adaptively refined meshes, where a reconstructed fluid quantity at a face center depends on more than a single gradient component of the quantity. We design a new slope limiter, which combines the robustness of a minmod limiter with the accuracy ofmore » a van Leer limiter. The limiter is called Direction-Aware Limiter (DAL), because the combination is based on a principal flow direction. In particular, DAL is useful in situations where the Barth–Jespersen limiter for general meshes fails to maintain global linear functions, such as on cubic computational meshes with stencils including only faceneighboring cells. Here, we verify the new slope limiter on a suite of standard hydrodynamic test problems on Cartesian adaptively refined meshes. Lastly, we demonstrate reduced mesh imprinting; for radially symmetric problems such as the Sedov blast wave or the Noh implosion test cases, the results with DAL show better preservation of radial symmetry compared to the other standard methods on Cartesian meshes.« less

  5. Spatial Convergence of Three Dimensional Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Anderson, W. Kyle

    2016-01-01

    Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.

  6. A priori mesh grading for the numerical calculation of the head-related transfer functions

    PubMed Central

    Ziegelwanger, Harald; Kreuzer, Wolfgang; Majdak, Piotr

    2017-01-01

    Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener’s head and pinnae. When an accurate model of a listener’s morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs. PMID:28239186

  7. Outcomes of transurethral resection (TUR) of intravesical mesh after suburethral slings in the treatment of urinary stress incontinence.

    PubMed

    Castroviejo-Royo, F; Rodríguez-Toves, L A; Martínez-Sagarra-Oceja, J M; Conde-Redondo, C; Mainez-Rodríguez, J A

    2015-04-01

    The objective of this study was to determine the efficacy as well as the complications associated with transurethral removal (TUR) of intravesical mesh after suburethral sling, transobturator tape-TOT (Monarc™) or "minisling" (MiniArc(®)), in the treatment of female urinary stress incontinence (USI). retrospective and consecutive study on 9 women with bladder perforation after midurethral slings (3 Monarc™ and 6 MiniArc®) placement for urinary stress incontinence. To remove the mesh, transurethral resection with an electrode loop (TUR-E) was used. The technique included: location and total removal of mesh with bipolar resectoscope up to healthy tissue. The median age was 61 years (49-70 years). The median time between midurethral sling placement and onset the sympltoms was 13 months (1-79 months). and between sling placement and mesh removal was 16 months (1-91 months). Five women (55.5%) developed bladder stones. Mean operating time was 29.4 ± 10.4 minutes and mean length of hospital stay was 2.6 ± 0.5 days. The median follow-up after mesh removal was 38 months (range, 14 to 109 months). No complications were found. The use of transurethral resection of intravesical mesh after suburethral slings is easy and the results obtained by our surgical team are excellent. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Polypropylene-based composite mesh versus standard polypropylene mesh in the reconstruction of complicated large abdominal wall hernias: a prospective randomized study.

    PubMed

    Kassem, M I; El-Haddad, H M

    2016-10-01

    To compare polypropylene mesh positioned onlay supported by omentum and/or peritoneum versus inlay implantation of polypropylene-based composite mesh in patients with complicated wide-defect ventral hernias. This was a prospective randomized study carried out on 60 patients presenting with complicated large ventral hernia in the period from January 2012 to January 2016 in the department of Gastrointestinal Surgery unit and Surgical Emergency of the Main Alexandria University Hospital, Egypt. Large hernia had an abdominal wall defect that could not be closed. Patients were divided into two groups of 30 patients according to the type of mesh used to deal with the large abdominal wall defect. The study included 38 women (63.3 %) and 22 men (37.7 %); their mean age was 46.5 years (range, 25-70). Complicated incisional hernia was the commonest presentation (56.7 %).The operative and mesh fixation times were longer in the polypropylene group. Seven wound infections and two recurrences were encountered in the propylene group. Mean follow-up was 28.7 months (2-48 months). Composite mesh provided, in one session, satisfactory results in patients with complicated large ventral hernia. The procedure is safe and effective in lowering operative time with a trend of low wound complication and recurrence rates.

  9. Geo-PUMMA: Urban and Periurban Landscape Representation Toolbox for Hydrological Distributed Modeling

    NASA Astrophysics Data System (ADS)

    Sanzana, Pedro; Gironas, Jorge; Braud, Isabelle; Branger, Flora; Rodriguez, Fabrice; Vargas, Ximena; Hitschfeld, Nancy; Francisco Munoz, Jose

    2016-04-01

    In addition to land use changes, the process of urbanization can modify the direction of the surface and sub-surface flows, generating complex environments and increasing the types of connectivity between pervious and impervious areas. Thus, hydrological pathways in urban and periurban areas are significantly affected by artificial elements like channels, pipes, streets and other elements of storm water systems. This work presents Geo-PUMMA, a new GIS toolbox to generate vectorial meshes for distributed hydrological modeling and extract the drainage network in urban and periurban terrain. Geo-PUMMA gathers spatial information maps (e.g. cadastral, soil types, geology and digital elevation models) to produce Hydrological Response Units (HRU) and Urban Hydrological Elements (UHE). Geo-PUMMA includes tools to improve the initial mesh derived from GIS layers intersection in order to respect geometrical constraints, which ensures numerical stability while preserving the shape of the initial HRUs and minimizing the small elements to lower computing times. The geometrical constraints taken into account include: elements convexity, limitation of the number of sliver elements (e.g. roads) and of very small or very large elements. This toolbox allows the representation of basins at small scales (0.1-10km2), as it takes into account the hydrological connectivity of the main elements explicitly, and improves the representation of water pathways compared with classical raster approaches. Geo-PUMMA also allows the extraction of basin morphologic properties such as the width function, the area function and the imperviousness function. We applied this new toolbox to two periurban catchments: the Mercier catchment located near Lyon, France, and the Estero El Guindo catchment located in the Andean piedmont in the Maipo River, Chile. We use the capability of Geo-PUMMA to generate three different meshes. The first one is the initial mesh derived from the direct intersection of GIS layers. The second one is based on fine triangulation of HRUs and is considered the best one we can obtain (reference mesh). The third one is the recommended mesh, preserving the shape of the initial HRUs and limiting the number of elements. The representation of the drainage network and its morphological properties is compared between the three meshes. This comparison shows that the drainage network representation is particularly improved at small to medium spatial scales when using the recommended meshes (i.e. 120-150 m for the El Guindo catchment and 80-150 m for the Mercier catchment). The results also show that the recommended mesh correctly represents the main features of the drainage network as compared to the reference mesh. KEYWORDS: GRASS-GIS, Computer-assisted mesh generation, periurban catchments

  10. A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Tayebi, A.; Shekari, Y.; Heydari, M. H.

    2017-07-01

    Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.

  11. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintermeyer, Niklas; Winters, Andrew R., E-mail: awinters@math.uni-koeln.de; Gassner, Gregor J.

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving schememore » we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.« less

  13. 3D Printing Multi-Functionality: Embedded RF Antennas and Components

    NASA Technical Reports Server (NTRS)

    Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.

    2015-01-01

    Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.

  14. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  15. Three-dimensional boundary layer calculation by a characteristic method

    NASA Technical Reports Server (NTRS)

    Houdeville, R.

    1992-01-01

    A numerical method for solving the three-dimensional boundary layer equations for bodies of arbitrary shape is presented. In laminar flows, the application domain extends from incompressible to hypersonic flows with the assumption of chemical equilibrium. For turbulent boundary layers, the application domain is limited by the validity of the mixing length model used. In order to respect the hyperbolic nature of the equations reduced to first order partial derivative terms, the momentum equations are discretized along the local streamlines using of the osculator tangent plane at each node of the body fitted coordinate system. With this original approach, it is possible to overcome the use of the generalized coordinates, and therefore, it is not necessary to impose an extra hypothesis about the regularity of the mesh in which the boundary conditions are given. By doing so, it is possible to limit, and sometimes to suppress, the pre-treatment of the data coming from an inviscid calculation. Although the proposed scheme is only semi-implicit, the method remains numerically very efficient.

  16. Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation

    NASA Technical Reports Server (NTRS)

    Driscoll, Tobin A.; Vavasis, Stephen A.

    1996-01-01

    We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.

  17. Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: A paradigm in three dimensions

    PubMed Central

    Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.

    2000-01-01

    We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469

  18. An efficient numerical method for the solution of the problem of elasticity for 3D-homogeneous elastic medium with cracks and inclusions

    NASA Astrophysics Data System (ADS)

    Kanaun, S.; Markov, A.

    2017-06-01

    An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.

  19. Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder

    DOE PAGES

    Morgan, B. E.; Greenough, J. A.

    2015-04-08

    Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the timemore » at which L becomes resolved on the computational mesh. As a result, it is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.« less

  20. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.

    PubMed

    Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.

  1. Does the use of hernia mesh in surgical inguinal hernia repairs cause male infertility? A systematic review and descriptive analysis.

    PubMed

    Dong, Zhiyong; Kujawa, Stacy Ann; Wang, Cunchuan; Zhao, Hong

    2018-04-23

    The aim of this study was to systematically review the available clinical trials examining male infertility after inguinal hernias were repaired using mesh procedures. The Cochrane Library, PubMed, Embase, Web of Science, and Chinese Biomedical Medicine Database were investigated. The Jada score was used to evaluate the quality of the studies, "Oxford Centre for Evidence-based Medicine-Levels of Evidence" was used to assess the level of the trials, and descriptive analysis was used to evaluate the studies. Twenty nine related trials with a total of 36,552 patients were investigated, including seven randomized controlled trials (RCTs) with 616 patients and 10 clinical trials (1230 patients) with mesh or non-mesh repairs. The Jada score showed that there were six high quality RCTs and one low quality RCT. Levels of evidence determined from the Oxford Centre for Evidence-based Medicine further demonstrated that those six high quality RCTs also had high levels of evidence. It was found that serum testosterone, LH, and FSH levels declined in the laparoscopic group compared to the open group; however, the testicular volume only slightly increased without statistical significance. Testicular and sexual functions remained unchanged after both laparoscopic transabdominal preperitoneal hernia repair (TAPP) and totally extra-peritoneal repair (TEP). We also compared the different meshes used post-surgeries. VyproII/Timesh lightweight mesh had a diminished effect on sperm motility compared to Marlex heavyweight mesh after a one-year follow-up, but there was no effect after 3 years. Additionally, various open hernia repair procedures (Lichtenstein, mesh plug method, posterior pre-peritoneal mesh repair, and anterior tension-free repair) did not cause infertility. This systematic review suggests that hernia repair with mesh either in an open or a laparoscopic procedure has no significant effect on male fertility.

  2. Robot-Assisted Ventral Mesh Rectopexy for Rectal Prolapse: A 5-Year Experience at a Tertiary Referral Center.

    PubMed

    van Iersel, Jan J; Formijne Jonkers, Hendrik A; Paulides, Tim J C; Verheijen, Paul M; Draaisma, Werner A; Consten, Esther C J; Broeders, Ivo A M J

    2017-11-01

    Laparoscopic ventral mesh rectopexy is being increasingly performed internationally to treat rectal prolapse syndromes. Robotic assistance appears advantageous for this procedure, but literature regarding robot-assisted ventral mesh rectopexy is limited. The primary objective of this study was to assess the safety and effectiveness of robot-assisted ventral mesh rectopexy in the largest consecutive series of patients to date. This study is a retrospective cross-sectional analysis of prospectively collected data. The study was conducted in a tertiary referral center. All of the patients undergoing robot-assisted ventral mesh rectopexy for rectal prolapse syndromes between 2010 and 2015 were evaluated. Preoperative and postoperative (mesh and nonmesh) morbidity and functional outcome were analyzed. The actuarial recurrence rates were calculated using the Kaplan-Meier method. A total of 258 patients underwent robot-assisted ventral mesh rectopexy (mean ± SD follow-up = 23.5 ± 21.8 mo; range, 0.2 - 65.1 mo). There were no conversions and only 5 intraoperative complications (1.9%). Mortality (0.4%) and major (1.9%) and minor (<30 d) early morbidity (7.0%) were acceptably low. Only 1 (1.3%) mesh-related complication (asymptomatic vaginal mesh erosion) was observed. A significant improvement in obstructed defecation (78.6%) and fecal incontinence (63.7%) were achieved for patients (both p < 0.0005). At final follow-up, a new onset of fecal incontinence and obstructed defecation was induced or worsened in 3.9% and 0.4%. The actuarial 5-year external rectal prolapse and internal rectal prolapse recurrence rates were 12.9% and 10.4%. This was a retrospective study including patients with minimal follow-up. No validated scores were used to assess function. The study was monocentric, and there was no control group. Robot-assisted ventral mesh rectopexy is a safe and effective technique to treat rectal prolapse syndromes, providing an acceptable recurrence rate and good symptomatic relief with minimal morbidity. See Video Abstract at http://links.lww.com/DCR/A427.

  3. An updated systematic review on the possible effect of nonylphenol on male fertility.

    PubMed

    Noorimotlagh, Zahra; Haghighi, Neemat Jaafarzadeh; Ahmadimoghadam, Mehdi; Rahim, Fakher

    2017-02-01

    Diverse industries like detergents, resins and polymers, hair dyes, intravaginal spermicides, and pesticides produce endocrine disruptor (ED)-containing wastewaters that have hazardous effects on the environment and public health. Nonylphenol (NP) is a chemical substance that consists of a phenolic group and an attached lipophilic linear nonyl chain. NP has weak estrogenic activity and affects estrogen receptor (ER), as well as induces male infertility via a negative impact on spermatogenesis and sperm quality. The aim of this study was to comprehensively review all available literature about the side effects of NP on the male genital system. We systematically searched Scopus and PubMed using MeSH terms that include "Organic Chemicals," "Infertility," "Infertility, Male," "Nonylphenol", ("Infertility, Male"[Mesh]) OR "Nonylphenol" [Supplementary Concept]) OR "Prostate"[Mesh]) OR "Spermatozoa"[Mesh]) OR "Sertoli Cells"[Mesh]) OR "Leydig Cells"[Mesh] OR "Male accessory gland" OR "Epididym" OR "Reproductive toxicity"), and all other possible combinations from January 1, 1970, to September 15, 2016, with language limit. The initial search identified 117,742 potentially eligible studies, of which 33 met the established inclusion criteria and were included in the analysis. Thirty-three selected studies include animal model (n = 18), cell line (n = 15), human model (n = 1), morphology (n = 13), sperm quality (n = 17), and toxicity (n = 14). This review highlighted the evidence for the ED effect of NP that acts through interference with ER, discussing male reproductive tract perturbations. We critically discuss the available evidence on the effect of NP on sperm quality (such as motility, viability, sperm count, and sperm concentration), dramatic morphological changes (such as change of weights of testes and epididymis), and biochemical changes related to oxidative stress in testes. Finally, it is important to take caution with the continued use of NP that disrupts male reproductive health.

  4. Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure

    NASA Technical Reports Server (NTRS)

    Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.

    1992-01-01

    Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.

  5. An Experiment Comparing Lexical and Statistical Methods for Extracting MeSH Terms from Clinical Free Text

    PubMed Central

    Cooper, Gregory F.; Miller, Randolph A.

    1998-01-01

    Abstract Objective: A primary goal of the University of Pittsburgh's 1990-94 UMLS-sponsored effort was to develop and evaluate PostDoc (a lexical indexing system) and Pindex (a statistical indexing system) comparatively, and then in combination as a hybrid system. Each system takes as input a portion of the free text from a narrative part of a patient's electronic medical record and returns a list of suggested MeSH terms to use in formulating a Medline search that includes concepts in the text. This paper describes the systems and reports an evaluation. The intent is for this evaluation to serve as a step toward the eventual realization of systems that assist healthcare personnel in using the electronic medical record to construct patient-specific searches of Medline. Design: The authors tested the performances of PostDoc, Pindex, and a hybrid system, using text taken from randomly selected clinical records, which were stratified to include six radiology reports, six pathology reports, and six discharge summaries. They identified concepts in the clinical records that might conceivably be used in performing a patient-specific Medline search. Each system was given the free text of each record as an input. The extent to which a system-derived list of MeSH terms captured the relevant concepts in these documents was determined based on blinded assessments by the authors. Results: PostDoc output a mean of approximately 19 MeSH terms per report, which included about 40% of the relevant report concepts. Pindex output a mean of approximately 57 terms per report and captured about 45% of the relevant report concepts. A hybrid system captured approximately 66% of the relevant concepts and output about 71 terms per report. Conclusion: The outputs of PostDoc and Pindex are complementary in capturing MeSH terms from clinical free text. The results suggest possible approaches to reduce the number of terms output while maintaining the percentage of terms captured, including the use of UMLS semantic types to constrain the output list to contain only clinically relevant MeSH terms. PMID:9452986

  6. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  7. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  8. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    NASA Technical Reports Server (NTRS)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  9. The routine use of prosthetic mesh in austere environments: dogma vs data.

    PubMed

    Kuckelman, John P; Barron, Morgan R; Blair, Kelly; Martin, Matthew J

    2016-05-01

    Mesh repair has become the standard in adult hernia repairs. Mesh infection is an uncommon but potentially devastating complication. Currently, there is widespread dogma against the use of prosthetic mesh (PM) in deployed or austere environments but little available data to support or refute this bias. Retrospective review of all hernia repairs over 1 year in a forward deployed surgical unit in Afghanistan. Demographics, hernia type, repair performed, and mesh type were evaluated. Follow-up was completed up to 6 weeks and then as needed for up to a year, and complications to include infection were recorded. Sixty-six patients were identified, mean age was 38 (range 3 to 80) and 98% were male. Single-dose perioperative antibiotics and standard sterile technique were used in all cases. The majority (70%) had PM placed. The mean operative time was 54 min, and mean estimated blood loss was less than 25 cm(3). The vast majority of our hernias were inguinal (95%) with 1 ventral and 2 umbilical hernias. In the PM group, there were no surgical site infections, no mesh infections, and no mesh explantation or reoperation. There were no recurrences in either group identified at up to 1-year postoperation. There was no statistically significant difference in any outcome measure between the PM and no-PM groups. The use of PM for hernia repairs in the austere or forward environment appears safe and did not increase the risk of wound infection, mesh infections, or recurrence. Published by Elsevier Inc.

  10. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  11. Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptic Coplanar Orbits

    NASA Technical Reports Server (NTRS)

    daSilvaFernandes, Sandro; dasChagasCarvalho, Francisco

    2007-01-01

    In this work, a complete first order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through Hamilton-Jacobi theory and a perturbation method based on Lie series.

  12. Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a Green function approach

    NASA Astrophysics Data System (ADS)

    Trinkle, Dallas R.

    2017-10-01

    A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of a few analytic functions and numerical integration of a smooth function over the Brillouin zone for arbitrary crystals. The Dyson equation solves for the Green function in the presence of a solute with arbitrary but finite interaction range to compute the transport coefficients accurately, efficiently and automatically, including cases with very large differences in solute-vacancy exchange rates. The methodology takes advantage of the space group symmetry of a crystal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source implementation of the algorithm is available, and numerical results are presented for the convergence of the integration error of the bare vacancy Green function, and tracer correlation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.

  13. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.

  14. Anisotropic mesh adaptation for marine ice-sheet modelling

    NASA Astrophysics Data System (ADS)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.

  15. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    PubMed

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp

    DOEpatents

    Borowiec, Joseph Christopher; Cocoma, John Paul; Roberts, Victor David

    1998-01-01

    An integrated starting and running amalgam assembly for an electrodeless SEF fluorescent lamp includes a wire mesh amalgam support constructed to jointly optimize positions of a starting amalgam and a running amalgam in the lamp, thereby optimizing mercury vapor pressure in the lamp during both starting and steady-state operation in order to rapidly achieve and maintain high light output. The wire mesh amalgam support is constructed to support the starting amalgam toward one end thereof and the running amalgam toward the other end thereof, and the wire mesh is rolled for friction-fitting within the exhaust tube of the lamp. The positions of the starting and running amalgams on the wire mesh are jointly optimized such that high light output is achieved quickly and maintained, while avoiding any significant reduction in light output between starting and running operation.

  17. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  18. Analysis of high aspect ratio jet flap wings of arbitrary geometry.

    NASA Technical Reports Server (NTRS)

    Lissaman, P. B. S.

    1973-01-01

    Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.

  19. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  20. Supersonic flow past oscillating airfoils including nonlinear thickness effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1954-01-01

    A solution to second order in thickness is derived for harmonically oscillating two-dimensional airfoils in supersonic flow. For slow oscillations of an arbitrary profile, the result is found as a series including the third power of frequency. For arbitrary frequencies, the method of solution for any specific profile is indicated, and the explicit solution derived for a single wedge. Nonlinear thickness effects are found generally to reduce the torsional damping, and so enlarge the range of Mach numbers within which torsional instability is possible.

Top